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1. Introduction and main results

The map T, : x +— px on T = R/Z has many closed invariant sets and many invariant
measures. Furstenberg initiated the study of jointly invariant sets in his seminal paper [14].
A set A C T is called jointly invariant under T, and T; if T,(A) € A and T,(A) C A.
Furstenberg proved that if p and g are multiplicatively independent integers, then any
closed jointly invariant set is either finite or all of T.

Furstenberg also raised the question concerning what are the jointly invariant measures,
that is, which probability measures u on T satisfy (7))« = (7))« = . The obvious
ones are the Lebesgue measure, atomic measures supported on finite invariant sets, and
(non-ergodic) convex combinations of these.

In the following, a solenoid X is a compact, connected, abelian group whose Pontryagin
dual X can be embedded into a finite-dimensional vector space over Q. The simplest
example is a finite-dimensional torus. A Z?-action « by automorphisms of a solenoid X is
called irreducible if there is no proper infinite closed subgroup which is invariant under o,
and rotally irreducible if there is no finite index subgroup A € Z¢ and no proper infinite
closed subgroup Y € X which is invariant under the induced action ap. A 74 -action is
virtually cyclic if there exists n € Z¢ such that for every element m € A of a finite index
subgroup A € 74, there exists some k € 7 with a™ = o/*™.

We briefly summarize the history of this problem. The topological generalization of
Furstenberg’s result to higher dimensions was given by Berend [1, 2]: An action on a torus
or solenoid has no proper, infinite, closed, and invariant subsets if and only if it is totally
irreducible, not virtually cyclic, and contains a hyperbolic element.
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The first partial result for the measure problem on T was given by Lyons [31] under a
strong additional assumption. Rudolph [34] weakened this assumption considerably, and
proved the following theorem.

THEOREM 1.1. [34, Theorem 4.9] Let p, g > 2 be relatively prime positive integers, and
let u be a Ty, Ty-invariant, and ergodic measure on T. Then either | = mr is the
Lebesgue measure on T, or the entropy of T, and T is zero.

Johnson [17] lifted the relative primality assumption, by showing it is enough to assume
that p and g are multiplicatively independent. Feldman [13], Parry [33], and Host [15] have
found different proofs of this theorem, but positive entropy remains a crucial assumption.

Anatole Katok and Spatzier [22, 23] obtained the first analogous results for actions
on higher dimensional tori and homogeneous spaces. However, their method required
either an additional ergodicity assumption on the measure (satisfied for example if every
one parameter subgroup of the suspension acts ergodically), or that the action is totally
non-symplectic (TNS). A careful and readable account of these results has been written by
Kalinin and Anatole Katok [18], which also fixed some minor inaccuracies. The following
theorem (already proven in the announcement [7]) gives a full generalization of the result
of Rudolph and Johnson to actions on higher-dimensional solenoids.

THEOREM 1.2. [7, Theorem 1.1] Let o be a totally irreducible, not virtually cyclic
Z%-action by automorphisms of a solenoid X. Let w be an a-invariant and ergodic

probability measure. Then either = myx is the Haar measure of X, or the entropy
h, (@™) = 0 vanishes for all n € Vi

1.1.  The general positive entropy measure rigidity theorem. Without total irreducibility,
the Haar measure of the group is no longer the only measure with positive entropy. Thus
our main theorem below is (necessarily) longer in its formulation than Theorem 1.2.
It strengthens e.g. [18, Theorem 3.1] which has a similar conclusion but stronger
assumptions.

THEOREM 1.3. (Positive entropy rigidity theorem) Let a be a Z%-action (d > 2) by

automorphisms of a solenoid X. Suppose a has no virtually cyclic factors, and let u be an

a-invariant and ergodic probability measure on X. Then there exists a subgroup A C Z¢ of
finite index and a decomposition = (1/J)(u1 + - - - + py) of p into mutually singular

measures with the following properties for every j = 1,..., J.

(1)  The measure i ; is ap-ergodic, where a is the restriction of o to A.

(2)  There exists an ap-invariant closed subgroup G such that ju; is invariant under
translation with elements in G, that is, wj(B) = u;j(B + g) for all g € G; and
every measurable set B C X.

(3) FormelZ4, ol = g for somek € {1,...,J} and oa™(G;) = Gy.

(4) The measure i induces a measure on the factor X/G ; with huj (O&/G_,-) =0 for
anyn € A. (Here ax;g; denotes the action induced on X/G j.)

We remark that in the topological category, there is a big gap between our understanding
of the totally irreducible case and the general case of Z?-actions by automorphisms on a
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solenoid. In the totally irreducible case, Berend [2] gave an if-and-only-if condition for
a Z%-action to have the property that every orbit is either finite or dense, and the same
methods could be pushed further to give a complete classification of closed invariant
subsets for a totally irreducible 74 -action on the solenoid; for 74 -action on tori, this is due
to Z. Wang [36, Theorem 1.10], and his proof certainly works also for solenoids though
this does not seem to have been written (a special case, with a very nice application, can
be found in Manner’s paper [32]). In the non-irreducible case, orbit closures and closed
invariant sets are much less understood. We refer to [30] by Z. Wang and the second named
author for some results in this direction and additional details.

The proofs of Theorem 1.2 and Theorem 1.3 follow the outline of Rudolph’s proof of
Theorem 1.1. One of the main ingredients there was the observation that h,,(7,,)/ log p =
h,.(T;)/ log g (and arelativized version of this equality). This follows from the particularly
simple geometry of this system where both T}, and 7, expand the one-dimensional space
T with fixed factors. There is no simple geometrical reason why such an equality should be
true for more complicated Z?-actions on solenoids, and indeed is easily seen to fail in the
reducible case. However, somewhat surprisingly, such an equality is true for irreducible
74 -actions, even though this is true for subtler reasons (see Theorem 7.1 below).

In the following two subsections we also apply Theorem 1.3 to obtain new information
about the measurable structure, with respect to the Haar measure, of algebraic 74 _actions
on tori and solenoids.

1.2. Characterization of disjointness. Let o1 and op be two measure-preserving
74 -actions on the probability spaces (X1, Bx,, u1) and (X2, Bx,, n2). A joining between
a1 and oy is an o] X op-invariant probability measure v on X1 x X», which projects to 11
and p» under the projection maps 1 and m>. In other words we require v(a} x a3 (C)) =
v(C) forn e Z% and C € Bx,xx,, V(A x X3) = u1(A) for A € By,, and also v(X; x
B) = u2(B) for B € By,. The product measure jt1 X pp is always a joining, called the
trivial joining. If the trivial joining is the only joining, the two actions are disjoint. This
implies that the two actions are measurably non-isomorphic. In fact if they are disjoint,
there is no non-trivial common factor of the two systems, see for instance §9 where we
recall the construction of the relatively independent joining over a common factor.

Let now o; be measure preserving 74 -actions on (X, ij, wj)for j=1,...,r. A
Joining between o for j =1,...,r is a measure v on ]_[;-:l X; which projects to
under the coordinate projections r; for j = 1, ..., r, and is invariant under the 74 _action
a1 X - - - X a,. The product measure is the trivial joining, and the Z¢-actions are mutually
disjoint if the trivial joining is the only joining.

Suppose now « and oy are actions by automorphisms on solenoids X; and X»,
respectively. We will classify disjointness with respect to the Haar measures mx; on the
group X; for j =1,2. If ¢ : X1 — X is a continuous surjective homomorphism and
satisfies @) o9 = g ol for all n € 74, we say ¢ is an algebraic factor map. If a; and
oy are both finite-to-one factors of each other by algebraic factor maps, we say they
are algebraically weakly isomorphic. Equivalently, oy and o, are algebraically weakly
isomorphic if they have a common finite-to-one algebraic factor.

https://doi.org/10.1017/etds.2021.74 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.74

Rigidity properties for commuting automorphisms on tori and solenoids 695

The following generalizes a theorem of Kalinin and Anatole Katok [19, Theorem 3.1]
and of Kalinin and Spatzier [20, Theorem 4.7], where the main difference is that we do
not assume that the actions are totally non-symplectic or hyperbolic.

COROLLARY 1.4. (Classification of disjointness) If a; and ay are totally irreducible
and not virtually cyclic, then they are not disjoint (with respect to the Haar measures)
if and only if there exists a finite index subgroup A C Z¢ for which a1a and ax p are
algebraically weakly isomorphic.

More generally, let aj be 74 -actions on solenoids (not necessarily irreducible) without
virtually cyclic factors for j = 1, ..., r. Then they are not mutually disjoint if and only
if there exist indices i, j € {1,...,r} withi # j, a finite index subgroup A C Z%, and a
non-trivial A-action B on a solenoid Y which is an algebraic factor of a; A and oj .

1.3. Algebraicity of factors.  Anatole Katok, Svetlana Katok, and Schmidt [21, Theorem

5.6] studied measurable factor maps between Z<-actions by automorphisms of tori.

Our second application gives an extension of this by characterizing the structure of

measurable factors (or equivalently invariant o -algebras). We start by giving two algebraic

constructions that give invariant o -algebras.

e If X' C X isaclosed a-invariant subgroup and 7 : X — X/ X’ denotes the canonical
projection map, then the preimage A = 7~ !By /x' of the Borel o-algebra By, x: of
X/ X' is a-invariant.

e If T' is a finite group of affine automorphisms that is normalized by «, then the
o-algebra BY, of I'-invariant Borel subsets of X is a-invariant.

COROLLARY 1.5. (Algebraicity of measurable factors) Let « be a Z%-action by automor-
phisms of the solenoid X without virtually cyclic factors, and let A C By be an invariant
o -algebra. Then there exists a closed o-invariant subgroup X' € X and a finite group T
of affine automorphisms of X/ X' that is normalized by the action ax,x' induced by a on
X /X' such that

A= n_l(Bg(/X,) modulo mx.

In other words, the corollary states that every measurable factor of o arises by a
combination of the two algebraic constructions given above.

In the irreducible case, the theorem gives that every non-trivial measurable factor of « is
a quotient of X by the action of a finite affine group. The simplest examples of such groups
are finite translation groups. However, more complicated examples are also possible; for
example, let w € X be any «-fixed point. Then the action of G = {Id, — Id +w} on X
commutes with «.

The proof of Corollary 1.5 uses the relatively independent joining of the Haar measure
with itself over the factor 4, which gives an invariant measure on X x X analyzable by
Theorem 1.3. This is similar to the proof of isomorphism rigidity in [21], which followed
a suggestion by Thouvenot.

We will discuss further corollaries towards factors in §9.

https://doi.org/10.1017/etds.2021.74 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.74

696 M. Einsiedler and E. Lindenstrauss

1.4. Remarks and acknowledgements. The results of this paper were obtained in 2002
and announced in [7]; indeed this was the first result we worked on together. Since then,
there was always another newer result that we wanted to write, and we never seemed to
have the time to finally write down the general case of the results announced in [7]. One
important ingredient in this work is the product structure for coarse Lyapunov foliations
developed around that time by Anatole Katok and the first author.

The ideas behind the proof of Theorem 1.3 were used by Z. Wang to prove his strong
measure classification result for invariant measures on nilmanifolds [37]. Actions by
automorphisms on nilmanifolds generalize actions on tori which are covered by the results
of this paper; solenoids are more general than tori, but more importantly, in that paper, Z.
Wang does not allow for zero entropy factors, as we do here. Hence the results of this paper
are (to the best of our knowledge) ‘new’ in the sense that they have not appeared in print
before. We thank Z. Wang for encouraging us to write down the complete proof of [7] and
for his willingness to help us do so. We also would like to thank the anonymous referee
and Manuel Luethi for their comments.

2. Actions on adelic solenoids
2.1. Adeles, local and global fields. We review some basic facts and definitions regard-
ing local fields, global fields, and the adeles. A general reference to these topics is Weil’s
classical book [38, Chs. [-IV]; note that Weil calls what is now commonly referred to
as global fields A-fields. Throughout this paper, the term local field will denote a locally
compact field of characteristic zero; these include R and C as well as finite extensions of
the field of p-adic numbers Q,. (The terminology of global and local fields was introduced
to incorporate both the positive and zero characteristic cases on an equal footing, but
dynamically there are rather fundamental differences (see e.g. [3, 24]) and we restrict
ourselves in this paper to the zero characteristic case.) Let K be a local field and let Ak
be the Haar measure on K. We define §(K) as the degree of the field extension K over
the closure of Q in K, which can be isomorphic to either R if K is Archimedean or Q,
for some prime p otherwise (to make the notation more consistent, we will also write Q«
for R). Local fields come equipped with an absolute value | - [x, which we will always
normalize to coincide with the usual absolute value on R or Q,. We note that in any of
these cases we have

i (@C) = lalif k() @D
for any measurable set C C K.

We recall that a global field K is a finite field extension of Q. We will denote the
completions of K by K,, where o stands for the (Archimedean or non-Archimedean)
place—that is, an equivalence class of absolute values. We choose the representative to
coincide with either ||, of |-, on Q. We recall that K, is a local field and will use the

abbreviation |-|, = |-|g, for the norms satisfying (2.1) on K;. If |-|, coincides with |-,
on Q, then we say that o lies over p; if ||, is Archimedean, we say that o is an infinite
place of K.

For a global field K, the ring of adeles Ak over K is defined as the restricted direct
product of all completions of K with respect to the maximal compact subrings for all
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non-Archimedean completions. In other words, (¢,), € Ak if t, € K, for all places o of
K and, except for finitely many o (an exceptional set that is assumed to include all infinite
places), we have that in fact #, lies in the maximal compact subring Ok, < K. In the
special case K = Q, this takes the form

A=Rx ]_[;, Qp =R x Us(Tpes @p x [1pes Zp).

where the union runs over all finite subsets S of the primes. The general case of the ring of
adeles Ax over a global field K is defined similarly, but can also be obtained via

Ax =A®gK. (2.2)

We shall identify K, with the corresponding subring in Ak. Using a basis of K over Q, we
obtain an additive group isomorphism (indeed, an isomorphism of vector spaces over Q)

Ag = A ®g K = AKQ (2.3)

We recall moreover that QQ diagonally embedded into A is discrete and cocompact and
that the Pontryagin dual A of A can be identified with A itself. Finally the isomorphism
between A and A can be chosen so that the annihilator of Q is Q itself, which implies
that the Pontryagin dual of Q can be identified with A/Q. This extends similarly to global
fields, see e.g. [38, pp. 64—-69].

2.2. Adelic actions. For us, the adelic setup gives a concrete language to discuss actions
on general solenoids. We note however that for automorphisms on tori, it suffices to
consider all Archimedean places of K and for irreducible actions, it would suffice to
consider only finitely many places (see also [7] for the latter).

Indeed, let us fix a dimension m > 1, a rank d > 1, and d commuting matrices
Ay, ..., Ay € GL,(Q). We use them to define a linear representation & of Z4 on Q™.
Using the matrices in the same way as within vector spaces, this extends to an action of
7% by group automorphisms on A”, which we will also denote by &@. Finally, we take the
quotient by the discrete cocompact invariant subgroup Q™ and obtain an action « of Z¢ by
automorphisms on the solenoid

X = A™/Q™.

We will refer to X,,, as an adelic solenoid and to this action as the adelic action on X,,
defined by the matrices (or equivalently the linear maps) Ay, ..., Ag.

Since every group automorphism of Q" is in fact Q-linear and defined by an invertible
matrix in GL,,(Q), it follows from Pontryagin duality that every action of Z¢ by
automorphisms on X,, can be defined this way. We will explain this step in a more general
form in §4.1.

We say that a closed subgroup Y < X, of an adelic solenoid X,, = @m is adelic if it
is a linear subspace over Q (that is, QY C Y). Since this notion will be useful for us, we
wish to study it briefly in the following lemma.
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LEMMA 2.1. Let m > 1 and let Y < X,, be a closed subgroup. Then the following

conditions are equivalent:

(1) Y < Xy, is an adelic subgroup;

(2)  the annihilator Y+ < Q™ is a Q-linear subspace;

(3)  there exists a Q-linear subspace V < Q™ so that Y is the image of A ®qg V < A™
modulo Q™.

Proof. The equivalence of (1) and (2) follows from Pontryagin duality. Indeed aY =Y
for a € Z \ {0} (and then also a € Q \ {0}) is equivalent to a(Yt) =Y+ (since (a¥)t =
a lyh.

Suppose now V < Q™ is a linear subspace as in (3). Then A ®q V is clearly invariant
under Q and hence defines modulo Q™, an adelic subgroup.

Finally assume that Y is adelic as in (1) (and equivalently (2)). Let W =Y L < Q™ so
that W is a linear subspace and ¥ = Wt by Pontryagln duality. By [38, Ch. IV], there
exists a character xo € A so that the isomorphism A = A is induced by the definition
(a, b) = Xo(ab) for all @, b € A and with this isomorphism, we have Q+ = Q. Moreover,
this also gives Am = Am using the pairing

((a17 LR 7am)7 (bla AR 7bm)> = XO(albl + te +ambm)

for all (ay,...,an), (b1,...,by) € A™. Since W < Q™ is a linear subspace, we may
apply a linear isomorphism A € GL,,(Q) so that W; = A(W) is precisely the span of
the first k standard basis vectors. Applying the inverse of the dual (transpose) linear
automorphism to Y, this shows that Y| = (AH~1(Y) satisfies that Y;- = W;. Now let

(a1, ...,am) €Y. Hence we have xo(a;jb) = lforallb € Qand j =1, ..., k. However,
this gives by the properties of xo that a; € Q for j =1,..., k. It follows that Y| =
Q™ + A ®q Vi, where V; is the linear hull of the last m — k basis vectors. Applying A’ to
this claim gives the description of Y as in (3). O

2.3. Irreducible adelic actions. We say that an adelic action on X, is A -irreducible if
the associated linear representation of 74 on Q™ is irreducible over Q, that is, if there does
not exist a rational nontrivial proper invariant subspace. Note however that A-irreduciblity
does not coincide with the notion of irreducibility defined on p. 5. In fact, an adelic action
is never irreducible but it will be convenient to study A-irreducible adelic actions as basic
building blocks of other adelic actions.

We note that given a global field K and d > 1 elements ¢i, ..., s € K, we may
consider multiplication by these elements as a Q-linear map on the vector space K over
Q to define an adelic action of Z¢ on Ax /K. Using a fixed basis of K over Q, we may
identify K with Q™ and multiplication by ¢, . . ., {z with certain matrices Ay, . .., Ag.
In this way, our discussions of §2.2 also apply to the multiplication maps by {1, . . ., {g on
K. The point of the following proposition is that every A-irreducible action of Z¢ arises in
this way from a global number field and d of its elements.

PROPOSITION 2.2. (Diagonalization of A-irreducible action) Let m,d > 1 and let o be
an A-irreducible adelic action of Z¢ on X,, = (A/Q)™. Then there exists a global field
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K of degree m over Q and d non-zero elements ¢1, . . ., {g € K* so that a is isomorphic
to the action on Ak /K generated by the maps a €e K+ ¢ja e Kfor j=1,...,d. More
explicitly, this action on Ag /K (which as an additive topological group is isomorphic to
X ) can be given as follows:

~ n n
a": (vo)s € Ag > @'1,(17 s é'dj, Vo )o
————

:fn,a

where {15, ..., 8d0 € Ko and tno denote the image of {1, . . ., g respectively of {n =
¢t )" in the completion K.

Proof. Let¢; =a% € GL,(Q) for j =1, ..., d be the matrices that define the action &
on Q™ and A™ associated to «.

We define K = Q[¢y, - . ., ¢g] € GL,,(Q) to be the ring of polynomial expressions f
in the matrices {1, . . . , {g and with rational coefficients. We note that Lemma 2.1 implies
that Q™ has no proper rational subspaces invariant under K. Since ¢, . . ., {; commute,
it follows that any such polynomial expression f € K is either zero or is invertible (as an
element of GL,,(Q)). In particular, we have that K is an integral domain. As it is also a
finite dimensional algebra over Q, it follows that K is field extension of Q. Once more
because Q™ has no proper invariant subspaces, it also follows that ¢ : a € K+ a(ey) €
Q™ must be surjective. By definition the kernel ker(¢) is an ideal, which implies that ¢ is
injective since K is a field. It follows that ¢ is a linear isomorphism.

To summarize, we have found a global field K and elements ¢y, . . ., £z € K* so that
up to a linear isomorphism our linear representation @™ on Q™ is defined for every n € Z¢
by multiplication by ¢, = ;1" Lo {5‘1 on the vector space K.

To obtain the adelic action, we tensorize with A. On one hand, for the action on Q™ this
gives the action of 74 on A™ we started with. On the other hand, we may tensorize the
linear isomorphism between Q" and K with A to obtain the group isomorphism

A" =Q" ®9 A= K®gA = (K®gR) x [T,K &g Qp).

Now notice that we can identify K with the quotient Q[x]/(p(x)) for some irreducible
polynomial p(x) € Q[x], which implies that K ® R is isomorphic R[x]/(p(x)). Since the
irreducible factors of p(x) € R[x] correspond precisely to the roots of p(x) (all appearing
with multiplicity one) and hence also to the Galois embeddings of K into C, it follows that
K ® R is as a ring isomorphic to [ | oloo Ko, Where the product runs over all places of K
lying above oo, that is, over all Archimedean completions of K.

This argument applies similarly for the tensor product with Q, so that K ®g Q, is
isomorphic as a ring to the product ]—[U‘ » Ko and o denotes here all places of K above
p, see also [38, p. 56]. Applying this argument at all places of @, we obtain that A™ is
isomorphic to Ax.

Application of @ corresponds under this isomorphism from A™ to Ag = [, K, to
multiplication by the image of ¢; in the factor K, for every place o of K. This gives the
proposition. O
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Let us write §(0) = §(K,) € N for any place o of K. The following product formula is
a crucial ingredient in our proof.

PROPOSITION 2.3. (Product formula) Let o be an A-irreducible adelic 74-action as in
Proposition 2.2. Then we have

l_[ |a|f,(”) =1 foreverya € K\ {0} (2.4)

and this applies in particular to a = ¢y for everyn € Z4.

We note that one way to obtain this result is precisely to interpret the product as the
modular character for the automorphism defined by multiplication by a on the compact
group K = Ak /K (cf. (2.1)). We refer to [38, p. 75] for a proof along these lines.

2.4. A filtration by A-irreducible adelic actions. The following lemma reveals an
advantage of adelic actions by connecting structural questions concerning « to linear
algebra on the dual.

LEMMA 2.4. (Decomposition into A-irreducible factors) Let m,d > 1 and let « be an
adelic 7Z%-action on X,,. Then there exist closed a-invariant adelic subgroups

Yo={0 <Y1 <-- <Y, =Xp,

such that the action induced by a on Y;/Y;_1 is an A-irreducible adelic 7% -action for all
j=1,...,r.

We will refer to the A-irreducible adelic actions appearing in Lemma 2.4 as the
A-irreducible factors associated to .

Proof. By Pontryagin duality, we may consider instead of « the linear representation &
on Q™. Let V; C Q™ be a non-trivial subspace that is invariant under @ and of minimal
dimension. Note that this implies that the restriction of @ to V) is irreducible over Q. If
V1 # Q™, we let V, be a subspace that is invariant under @, strictly contains V and is
among these of minimal dimension. Once more this implies that V,/V is irreducible over
Q (for the representation induced by @).

Continuing like this, we obtain a partial flag

Vo=0}<Vi<Vo<--- <V, =Q" (2.5)

consisting of @-invariant subspaces so that V;/V;_; is irreducible over Q. Applying
Pontryagin duality (and reversing the indexing), this gives the lemma. O

3. Leafwise measures, invariant foliations, and entropy

We briefly recall the main properties of leafwise measures. These have been introduced in
the context of higher rank rigidity theorems (under the name of conditional measures for
foliations) by Anatole Katok and Spatzier in [22] and have since become an essential tool
for all of the theorems in the area. Implicitly leafwise measures appear already in the proof
of Rudolph’s Theorem in [34]. A general reference for this section is [10, §§6 and 7].
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3.1. Leafwise measures. Given a quotient X = G/ I" of a locally compact abelian group
G by a lattice I' < G and a closed subgroup V < G with V N I" = {0}, we consider the
foliation of X into V-orbits. Let wx denote the natural projection G — X. As we will
reduce our main theorem to the adelic case (Theorem 4.1), we consider the case that G is
A™ (though everything we say below is equally valid for G = R™, or a finite product of
local fields). We note that the metric on A™ is chosen so that the balls BrV =B,0)NV
have compact closures for all » > 0.

For our purposes, it will be important to work with an extension of X—a product X =
X x Q of X with an arbitrary compact metric space 2. We let V act on X by translation on
the first coordinate and trivially on the second coordinate, obtaining in this way a foliation
of X into V orbits. This foliation of X into V-orbits does not admit in general a Borel
cross-section, and typically one cannot find a countably generated o -algebra on X whose
atoms coincide with almost every (a.e.) V-orbits. Given a probability measure y on X, the
foliation into V-orbits gives rise to a system of leafwise measures on X: a Borel measurable
map x > pY from a subset of full measure X' cXto locally finite (possibly infinite)
measures on V. We say that a leafwise measure ! is trivial if it is a multiple of the Dirac
measure at the identity; we say that the system of leafwise measures is trivial if it is trivial
at a.e. point. We also note that almost surely 0 belongs to the support of ,u;/.

The system of leafwise measure satisfies the following compatibility condition: for any
veVandx € X sothatx + visalsoin X'

Yo, +v) o). (3.1)

Here and in the following, we write v oc V' for two measures v, V' if there exists ¢ > 0 with
v=cv.

One way to characterize the leafwise measures is through the notion of subordinate
o -algebras:

Definition 3.1. (Subordinate o -algebras) A o-algebra A of Borel subsets of X is subordi-
nate to 'V if A is countably generated, for every x € X the atom [x] 4 of x with respect to
A is contained in the leaf x + V, and for a.e. x

x+B!§[x]A§x+BX for some € > 0 and p > 0.

For these x, we define the shape Sy of the atom [x] 4 (from the point of view of x) as the
subset of V satisfying x + S, = [x] 4.

Let A be a countably generated o-algebra on X that is subordinate to V. Then the
leafwise measures for u with respect to V and the conditional measures of © with respect
to A satisfy that for a.e. x € X, the conditional measure ,uxA at x with respect to A4 equals
the normalized push forward x + (,u)‘c/ ls,) of the restriction u )‘C/ |s, under the addition map
vi> x4 vfromV — X.

A slightly subtler but important feature of the system of leafwise measures is that while
they may be (and typically are) infinite measures, they have certain a priori restrictions
on how fast they grow: There exists a concrete function fy on V (only depending on V)

that is integrable with respect to ,u)‘c/ for every x in a set of full measure (that we may as
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well assume already contains the conull set X ", see [10, Theorem 6.30]. In fact, fy can be
chosen with very mild (polynomial-like) decay properties.
In particular, if x € X" and v € V satisfies

Y +v) o, (3.2)

this in fact implies the formally stronger conclusion that p.)‘c/ is translation invariant by the
same v, that is,

() +v) = py, (3.3)

for otherwise 1Y would have exponential growth, which would contradict the
polynomial-like growth condition. Finally we recall the following proposition.

PROPOSITION 3.2. (Leafwise measures supported on subgroups [9, Lemma 3.2], [28, §3])
Let X =G/T" and let W < V < G be closed subgroups. Let | be a probability measure
on X. Suppose that for u-a.e. x, the measure [LX is supported on W. Then, identifying
locally finite measures on W with locally finite measures on V supported on W in the
obvious way, we have that for j-a.e. x, pL)‘;V x ,u)‘c/ .

3.2. Entropy and leafwise measures. Suppose now T : G — G is a group automor-
phism preserving I' and V. Recall that we have restricted ourselves without loss of
generality to the case where X is the Pontryagin dual to an m-dimensional vector space L
over Q. Fixing a choice of basis in L, we can restrict our attention to the case of G = A™,
I' = Q™, and hence the automorphism 7 is defined by a rational matrix T € GL,,(Q). We
note however that some of the definitions below, e.g. the ‘sufficiently fine’ condition in
(3.7), depend on the choice of basis used to give the isomorphism L = Q™ (which induces
an isomorphism I' = Q™).

We denote the resulting automorphism of X = G/T" also by 7, and consider an
extension T =T x Tg : X — X with T : Q — Q measurable. Furthermore, suppose
the probability measure p on X is invariant under 7'. Then the characterizing properties of
the leafwise measures i imply the equivariance formula

i, o Tu(iny) (3.4)

forae. x € )N(’, see e.g. [10, Lemma 7.16].

We say that a closed subgroup V < A™ is S-linear where S is a finite set of places of Q
(that is, a set of prime numbers or infinity) if for each o € § there is a subspace V, < Q'
so that V is the direct product of the V,; for o € S. Below we will frequently use the stable
horospherical subgroup

U ={aecA":T"a - 0asn — oo}
for T and the unstable horospherical subgroup U} = Uy If
S={p:T¢&GL(m,Zp,)}U {oo}, (3.5)

then the horospherical subgroups U, and U;r are S-linear for this S.
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3.3. Increasing subordinate o -algebras and entropy. ~We continue with the notation of
§3.2. We say that a countably generated o -algebra A on X is increasing with respect to T
if A < T A (modulo w), that is, the atom [7 x] A almost surely (a.s.) contains T ([x] A)-

Let P be a finite partition of X, which we identify with the corresponding finite algebra
of sets. For any € > 0, let

3WP={FeX:¥+B) ¢ [Xlp).

The following lemma follows quickly from monotonicity of the function r € [0, 00)
w(Br(x)) for x € X (and its almost sure differentiability) together with compactness of X.

LEMMA 3.3. [10, Lemma 7.27] For any probability measure [i on X, there exists a finite
partition P of X into arbitrarily small sets such that for some fixed C and for every € > 0

(@Y P) < Ce. (3.6)

For more details, see [10, §7]. A partition P satisfying the conclusion of the above
lemma will be said to have thin boundaries. We will assume throughout that any finite
partition P of X we will consider below is sufficiently fine in the sense that

P—-—PC nx< 1_[ B (ry) x l_[ ZZ") for every P € P, 3.7
ves DEAY

with r, = 0.1 max(||T|,, |T! ||v)’] (with respect to the operator norm on GL(Qy)).
For any o-algebra A and —oco < kg < k1 < oo set

Ak = T=ko 4 and AKokD — \/ T7'A
ko<i=<ki
(for kg or k; = Fo00 strict inequality instead of < should be used).
An easy Borel-Cantelli argument gives that if P is a sufficiently fine finite partition of
X with small boundaries in the sense of (3.6) and (3.7), then

Cp = PO

is a countably generated o-algebra satisfying one of the two conditions required by
Definition 3.1 for V = U, namely for a.e. x it holds that there is an € > 0 so that
x + BU; (¢) C [x]p. (With a bit more care, using a countable partition P with finite

entropy, one can get that P

by a cruder approach below.)

A modified version of this increasing o -algebra P02 can be used to construct for any
S-linear T-normalized subgroup V < U; of A™ an increasing V subordinate o -algebra
Cy on X = X x € so that moreover Cy = f—‘cv Vv P. Indeed, first we construct starting
from a (sufficiently fine, with small boundaries) finite partition P on X a o-algebra Py
on X as follows: for each P e P, lift it to a subset P C A™ contained in a translate of
[Toes B (ry) X I, ¢s Z7 (up to translation by an element of Q™, this lift is uniquely

is actually Uy -subordinate; we achieve a similar goal

defined). Now take the countably generated o -ring Op of subsets C of P with the property
that if x € C then (x + V) N P C C. Since y is a bijection from P to P, the image Qp
of Qp in X is a countably generated o-ring, and now we define Py to be the o-algebra
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of subsets of X generated by the o-rings Qp x Bq for all P € P. Then Cy = P§9’°°) isa
T-increasing, countably generated o-algebra subordinate to V satisfying Cy = T-'cy v
P. Note alsg that by the way Cy is defined, there is a fixed p > 0 so that [x]¢, € x + BX
for all x € X. For more details, the reader is referred again to [10, §7].

For V < U; as above and Cy as above, we define the entropy contribution of V to be

hz(T, V) =Hz(Cy | T~'Cy). (3.8)

We also need the conditional form of this definition: if ) is a T -invariant o -algebra, then
the entropy contribution of V conditional on ) is defined to be

hu(T,V | Y) = HzCy | T~'Cy v ), (3.8)

where, as usual, we will identify a factor Y of X with the corresponding T -invariant
o-algebra ) of subsets of X. Formally the conditional entropy contribution is included
in the previous case, replacing 2 by 2 x Y, but notationally it will be useful to allow
additional explicit conditioning. The following propositions shows that—as implied by the
notation— h ,j(i V) does not depend on the choice of P and Cy .

PROPOSITION 3.4. Let V < Uy be an S-linear subgroup normalized by T, and let Cy be
as above. Then

~ ~ . 1 ~V -N 74
vol(T, V,x) = lim —loguz (T~ (B (0))) 3.9)
IN|—>o00 N

exists almost everywhere and h,j(i Vy=/[ vol(T, V, X) dfi(X). Moreover, outside a set
of t-measure zero, vol(T, V, x) = 0 if and only zf,lZX is trivial. Furthermore, hy(T, V) <
hg (T | 2), with equality holding for V- = Uy In particular, h, (T | ) > 0 if and only if

,1757 is not almost everywhere trivial.

By the remark above, this proposition also covers the case of entropy contributions
conditional on a factor. This proposition is essentially well known, and is e.g. heavily used
by Ledrappier and Young in [25, 26] (though we are using a version of these results relative
to the factor Q of X ). For proof, we refer the reader to [10, §7] where an exposition in the
spirit of this paper can be found. (In [10, §7]. It is assumed that the acting group acts in
a semisimple way on the leaves, which does not necessarily hold in our case as we are
explicitly allowing actions with non-trivial Jordan form. However, the arguments of [10,
§7] can be easily modified to handle this situation; we leave the details to the readers.)

Assuming that p is invariant and ergodic under a Z?-action @ with T = &@" for some
n € 74, the value of the limit in (3.9) defines an invariant function for @, hence is almost
everywhere constant, and so equals hu(f, V|Q) forae x € X.In particular, assuming

a is ergodic, the following three statements are equivalent: (i) & H(f | ) > 0; (ii) ufﬁ is

non-trivial almost everywhere; (iii) i, is non-trivial on a set of positive measure.

The entropy contributions for V < U 7"1' (also denoted & g(T, V)) are defined similarly,
and satisfy that

ha(T, V) =hz(T~', V).
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Let0 - L1 — L — K — 0 be an exact sequence of finite dimensional vector space
over Q and let 0 - ¥ — X — X| — 0 be the corresponding dual exact sequence of
adelic solenoids. Let T : X — X be the dual map to a linear map in GL(L) fixing L. Then
T also induces a map 17 : X1 — X;j. Let Vy 4 < A be the rational subspace projecting
modulo Q™ to Y. Let T : 2 — Q be a continuous map on the compact metric space
2, and denote X =X x Q, T=Tx Tq, fl = X1 x Q, etc. We let w denote both the
projection from A" — A™/Vy 4 as well as the corresponding projection X — X.

PROPOSITION 3.5. (Entropy contribution of factor and fiber, cf. [11, Proposition 6.4] or
[8, Proposition 3.1]) With the notation above, let 11 be a T -invariant measure on X, let V
be a S-linear subgroup of Uy, < A™, and let V| be a S-linear subgroup ofUT_l < A™/Vya
so that V. < w~Y(V}). Let i1 = myJL. Then

(T, V) < hg (Ty, Vi) + hp(T, V 0 Vy ), (3.10)
with equality holding for V. = Uy and V| = Uyp,.

Proof. See [11, Proposition 6.4] (while the setting is a bit different, the proof there works
verbatim also in our setting). O

Note that by definition, hﬁ(i V) = hﬁ(i V' | ) and similarly for the other terms in
(3.10).

4. An adelic version of the positive entropy theorem
We show in this section that it suffices to prove the following more special version of
Theorem 1.3.

THEOREM 4.1. (Adelic theorem) Let m > 1, d > 2, and let o be an adelic 74 _action
on Xy, without virtually cyclic factors. We suppose furthermore that the action satisfies
that every adelic subgroup of X, that is invariant under the restriction of « to a finite
index subgroup of Z¢ is actually invariant under 7.2. Let [ be an a-invariant and ergodic
probability measure on X,,. Then there exists an adelic subgroup G < X, so that | is
invariant under translation by elements of G and h, (o' / g) =0foralln e 74,

We note that the reader interested in the heart of the argument may skip most of this
section, which is dedicated to the reduction of Theorem 1.3 to Theorem 4.1, and should
instead continue with §4.4.

4.1. Extension to adelic action. Suppose that « is a Z?-action by automorphisms on
a solenoid X as in Theorem 1.3. By definition, this means that the Pontryagin dual X is
isomorphic to a subgroup V € Q™ for some m € N. We may assume that m is minimal,
that X = V, and by applying some linear automorphism if necessary, we may also assume
that the standard basis vectors of Q™ belong to V. By Pontryagin duality, we also have
that X is isomorphic to the quotient of X, = @ = A" /Q™ modulo the annihilator K =
VE+ < X, of V.

Moreover, for every n € Z¢ the dual @" of the automorphism ™ is an automorphism of
V C Q™. Using the standard basis of Q™ (contained in V by the above assumption), we can
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represent this dual automorphism by a rational matrix and extend it to linear automorphism
of Q™ (since V ®q Q can be identified with Q™). This shows that the dual action extends
to a linear representation of Z¢ on Q™.

We take the transpose of this representation (that is, of each of the matrices defining
@% for j = 1,...,d) to define an action & of Z? by automorphisms on Q” and A™. As
discussed in §2.2, this defines an adelic action of Z¢ by automorphisms of X,, = A™/Q".
Moreover, since V. C Q™ is invariant under @, the annihilator K = V< is aclosed invariant
subgroup for & and the induced action on X, /K is isomorphic to the original action on X.

Extending the above discussion, the following lemma allows us to switch our attention
to the setting of an adelic Z?-action « on X,, for some m € N.

LEMMA 4.2. Suppose Theorem 1.3 holds for adelic actions, then it also holds for all
actions of Z¢ by automorphisms on solenoids.

Proof. Let o be a Z%-action by automorphisms on a solenoid X and let ; be an a-invariant
and ergodic probability measure on X. Applying the above discussion, we can construct
an adelic action (again denoted by «) on X, for some m > 1 and an invariant compact
subgroup K such that the action on X,,/K is isomorphic to the original action.

Next, we can define a probability measure g on X,, that is invariant under K and
modulo K equals w. This describes pg uniquely. By invariance of K under o and
uniqueness, this measure is also «-invariant. If it is not ergodic with respect to o, we
may consider an ergodic component i of wg. Due to ergodicity of u, almost surely the
ergodic components will project to w. Let it be one such ergodic component.

By our assumption (in Lemma 4.2), we know that Theorem 1.3 already holds for
fi. In other words, there exists a finite index subgroup A < Z< and a decomposition
nw= {0/ +---+y) of i into wp-invariant and ergodic probability measures,
and there exist closed o -invariant subgroup G; < X,, so that fi; is invariant under

translation by elements of G; for j =1, ..., J. Moreover, the entropy of a; /G, with
m/ Y
n € A with respect to [i; vanishes for all j =1, ..., J. Taking the quotient of X,, by

the invariant subgroup K, all of these statements become the corresponding statements
for the push forwards 1 ; of {1 ; under the quotient map X,, — X,,/K = X. We also note
that the op-ergodic components of p are either equal or singular to each other. Hence,
if u; equals py for some j # k, we may simply collect equal terms and would again
obtain a decomposition into mutually singular measures (of necessary equal weight due to
ergodicity with respect to o). Together, we obtain the conclusions of Theorem 1.3 for the
original measure w. This gives the lemma. O

4.2. Choosing a good finite index subgroup A < 7.

LEMMA 4.3. Let m,d > 1 and let o be an adelic 7Z4-action on X Then there exists
a finite index subgroup A < 7¢ with the following property: applying Lemma 2.4 to the
restriction ap of o to A, we obtain finitely many A-irreducible adelic actions. Then each
one of them remains A-irreducible if we restrict ap further to a finite index subgroup
A’ < A. Moreover, A may be chosen so that an adelic subgroup Y < X is invariant under
ap if and only if it is invariant under o/ for a finite index subgroup A’ < A.
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For the proof of the lemma and some of the following arguments, we first recall the
Jordan decomposition. Given a matrix A € GL,, (Q), there exist matrices D, U € GL,,(Q)
so that A = DU = UD, D is semisimple (that is, is diagonalizable over @), and U is
unipotent (that is, has only 1 as eigenvalue). This decomposition is unique and if A
commutes with a matrix B, then D and U as above also commute with B. Moreover, a
subspace V < Q is invariant under A if and only if V is invariant under both D and U.

By applying this to each of the matrices «® fori =1, ..., d, we obtain two represen-
tations of Z4 on Q™: the first representation i, is semisimple, and the second oyy; is by
unipotent matrices, the two representations commute, and we have o™ = agiaga“ for all

uni
ne 74

Proof of Lemma 4.3. We first consider an A-irreducible action «. As the proof of
Lemma 2.2 shows, o corresponds in this case to a global field K generated by d
elements ¢1, . . ., ¢z (obtained directly from the matrix representations of @®/). Restricting
the action to a finite index subgroup results in replacing ¢i, ..., ¢y by d monomial
expressions &1, . . ., & (corresponding to a basis of A < Zd) in the numbers ¢q, . . ., &4.
This in turn may result in &1, . . ., &; generating instead of K a subfield L of K. In this
case, the A-irreducible representation of 7% on K obtained in the proof of Lemma 2.2
becomes, when restricted to A, isomorphic to a direct sum of [K : L] many copies of the
A-irreducible representation defined by multiplication by &1, . . ., & on L. If this indeed
happens, we may choose A so that L is minimal in dimension. Hence for any finite index
subgroup A’ < A, the monomial expressions in the variables &1, . . . , &; corresponding to
a basis of A’ will still generate the same field I and so the [K : IL.] many A-irreducible
representations for the restriction to A will remain irreducible for the restriction to A’.
This proves the first part of the lemma in the A-irreducible case.
Let now « be a general adelic action. Let

Vo={0}<Vi<Vo<.---<V,=Q"

be as in Lemma 2.4, equation (2.5), with the action induced by @ on V;/V;_ irreducible
over Q, and let K; be the corresponding finite extension of Q as in Proposition 2.2 for
Vi/Vi_1 (or more precisely, for the dual adelic solenoid) for i = 1, ..., r. Applying the
above discussion on each irreducible quotient by passing to a finite index subgroup A <
74, we may assume that these quotients remain irreducible even if we pass to a further
finite index subgroup of A, establishing the first part of the lemma.

Now let M be the least common multiple of the orders of the (finitely many) roots of
unity in some finite degree Galois extension of (Q containing the fields Ky, . . ., K,.. We
claim that if A; = M A and if V < Q™ is invariant under a(A’) for some A’ < A1, then
V is invariant under a(A1).

Indeed, as discussed above, for any A’ < Z<, the space V = Y= is @(A’)-invariant if
and only if it is invariant under both @giag (A") and Gyni(A").

Since the map n > @yy;(n) is polynomial, and since any finite index subgroup of Z¢ is
Zariski dense in affine d-dimensional space, a space V is Qup; (A’)-invariant if and only if
it is Gyuni (Z%)-invariant (hence in particular @upi (A)-invariant).
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Suppose V is @giag (A')-invariant but not Ggiag (A1)-invariant. Let n = Mn’ € Ay so
that b?diag (n) does not fix V. Since b?diag(A’) leaves V invariant, it follows that there is
some k € N so that &diag (kn) leaves V invariant.

By Proposition 2.2, for every i, the action induced by a(n’) on each V;/V;_; can be
identified with multiplication by some & € K; on K;. If &gjag (M) = Ggiag (0’ YM does not fix
V but &lgiag (kn) does, this implies that there is aj and £ € K; as well as embeddings o, o’
of K; and K into C so that o (§)M # o’ (&) buto (§)*M = o (§)*M . Then o (&)o' (&) !
is an element of the compositum of o (K;), o/(K j) that is a root of unity of order not
dividing M—a contradiction. O

In particular, Lemma 4.3 shows that it is possible to restrict any adelic action to a finite
index subgroup so that each of the A-irreducible adelic actions associated to its restriction
are in fact totally A-irreducible.

4.3. Reduction to Theorem 4.1. Using the above preparations, we are now ready to
explain the following reduction step.

Proof of Theorem 1.3 assuming Theorem 4.1. By Lemma 4.2 it suffices to consider adelic
actions for the proof of Theorem 1.3. So let d > 2, let « be an adelic 74 -action without
virtually cyclic factors, and let . be an «-invariant and ergodic probability measure.

By Lemma 4.3 there exists a finite index subgroup A < Z? so that the restriction of «
to A satisfies the assumptions to Theorem 4.1. Note however, that the measure « might not
be ergodic with respect to as. Hence we may have to apply the ergodic decomposition.
Since A has finite index in Z¢, this ergodic decomposition simply takes the form

1
po= et ),

where the probability measures p; are ap-invariant and ergodic for j =1, ..., J. Since
w is invariant under the full action &, we also have that for every n € Z¢ and every index
Jj € {l,..., J}there exists an index k with o} 1 ; = . Since ergodic measure are either
equal or singular to each other, we may also assume that the measure py, ..., uy are
mutually singular to each other. By ergodicity of u with respect to o, we also have that for
every pair of indices j, k there exists some n € Z? so that o™ j = M-

We now apply Theorem 4.1 to p1 and the restriction . Therefore there exists a closed
subgroup G| < X,, so that w is invariant under translation by elements in G| and for
any n € A, we have h, (ag‘(m /Gl) = 0. Applying the above transitivity claim we obtain
the theorem. O

4.4. Standing assumptions for the proof of Theorem 4.1. Since we have shown that
Theorem 4.1 implies Theorem 1.3, our aim for the the next sections is to show the former.
Hence we will assume that « is an adelic Z¢-action on X, satisfying the assumptions
of Theorem 4.1. Furthermore we assume that p is an a-invariant and ergodic probability
measure.

Suppose that p is translation invariant under an adelic subgroup Y < X,,, then by
invariance of p under «, it is also translation invariant under o™(Y). Taking the closed
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subgroup generated by these, it follows that there exists a maximal adelic subgroup
Y < X,, so that u is invariant under translation by elements of Y and, moreover, that Y
is a-invariant. We may replace X, by X,,/Y for this maximal a-invariant adelic subgroup
Y and consider the push forward of x under the canonical projection map X,, — X,,/Y.
If this new measure has zero entropy, Theorem 4.1 already holds for this action. Hence we
may and will assume for the proof of Theorem 4.1 that:
(i) w isnot invariant under any adelic subgroup; and
(i) there exists some n € 74 so that hy (™) > 0.
Our aim is to derive a contradiction from these assumptions.

To be able to apply the method introduced in [7] (relying on arithmetic properties of
A-irreducible actions), we start by applying Lemma 2.4 to the adelic action « on X,,,. We
now think of the chain of invariant subgroups as defining a chain of factor maps,

X=Xp=Xn—>X=X/Y1—> -
—)X(j)ZX/Yj — X(j+1) =X/Yj+1 - .. X(r) = {0}.

Applying the Rokhlin entropy addition formula inductively to these factors, we have

r—1

@) = bk, | X(j+n)
j=0

foralln e Zd, where we write u for the invariant measure on all of the factors, write O&(/)
for the induced action on the factor Xy, and write &, (a%( ) | X(j+1)) for the conditional
J
entropy of a%( ) conditioned on the next factor X ;1.
J

By assumption (ii) above, there exists some n € 74 so that h u(@™) > 0. Hence, we may
choose the minimal s € {0, ..., r — 1} so that hu(a’)‘((s) | X(s41)) > 0 for some n € 74,
We define Yoase = Y541, Xbase = X(s+1), and will always consider conditional entropy over
the factor Xp,se. We also define Y05 = Y, (contained in Ypase) and Xpos = X/ Ypos (Which
factors on Xpase). In this sense, the factor X o5 will be important for us as it is a “positive
entropy extension’ of Xp,se and at the same time, an ‘adelic extension with A-irreducible
fibers’. In fact by choice of s, there exists some n € Z4 so that h u(a;pos | Xpase) > 0, we
have Xpos = X/ Ypos» Xvase = X/ Ybase, and that the action induced on the fibers Yireq =
Ypase/ Ypos is (totally) A-irreducible. Finally, as we have chosen s minimally, the original
system X is a zero entropy extension of X, in the sense that h, (@™ | Xpos) = 0 for all
nezd.

To summarize the factor maps,

X — Xpos = Xbase = Xpos/Yirred 4.1)

describe the original action as a zero-entropy extension of Xpos = X/ Ypos, and Xpase =
X/ Yvase as the quotient of X5 by an a-invariant A-irreducible adelic subgroup Yirreq <
Xpos 80 that X5 is a positive entropy extension over Xpase. More precisely,

hu(@™ | Xpos) =0 foralln € Z4
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but
hM(o&mS | Xpase) > 0 for some n € Z.

To the exact sequence 0 — Yirred —> Xpos —> Xbase — 0, there is attached an exact
sequence of Q-vector spaces 0 — Lpase = Lpos —> Lirred = 0 Where Lpgse = Xpases
Lpos = )?;;S, and Lirreq = Yirreqa can be identified as Q-vector space with a number field
K. Viewing X,os as a quotient of A™! amounts to choosing a Q-basis vy, . . ., vy, for the
vector space L.

Identifying K as a Q-vector space with its dual using the trace form, we have an
embedding K — L., and we will always choose our Q-basis so that vy, . . ., vk.qy will

be a basis for K < L.
5. A bound on the entropy contribution
In this section, we prove the following theorem.

THEOREM 5.1. (Cf. [7, Theorem 4.11) Let m,d > 1, and let o be a Z%-action on an
adelic solenoid X = A™ /Q™. We also let o denote the corresponding action on A™. Let
Yirred < X be an a-invariant A-irreducible adelic subspace, and set Xpase = X/ Yirred. Let
agq be a 74 -action on a compact metric space Q, & = o x aq, and let [ be a G-invariant
measure on X = X x Q. Fixn € 74, and let V < Uy <A™ be a closed a-invariant
subspace. Let Vigrea.p < A™ be the rational subspace projecting modulo Q™ to Yiyred. Then

h (@l VNV
hﬂ(&n, V| Xpase X Q) < 2 (Uitreg _ irred,A)
hk(o{irred)

chp @™ | Xpase X €2). S

Notice that this estimate is sharp for a product measure ;& = A x v with \ being the
Haar measure on X. Our treatment here follows closely in content (if not in notation) that
of [7, §4]. A special case of this theorem appeared in [27, Theorem 2.4].

Proof. We first note that
hip@", V N Virred,a | Xvase X Q) = hj (@, V | Xbase X ).
Indeed, if m : X — Xpgge is the natural projection, then for any x € X, we have that
x+WVnNalor(x) =x4 (VN Viged.a)s

hence if Cy is a decreasing V-subordinate o -algebra of subsets of X, then Cy V Bpyse is
a decreasing o-algebra subordinate to V N Vigreq o (With Bpase denoting the o algebra of
Borel subsets of Xy, or more precisely the image under 7! of this o-algebra in X).
Therefore applying (3.8) twice, once for the V-subordinate o -algebra Cy and once for the
V N Vired,a-subordinate o -algebra Cy V Bpyge, We get
hﬁ(&n, V| Xbase X 2) = Hﬂ(CV | a "Cy v Boase V Bg)
= Hﬂ(CV V Bpase | &H-ICV V Bpase V Bg)
= hﬁ(an, vn Virred,A | Xpase X €2).

https://doi.org/10.1017/etds.2021.74 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.74

Rigidity properties for commuting automorphisms on tori and solenoids 711

Since the right-hand side of (5.1) depends only on V N Viyeq s, we may (and will, for
the remainder of the proof) assume that V < Uy N Vied,a. We may also assume V is a
proper subgroup of U, N Virred,a since for V.= U, N Vireq,a by first applying the above
discussion and then using the second part of Proposition 3.4 twice,

@, Uy 0 Vimeaa | Xbase X @) = hg@, Uy | Xoase X Q) = hg(@ | Xoase x Q),
h}\(Olir:.red, u, N Virred,A) = hk(air:red)’

establishing (5.1) in this case.
Let the rank of Vigeqa as a free A-module be k. Since Yjreq is o-invariant and
A-irreducible, by Proposition 2.2, there is a global field K with [K : Q] = k, an injective

homomorphism of Q-vector spaces ¢ : K — Q™, and d non-zero elements {1, ..., ¢4 €
K* so that A ® ¢(K) = Vireqa and so that for any n= (n1,...,n4) and £ € Ag =
A®K

o P () = pa(tnE) Ln = glnl cee ng

with ¢, the isomorphism of A-modules Ag — Virreq 4 induced from ¢.

Fix n € Z¢. Then U, is S-linear for a finite set S of places of Q@ (including oo)
as in (3.5). Let Sk be the (finite) set of places of K lying over the places S of Q.
The A-irreducibility of the action of @ on Yjreqg = Ag /K implies that every «-invariant
subspace V < Virreq,a N U, has the form

V= m( I1 Ka>, (52)
oeS,
with Si C Sk. Similarly,
Virred,A N Un_ = ¢A< 1—[ Ko>,
GGSHg

with S C Sk a finite set of places of K with S]k C Sk. It follows from the relation
between entropy contribution and leafwise measures in Proposition 3.4 that

hX(ail:red’ V)= Z 35 log 1/1¢nls»
oeSy
1 (@fheq) = P (@fhegs Un N Virrea.n) = 85 10g 1/|2nly:
O’ESHE

note that by definition of Uy~ and ¢n, we have that [¢n|, < 1 forevery o € S Let

Yoes, %o 10gnlo hy (o V)

= < 1.
desﬂg 35 10g [¢nl, h}\(ai':,red)

K =

Let P be a sufficiently fine finite partition with small boundaries of X, as in (3.6) and (3.7)
(indeed, we will take it to be even finer), let Py be a corresponding o -algebra of subsets
of X x Qasinp.50,and letCy = Uizo @~MPy be as in §3.3. Then Cy and Py are both
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subordinate to V, and Cy is in addition decreasing with respect to &™. Moreover,
Cy=a "Cy vP=a "Cy Vv Py. (5.3)
Setting T = &", it follows from (5.3) that for any j € N,
cy =P%D vl

where we recall that C{, = T-ICy and POI~D = Vo<i<j-1 T~''P. The key point in the
proof of Theorem 5.1 is that for £ = [k, the atoms of P9 v C{, are already very close
to being equal to the atoms of Cy = POJ1=D v C{/ (recall that k < 1). In some simple
cases (e.g. that considered in [27]), these o -algebras literally coincide, though in general
there may be a small disparity. What we now proceed to show (cf. [7, Lemma 4.2]) is that
there is a set X ; with (X \ X ;) < exp(—cj) for appropriate ¢ > 0 so that

[x]P(o,@ N [X]C-Q = [x]¢, foranyx € X;. 5.4

Since C{, is V-subordinate for V as in (5.2), there is some B C [], €Sy K (depending
on x and j) so that

(¥lg) =+ a(B):

moreover for any n > 0, by choosing P sufficiently fine depending on 7, one can ensure
that

Bc [[ireKe :ltly < nléal,’).

/
oESK

Notice that [x]P(o,e)va_ C x + Virred, A, hence there is some D C Ak so that

[xlpooy g, . =X+ éa(D).

If the partition P was chosen to be sufficiently fine (again, depending on the parameter
n > 0 introduced above), we may assume that

Dc [[eKs:ltly, <nmin(l, |&al;9) x ] Ok

oeSK oESK

Note that |¢n|, < 1 forevery o € Si butmaybe < 1, =1, 0r > 1 foro € Sk; however by
choice of § (hence of Sk), [¢nl, = 1 foro ¢ Sk. Since Q" N Viyea.n = ¢a(K), and using
the fact that Bp,ge < C{, (modulo 1), we see that

[xlpoo Nlxle = [xlpooy g, N [X]ij

=x+¢A< U(Bn(D+s))>.

EeK
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However, if BN (D 4+ &) # @, thatis &€ € B — D, then

20ltals”  ifo € Sk,

; - /

£l < 2n y ?foeSK\Si,
2nlénl, " ifo € Sk \ Sk,
1 otherwise.

By Proposition 2.3, if moreover & € K* and 1 was chosen small enough (< 1/2),

1= [T &9 <[] 1als®@7 < [T leals® " (5.5)

places o of K oeSy oeSk\Sx

Applying Proposition 2.3 to ¢p,

t= J] &l =] 10 x ] @b,

places o of K oeSg o €Sk \Sg

hence HUESHE leal2©@) = ]_[Uele\S]]E 12alo 2. Thus (5.5) implies
0< j( Z 3(0) log 1/|§n|g> - g( Z (o) log 1/|§n|a)~
oeSk oeSy

But this contradicts the definition of ¥ and £ > k.
Thus we obtain the important conclusion that if £ = [kj],

[xlpoo Nxly = x +¢u(B),
where

B =BNnDcC H{teKG:main}-

!
oESK

It follows that
[xlpoo O ixler = [Xlpoj-n Nixle = [xley
unless there is a £ < £’ < j so that
T (x + ¢a(B") ¢ [x]p.

If s = max, g, [¢nl, < 1, then T (x + pa(B") = T (x) + ¢pa(B"), where

B'C [[ireKy:ltl, <ns'}).

’/
oEeSy

By (3.6), the set of such x has & measure which decays exponentially in £’, hence in j,
establishing (5.4).
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Once (5.4) has been established, establishing (5.1) is easy. Indeed, if A = {X;, X JC'} for
X, asin (5.4), then for j large and £ = [k,
hip@ V| Xoase x ) = j T Hz (€077 | €, v Brase v Ba)
= j Hz (P =D | ¢,V Buase V Bo)
= j 7 (Hp(PO | ¢, v Boase v Ba)
+ Hy (PO~ | POO v ] v Buase V Ba))
< TN HR(POY | Xpase x Q) + Hp(A)
+ Hy(POI=D | POD €L v Base V Ba vV A).  (5.6)
By definition,
Hyz (POI=D | POO v/ €\ Brgse V B v A)
= (X)) Hyx, (POI=D | POO v ] v Base V Bo)
+ ﬁ(XE)meE (POI=D ) POO v ] v Byase V Ba).

On X ;, the at i-h N = o N i by (5.4), h
nX; eaom[x]P«)J H [x]c(/ [x]P(oz) [x]C,V y (5.4), hence

Hyx, (POI=D | POO v €] v Bpase v Bg) = 0.
On X E, we use the trivial bound

Ho o (P70 | POD v €l v Brage v Ba) < j log(#P).
J

Plugging these back in (5.6) and using ﬁ(XJC.) — 0as j — oo, we see that
(56) - Khﬁ(&n | Xbase X €2) asj — o0,

establishing (5.1). O]

6. Coarse Lyapunov subgroups and the product structure

A crucial property of the leafwise measures for our argument is their product structure for
the coarse Lyapunov subgroups as obtained by the first named author and Anatole Katok
[5] (see also [4, 28]). For an introduction of the product structure, we also recommend
[10, §8]. However, all of these papers assumed that the 74 -action under consideration
is semisimple. In our case we do not make this assumption, so our action is given by
O = OdjagOtuni> With both agiag and aypni defined over Q, that is, these can be thought of as
homomorphisms from Z? to GL,, (Q); cf. p. 17. The purpose of this section is to recall the
relevant notions and overcome the problems arising from the lack of semi-simplicity in the
cases of interest.

6.1. Lyapunov subgroups over Q.. Fix o a place of Q, that is, either c = ccoro = p
a prime. We consider the linear maps o™ for n € Z¢ on Q2 and are mostly interested in
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the asymptotic behavior of its elements with respect to the norm defined by

lvlle = max |vjls
j=L..m
for all v € Q. We will also consider this behavior restricted to an a-invariant Q,-linear
subspace V (even when not explicitly stated, V will always be assumed to be a-invariant).
For this, we will initially ignore ayi (with polynomial behavior) and focus on agiag (With
exponential behavior).

Since agiag is semisimple, Q7' (as well as any a-invariant subspace V) is a direct sum
of QQ-irreducible linear subspaces. On each of these irreducible subspaces, the action of
Qdiag 18 isomorphic to the action defined by multiplication by d elements ¢1, ..., € K
on a local field K (similar to the discussion in the proof of Proposition 2.2). Recall that we
extend the the norm on Q, to K; this extended norm is denoted by | - |,. We refer to the
linear functional x : Z¢ — R given by

X, .. na) e Y nilogltils € R
i

as the Lyapunov weight associated with the invariant subspace K, and denote the pairing
of a functional x and a vector n € Z¢ (or R?) by x - n. We note that for a vector v in this
subspace, we have

lotgiagVllo = X ™vllo (6.1)

for all n € Z¢, where we write < to indicate that we can bound each of the two terms by a
multiple of the other. Here the implicit constants only depend on the action and not on the
vector v or on n. We will call K an Q,-irreducible eigenspace (for agjae) with Lyapunov

weight x.
It follows that Q7 (respectively V) is isomorphic to a finite direct product of local fields
K extending QQ, so that the linear maps aceﬁ‘ag, ceey oc(eﬁ’ag are written in diagonal form using

this isomorphism. Moreover, we obtain in this way finitely many Lyapunov weights arising
from the action on Q7. Note however that these Lyapunov weights are all functionals into
R (independent of the place o).

6.2. Coarse Lyapunov weights and subgroups. We now apply the above for each place
o of Q. Let S be a finite set of places containing oo so that afﬁ‘ag, ces ag‘ifag all belong to
GL,,(Zy) for o ¢ S. For o ¢ S, the only Lyapunov weight for the action of agjag on Q,
is the zero weight. Hence by varying o over all places of (Q, we only obtain finitely many
non-zero Lyapunov weights.

We say that two non-zero Lyapunov weights x, x' (possibly arising from different
places of Q) are equivalent if there exists some 7 > 0 so that x’ = rx. We will denote
the equivalence class of a non-zero Laypunov weight x by [x] and will refer to [x] as a
coarse Lyapunov weight.

For a coarse Lyapunov weight [x], we define the coarse Lyapunov subgroup WX to
be the S-linear subspace defined as the subgroup generated by all irreducible eigenspaces
with Lyapunov weight x’ equivalent to x. Alternatively, we can use (6.1) to see that the
coarse Lyapunov subgroup could also be defined as an intersection of stable horospherical
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subgroups for agiag, namely

wixl — m Uoc(']‘ :
jag

neZd:x n<0

this relation to the horospherical subgroups is the reason for the dynamical importance of
the coarse Lyapunov subgroups.
Because of the polynomial nature of op;, we have that UO;«. = U, foralln € 74 and

diag

hence WX! can be defined directly in terms of the action « by

wxl — ﬂ Usn.

neZ:x -n<0

In particular, WXl is invariant under o™ for alln € Z4.
Conversely, any stable horospherical group is a product of coarse Lyapunov subgroups:
indeed, for any n € 74 , we have
Upn = @ wix (6.2)

C’dmg
1:x-m<0

where the direct sum runs over all the coarse Lyapunov subspaces WX! satisfying that
x -n<0.

Given an a-invariant S-linear subgroup V < U ., we define vixXl = v n wlxl for any
non-zero coarse Lyapunov weight [x]. These also satisfy that V is the direct sum of VX!
for all [x] with x - n < 0.

6.3. Product structure of leafwise measures. Recall that we assume that p is as in
Theorem 4.1. Let €2 be an arbitrary compact metric space as in §3.1 equipped with an action
of Z4,let X = X x €, and consider an invariant probability measure i on X projecting

to w.

THEOREM 6.1. (Entropy and product structure) Let X — Xpos —> Xpase With Xpos =
X/Ypos and Xvpase = X/Yoase be as in (4.1) and let Vigean <A™ be the rational
a-invariant subspace so that Ypase is the image of Viase s modulo Q™. Let ng € Z4. Then
the leafwise measure on X for

Vn_0 = Vbase,A nuU (;10

is, up to proportionality, the product of the leafwise measures for its coarse Lyapunov
subgroups VX1 = = Vpo N WXl that is,

~Vng ~ylxl
i [T &

[x1:(xnp)<0

fora.e. x € X. In particular, the relative entropy of a™ conditional on the factor Xpase X 2
is equal to the sum of the entropy contributions of these coarse Lyapunov subgroups, that is,

hi @™ | Xpase X Q) = hg@™, V) = Y hp@™, vix), (6.3)
[x]:xmo<0
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We note that our proof relies on the assumption that X is a zero entropy extension of
Xpos, and does not extend the product structure to other cases with Jordan blocks. In fact
our setup is used to show that Jordan blocks of o™ cannot appear within the subspace
VXN R™ and for “ n in the kernel of x’ (in the sense described below). Moreover, in the
non-Archimedean parts of V,, ', we use a different argument.

For any o-invariant S-linear subgroup V, we let P < V be the minimal S-linear
«-invariant subspace so that

EY(V\P)=0

fora.e. x € X. We will refer to P as the supporting subgroup of V. We note that ;LX = ,u,f
a.s. and if W < P is another S-linear «-invariant subspace with W 7 P, then ;L}C/(W) =0
a.s. This follows from [11, Lemma 5.2] (as we restrict here to a-invariant subspaces the
assumption of class A’ can easily be avoided in the proof of that lemma).

We say that [x] is an exposed coarse Lyapunov weight for an a-invariant S-linear
subgroup V < U if vIX1is non-trivial, V = VIX] 4 V/ for a sum V' of coarse Lyapunov
subgroups, and there exists some n’ € R? with y -n’ = 0 and x’ - n’ < 0 for all Lyapunov
weights x’ of V',

We also recall that e} . is a polynomial map from 74 — GL,,(Q) and so extends to a

homomorphism from R4 to GL,, (R) that will also be denoted by oyp;-

6.4. No shearing and proving the product structure. The following lemma stands in
stark contrast to the non-Archimedean case, where «;; takes values in a compact group.

LEMMA 6.2. (Existence of logarithmic sequence for real Jordan blocks) Let o be a
representation of Z¢ on a real vector space P. Suppose that x is a non-zero Lyapunov
weight for o and that all other Lyapunov weights are equivalent to x. Suppose that ). is
non-trivial for some m € R? with x - m = 0. Then there exists a sequence ny, € 7¢ so that
o™ ¢ End(P) converges to a non-zero non-invertible linear map L € End(P).

We will refer to the sequence ny as a logarithmic sequence for P since it can be defined
using the logarithm map in easy special cases.

Proof of Lemma 6.2. Let «). be the representation of Z4 on P, which has every eigenvector
of agiag With eigenvalue \ also as eigenvector but with eigenvalue |\|. Note that o),
extends continuously to all n € R?. Moreover for n € Z¢, the map ozgiagalfl“ belongs to
a fixed compact subgroup of GL(P). Using nearest integer vectors, we see that it suffices
to construct a sequence n; € RY so that “:rkli“rf converges to a non-zero non-invertible
linear map L.
For this, we apply our assumption and pick a direction m € R¢ with x - m = 0 so that
M js non-trivial. Also let n_ € R? with x -n_ < 0. As a non-zero real polynomial,

uni
tm diverges as k — 0o and || — 0 as 1 — oo. Also note that a|}~
m_

uni
exponentially fast, while & ;" can only diverge polynomially fast as z — oo.
This shows that for each sufficiently large k € N, we can define ny = km + fn_,
where #; > 0 is chosen (using the intermediate value theorem) minimally so that the

o

o — 0 converges
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Hilbert—Schmidt norms satisfy

n, n,
llegmior I = llex

km+fn_ oo -1
uni®).| =1

uni &
Since “ﬁxr;il diverges as k — oo, we see that also fx — oo. If now v € P is a common
eigenvector for «, then ocllj;‘i‘v = v, and so

n n, hn- fn-—
a oty =k k

uni“|-| uni %] v—>0

as k — oo (since afl"n'il‘ is polynomial and ozltf‘ln‘ contracts P at exponential rate).

From this and the compactness of the unit ball in finite dimensions, it follows that there
exists a converging subsequence of aﬁéiar‘k whose limit is non-zero and non-invertible.
As indicated at the beginning of the proof, a subsequence of the integer vectors closest to

n; € RY will satisfy the conclusions of the lemma. O

We need the following upgrade to the above concerning exposed coarse Lyapunov
weights.

LEMMA 6.3. (Properties of logarithmic sequence for adelic action) Let o be a linear
representation of Z¢ on Q™ defining an adelic action on X,,. Letn_ € 74 \ {0} and V <
Un_ be an S-linear subspace. Let [x] be an exposed coarse Lyapunov weight [x] of V.
Suppose that there exists some m € R with x -m = 0 so that (otyni|vnrm )™ is non-trivial.
Then there exists a sequence ny € Z% so that (a|y)™ converges (uniformly within compact
subsets) to a non-zero map L € End(V') that vanishes on all non-Archimedean subspaces,
vanishes on all coarse Lyapunov subgroups VX with | x'1 # [x], and whose restriction
to VXL AR™ is non-invertible.

Proof. This actually follows by the same argument as Lemma 6.2 after choosing m € R¢
correctly. Indeed, we first note that the kernel of the homomorphism n € x - ab . €
GL(V NR™) is a proper subspace K < x =, and hence our first constraint on m is simply
me x+-\K.

By definition, [x] is an exposed coarse Lyapunov weight for V if there exists some
m € x+ with x’-m < 0 for all Lyapunov weights x’ of V inequivalent to x. The latter
condition is clearly satisfied by all elements of an open subset of x . Hence we can find
m € x 1 \ K withm - x’ < 0 for all Lyapunov weights x of V inequivalent to x.

Using this m together with n_, as in the assumptions of the lemma, we now go again
through the construction in the proof of Lemma 6.2. Let n; € 7% be a nearest integer
approximation of km and let n; be the nearest integer approximation of km + #n_. For
all non-Archimedean subspaces V,;, we note that (xuni(Zd) |v, has compact closure. Hence
the restriction a“ilv” belongs to a compact subset of Hom(V, ), which implies together
with n_ contracting V and #; — oo that the restriction o™ |y, converges to zero. Similarly,
our choice of m implies that for a coarse Lyapunov weight [x'] # [x], both o |y and
o™, converge to the trivial map. Finally our proof of Lemma 6.2 ensures the claimed
properties of the limit map L| yla- O

We will now combine the above with the setup of §4.4 to prove a restriction concerning
the supporting subgroups (cf. §6.3).
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PROPOSITION 6.4. (No shearing on supporting subgroup) Let P be the supporting
subgroup of ano = Vbase.pa N U(;no (with Vpasen as defined in Theorem 6.1). Let x be
an exposed Lyapunov weight of P. Then (ounil plxinpm)™ is trivial for all n € R? with
x -n=0.

Here we identified R” with the corresponding subgroup of A™, and hence PIXI N R™
is the maximal real subspace of the supporting subgroup P.

Proof. We suppose in contradiction that (otyni| plxingn)™ is non-trivial for some m € R4
with x - m = 0. Applying Lemma 6.3, we find a logarithmic sequence nj and the limit
L € End(P) of (a|p)™.

Recall that Ypase < X is the adelic subgroup so that Xpase = X/ Ybase, and that Vipage a
is the rational subspace of A” so that Ypse is the image of Vpaee o modulo Q™. Recall also
that Y05 < Ypase is the adelic subgroup so that X 05 = X/ Ypos, and let Vios 4 < Vpase,a be
the rational subspace so that Y}, is the image of V05 4 modulo Q™.

By construction we have that the action on Ypase/ Ypos is A-irreducible, or equivalently
that the linear representation of 749 on Voase,a/ Vpos,a (defined over Q) is irreducible over
Q. In particular, this representation is semisimple. Unfolding the definitions and restricting
to PIXI N IR™ it follows that for any v € PXINR™,

o™ (v) € v+ VIXI

uni

where VXl = wixln Vpos.A- Combining this information with the construction of the
logarithmic sequence and its limit L, it follows that

L(P[X] NR™) C yixl

Next recall from (4.1) that X is a zero entropy extension over Xpos = X/ Ypos, that is,
hg (o™ | Xpos x ) < hy (o | Xpos) =0 foralln e 74 . This implies by the relationship
between the leafwise measures and entropy that the leafwise measures ;’Z}C/[X] must be trivial
almost everywhere—indeed otherwise there would be a positive entropy contribution for
the relative entropy over the factor Xp0s X £2. By the compatibility property (3.1), it follows
that there exists a set X' C X = X x Q of full measure so that X, x +w e X’ for some
w e VI implies w = 0. Using regularity of the Borel probability measure, we choose
some compact K C X’ of measure (K) > 0.99.

Our aim in the proof is to use the logarithmic sequence n; and the limit L to derive a
contradiction to the properties of K. For this, let A be a o-algebra that is subordinate to P.
We define

Xp={x ca ™K | i a ™K) > 0.9}

and note that £ (Xy) > 0.89. By the Lemma of Fatou (applied for the probability measure
1), it follows that

f(lim supy_, o Xx) > 0.89.

Hence there exists some xp and some subsequence n;( of n; so that a“ixo € K and
ﬁﬁ) (@ ™K) > 0.9. Applying Lemma of Fatou again—but this time for the probability
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measure ﬁx“%—we obtain
fie (lim supy_, o0 %K) > 0.9. (6.4)

Also recall that P is the supporting subgroup of V, = and that ker L < P is a proper
S-linear a-invariant subgroup. Using [11, Lemma 5.2] (cf. p. 112 above) this implies that
ﬁf (ker L) = 0, which in turns implies ﬁ;f‘(x + ker L) = 0 a.s. We may assume that our
xo constructed above has this property. Hence there exists some xj € [xo]4 \ (xo + ker L)
and another subsequence n of nj so that ax € K.

To summarize, we have found a subsequence nj of the logarithmic sequence ny, some
X0 € X,andsome x; = x9+ v € [x] 4 withv € P\ ker L sothata“zxj e Kforj=0,1.
Using compactness of K, we can find yet another subsequence of nj so that a“;c/xo — Y
and a";c/xl — y1 with yg, y; € K. Moreover, since ™ v — Lv as k — 00, we also have
y1 = yo + Lv with Lv € VIXI\ {0} by the properties of L. However, this contradicts the
properties of K C X’ and so concludes the proof. O

Proof of Theorem 6.1. In view of Proposition 6.4, the product structure of the leafwise
measure follows from [4, Theorem 8.2] (or more precisely its proof).
For this, we first recall that if P < V, "is the corresponding supporting subgroup, then

by Proposition 3.2, the leafwise measure MX"O coincides with ,uf for p-a.e. x. Next we
recall that by Proposition 6.4, we have for any non-trivial coarse Lyapunov weight [x]
that a}\. | pixinge is trivial for any m € ker x. We also note that oryp; (Z4) restricted to the
p-adic subspaces PIX1 N Q} of the coarse Lyapunov subspace PWUJ has compact closure
in GL(PXI N Q’I’}). Hence we may assume that the metric on P! N QZ’ is invariant under
otuni (Z4 ). With these two observations, the inductive argument for [4, Theorem 8.2] applies

and proves the product structure for ﬁ,‘{“o =nuf.

The product structure implies now quite directly using (3.9) that the entropy contribu-
tion for V; - equals the sum of the entropy contributions of its coarse Lyapunov subgroups
VIX] hence the second equality in (6.3).

The first equality in (6.3), that is, the fact that h(a™, Vi) €quals the conditional entropy
of ™ over the factor Xpase x 2 follows e.g. from the proof of [10, Theorem 7.6]. Indeed
by conditioning the calculation there on the factor Xp,se X €2, the leafwise measure on the
full stable horospherical is automatically supported on V,, , since a displacement by some
element of the stable horospherical not belonging to Vi,se 4 Would change the point within
Xbase- O

7. Proof of Theorem 4.1
7.1. Rigidity of the entropy function. In the following, we will again consider entropy
contributions for various coarse Lyapunov subgroups with varying definitions of the
second factor 2 in the framework of §3. Consistent with our notation so far, we will use
e.g. hz@", W] | Xpase x Q) for the entropy contribution of a coarse Lyapunov subgroup
WXl on X x  and similarly for other factors and foliations.

We now establish the following identity regarding the relation between the entropies of
individual elements of the action. This identity is central to our approach.
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THEOREM 7.1. Let a be a Z¢-action on X = X,, without cyclic factors as in Theorem 4.1.
Let i be an a-invariant probability measure, let X pos, Xvases Yirred be as (4.1), and denote
the Haar measure on Yirreq by '\. Moreover, let Q2 be a compact metric space equipped with
an action of 72, let @ be the corresponding 7% -action on X x S, and let [i be an invariant
measure on X x Q2 projecting to jv. Then there exists a constant kj;,o > 0 with

hiz @, WX | Xpase x Q) = kzoh (e, WD) (7.1)

irred

for everyn € Z.

We recall that we use A to denote the Haar measure on the appropriate adelic quotient (that
should hopefully be clear from the context; e.g. in (7.1), X is the Haar measure on Yjeqd).
While the proof of Theorem 7.1 is much more complicated than in the case considered
by Rudolph, this theorem plays a similar role in our proof as [34, Theorem 3.7] did in
Rudolph’s proof in [34].

As a first step towards the theorem, we consider just one coarse Lyapunov subgroup.
Note that unlike Theorem 7.1, which uses in an essential way the irreducibility of Yijred,
the next lemma only uses the fact that Wx! is a coarse Lyapunov group.

LEMMA 7.2. Using the same notation as in Theorem 7.1, let [ x] be a coarse Lyapunov
weight for Yirea. Then there exists some ki o] = 0 with

h @, W | Xpase x Q) = kg.a b (@l wixly

irred

for everyn € 7.

Proof. We first note that for n € Z¢ with x - n < 0 and k € N, Proposition 3.4 implies
hz @™, WX | Xpase x Q) = khz(@", W | Xpase x Q). (7.2)

Moreover, since WX! is a coarse Lyapunov subgroup, for all n, m € Z¢ with y -n < x -
m < 0, we have that

hiz @, W | Xpage x Q) > hp @™, W | Xppee x ).

In conjunction with (7.2), this implies elementarily that there is a constant ¢ > 0 depending
only on fi, WX1 and « so that hz@", W]y = ¢|x -n| foralln € Z9.

Next notice that for similar reasons h;, («®, Wx1) is given by a similar formula for a
constant ¢; > 0. As [x] is assumed to be a coarse Lyapunov weight for Yj.q4, we have
¢y, > 0 and obtain the lemma with ko [4] = ¢/c. O]

LEMMA 7.3. We again use the notation in Theorem 7.1. For any coarse Lyapunov weight
[x] of X, we have

hﬁ(&na W[X] N Vpos,A | Xpbase x 2) =0,

where Vpos o < A™ is the rationally defined subspace so that Yy is the image of Vpos A
modulo Q™. Moreover, if [ x] is not a coarse Lyapunov weight for Yirred, then

hz(@®, W | Xpase x ) = 0.
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Proof. We claim for the entropy contributions for WX 0 Vpos, that
hp @, W0 Voos | Xoase ¥ @) = hg @ W0 Vogs a | Xpos x Q). (7.3)

To see this, recall that Ypos < Ypase, and correspondingly Xpase = X/ Ypase is a factor of
Xpos = X/ Ypos. By (3.8, the conditional entropy contribution

hﬁ(&n’ W[X] N Vpos,A | Xpase x £2)
is given by
hg @, W0 Vigs a | Xoase X Q) = Hz(C| @ "CV Boase V Ba)
for Ca WXl n Vpos,a-subordinate o -algebra for X x €2 (and Bpyse and Bg the o-algebras
of Borel measurable sets on X,e and €2, respectively). However, since each atom of C is

contained in a single orbit of Y}os, its image under the projection from X t0 Xpos = X/ Ypos
consists of a single point, so modulo [z,

@ "CV Bpase =& "CV Bpos
(with By the Borel o-algebra on X ). It follows that

hﬁ(an7 W[XJ N Vpos,A | Xpase X 2) = H,Ti(c | a "Cv Bhase V Bo)
= Hp(C|a "CV Byos V Ba)
= hﬁ(&n, wladn Vpos,A | Xpos X )
as claimed.

Using (7.3) and the relation between entropy contributions and entropy in Proposition 3.4,

we now obtain
hﬁ(an’ wladn Vpos,A | Xbase X €2) < hﬁ(an | Xpos X Q)
=< hp,(al)l( | Xpos) =0,
where the last inequality follows from the choice of Xpos in §4.4.

So suppose now that [x] is not a coarse Lyapunov weight for Yirreq. Let Vpgse n < A™
be the rational subspace corresponding to Ypase. Since we consider entropy contribution
conditional on Xp,ee X €2, we may use the above argument again and replace the coarse
Lyapunov subgroup WX with intersection WX1 N V4,5 4. However, since [x] is not a
coarse Lyapunov weight for Yjrred = Ybase/ Ypos, it follows that whdn Voase,A = whdn
Vpos,A- Now the first part of the lemma implies that the entropy contribution vanishes.

Since the entropy contribution for the Haar measure A on Yjyeq vanishes too, this proves
the lemma. O

Proof of Theorem 7.1. By the Abromov—Rokhlin entropy addition formula, we have
hﬁ(an | Xbase X 2) = hﬁ(&n | Xpos x ) + hﬁ(aﬁpmxg | Xbase % £2)
for all n € Z4. However, by properties of Xpos = X/ Ypos in (4.1), we have

hip (@™ | Xpos X ) < hy (@™ | Xpos) = 0. (7.4)
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Therefore,
hip@ | Xoase X Q) = hg(@}  co | Xbase x @) foralln e z°. (7.5)

We claim that the entropy contributions for all coarse Lyapunov subgroups WX satisfy
a similar equation, namely

hp @, WD | Xogse x Q) = hp(@ o Wpls | Xoase X ) (7.6)

foralln € Z¢ with x - n < 0, where Wx! and WIE())(SJ denote the coarse Lyapunov subgroups
for X and X5, respectively. Applying Proposition 3.5 to wlx) and WIEZ)(S] (and with Xpaee X
Q2 playing the role of €2 in Proposition 3.5), we conclude that

hp @, WU | Xogse X Q) < hp(@ | o Wptt | Xbase X Q)
+ hp @, WX 0 Voos a | Xbase X ©2)
with Vo5 4 < A™ as in Lemma 7.3. By Lemma 7.3,
Ry @, WX Voos a | Xpase x ) =0,
hence
hp @, WD | Xoase x Q) < hp(@ o0 Wit | Xbase X ), (7.7)

Now fix some n € Z¢ and take the sum over all coarse Lyapunov weights [x] with
(x -m) < 0. By the second claim in Theorem 6.1 (applied both to X and to Xpos), this
leads to an inequality between the two terms in (7.5). However, since in (7.5) equality
holds, equality for the entropy contributions in (7.7) must hold as well. Varying n € Z¢
gives (7.6) for all coarse Lyapunov weights [ x].

Next we are going to combine Theorem 5.1 and Theorem 6.1. By Theorem 5.1,

h;l(an|Xbase x 2)

N CI)

irred
Set knji,0 = hj (0" Xpase X Q)/hx(a‘)}i"ed); note that it does not depend on the coarse
Lyapunov weight [ x ]. Taking the sum over all coarse Lyapunov weights [x] with x - n < 0
gives, by (6.3) of Theorem 6.1 on the left-hand side, the conditional entropy £ ,~L((>t“|Xbase X
2) and on the right-hand side, we obtain Kn,,j,gzhx(oe‘;irred), which in view of the definition
of knj7,. also equals 7 (o™ Xpase x €2). This shows that in fact

hi (0% xr Wiks | Xoase X Q) < mey W) a8

irred

n (x] L n [x]
hu(‘xXposxsz’ Wpos | Xbase X ) = kn hn(ay, W¥irea

), (7.8")

for all coarse Lyapunov weights [x] with x - n < 0.
We now choose ng so that x - ny # 0 for all coarse Lyapunov weights [ x]. Since

Kl‘l(),;l:,Q = K—no,ﬁ,Q’
equation (7.8), together with (7.6), implies that

h@", W | Xpase x Q) = kng oo (ay? , W)
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for all coarse Lyapunov weights [x]. It follows that the constants appearing in Lemma 7.2,
which may depend on [x ] but not on ng, agree with ky, j; o, which may depend on ng but
not on [x]. This gives the theorem. O]

7.2. Rigidity of the entropy function implies invariance. We are now ready to prove
Theorem 4.1. As before, we work with the setup explained in §4.4, specifically (4.1):
Xpos = X/ Ypos is a factor of X so that iy (™| Xpos) =0 for all ne 74, Yired is an
a-invariant A-irreducible subgroup of Xpos, and Xpase = X/ Ybase = Xpos/ Yirred satisfies
that for some n € Z¢ we have that hy (o " | Xpbase) > O.

Applying Theorem 7.1 with 2 being the trivial factor, we obtain a constant k,, > 0 so
that /1, (™| Xpase) = Kﬂhx(a')}med) > 0 for all n € Z4.

Next we choose a coarse Lyapunov weight [x] of Yired and consider it as a coarse
Lyapunov weight for X. Let Vpase s < A™ be the rational a-invariant subspace so that Ypaee
is the image of Vpase.a modulo Q. We also set W = wixln Vbase.s- Let fw be a positive
function on W, which is integrable with respect to uV for every x in a set of full measure
as in §3.1. We take

Q= {[v] : vis a locally finite measure on W with / fwdv < oo},

where [v] denotes the equivalence class of v in the space of locally finite measures with
respect to proportionality. One can equip €2 with the structure of a compact metric space
in a standard way. The map (defined for a.e. x € X) that takes x € X and maps it to
the proportionality class of its leafwise measure [u!] is, by (3.4), a factor map of the
Z4-action  on X to the action of Z? on elements of Q by pushforward with respect to the
linear action corresponding to o on W. Taking the product of 2 with Xpase, We get a factor
of X and we apply Theorem 7.1 once more over this factor Xpase X €2 to obtain a constant
ke > 0 so that

hi (@™, W | Xoae x Q) = kpaha(ey, . WX >0 (7.9)
for all coarse Lyapunov weights [x] and n € Z9.

LEMMA 7.4. Yirreqd has at least two linearly independent Lyapunov weights.

Proof. Since Yjeq is irreducible, we may apply Proposition 2.2 and describe the action
on Yjrreq using a global field K and its elements. Also recall that the eigenspaces for Yjrreq
correspond to the completions of K.

Suppose in contradiction that @ has no two linearly independent Lyapunov weights.
Then every non-zero Lyapunov weight must be a multiple of x. We now define the
hyperplane H < R¢ as the kernel of x. Suppose n € Z¢ is close to H, that is, satisfies
x' -m € (—¢, €) for all Lyapunov weights x’ of Yireq and some € > 0 to be determined
later. For the algebraic number ¢, corresponding to n, this becomes the inequality

e € < |tnlo < € (7.10)

for all places o of K (and |¢n|s = 1 for places o lying over finite primes p not in S, with
S as in (3.5). However, for small enough € > 0, it follows from (7.10) applied to all finite
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places that ¢, must be an algebraic unit. Applying (7.10) also to all infinite places, we get
that this unit satisfies that all its real and complex embeddings have absolute value close
to one. It follows from Dirichlet’s unit theorem that { must be a root of unity and n € H.
However, this implies that the action of a(Zd) on Yjreq is virtually cyclic. By the Jordan
decomposition over (Q, X has a factor isomorphic to Yjeq; the fact that a(Zd) on Yirred
is virtually cyclic now contradicts our standing assumption that X has no virtually cyclic
factors. O

PROPOSITION 7.5. In fact, k.o = Kk (hence kjpo > 0).

Proof. Let x’' be a Lyapunov weight of Yiyeq that is linearly independent to yx. The
existence of x’ follows from Lemma 7.4. Choose some n € Z¢ so that x -n < 0 and
x"-m < 0. The product structure of the leafwise measures in Theorem 6.1 (see also [10,
Corollary 8.6]) now implies that for a set X’ C X of full measure, we have the following
property: for any x € X’ and any w’ € WXl with x +w’ € X, we have [MZVJ:’S,] =
[,LL)‘:V[X]]. For a o -algebra A subordinate to WX 1, this means that, on the complement of a
null set, all points in a given atom of A are contained in the same fiber of the factor map
from X to €2. In other words, the map x — (x, [;L)ZV[X]]) from X to X x 2 maps o -algebras
subordinate to WXl on X to o -algebras subordinate to WXl on X x Q. From this it
follows that the leafwise measures for X and for X x €2 with respect to the subgroup wix'l
agree. In particular, we have

hp (™ W | Xpase x Q) = (@ W | Xase),
which together with Theorem 7.1 proves the proposition. O
We continue working under the assumptions stated at the beginning of §7.2.

COROLLARY 7.6. For any subset X" C X of full measure, there exist x € X" and a
non-zerov € W withx +v € X" and u¥ o uV, .

Proof. By Proposition 7.5, we have «j;.o > 0. We now apply this to the coarse Lyapunov
weight [x] and the subgroup W = wlxln Vbase. that was used to define the factor 2.
Choose n € Z¢ with x - n < 0. It now follows from the definition of ki, in Theorem 7.1
that

h (@™, W | Xpase x Q) = kol (@, Wiy > 0.

irred
We also note that A (o™, W | Xpase X 2) = A (o™, WX | Xpase x Q) (c.f. e.g. the first
lines in the proof of Theorem 5.1). We note that positive entropy contribution, as in (3.9),
shows in particular that the leafwise measure /i gives zero mass to 0 € W.

By the characterizing properties of leafwise measures in terms of W-subordinate
o -algebras, the fact that the leafwise measure i gives zero mass to 0 € W implies that
for any subset X" C X of full measure for 1,

there exist x € X" and v € W \ {0} so thatx + v € X”. (7.11)

Since the action of W on X = X x Q was defined to be trivial on Q and 1 was defined
as the push forward of y under the map x — (x, [/L)‘:V 1), (7.11) translates to the following
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statement: for every subset X” C X of full measure for u, there exists x € X” and v €
W\ {0} with x + v € X” and [uV] = [/JL)VCVJFU]. However, this is precisely the claim in the
corollary. O

Proof of Theorem 4.1. We first show how the statement in Corollary 7.6 implies invariance
of w under translation by all elements of a non-trivial adelic subgroup. We note that
by (3.1), the claim in Corollary 7.6 amounts to saying that for any set X” C X’ of full
measure, there exists some x € X” andv € W \ {0} with ,u)‘C}V + v M)EV . Moreover, by our
discussion concerning (3.2)—(3.3), there exists X” of full measure so that for any x € X”,
there is some v € W with MXV +v= ,u)‘jv (see also [4, Lemma 5.10]). Hence Corollary 7.6
implies that for all x € X”, the closed subgroup

sz{vew:uzv+v=,u)‘:v}

is non-trivial. We define VT/X as the maximal S-linear subgroup of W,.. We will show below
(using the equivariance formula (3.4) and Poincare recurrence) that a.s. WX is non-trivial.
In fact, [4, Proposition 6.2] shows that W, = Wx is itself S-linear, at least if the action is
semisimple.

We define the dimension D, of Wx as the sum of the dimensions of the maximal
subspaces over (O, contained in W, forall ¢ € S. Even though W, may not be normalized
by «, the equivariance formula (3.4) implies that both W, and VT/X are equivariant for the
action. Hence the dimension of VT/X is invariant under «. Therefore, Dy is constant (say
equal to D) for a.e. x.

We claim that Corollary 7.6 implies a.s. that W, is non-trivial, or equivalently that
D, > 1 a.s. For this, we apply Luzin’s theorem and let K C X’ be a compact subset of
measure close to 1, on which all almost sure properties of the leafwise measures hold,
and on which the map x € K +— ,u)‘:V is continuous. To obtain the almost sure conclusion,
we apply the following argument for an increasing sequence of such Luzin sets that cover
almost all of the space.

By Poincaré recurrence, we see that for a.e. x € K, there exists two increasing
sequences n,_, n,': e N with 77" x, T x € K converging to x as k — 00. Suppose now
v € Wy \ {0} for one such x so that u}?] +v= /,L};V. If v has a non-trivial real component,
we are going to use the sequence n,‘: Indeed applying (3.4) for these powers, we see that

the leafwise measure at 7" x has translation invariance under Z(T”k+ v). Note that T v
converges to 0 as k — o0o. However, since the unit ball in R™ is compact, we may choose
a subsequence and assume in addition that the direction of T v converges in projective
space to R for some v # 0. Note that this implies that the subgroups Z(T";r v) converge
in the Chabauty topology to Rv. Combined with continuity of the leafwise measures
restricted to K, this now implies that MXV is invariant under translation by R, which implies
¥ e W, and D, > 1 as desired.

So suppose now v has trivial real component and let us write v, for the p-adic
component of v for all p € S. In this case, the invariance of u! under Zv implies
invariance under Zv, which by the Chinese Remainder Theorem is the product of the
compact subgroups Z,v,, for all primes p € S. To obtain a non-trivial S-linear subgroup,
we fix a prime p € § with v, # 0 and we are going to use the sequence n, . Indeed, as
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above, T~ x € K has invariance under Z,T "k v,,, where T " v,, diverges to infinity
but projectively converges to some Q,v. By continuity of the leafwise measures on K, this
again implies U € W, and D, > 1 as desired.

We define the (measurable) factor map as

¢:xr—>VT/x,

from X to the space F of closed subgroups of W in the Chabauty topology. We also

decompose w© over ¢, that is, we consider the conditional measures uf 'Br . By the
compatibility condition (3.1) and the definition of Wx, we have ¢ (x) = ¢ (x + v) whenever
v € W and both x, x + v belong to X”. In particular, this shows for a W-subordinate
o-algebra A that A contains ¢~! Bz modulo null sets. Hence, after fixing a choice of

A ¢—‘Bf)A
X

the conditional measures ,ux , we have that the (doubly) conditional measure (jiy,

agrees with u for Mxo 'Br F_a.e. x and p-a.e. xo. This in turn implies for the leafwise

measures of p and ,u *0 ‘Br 7 with respect to W by the characterizing properties that
—1
(ud BRY = pu¥ (112)

™' Br
X0 ~ ~
Fix some x¢. Then essentially by definition of the factor ¢, we have that W, = W, for
— ~ —1
,ufo 7_a.e. x. In other words, by definition of W, and (7.12), we have that for ufo Br -a.e
f) w

for u -a.e. x and for p-a.e. xg.

are invariant under the group VT/XO, hence by the

standard properties of leafwise measures that ,ufo 'Br 7 is itself invariant under the action of

on by translations. Note that, as far as we know at this point, the group W, may depend
on x, and hence we have not established the invariance of u itself under any translations
yet.

x, the leafwise measures (,uxO

As X = A™/QQ™ is an abelian group 2 and Q™ acts trivially, this implies that [L X0 “'Br 7 isin
fact invariant under the closure G, of on Q™ in X. Since on, as an S-linear subgroup,
is invariant under multiplication by @@, we have that its annihilator Gi in the Pontryagin
dual Q™ to X is a vector space over Q. Hence G, is an adelic subgroup of X.

The equivariance formula (3.4) implies a similar equivariance formula for W,, for W,
and hence also for G,. In other words, x — G, is a (measurable) factor map for o« with
values in the countable set of all adelic subspaces of X,,. Hence there exists an adelic
subspace G so that G, = G on a set of positive measure. By Poincaré recurrence, we
may conclude that there is a finite index subgroup A of Z¢ so that «(A) normalizes G.
However, the assumption in Theorem 4.1 now implies that G is actually normalized by Z¢.
Ergodicity under o now implies that Gy = G a.s. Therefore, u is invariant under G. [

8. Disjointness

We will deduce in this section the rigidity of joinings and in particular prove Corollary 1.4.
We say a measure on a solenoid X is homogeneous if it is the Y-invariant measure on a coset
Y + y of a closed subgroup Y < X.
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PROPOSITION 8.1. Let d, r > 2 and let a; be Z¢-actions on solenoids X; (equipped with
Haar measure \x, ) with no virtually cyclic factors fori =1, . . ., r. Suppose there exists a
non-trivial joining | between «; fori = 1, . . ., r. Then there exists a finite index subgroup
A C Z% such that there exists also a homogeneous non-trivial joining \g between oA
fori=1,...,r. In fact, the subgroup G can be chosen to be any of the groups in the
conclusion of Theorem 1.3 when applied to an ergodic component of the positive entropy
measure (L on X1 X - -+ X X,.

Proof. Let X = X1 x---x X, anda = o1 X - - - X o be the product group and action,
and let i be a non-trivial joining. Without loss of generality, we can assume p is a-ergodic
(since a.e. ergodic component of a joining is again a joining). We apply Theorem 1.3 and
obtain a finite index subgroup A C Z? and an a s -invariant closed subgroup G = G| C
X. We claim that the Haar measure of G is an homogeneous non-trivial joining for the

A-action.
To see this, let o for j =1, ..., J be as in Theorem 1.3 and let 77; : X — X; fori =
1, ..., r be the coordinate projection map. First notice that the Haar measure of G cannot

be the trivial joining. If it were, it would follow that G = X, 1 = Ay, uj = (@™t =
Ax for all j and some n (that depends on j), and so u = Ay would be the trivial joining.
To show the claim, we only need to prove that 7;(G) = X fori =1,...,r.

Fix some i. Clearly x j = ()4 j defines a measure on X; that is invariant under o; 4.
By assumption, Ay, = (1/M)()~\1 +--- 4 -;\.j). Note that or; a acts ergodically on X; with
respect to hy, by the assumption that there are no virtually cyclic factors. Therefore, )~\j =
\x; for all j, in other words, 1 is a joining. Consider now the group ¥ = X;/m;(G) =
X /(G + ker ;) endowed with the measure v induced by ;. However, by the above, the
projection of w1 to X; is hx,, and so v = hy. Since Y is a factor of X /G, the entropy (with
respect to v) of every element on Y of the action must vanish. However, the action on X;
contains elements with completely positive entropy. Therefore, ¥ = {0} and ;(G) = X;
for all i. O

Proof of Corollary 1.4, simpler case. Assume first that «1 and oy are totally irreducible
not virtually cyclic actions and let @ = o1 X a2. Suppose o1 o and ap o are algebraically
weakly isomorphic for some finite index subgroup A C Z¢. So there exists a finite-to-one
algebraic factor map ¢ : X; — X for the two subactions. Clearly, the graph G of ¢ is
o p-invariant and so is its Haar measure k. The average p over the elements o k¢ in the
(finite) orbit of A under the action of o defines a non-trivial joining between «; and «5.

Let o be a joining between o and op. We have to show that either u© = Ny, x hx,
is the trivial joining, or find a finite index subgroup A C Z¢ such that ar.a and ap 5 are
algebraically weakly isomorphic. Assume that u is not the trivial joining, then there exists
a finite index subgroup A and a homogeneous non-trivial joining hg between o 5 and
a2,A by Proposition 8.1. Here G C X is a proper closed subgroup with 71(G) = X and
m2(G) = X».

Next we study the factors X| = X1/{x; : (x1,0) € G} and X}, = X5/{x2: (0, x2) €
G}. Suppose X/l is trivial, then X; x {0} C G and m(G) = X, implies that G = X X
X», a contradiction to G being proper.
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So assume now X| and X}, are non-trivial, and let G’ C X x X/ be the subgroup
defined by G. Then G’ N (X x {0}) = G’ N ({0} x X7) = {0}, so G’ is the graph of an
isomorphism between X| and X). Since G’ is closed, compactness shows the isomorphism
is continuous. Since all of the above are invariant subgroups, it follows that «; o and o2 A
have a common non-trivial factor X /1 =X é By assumption a1 5 and aa A are irreducible,
so the kernel of the above factor maps must be finite. Let NV be the order of the kernel, then
multiplication by N defines a factor map 1y from X to X that can be extended to a factor
map ¥y from X to X1, that is, the two actions on X and X| are weakly algebraically
isomorphic. O

Proof of Corollary 1.4, general case. Let X =[]_; X; and & = o; x - - - x o be the
product group and action. Suppose j # k € {1,...,r}and «; o and o A have a common
non-trivial factor B on a solenoid Y, where A C Z¢ is a finite index subgroup. Let
@j: Xj— Y and ¢ : Xy — Y be the corresponding group homomorphisms. Then G =
{x € X :¢j(xj) = ge(xr)} is a non-trivial closed a-invariant subgroup of X such that
7;(G) = X; fori =1, ..., r. The Haar measure \; on G has finite orbit under «, and the
average p over the elements in the (finite) orbit of A is a non-trivial joining.

Suppose now that p is a non-trivial joining between «; for i = 1, ..., r, and apply
Proposition 8.1. We obtain a finite index subgroup A C Z¢ and an «a-invariant proper
closed subgroup G < X that satisfies 7;(G) = X; fori = 1,...,r.

Next we factor X; by the subgroup

H; = (G N ({0Y ™" x X; x {0)771))

to get X; = X;/H; fori =1, ..., r and the factor X" = []; X of X. If X" = {0}, then
G = X which contradicts G being a proper subgroup.

So assume that X’ is non-trivial, and therefore infinite. Let G’ < X’ be the image of G.
Clearly 7;(G') = X} fori =1, ..., r.Let i be minimal such that H = G’ N Z; is infinite,
where Z; = X x - - - x X x {0)"~%. Then the kernel {x € H : x; = 0} of 7;| is finite,
and so 7r;(H) is an infinite closed a-invariant subgroup of X'. Let B be an irreducible
component of ap|y. Since ;| is finite-to-one, B is also an irreducible component of
o Al (1) Since an irreducible component of a subgroup is also an irreducible component
of the whole group, we see that o |y and o; o share B as an irreducible component.
By construction of X’, we have {z € H : z; = 0 for all k # i} = {0}. Therefore H is
isomorphic to a subgroup of X x - - - x X;_,. We conclude that there exists j < i such
that o; A and & A have 8 as a common factor. O]

9. Invariant o-algebras and measurable factors
In addition to the characterization of factors stated in Corollary 1.5, we prove in this
section a generalization of the isomorphism rigidity [21] for higher rank actions. Indeed we
characterize when two actions by automorphisms of solenoids have a common measurable
factor.

Suppose a7y, oy are 74 -actions by automorphisms of the solenoids X; and X». Let I';
respectively I'; be finite groups of affine automorphisms of X and X» that are normalized
by the respective actions. We say that the two factors of X| and X, arising from I'
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respectively I'y are isomorphic if there exists an affine isomorphism @ : X; — X» such
that Poal' ol =af ol o @ foralln e Vi

We claim that this is essentially the only way common measurable factors of higher
rank actions on solenoids can arise.

COROLLARY 9.1. (Classification of common factors) Let d > 2 and let ay,ar be
7% -actions by automorphisms of the solenoids X and X» without virtually cyclic factors.
Suppose ay and oy have a common measurable factor. Then there exist closed invariant
subgroups X| € X1 and X, C X», finite groups T'y of affine automorphisms of X1/ X}
and T'y of affine automorphisms of X2/X) that are normalized by the corresponding
actions such that this common measurable factor can be described alternatively as the
factor of X1/ X by the orbit equivalence relation of T'y, or similarly using X/ X', and I'>.
Moreover, the isomorphism between these two realizations of the factor is algebraic in the
following sense: there exists an affine isomorphism ® : X1/X| — X2/ X}, such that

®oa;1/xaoF1=a§2/X,zoF20<D 9.1)

foralln e 7.

Note that we have more rigidity for the factors than we had for joinings in Corollary 1.4.
In particular, there is no need to consider finite index subactions in order to classify when
two Z¢ actions on tori have a common factor; we illustrate this point with the following
example.

Example 9.2. Let «y be the Z?-action by automorphisms of the solenoid X| dual to
Z[1/2, 1/3] generated by multiplication by 2 and by 3 on X (i.e. the «; action on X is
the invertible extension of the x2, x3 action on T). We define a Z2-actionap on Xy = X %
by

a5 (x1, x2) = (—2x2, 2x1),

a3’ (x1,x2) = (3x1,3x2)  for (x1, x2) € Xo.

Then oz;e' (x1, x2) = (16x1, 16x7) for (x1, x2) € X, and so the restriction ap 5 of o to
A = (4Z) x Z is identical to the action a o X o o On X2 = X% By Theorem 1.4 oy and
ay are not disjoint. In fact, let

Z = {(x1, (x1,x2) : x1,x2 € X} C X X X».

Then 71(Z) = X1 and mp(Z) = X,. Therefore, the Haar measure m; of Z satisfies
(m1)smz = my, and (m2)xmz = my,. Since Z is only invariant under (; x o2)p, mz is
not a joining. However, it is easy to check that u = % Z?:o(al X a2)7®mz is a non-trivial
joining between «1 and «».

We note that o and « are both irreducible actions. Suppose now that o and «» have a
common measurable factor. By Corollary 9.1, there exist closed invariant subgroups X €
X1 and X/, € X> such that X1 /X and X»/ X, are isomorphic as groups. By irreducibility,
X and X/, are either finite or everything. However, if X| and X}, are finite, then X/ X/ is
still one-dimensional while X/ X7, is still two-dimensional, and so these groups cannot be
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isomorphic. Therefore, X i =X, X/2 = X>, and the common measurable factor has to be
the trivial factor.

Before we start with the proofs of Corollary 1.5 and Corollary 9.1, we recall some basic
facts about conditional measures and the construction of the relatively independent joining.

9.1. The relatively independent joining. Let ay, oz, B be Z%-actions on the standard
Borel probability spaces (X1, By, m1), (X2, B2, m2), and (Y, By, p), respectively, and let
Y1 : X1 — Y and ¢, : Xo — Y be factor maps. Then A; = wley and Ay = w;]By
are invariant o -algebras with conditional measures ml’; for x € X and m;‘; for x € X».
By the basic properties of conditional measures, there is some null set Ny C X so that
m“l4x = m“14, for every x, x’ € X1\ Ni with 1/;1 (x) = ¥1(x'), and so we can remove a

nullset from X and Y and define m = ml L forx e 1//1 y. We do this similarly for

vy
A to define m vrly . The relatively 1ndependent joining my X(y,p) mp of my and my over
the common factor (Y, p) is defined by

= _ -1 d, . 2
mi Xy,p) m2 /ymwl1yxm¢21y ,o(y) (9 )

It is well known (and easy to verify directly) that m; X (y ,) m2 projects to m on X; and to
my on X; and that m; Xy p) m is invariant under o1 x a3 (hence is a joining between o/
and o). Furthermore, the relatively independent joining m1 Xy, ) m2 gives full measure
to the set

Dy = {(x1, x2) : Y1 (x1) = ¥2(x2)} C X1 x X 9.3)
and moreover
Y'Cx Xo, X1 x 95 'C, and Y 'C x gy ' C

are equal up to a my Xy, ) mp-nullset for any C € By.

9.2. Proofs of Corollary 1.5 and Corollary 9.1. Let o1, a2, X1, X7 be as in Corollary
9.1, and suppose the 74 -action B on (Y, By, p) is a common factor of «| and ap. Let
Y1 and > be the corresponding factor maps, A; = ¥, 'By and A; = 23 'By the cor-
responding invariant o -algebras, and let v = A x, X (y p)hx, be the relatively independent
joining.

The main idea for the proof is to use Theorem 1.3 to study v. In the following example,
we see how the algebraic construction of the factor is encoded in the relatively independent
joining, and that the latter does not have to be ergodic.

Example 9.3. Let o be a Z%-action on a solenoid X, and let A = Bgdﬁ 9 be the
a-invariant o-algebra of measurable subsets A satisfying A = —A. Then the relatively
independent joining v = Ax x 4hx of Ay over the factor described by A is v = %()\ p+
Ap_), where D = {(x,x) :x € X} and D_ = {(x, —x) : x € X}. The ergodic compo-
nents of v are \p and Ap_.
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This example shows that for the relatively independent joining over a factor, we have to
take ergodic components in order to apply Theorem 1.3. However, in general, we also have
to take ergodic components as in Theorem 1.3 with respect to a finite index subgroup to
obtain measures invariant under translation by elements of certain subgroups.

LEMMA 9.4. The set
X ={"€eXi Y1) =y1(t +x) for hx,-a.e. t € X1}

is a closed a-invariant subgroup of X1. Furthermore, 1| descends (on the complement of
a nullset) to a well-defined factor map from X1/ X to Y.

Proof. Since Ay = ¥ By is countably generated, it is easily seen that
Xi={"eX; :ax,(AA(A+x"))=0forall A € A}

Furthermore, it is well known that Ax, (A A (A 4+ x’)) depends continuously on x’ € X
for any A € By,. From this, it follows that X| is a closed subgroup. Moreover, X is
ap-invariant since 4 is invariant (equivalently, since v/ is a factor map).

Note that ¥ (r) = ¢ (t + x”) for hx, x )\X/l -a.e. (1, x") € X1 x X by definition of X/
and Fubini’s theorem. Therefore, for hx,-a.e. ¢t € X, we know that ¥ (t) = ¥1(t + x')
for © x| -a.e. x' e X’1 Therefore, ¥1(¢) is (outside some nullset) independent of the
representative r € X1 of the coset 7 + X, which implies the second part of the lemma. [

By Lemma 9.4, we can replace X by X/X| and similarly X, by X>/X) for the
remainder of the proof. Hence we assume that

X)={x"€Xi:y1(t) = ¢1(t + x') for hx,-ae. 1 € X1} = {0} (9.4)

and similarly for X», and will show the existence of finite groups I'1 and I'; of affine
automorphisms of X and X», and the existence of the affine isomorphism ® : X| — X,
satisfying (9.1).

Since Theorem 1.3 assumes ergodicity, we need to study the ergodic components of the
relatively independent joining. The following easy consequence of the definition of the
ergodic decomposition gives all the properties we will need for the ergodic components.

LEMMA 9.5. Almost every ergodic component | of the relatively independent joining v of
X1 and X5 over Y is still a joining between a1 and ay that satisfies uw(Dy) = 1, where Dy
is defined as in (9.3).

In the next lemma, we analyze what translation invariance for a measure p as above
tells us about the factor maps.

LEMMA 9.6. Let p be a measure on X1 x X, that projects to the Haar measure \x,
respectively \x, and satisfies (t(Dy) = 1 where Dy is defined in (9.3). Suppose  is
translation invariant under elements of G C X1 x X, and that G projects surjectively to
X1 and X;. Then G is the graph of a group isomorphism ¢ : X1 — Xp. Moreover, there
exists some wy € Xp such that the affine isomorphism ® (x) = ¢ (x) + wy satisfies

Y1(x) = Y (P(x)) forae x € X 9.5)
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and that | is the Haar measure of the graph of ®. The element wy € X5 is uniquely
determined by ¢ and (9.5).

Proof. Suppose (x',0) € G, C € By, and A=y, 'C € A;. Then A x X; =X; x
¥, 'C (modulo ) and
A+x)YxXo=Ax Xo+ (x',0)
=X x ¥, 'C+ (x,0) (modulo )
=X xy,'C
=Ax X, (modulo w),

where we used invariance of p under translation by (x’, 0) in the transition from the first
to the second line. It follows that

A (A+x) 8 A) = w(((A+x") x X2) & (Ax X2)) =0

for any A € A; and so x" € X|. Therefore, x" = 0 by assumption (9.4). The same holds
for elements of the form (0, x’) € G. Together with our assumption that G projects onto
X1 and onto X», this implies that G is the graph of a group isomorphisms ¢ : X; — X».

We show next that wg is uniquely determined. So suppose w, w’ € X; are such that
(9.5) holds independently of whether ® is defined using w or using w’. Let v = ¢~ ! (w —
w’). Then

Y1 (x) = Y2(p(x) + w) = Y2 (@(x +v) + w') = Y1 (x +v)

for hx,-a.e. x € X. Therefore, v € X| = {0} (by (9.4) again) and w = w’.

It remains to show the existence of wg and that p is the Haar measure of the graph of
®. Since p is invariant under translation by elements of G and since w(Dy) = 1, it follows
that

w(Dy — (x,¢(x))) =1 forevery x € X.

In other words, we know for i x hx,-a.e. ((z1,z22), x) € (X1 x Xp) x X that (z1, z2) +
(x, ¢(x)) € Dy. By Fubini’s theorem, this shows for p-a.e. (z1, z2) € X1 x X5 that

(z1,22) + (x, ¢(x)) € Dy for hx,-ae.x € X;.
However, by definition of Dy, this is equivalent to
Yi(z1 +x) = Y2(z2 + ¢(x)) for hx,-ae. x € X;.

We define w = zo — ¢(z1), then (9.5) follows for ®(x) = ¢ (x) + w. However, by unique-
ness w = wy is independent of (z1, z2). Therefore, zo = ¢(z1) + wy and (z1, z2) belong
to the graph of ®(x) = ¢(x) + wy. This holds for p-a.e. (z1,z2), and together with
invariance of u under translation by elements of G, it follows that p is the Haar measure
of the graph of . O

Finally, we can describe the structure of the relatively independent joining.
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LEMMA 9.7. The relatively independent joining is a convex combination

V= Z ajho, withaj > 0
jeJ
of at most countably many Haar measures \o; on graphs of affine isomorphisms ® ; that
satisfy (9.5).

Proof. Let u be an ergodic component of v as in Lemma 9.5. By Theorem 1.3, there exist
Uls ...,y and Gy, ..., Gy, such that u = 1/M Z,Ail ui and w; is invariant under
translation by elements of G;. By Proposition 8.1, each G; projects surjectively to X; and
X>. Therefore, Lemma 9.6 shows that p; is the Haar measure \g of the graph of an affine
isomorphism ®(x) = ¢ (x) + wy that satisfies (9.5).

We claim that there are at most countably many group isomorphisms ¢ : X1 — X».
Since ¢ uniquely determines wg, @, 1t;, and by ergodicity also u, the above claim implies
that there are at most countably many ergodic components u, each of which is a convex
combinations of Haar measures.

To prove the claim, it is enough to notice that every ¢ as above is uniquely determined
by its dual q3 : )22 > X 1 that is the restriction of a Q-linear map from Q"2 2 }22 to
Q" 2 Xy O

Proof of Corollary 1.5. Tt is well known that every invariant o -algebra A can be realized

as ¥~ !By for some factor map ¥ : X — Y and some Z?-action on a standard Borel

probability space (Y, By, p). Recall that by Lemma 9.4, we may assume that (9.4) holds.
Let v be the relatively independent joining of Ax and hx over (Y, p). Let

I' = {y : y is an affine automorphism
such that ¥ (y (x)) = ¥ (x) for Ax-a.e. x € X}. (9.6)

Then I' is a group normalized by « that is at most countable (see proof of Lemma 9.7) and
satisfies

V= Z ayk, witha, >0
yell

by Lemma 9.7. From the construction (9.2) of the relatively independent joining, it follows
that the conditional measures of v with respect to the o-algebra C = Bx x {#, X} are

ugc,x/) =68 % ()\X)jc4 for v-a.e. (x,x") € X x X.

However, from the above decomposition of v, it is also easy to calculate the conditional
measures of v with respect to C, which shows that

)P = Z a,8y(x) hx-almost everywhere.
yell

A

Yox — (Vo)*(xx);“ almost

Since every g € I' preserves hx and A4, it follows that (\x)
everywhere, and hence

()\X);l)x = (Y0)« Z aydy(x) = Z aySy(y(x)) almost everywhere.
yell yell
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However, by definition yq also preserves a.e. atom of A and so (A X)% =0 X);4 almost

everywhere, hence

(XX)}L})X = Z a,8y(x) hx-almost everywhere.

yell

By comparing the above two displayed formula we conclude that I is finite, and all the
coefficients a,, are equal to each other, that is to say

1
(= Tl > Sy
yel

Since the conditional measures determine the o-algebra (modulo \x), the corollary
follows. O

Proof of Corollary 9.1. We already constructed X| and X} in Lemma 9.4. Applying
Corollary 1.5, we find I'1 and I'. Finally, let ® : X; — X5, be an affine isomorphism as
in (9.5) that exists by Lemma 9.7. Then O lopyod belongs to I'; (defined as in (9.6))
for any y» € I';. By symmetry, I'; o ® = & o I'y which concludes the proof. O
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