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1. Introduction and main results
The map Tp : x 7→ px on T = R/Z has many closed invariant sets and many invariant

measures. Furstenberg initiated the study of jointly invariant sets in his seminal paper [14].

A set A ⊆ T is called jointly invariant under Tp and Tq if Tp(A) ⊆ A and Tq(A) ⊆ A.

Furstenberg proved that if p and q are multiplicatively independent integers, then any

closed jointly invariant set is either finite or all of T.

Furstenberg also raised the question concerning what are the jointly invariant measures,

that is, which probability measures µ on T satisfy (Tp)∗µ = (Tq)∗µ = µ. The obvious

ones are the Lebesgue measure, atomic measures supported on finite invariant sets, and

(non-ergodic) convex combinations of these.

In the following, a solenoid X is a compact, connected, abelian group whose Pontryagin

dual X̂ can be embedded into a finite-dimensional vector space over Q. The simplest

example is a finite-dimensional torus. A Zd -action α by automorphisms of a solenoid X is

called irreducible if there is no proper infinite closed subgroup which is invariant under α,

and totally irreducible if there is no finite index subgroup 3 ⊆ Zd and no proper infinite

closed subgroup Y ⊆ X which is invariant under the induced action α3. A Zd -action is

virtually cyclic if there exists n ∈ Zd such that for every element m ∈ 3 of a finite index

subgroup 3 ⊆ Zd , there exists some k ∈ Z with αm = αkn.

We briefly summarize the history of this problem. The topological generalization of

Furstenberg’s result to higher dimensions was given by Berend [1, 2]: An action on a torus

or solenoid has no proper, infinite, closed, and invariant subsets if and only if it is totally

irreducible, not virtually cyclic, and contains a hyperbolic element.
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The first partial result for the measure problem on T was given by Lyons [31] under a

strong additional assumption. Rudolph [34] weakened this assumption considerably, and

proved the following theorem.

THEOREM 1.1. [34, Theorem 4.9] Let p, q ≥ 2 be relatively prime positive integers, and
let µ be a Tp, Tq -invariant, and ergodic measure on T. Then either µ = mT is the
Lebesgue measure on T, or the entropy of Tp and Tq is zero.

Johnson [17] lifted the relative primality assumption, by showing it is enough to assume

that p and q are multiplicatively independent. Feldman [13], Parry [33], and Host [15] have

found different proofs of this theorem, but positive entropy remains a crucial assumption.

Anatole Katok and Spatzier [22, 23] obtained the first analogous results for actions

on higher dimensional tori and homogeneous spaces. However, their method required

either an additional ergodicity assumption on the measure (satisfied for example if every

one parameter subgroup of the suspension acts ergodically), or that the action is totally

non-symplectic (TNS). A careful and readable account of these results has been written by

Kalinin and Anatole Katok [18], which also fixed some minor inaccuracies. The following

theorem (already proven in the announcement [7]) gives a full generalization of the result

of Rudolph and Johnson to actions on higher-dimensional solenoids.

THEOREM 1.2. [7, Theorem 1.1] Let α be a totally irreducible, not virtually cyclic
Zd -action by automorphisms of a solenoid X. Let µ be an α-invariant and ergodic
probability measure. Then either µ = mX is the Haar measure of X, or the entropy
hµ(α

n) = 0 vanishes for all n ∈ Zd .

1.1. The general positive entropy measure rigidity theorem. Without total irreducibility,

the Haar measure of the group is no longer the only measure with positive entropy. Thus

our main theorem below is (necessarily) longer in its formulation than Theorem 1.2.

It strengthens e.g. [18, Theorem 3.1] which has a similar conclusion but stronger

assumptions.

THEOREM 1.3. (Positive entropy rigidity theorem) Let α be a Zd -action (d ≥ 2) by
automorphisms of a solenoid X. Suppose α has no virtually cyclic factors, and let µ be an
α-invariant and ergodic probability measure on X. Then there exists a subgroup3 ⊆ Zd of
finite index and a decomposition µ = (1/J )(µ1 + · · · + µJ ) of µ into mutually singular
measures with the following properties for every j = 1, . . . , J .

(1) The measure µj is α3-ergodic, where α3 is the restriction of α to 3.
(2) There exists an α3-invariant closed subgroup Gj such that µj is invariant under

translation with elements in Gj , that is, µj (B) = µj (B + g) for all g ∈ Gj and
every measurable set B ⊆ X.

(3) For n ∈ Zd , αn
∗µj = µk for some k ∈ {1, . . . , J } and αn(Gj ) = Gk .

(4) The measure µj induces a measure on the factor X/Gj with hµj (α
n
X/Gj

) = 0 for
any n ∈ 3. (Here αX/Gj denotes the action induced on X/Gj .)

We remark that in the topological category, there is a big gap between our understanding

of the totally irreducible case and the general case of Zd -actions by automorphisms on a
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solenoid. In the totally irreducible case, Berend [2] gave an if-and-only-if condition for

a Zd -action to have the property that every orbit is either finite or dense, and the same

methods could be pushed further to give a complete classification of closed invariant

subsets for a totally irreducible Zd -action on the solenoid; for Zd -action on tori, this is due

to Z. Wang [36, Theorem 1.10], and his proof certainly works also for solenoids though

this does not seem to have been written (a special case, with a very nice application, can

be found in Manner’s paper [32]). In the non-irreducible case, orbit closures and closed

invariant sets are much less understood. We refer to [30] by Z. Wang and the second named

author for some results in this direction and additional details.

The proofs of Theorem 1.2 and Theorem 1.3 follow the outline of Rudolph’s proof of

Theorem 1.1. One of the main ingredients there was the observation that hµ(Tp)/ log p =

hµ(Tq)/ log q (and a relativized version of this equality). This follows from the particularly

simple geometry of this system where both Tp and Tq expand the one-dimensional space

T with fixed factors. There is no simple geometrical reason why such an equality should be

true for more complicated Zd -actions on solenoids, and indeed is easily seen to fail in the

reducible case. However, somewhat surprisingly, such an equality is true for irreducible

Zd -actions, even though this is true for subtler reasons (see Theorem 7.1 below).

In the following two subsections we also apply Theorem 1.3 to obtain new information

about the measurable structure, with respect to the Haar measure, of algebraic Zd -actions

on tori and solenoids.

1.2. Characterization of disjointness. Let α1 and α2 be two measure-preserving

Zd -actions on the probability spaces (X1, BX1
, µ1) and (X2, BX2

, µ2). A joining between

α1 and α2 is an α1 × α2-invariant probability measure ν onX1 ×X2, which projects to µ1

and µ2 under the projection maps π1 and π2. In other words we require ν(αn
1 × αn

2 (C)) =

ν(C) for n ∈ Zd and C ∈ BX1×X2
, ν(A×X2) = µ1(A) for A ∈ BX1

, and also ν(X1 ×

B) = µ2(B) for B ∈ BX2
. The product measure µ1 × µ2 is always a joining, called the

trivial joining. If the trivial joining is the only joining, the two actions are disjoint. This

implies that the two actions are measurably non-isomorphic. In fact if they are disjoint,

there is no non-trivial common factor of the two systems, see for instance §9 where we

recall the construction of the relatively independent joining over a common factor.

Let now αj be measure preserving Zd -actions on (Xj , BXj , µj ) for j = 1, . . . , r . A

joining between αj for j = 1, . . . , r is a measure ν on
∏r
j=1 Xj which projects to µj

under the coordinate projections πj for j = 1, . . . , r , and is invariant under the Zd -action

α1 × · · · × αr . The product measure is the trivial joining, and the Zd -actions are mutually
disjoint if the trivial joining is the only joining.

Suppose now α1 and α2 are actions by automorphisms on solenoids X1 and X2,

respectively. We will classify disjointness with respect to the Haar measures mXj on the

group Xj for j = 1, 2. If ϕ : X1 → X2 is a continuous surjective homomorphism and

satisfies αn
2 ◦ ϕ = ϕ ◦ αn

1 for all n ∈ Zd , we say ϕ is an algebraic factor map. If α1 and

α2 are both finite-to-one factors of each other by algebraic factor maps, we say they

are algebraically weakly isomorphic. Equivalently, α1 and α2 are algebraically weakly

isomorphic if they have a common finite-to-one algebraic factor.
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The following generalizes a theorem of Kalinin and Anatole Katok [19, Theorem 3.1]

and of Kalinin and Spatzier [20, Theorem 4.7], where the main difference is that we do

not assume that the actions are totally non-symplectic or hyperbolic.

COROLLARY 1.4. (Classification of disjointness) If α1 and α2 are totally irreducible
and not virtually cyclic, then they are not disjoint (with respect to the Haar measures)
if and only if there exists a finite index subgroup 3 ⊆ Zd for which α1,3 and α2,3 are
algebraically weakly isomorphic.

More generally, let αj be Zd -actions on solenoids (not necessarily irreducible) without
virtually cyclic factors for j = 1, . . . , r . Then they are not mutually disjoint if and only
if there exist indices i, j ∈ {1, . . . , r} with i 6= j , a finite index subgroup 3 ⊆ Zd , and a
non-trivial 3-action β on a solenoid Y which is an algebraic factor of αi,3 and αj ,3.

1.3. Algebraicity of factors. Anatole Katok, Svetlana Katok, and Schmidt [21, Theorem

5.6] studied measurable factor maps between Zd -actions by automorphisms of tori.

Our second application gives an extension of this by characterizing the structure of

measurable factors (or equivalently invariant σ -algebras). We start by giving two algebraic

constructions that give invariant σ -algebras.

• If X′ ⊆ X is a closed α-invariant subgroup and π : X → X/X′ denotes the canonical

projection map, then the preimage A = π−1BX/X′ of the Borel σ -algebra BX/X′ of

X/X′ is α-invariant.

• If Ŵ is a finite group of affine automorphisms that is normalized by α, then the

σ -algebra BŴX of Ŵ-invariant Borel subsets of X is α-invariant.

COROLLARY 1.5. (Algebraicity of measurable factors) Let α be a Zd -action by automor-
phisms of the solenoid X without virtually cyclic factors, and let A ⊆ BX be an invariant
σ -algebra. Then there exists a closed α-invariant subgroup X′ ⊆ X and a finite group Ŵ
of affine automorphisms of X/X′ that is normalized by the action αX/X′ induced by α on
X/X′ such that

A = π−1(BŴX/X′) modulo mX.

In other words, the corollary states that every measurable factor of α arises by a

combination of the two algebraic constructions given above.

In the irreducible case, the theorem gives that every non-trivial measurable factor of α is

a quotient of X by the action of a finite affine group. The simplest examples of such groups

are finite translation groups. However, more complicated examples are also possible; for

example, let w ∈ X be any α-fixed point. Then the action of G = {Id, − Id +w} on X
commutes with α.

The proof of Corollary 1.5 uses the relatively independent joining of the Haar measure

with itself over the factor A, which gives an invariant measure on X ×X analyzable by

Theorem 1.3. This is similar to the proof of isomorphism rigidity in [21], which followed

a suggestion by Thouvenot.

We will discuss further corollaries towards factors in §9.
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1.4. Remarks and acknowledgements. The results of this paper were obtained in 2002

and announced in [7]; indeed this was the first result we worked on together. Since then,

there was always another newer result that we wanted to write, and we never seemed to

have the time to finally write down the general case of the results announced in [7]. One

important ingredient in this work is the product structure for coarse Lyapunov foliations

developed around that time by Anatole Katok and the first author.

The ideas behind the proof of Theorem 1.3 were used by Z. Wang to prove his strong

measure classification result for invariant measures on nilmanifolds [37]. Actions by

automorphisms on nilmanifolds generalize actions on tori which are covered by the results

of this paper; solenoids are more general than tori, but more importantly, in that paper, Z.

Wang does not allow for zero entropy factors, as we do here. Hence the results of this paper

are (to the best of our knowledge) ‘new’ in the sense that they have not appeared in print

before. We thank Z. Wang for encouraging us to write down the complete proof of [7] and

for his willingness to help us do so. We also would like to thank the anonymous referee

and Manuel Luethi for their comments.

2. Actions on adelic solenoids
2.1. Adeles, local and global fields. We review some basic facts and definitions regard-

ing local fields, global fields, and the adeles. A general reference to these topics is Weil’s

classical book [38, Chs. I–IV]; note that Weil calls what is now commonly referred to

as global fields A-fields. Throughout this paper, the term local field will denote a locally

compact field of characteristic zero; these include R and C as well as finite extensions of

the field of p-adic numbers Qp. (The terminology of global and local fields was introduced

to incorporate both the positive and zero characteristic cases on an equal footing, but

dynamically there are rather fundamental differences (see e.g. [3, 24]) and we restrict

ourselves in this paper to the zero characteristic case.) Let K be a local field and let λK

be the Haar measure on K. We define δ(K) as the degree of the field extension K over

the closure of Q in K, which can be isomorphic to either R if K is Archimedean or Qp
for some prime p otherwise (to make the notation more consistent, we will also write Q∞

for R). Local fields come equipped with an absolute value | · |K, which we will always

normalize to coincide with the usual absolute value on R or Qp. We note that in any of

these cases we have

λK(aC) = |a|
δ(K)
K

λK(C) (2.1)

for any measurable set C ⊆ K.

We recall that a global field K is a finite field extension of Q. We will denote the

completions of K by Kσ , where σ stands for the (Archimedean or non-Archimedean)

place—that is, an equivalence class of absolute values. We choose the representative to

coincide with either |·|∞ of |·|p on Q. We recall that Kσ is a local field and will use the

abbreviation |·|σ = |·|Kσ for the norms satisfying (2.1) on Kσ . If |·|σ coincides with |·|p
on Q, then we say that σ lies over p; if |·|σ is Archimedean, we say that σ is an infinite

place of K.

For a global field K, the ring of adeles AK over K is defined as the restricted direct

product of all completions of K with respect to the maximal compact subrings for all
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non-Archimedean completions. In other words, (tσ )σ ∈ AK if tσ ∈ Kσ for all places σ of

K and, except for finitely many σ (an exceptional set that is assumed to include all infinite

places), we have that in fact tσ lies in the maximal compact subring OK,σ < Kσ . In the

special case K = Q, this takes the form

A = R ×
∏′
p Qp = R ×

⋃
S(

∏
p∈S Qp ×

∏
p/∈S Zp),

where the union runs over all finite subsets S of the primes. The general case of the ring of

adeles AK over a global field K is defined similarly, but can also be obtained via

AK = A ⊗Q K. (2.2)

We shall identify Kσ with the corresponding subring in AK. Using a basis of K over Q, we

obtain an additive group isomorphism (indeed, an isomorphism of vector spaces over Q)

AK = A ⊗Q K ∼= A[K:Q]. (2.3)

We recall moreover that Q diagonally embedded into A is discrete and cocompact and

that the Pontryagin dual Â of A can be identified with A itself. Finally the isomorphism

between Â and A can be chosen so that the annihilator of Q is Q itself, which implies

that the Pontryagin dual of Q can be identified with A/Q. This extends similarly to global

fields, see e.g. [38, pp. 64–69].

2.2. Adelic actions. For us, the adelic setup gives a concrete language to discuss actions

on general solenoids. We note however that for automorphisms on tori, it suffices to

consider all Archimedean places of K and for irreducible actions, it would suffice to

consider only finitely many places (see also [7] for the latter).

Indeed, let us fix a dimension m ≥ 1, a rank d ≥ 1, and d commuting matrices

A1, . . . , Ad ∈ GLm(Q). We use them to define a linear representation α̃ of Zd on Qm.

Using the matrices in the same way as within vector spaces, this extends to an action of

Zd by group automorphisms on Am, which we will also denote by α̃. Finally, we take the

quotient by the discrete cocompact invariant subgroup Qm and obtain an action α of Zd by

automorphisms on the solenoid

Xm = Am/Qm.

We will refer to Xm as an adelic solenoid and to this action as the adelic action on Xm

defined by the matrices (or equivalently the linear maps) A1, . . . , Ad .

Since every group automorphism of Qm is in fact Q-linear and defined by an invertible

matrix in GLm(Q), it follows from Pontryagin duality that every action of Zd by

automorphisms on Xm can be defined this way. We will explain this step in a more general

form in §4.1.

We say that a closed subgroup Y < Xm of an adelic solenoid Xm = Q̂m is adelic if it

is a linear subspace over Q (that is, QY ⊆ Y ). Since this notion will be useful for us, we

wish to study it briefly in the following lemma.
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LEMMA 2.1. Let m ≥ 1 and let Y ≤ Xm be a closed subgroup. Then the following
conditions are equivalent:

(1) Y ≤ Xm is an adelic subgroup;
(2) the annihilator Y⊥ ≤ Qm is a Q-linear subspace;
(3) there exists a Q-linear subspace V ≤ Qm so that Y is the image of A ⊗Q V ≤ Am

modulo Qm.

Proof. The equivalence of (1) and (2) follows from Pontryagin duality. Indeed aY = Y

for a ∈ Z \ {0} (and then also a ∈ Q \ {0}) is equivalent to a(Y⊥) = Y⊥ (since (aY )⊥ =

a−1Y⊥).

Suppose now V < Qm is a linear subspace as in (3). Then A ⊗Q V is clearly invariant

under Q and hence defines modulo Qm, an adelic subgroup.

Finally assume that Y is adelic as in (1) (and equivalently (2)). Let W = Y⊥ < Qm so

that W is a linear subspace and Y = W⊥ by Pontryagin duality. By [38, Ch. IV], there

exists a character χ0 ∈ Â so that the isomorphism Â ∼= A is induced by the definition

〈a, b〉 = χ0(ab) for all a, b ∈ A and with this isomorphism, we have Q⊥ = Q. Moreover,

this also gives Âm ∼= Am using the pairing

〈(a1, . . . , am), (b1, . . . , bm)〉 = χ0(a1b1 + · · · + ambm)

for all (a1, . . . , am), (b1, . . . , bm) ∈ Am. Since W < Qm is a linear subspace, we may

apply a linear isomorphism A ∈ GLm(Q) so that W1 = A(W) is precisely the span of

the first k standard basis vectors. Applying the inverse of the dual (transpose) linear

automorphism to Y, this shows that Y1 = (At )−1(Y ) satisfies that Y⊥
1 = W1. Now let

(a1, . . . , am) ∈ Y1. Hence we have χ0(ajb) = 1 for all b ∈ Q and j = 1, . . . , k. However,

this gives by the properties of χ0 that aj ∈ Q for j = 1, . . . , k. It follows that Y1 =

Qm + A ⊗Q V1, where V1 is the linear hull of the lastm− k basis vectors. Applying At to

this claim gives the description of Y as in (3).

2.3. Irreducible adelic actions. We say that an adelic action on Xm is A -irreducible if

the associated linear representation of Zd on Qm is irreducible over Q, that is, if there does

not exist a rational nontrivial proper invariant subspace. Note however that A-irreduciblity

does not coincide with the notion of irreducibility defined on p. 5. In fact, an adelic action

is never irreducible but it will be convenient to study A-irreducible adelic actions as basic

building blocks of other adelic actions.

We note that given a global field K and d ≥ 1 elements ζ1, . . . , ζd ∈ K, we may

consider multiplication by these elements as a Q-linear map on the vector space K over

Q to define an adelic action of Zd on AK/K. Using a fixed basis of K over Q, we may

identify K with Qm and multiplication by ζ1, . . . , ζd with certain matrices A1, . . . , Ad .

In this way, our discussions of §2.2 also apply to the multiplication maps by ζ1, . . . , ζd on

K. The point of the following proposition is that every A-irreducible action of Zd arises in

this way from a global number field and d of its elements.

PROPOSITION 2.2. (Diagonalization of A-irreducible action) Let m, d ≥ 1 and let α be
an A-irreducible adelic action of Zd on Xm = (A/Q)m. Then there exists a global field
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K of degree m over Q and d non-zero elements ζ1, . . . , ζd ∈ K× so that α is isomorphic
to the action on AK/K generated by the maps a ∈ K 7→ ζja ∈ K for j = 1, . . . , d . More
explicitly, this action on AK/K (which as an additive topological group is isomorphic to
Xm) can be given as follows:

α̃n : (vσ )σ ∈ AK 7→ (ζ
n1

1,σ . . . ζ
nd
d,σ︸ ︷︷ ︸

=ζn,σ

vσ )σ ,

where ζ1,σ , . . . , ζd,σ ∈ Kσ and ζn,σ denote the image of ζ1, . . . , ζd respectively of ζn =

ζ
n1

1 . . . ζ
nd
d in the completion Kσ .

Proof. Let ζj = α̃ej ∈ GLm(Q) for j = 1, . . . , d be the matrices that define the action α̃

on Qm and Am associated to α.

We define K = Q[ζ1, . . . , ζd ] ⊆ GLm(Q) to be the ring of polynomial expressions f
in the matrices ζ1, . . . , ζd and with rational coefficients. We note that Lemma 2.1 implies

that Qm has no proper rational subspaces invariant under K. Since ζ1, . . . , ζd commute,

it follows that any such polynomial expression f ∈ K is either zero or is invertible (as an

element of GLm(Q)). In particular, we have that K is an integral domain. As it is also a

finite dimensional algebra over Q, it follows that K is field extension of Q. Once more

because Qm has no proper invariant subspaces, it also follows that ϕ : a ∈ K 7→ a(e1) ∈

Qm must be surjective. By definition the kernel ker(ϕ) is an ideal, which implies that ϕ is

injective since K is a field. It follows that ϕ is a linear isomorphism.

To summarize, we have found a global field K and elements ζ1, . . . , ζd ∈ K× so that

up to a linear isomorphism our linear representation α̃n on Qm is defined for every n ∈ Zd

by multiplication by ζn = ζ
n1

1 . . . ζ
nd
d on the vector space K.

To obtain the adelic action, we tensorize with A. On one hand, for the action on Qm this

gives the action of Zd on Am we started with. On the other hand, we may tensorize the

linear isomorphism between Qm and K with A to obtain the group isomorphism

Am = Qm ⊗Q A ∼= K ⊗Q A ∼= (K ⊗Q R)×
∏′
p(K ⊗Q Qp).

Now notice that we can identify K with the quotient Q[x]/(p(x)) for some irreducible

polynomial p(x) ∈ Q[x], which implies that K ⊗ R is isomorphic R[x]/(p(x)). Since the

irreducible factors of p(x) ∈ R[x] correspond precisely to the roots of p(x) (all appearing

with multiplicity one) and hence also to the Galois embeddings of K into C, it follows that

K ⊗ R is as a ring isomorphic to
∏
σ |∞ Kσ , where the product runs over all places of K

lying above ∞, that is, over all Archimedean completions of K.

This argument applies similarly for the tensor product with Qp so that K ⊗Q Qp is

isomorphic as a ring to the product
∏
σ |p Kσ and σ denotes here all places of K above

p, see also [38, p. 56]. Applying this argument at all places of Q, we obtain that Am is

isomorphic to AK.

Application of α̃ej corresponds under this isomorphism from Am to AK =
∏′
σ Kσ to

multiplication by the image of ζj in the factor Kσ for every place σ of K. This gives the

proposition.
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Let us write δ(σ ) = δ(Kσ ) ∈ N for any place σ of K. The following product formula is

a crucial ingredient in our proof.

PROPOSITION 2.3. (Product formula) Let α be an A-irreducible adelic Zd -action as in
Proposition 2.2. Then we have

∏

σ

|a|δ(σ )σ = 1 for every a ∈ K \ {0} (2.4)

and this applies in particular to a = ζn for every n ∈ Zd .

We note that one way to obtain this result is precisely to interpret the product as the

modular character for the automorphism defined by multiplication by a on the compact

group K̂ = AK/K (cf. (2.1)). We refer to [38, p. 75] for a proof along these lines.

2.4. A filtration by A-irreducible adelic actions. The following lemma reveals an

advantage of adelic actions by connecting structural questions concerning α to linear

algebra on the dual.

LEMMA 2.4. (Decomposition into A-irreducible factors) Let m, d ≥ 1 and let α be an
adelic Zd -action on Xm. Then there exist closed α-invariant adelic subgroups

Y0 = {0} < Y1 < · · · < Yr = Xm,

such that the action induced by α on Yj/Yj−1 is an A-irreducible adelic Zd -action for all
j = 1, . . . , r .

We will refer to the A-irreducible adelic actions appearing in Lemma 2.4 as the

A-irreducible factors associated to α.

Proof. By Pontryagin duality, we may consider instead of α the linear representation α̂

on Qm. Let V1 ⊆ Qm be a non-trivial subspace that is invariant under α̂ and of minimal

dimension. Note that this implies that the restriction of α̂ to V1 is irreducible over Q. If

V1 6= Qm, we let V2 be a subspace that is invariant under α̂, strictly contains V1 and is

among these of minimal dimension. Once more this implies that V2/V1 is irreducible over

Q (for the representation induced by α̂).

Continuing like this, we obtain a partial flag

V0 = {0} < V1 < V2 < · · · < Vr = Qm (2.5)

consisting of α̂-invariant subspaces so that Vj/Vj−1 is irreducible over Q. Applying

Pontryagin duality (and reversing the indexing), this gives the lemma.

3. Leafwise measures, invariant foliations, and entropy
We briefly recall the main properties of leafwise measures. These have been introduced in

the context of higher rank rigidity theorems (under the name of conditional measures for

foliations) by Anatole Katok and Spatzier in [22] and have since become an essential tool

for all of the theorems in the area. Implicitly leafwise measures appear already in the proof

of Rudolph’s Theorem in [34]. A general reference for this section is [10, §§6 and 7].
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3.1. Leafwise measures. Given a quotientX = G/Ŵ of a locally compact abelian group

G by a lattice Ŵ < G and a closed subgroup V < G with V ∩ Ŵ = {0}, we consider the

foliation of X into V-orbits. Let πX denote the natural projection G → X. As we will

reduce our main theorem to the adelic case (Theorem 4.1), we consider the case that G is

Am (though everything we say below is equally valid for G = Rm, or a finite product of

local fields). We note that the metric on Am is chosen so that the balls BVr = Br(0) ∩ V

have compact closures for all r > 0.

For our purposes, it will be important to work with an extension of X—a product X̃ =

X ×� of X with an arbitrary compact metric space�. We let V act on X̃ by translation on

the first coordinate and trivially on the second coordinate, obtaining in this way a foliation

of X̃ into V orbits. This foliation of X̃ into V-orbits does not admit in general a Borel

cross-section, and typically one cannot find a countably generated σ -algebra on X̃ whose

atoms coincide with almost every (a.e.) V-orbits. Given a probability measure µ on X̃, the

foliation into V-orbits gives rise to a system of leafwise measures on X̃: a Borel measurable

map x 7→ µVx from a subset of full measure X̃′ ⊂ X̃ to locally finite (possibly infinite)

measures on V. We say that a leafwise measure µVx is trivial if it is a multiple of the Dirac

measure at the identity; we say that the system of leafwise measures is trivial if it is trivial

at a.e. point. We also note that almost surely 0 belongs to the support of µVx .

The system of leafwise measure satisfies the following compatibility condition: for any

v ∈ V and x ∈ X̃′ so that x + v is also in X̃′

(µVx+v + v) ∝ µVx . (3.1)

Here and in the following, we write ν ∝ ν′ for two measures ν, ν′ if there exists c > 0 with

ν = cν′.

One way to characterize the leafwise measures is through the notion of subordinate

σ -algebras:

Definition 3.1. (Subordinate σ -algebras) A σ -algebra A of Borel subsets of X̃ is subordi-
nate to V if A is countably generated, for every x ∈ X̃ the atom [x]A of x with respect to

A is contained in the leaf x + V , and for a.e. x

x + BVǫ ⊆ [x]A ⊆ x + BVρ for some ǫ > 0 and ρ > 0.

For these x, we define the shape Sx of the atom [x]A (from the point of view of x) as the

subset of V satisfying x + Sx = [x]A.

Let A be a countably generated σ -algebra on X̃ that is subordinate to V. Then the

leafwise measures for µ with respect to V and the conditional measures of µ with respect

to A satisfy that for a.e. x ∈ X̃, the conditional measure µA
x at x with respect to A equals

the normalized push forward x + (µVx |Sx ) of the restriction µVx |Sx under the addition map

v 7→ x + v from V → X̃.

A slightly subtler but important feature of the system of leafwise measures is that while

they may be (and typically are) infinite measures, they have certain a priori restrictions

on how fast they grow: There exists a concrete function fV on V (only depending on V)

that is integrable with respect to µVx for every x in a set of full measure (that we may as
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well assume already contains the conull set X̃′), see [10, Theorem 6.30]. In fact, fV can be

chosen with very mild (polynomial-like) decay properties.

In particular, if x ∈ X̃′ and v ∈ V satisfies

(µVx + v) ∝ µVx , (3.2)

this in fact implies the formally stronger conclusion that µVx is translation invariant by the

same v, that is,

(µVx + v) = µVx , (3.3)

for otherwise µVx would have exponential growth, which would contradict the

polynomial-like growth condition. Finally we recall the following proposition.

PROPOSITION 3.2. (Leafwise measures supported on subgroups [9, Lemma 3.2], [28, §3])

Let X = G/Ŵ and let W < V < G be closed subgroups. Let µ be a probability measure
on X. Suppose that for µ-a.e. x, the measure µVx is supported on W. Then, identifying
locally finite measures on W with locally finite measures on V supported on W in the
obvious way, we have that for µ-a.e. x, µWx ∝ µVx .

3.2. Entropy and leafwise measures. Suppose now T : G → G is a group automor-

phism preserving Ŵ and V. Recall that we have restricted ourselves without loss of

generality to the case where X is the Pontryagin dual to an m-dimensional vector space L
over Q. Fixing a choice of basis in L, we can restrict our attention to the case of G = Am,

Ŵ = Qm, and hence the automorphism T is defined by a rational matrix T ∈ GLm(Q). We

note however that some of the definitions below, e.g. the ‘sufficiently fine’ condition in

(3.7), depend on the choice of basis used to give the isomorphism L ∼= Qm (which induces

an isomorphism Ŵ ∼= Qm).

We denote the resulting automorphism of X = G/Ŵ also by T, and consider an

extension T̃ = T × T� : X̃ → X̃ with T� : � → � measurable. Furthermore, suppose

the probability measure µ on X̃ is invariant under T̃ . Then the characterizing properties of

the leafwise measures µVx imply the equivariance formula

µV
T̃ x

∝ T∗(µ
V
x ) (3.4)

for a.e. x ∈ X̃′, see e.g. [10, Lemma 7.16].

We say that a closed subgroup V < Am is S-linear where S is a finite set of places of Q

(that is, a set of prime numbers or infinity) if for each σ ∈ S there is a subspace Vσ < Qmσ
so that V is the direct product of the Vσ for σ ∈ S. Below we will frequently use the stable
horospherical subgroup

U−
T = {a ∈ Am : T na → 0 as n → ∞}

for T and the unstable horospherical subgroup U+
T = U−

T −1 . If

S = {p : T 6∈ GL(m, Zp)} ∪ {∞}, (3.5)

then the horospherical subgroups U−
T and U+

T are S-linear for this S.
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3.3. Increasing subordinate σ -algebras and entropy. We continue with the notation of

§3.2. We say that a countably generated σ -algebra A on X̃ is increasing with respect to T̃

if A ⊆ T̃A (modulo µ), that is, the atom [T̃ x]A almost surely (a.s.) contains T̃ ([x]A).

Let P be a finite partition of X̃, which we identify with the corresponding finite algebra

of sets. For any ǫ > 0, let

∂Vǫ P = {̃x ∈ X̃ : x̃ + BVǫ 6⊆ [̃x]P}.

The following lemma follows quickly from monotonicity of the function r ∈ [0, ∞) 7→

µ(Br(x)) for x ∈ X̃ (and its almost sure differentiability) together with compactness of X̃.

LEMMA 3.3. [10, Lemma 7.27] For any probability measure µ̃ on X̃, there exists a finite
partition P of X̃ into arbitrarily small sets such that for some fixed C and for every ǫ > 0

µ(∂Vǫ P) < Cǫ. (3.6)

For more details, see [10, §7]. A partition P satisfying the conclusion of the above

lemma will be said to have thin boundaries. We will assume throughout that any finite

partition P of X we will consider below is sufficiently fine in the sense that

P − P ⊂ πX

( ∏

v∈S

BQmv
(rv)×

∏

v 6∈S

Zmv

)
for every P ∈ P, (3.7)

with rv = 0.1 max(‖T‖v , ‖T−1‖v)
−1 (with respect to the operator norm on GL(Qv)).

For any σ -algebra A and −∞ ≤ k0 < k1 ≤ ∞ set

Ak0 = T̃ −k0A and A(k0,k1) =
∨

k0≤i≤k1

T̃ −iA

(for k0 or k1 = ±∞ strict inequality instead of ≤ should be used).

An easy Borel–Cantelli argument gives that if P is a sufficiently fine finite partition of

X with small boundaries in the sense of (3.6) and (3.7), then

CP = P(0,∞)

is a countably generated σ -algebra satisfying one of the two conditions required by

Definition 3.1 for V = U−
T , namely for a.e. x it holds that there is an ǫ > 0 so that

x + BU−
T
(ǫ) ⊂ [x]P. (With a bit more care, using a countable partition P with finite

entropy, one can get that P(0,∞) is actually U−
T -subordinate; we achieve a similar goal

by a cruder approach below.)

A modified version of this increasing σ -algebra P(0,∞) can be used to construct for any

S-linear T-normalized subgroup V < U−
T of Am an increasing V subordinate σ -algebra

CV on X̃ = X ×� so that moreover CV = T̃ −1CV ∨ P. Indeed, first we construct starting

from a (sufficiently fine, with small boundaries) finite partition P on X a σ -algebra PV

on X̃ as follows: for each P ∈ P, lift it to a subset P̃ ⊂ Am contained in a translate of∏
v∈S BQmv

(rv)×
∏
v 6∈S Z

m
v (up to translation by an element of Qm, this lift is uniquely

defined). Now take the countably generated σ -ring Q̃P of subsets C of P̃ with the property

that if x ∈ C then (x + V ) ∩ P̃ ⊆ C. Since πX is a bijection from P̃ to P, the image QP

of Q̃P in X is a countably generated σ -ring, and now we define PV to be the σ -algebra
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of subsets of X generated by the σ -rings QP × B� for all P ∈ P. Then CV = P
(0,∞)
V is a

T-increasing, countably generated σ -algebra subordinate to V satisfying CV = T̃ −1CV ∨

P. Note also that by the way CV is defined, there is a fixed ρ > 0 so that [x]CV ⊆ x + BVρ
for all x ∈ X̃. For more details, the reader is referred again to [10, §7].

For V ≤ U−
T as above and CV as above, we define the entropy contribution of V to be

hµ̃(T̃ , V ) = Hµ̃(CV | T̃ −1CV ). (3.8)

We also need the conditional form of this definition: if Y is a T̃ -invariant σ -algebra, then

the entropy contribution of V conditional on Y is defined to be

hµ̃(T̃ , V | Y) = Hµ̃(CV | T̃ −1CV ∨ Y), (3.8′)

where, as usual, we will identify a factor Y of X̃ with the corresponding T̃ -invariant

σ -algebra Y of subsets of X̃. Formally the conditional entropy contribution is included

in the previous case, replacing � by �× Y , but notationally it will be useful to allow

additional explicit conditioning. The following propositions shows that—as implied by the

notation— hµ̃(T̃ , V ) does not depend on the choice of P and CV .

PROPOSITION 3.4. Let V ≤ U−
T be an S-linear subgroup normalized by T, and let CV be

as above. Then

vol(T̃ , V , x̃) = lim
|N |→∞

1

N
log µ̃Vx̃ (T

−N (BV1 (0))) (3.9)

exists almost everywhere and hµ̃(T̃ , V ) =
∫

vol(T̃ , V , x̃) dµ̃(̃x). Moreover, outside a set
of µ̃-measure zero, vol(T̃ , V , x) = 0 if and only if µ̃Vx is trivial. Furthermore, hµ̃(T̃ , V ) ≤

hµ̃(T̃ | �), with equality holding for V = U−
T . In particular, hµ(T̃ | �) > 0 if and only if

µ̃
U−
T

x is not almost everywhere trivial.

By the remark above, this proposition also covers the case of entropy contributions

conditional on a factor. This proposition is essentially well known, and is e.g. heavily used

by Ledrappier and Young in [25, 26] (though we are using a version of these results relative

to the factor � of X̃). For proof, we refer the reader to [10, §7] where an exposition in the

spirit of this paper can be found. (In [10, §7]. It is assumed that the acting group acts in

a semisimple way on the leaves, which does not necessarily hold in our case as we are

explicitly allowing actions with non-trivial Jordan form. However, the arguments of [10,

§7] can be easily modified to handle this situation; we leave the details to the readers.)

Assuming that µ is invariant and ergodic under a Zd -action α̃ with T̃ = α̃n for some

n ∈ Zd , the value of the limit in (3.9) defines an invariant function for α̃, hence is almost

everywhere constant, and so equals hµ(T̃ , V | �) for a.e. x ∈ X̃. In particular, assuming

α̃ is ergodic, the following three statements are equivalent: (i) hµ(T̃ | �) > 0; (ii) µ
U−
T

x is

non-trivial almost everywhere; (iii) µ
U−
T

x is non-trivial on a set of positive measure.

The entropy contributions for V < U+
T (also denoted hµ̃(T̃ , V )) are defined similarly,

and satisfy that

hµ̃(T̃ , V ) = hµ̃(T̃
−1, V ).
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Let 0 → L1 → L → K → 0 be an exact sequence of finite dimensional vector space

over Q and let 0 → Y → X → X1 → 0 be the corresponding dual exact sequence of

adelic solenoids. Let T : X → X be the dual map to a linear map in GL(L) fixingL1. Then

T also induces a map T1 : X1 → X1. Let VY ,A < Am be the rational subspace projecting

modulo Qm to Y. Let T� : � → � be a continuous map on the compact metric space

�, and denote X̃ = X ×�, T̃ = T × T�, X̃1 = X1 ×�, etc. We let π denote both the

projection from Am → Am/VY ,A as well as the corresponding projection X → X1.

PROPOSITION 3.5. (Entropy contribution of factor and fiber, cf. [11, Proposition 6.4] or

[8, Proposition 3.1]) With the notation above, let µ̃ be a T̃ -invariant measure on X, let V
be a S-linear subgroup ofU−

T < Am, and let V1 be a S-linear subgroup ofU−
T1
< Am/VY ,A

so that V ≤ π−1(V1). Let µ̃1 = π∗µ̃. Then

hµ̃(T̃ , V ) ≤ hµ̃1
(T̃1, V1)+ hµ̃(T̃ , V ∩ VY ,A), (3.10)

with equality holding for V = U−
T and V1 = U−

T1
.

Proof. See [11, Proposition 6.4] (while the setting is a bit different, the proof there works

verbatim also in our setting).

Note that by definition, hµ̃(T̃ , V ) = hµ̃(T̃ , V | �) and similarly for the other terms in

(3.10).

4. An adelic version of the positive entropy theorem
We show in this section that it suffices to prove the following more special version of

Theorem 1.3.

THEOREM 4.1. (Adelic theorem) Let m ≥ 1, d ≥ 2, and let α be an adelic Zd -action
on Xm without virtually cyclic factors. We suppose furthermore that the action satisfies
that every adelic subgroup of Xm that is invariant under the restriction of α to a finite
index subgroup of Zd is actually invariant under Zd . Let µ be an α-invariant and ergodic
probability measure on Xm. Then there exists an adelic subgroup G < Xm so that µ is
invariant under translation by elements of G and hµ(αn

X/G) = 0 for all n ∈ Zd .

We note that the reader interested in the heart of the argument may skip most of this

section, which is dedicated to the reduction of Theorem 1.3 to Theorem 4.1, and should

instead continue with §4.4.

4.1. Extension to adelic action. Suppose that α is a Zd -action by automorphisms on

a solenoid X as in Theorem 1.3. By definition, this means that the Pontryagin dual X̂ is

isomorphic to a subgroup V ⊆ Qm for some m ∈ N. We may assume that m is minimal,

that X̂ = V , and by applying some linear automorphism if necessary, we may also assume

that the standard basis vectors of Qm belong to V. By Pontryagin duality, we also have

that X is isomorphic to the quotient of Xm = Q̂m = Am/Qm modulo the annihilator K =

V ⊥ < Xm of V.

Moreover, for every n ∈ Zd the dual α̂n of the automorphism αn is an automorphism of

V ⊆ Qm. Using the standard basis of Qm (contained in V by the above assumption), we can
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represent this dual automorphism by a rational matrix and extend it to linear automorphism

of Qm (since V ⊗Q Q can be identified with Qm). This shows that the dual action extends

to a linear representation of Zd on Qm.

We take the transpose of this representation (that is, of each of the matrices defining

α̂ej for j = 1, . . . , d) to define an action α̃ of Zd by automorphisms on Qm and Am. As

discussed in §2.2, this defines an adelic action of Zd by automorphisms of Xm = Am/Qm.

Moreover, since V ⊆ Qm is invariant under α̂, the annihilatorK = V ⊥ is a closed invariant

subgroup for α̃ and the induced action on Xm/K is isomorphic to the original action on X.

Extending the above discussion, the following lemma allows us to switch our attention

to the setting of an adelic Zd -action α on Xm for some m ∈ N.

LEMMA 4.2. Suppose Theorem 1.3 holds for adelic actions, then it also holds for all
actions of Zd by automorphisms on solenoids.

Proof. Let α be a Zd -action by automorphisms on a solenoid X and let µ be an α-invariant

and ergodic probability measure on X. Applying the above discussion, we can construct

an adelic action (again denoted by α) on Xm for some m ≥ 1 and an invariant compact

subgroup K such that the action on Xm/K is isomorphic to the original action.

Next, we can define a probability measure µK on Xm that is invariant under K and

modulo K equals µ. This describes µK uniquely. By invariance of K under α and

uniqueness, this measure is also α-invariant. If it is not ergodic with respect to α, we

may consider an ergodic component µ̃ of µK . Due to ergodicity of µ, almost surely the

ergodic components will project to µ. Let µ̃ be one such ergodic component.

By our assumption (in Lemma 4.2), we know that Theorem 1.3 already holds for

µ̃. In other words, there exists a finite index subgroup 3 < Zd and a decomposition

µ̃ = (1/J )(µ̃1 + · · · + µ̃J ) of µ̃ into α3-invariant and ergodic probability measures,

and there exist closed α3-invariant subgroup Gj < Xm so that µ̃j is invariant under

translation by elements of Gj for j = 1, . . . , J . Moreover, the entropy of αn

Xm/G̃j
with

n ∈ 3 with respect to µ̃j vanishes for all j = 1, . . . , J . Taking the quotient of Xm by

the invariant subgroup K, all of these statements become the corresponding statements

for the push forwards µj of µ̃j under the quotient map Xm → Xm/K ∼= X. We also note

that the α3-ergodic components of µ are either equal or singular to each other. Hence,

if µj equals µk for some j 6= k, we may simply collect equal terms and would again

obtain a decomposition into mutually singular measures (of necessary equal weight due to

ergodicity with respect to α). Together, we obtain the conclusions of Theorem 1.3 for the

original measure µ. This gives the lemma.

4.2. Choosing a good finite index subgroup 3 < Zd .

LEMMA 4.3. Let m, d ≥ 1 and let α be an adelic Zd -action on Xm. Then there exists
a finite index subgroup 3 < Zd with the following property: applying Lemma 2.4 to the
restriction α3 of α to 3, we obtain finitely many A-irreducible adelic actions. Then each
one of them remains A-irreducible if we restrict α3 further to a finite index subgroup
3′ < 3. Moreover,3 may be chosen so that an adelic subgroup Y < X is invariant under
α3 if and only if it is invariant under α3′ for a finite index subgroup 3′ < 3.
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For the proof of the lemma and some of the following arguments, we first recall the

Jordan decomposition. Given a matrixA ∈ GLm(Q), there exist matricesD, U ∈ GLm(Q)

so that A = DU = UD, D is semisimple (that is, is diagonalizable over Q), and U is

unipotent (that is, has only 1 as eigenvalue). This decomposition is unique and if A
commutes with a matrix B, then D and U as above also commute with B. Moreover, a

subspace V < Q is invariant under A if and only if V is invariant under both D and U.

By applying this to each of the matrices αei for i = 1, . . . , d , we obtain two represen-

tations of Zd on Qm: the first representation αdiag is semisimple, and the second αuni is by

unipotent matrices, the two representations commute, and we have αn = αn
diagα

n
uni for all

n ∈ Zd .

Proof of Lemma 4.3. We first consider an A-irreducible action α. As the proof of

Lemma 2.2 shows, α corresponds in this case to a global field K generated by d
elements ζ1, . . . , ζd (obtained directly from the matrix representations of α̃ej ). Restricting

the action to a finite index subgroup results in replacing ζ1, . . . , ζd by d monomial

expressions ξ1, . . . , ξd (corresponding to a basis of 3 < Zd ) in the numbers ζ1, . . . , ζd .

This in turn may result in ξ1, . . . , ξd generating instead of K a subfield L of K. In this

case, the A-irreducible representation of Zd on K obtained in the proof of Lemma 2.2

becomes, when restricted to 3, isomorphic to a direct sum of [K : L] many copies of the

A-irreducible representation defined by multiplication by ξ1, . . . , ξd on L. If this indeed

happens, we may choose 3 so that L is minimal in dimension. Hence for any finite index

subgroup3′ < 3, the monomial expressions in the variables ξ1, . . . , ξd corresponding to

a basis of 3′ will still generate the same field L and so the [K : L] many A-irreducible

representations for the restriction to 3 will remain irreducible for the restriction to 3′.

This proves the first part of the lemma in the A-irreducible case.

Let now α be a general adelic action. Let

V0 = {0} < V1 < V2 < · · · < Vr = Qm

be as in Lemma 2.4, equation (2.5), with the action induced by α̂ on Vi/Vi−1 irreducible

over Q, and let Ki be the corresponding finite extension of Q as in Proposition 2.2 for

Vi/Vi−1 (or more precisely, for the dual adelic solenoid) for i = 1, . . . , r . Applying the

above discussion on each irreducible quotient by passing to a finite index subgroup 3 <

Zd , we may assume that these quotients remain irreducible even if we pass to a further

finite index subgroup of 3, establishing the first part of the lemma.

Now let M be the least common multiple of the orders of the (finitely many) roots of

unity in some finite degree Galois extension of Q containing the fields K1, . . . , Kr . We

claim that if 31 = M3 and if V < Qm is invariant under α̂(3′) for some 3′ < 31, then

V is invariant under α̂(31).

Indeed, as discussed above, for any 3′ ≤ Zd , the space V = Y⊥ is α̂(3′)-invariant if

and only if it is invariant under both α̂diag(3
′) and α̂uni(3

′).

Since the map n 7→ α̂uni(n) is polynomial, and since any finite index subgroup of Zd is

Zariski dense in affine d-dimensional space, a space V is α̂uni(3
′)-invariant if and only if

it is α̂uni(Zd)-invariant (hence in particular α̂uni(31)-invariant).
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Suppose V is α̂diag(3
′)-invariant but not α̂diag(31)-invariant. Let n = Mn′ ∈ 31 so

that α̂diag(n) does not fix V. Since α̂diag(3
′) leaves V invariant, it follows that there is

some k ∈ N so that α̂diag(kn) leaves V invariant.

By Proposition 2.2, for every i, the action induced by α(n′) on each Vi/Vi−1 can be

identified with multiplication by some ξ ∈ Ki on Ki . If α̂diag(n) = α̂diag(n
′)M does not fix

V but α̂diag(kn) does, this implies that there is a j and ξ ′ ∈ Kj as well as embeddings σ , σ ′

of Ki and Kj into C so that σ(ξ)M 6= σ ′(ξ ′)M but σ(ξ)kM = σ(ξ ′)kM . Then σ(ξ)σ ′(ξ ′)−1

is an element of the compositum of σ(Ki), σ
′(Kj ) that is a root of unity of order not

dividing M—a contradiction.

In particular, Lemma 4.3 shows that it is possible to restrict any adelic action to a finite

index subgroup so that each of the A-irreducible adelic actions associated to its restriction

are in fact totally A-irreducible.

4.3. Reduction to Theorem 4.1. Using the above preparations, we are now ready to

explain the following reduction step.

Proof of Theorem 1.3 assuming Theorem 4.1. By Lemma 4.2 it suffices to consider adelic

actions for the proof of Theorem 1.3. So let d ≥ 2, let α be an adelic Zd -action without

virtually cyclic factors, and let µ be an α-invariant and ergodic probability measure.

By Lemma 4.3 there exists a finite index subgroup 3 < Zd so that the restriction of α

to3 satisfies the assumptions to Theorem 4.1. Note however, that the measure µmight not

be ergodic with respect to α3. Hence we may have to apply the ergodic decomposition.

Since 3 has finite index in Zd , this ergodic decomposition simply takes the form

µ =
1

J
(µ1 + · · · + µJ ),

where the probability measures µj are α3-invariant and ergodic for j = 1, . . . , J . Since

µ is invariant under the full action α, we also have that for every n ∈ Zd and every index

j ∈ {1, . . . , J } there exists an index k with αn
∗µj = µk . Since ergodic measure are either

equal or singular to each other, we may also assume that the measure µ1, . . . , µJ are

mutually singular to each other. By ergodicity of µ with respect to α, we also have that for

every pair of indices j , k there exists some n ∈ Zd so that αnµj = µk .

We now apply Theorem 4.1 to µ1 and the restriction α3. Therefore there exists a closed

subgroup G1 < Xm so that µ1 is invariant under translation by elements in G1 and for

any n ∈ 3, we have hµ1
(αn
Xm/G1

) = 0. Applying the above transitivity claim we obtain

the theorem.

4.4. Standing assumptions for the proof of Theorem 4.1. Since we have shown that

Theorem 4.1 implies Theorem 1.3, our aim for the the next sections is to show the former.

Hence we will assume that α is an adelic Zd -action on Xm satisfying the assumptions

of Theorem 4.1. Furthermore we assume that µ is an α-invariant and ergodic probability

measure.

Suppose that µ is translation invariant under an adelic subgroup Y < Xm, then by

invariance of µ under α, it is also translation invariant under αn(Y ). Taking the closed
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subgroup generated by these, it follows that there exists a maximal adelic subgroup

Y < Xm so that µ is invariant under translation by elements of Y and, moreover, that Y
is α-invariant. We may replaceXm byXm/Y for this maximal α-invariant adelic subgroup

Y and consider the push forward of µ under the canonical projection map Xm → Xm/Y .

If this new measure has zero entropy, Theorem 4.1 already holds for this action. Hence we

may and will assume for the proof of Theorem 4.1 that:

(i) µ is not invariant under any adelic subgroup; and

(ii) there exists some n ∈ Zd so that hµ(α
n) > 0.

Our aim is to derive a contradiction from these assumptions.

To be able to apply the method introduced in [7] (relying on arithmetic properties of

A-irreducible actions), we start by applying Lemma 2.4 to the adelic action α on Xm. We

now think of the chain of invariant subgroups as defining a chain of factor maps,

X = X(0) = Xm → X(1) = X/Y1 → · · ·

→ X(j) = X/Yj → X(j+1) = X/Yj+1 → · · · → X(r) = {0}.

Applying the Rokhlin entropy addition formula inductively to these factors, we have

hµ(α
n) =

r−1∑

j=0

hµ(α
n
X(j)

| X(j+1))

for all n ∈ Zd , where we write µ for the invariant measure on all of the factors, write αn
X(j)

for the induced action on the factor X(j), and write hµ(α
n
X(j)

| X(j+1)) for the conditional

entropy of αn
X(j)

conditioned on the next factor X(j+1).

By assumption (ii) above, there exists some n ∈ Zd so that hµ(α
n) > 0. Hence, we may

choose the minimal s ∈ {0, . . . , r − 1} so that hµ(α
n
X(s)

| X(s+1)) > 0 for some n ∈ Zd .

We define Ybase = Ys+1,Xbase = X(s+1), and will always consider conditional entropy over

the factor Xbase. We also define Ypos = Ys (contained in Ybase) and Xpos = X/Ypos (which

factors on Xbase). In this sense, the factor Xpos will be important for us as it is a ‘positive

entropy extension’ of Xbase and at the same time, an ‘adelic extension with A-irreducible

fibers’. In fact by choice of s, there exists some n ∈ Zd so that hµ(α
n
Xpos

| Xbase) > 0, we

have Xpos = X/Ypos, Xbase = X/Ybase, and that the action induced on the fibers Yirred =

Ybase/Ypos is (totally) A-irreducible. Finally, as we have chosen s minimally, the original

system X is a zero entropy extension of Xpos in the sense that hµ(α
n | Xpos) = 0 for all

n ∈ Zd .

To summarize the factor maps,

X → Xpos → Xbase = Xpos/Yirred (4.1)

describe the original action as a zero-entropy extension of Xpos = X/Ypos, and Xbase =

X/Ybase as the quotient of Xpos by an α-invariant A-irreducible adelic subgroup Yirred <

Xpos so that Xpos is a positive entropy extension over Xbase. More precisely,

hµ(α
n | Xpos) = 0 for all n ∈ Zd
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but

hµ(α
n
Xpos

| Xbase) > 0 for some n ∈ Zd .

To the exact sequence 0 → Yirred → Xpos → Xbase → 0, there is attached an exact

sequence of Q-vector spaces 0 → Lbase → Lpos → Lirred → 0 where Lbase = X̂base,

Lpos = X̂pos, and Lirred = Ŷirred can be identified as Q-vector space with a number field

K. Viewing Xpos as a quotient of Am1 amounts to choosing a Q-basis v1, . . . , vm1
for the

vector space L∗
pos.

Identifying K as a Q-vector space with its dual using the trace form, we have an

embedding K → L∗
pos, and we will always choose our Q-basis so that v1, . . . , v[K:Q] will

be a basis for K < L∗
pos.

5. A bound on the entropy contribution
In this section, we prove the following theorem.

THEOREM 5.1. (Cf. [7, Theorem 4.1]) Let m, d ≥ 1, and let α be a Zd -action on an
adelic solenoid X = Am/Qm. We also let α denote the corresponding action on Am. Let
Yirred ≤ X be an α-invariant A-irreducible adelic subspace, and set Xbase = X/Yirred. Let
α� be a Zd -action on a compact metric space �, α̃ = α × α�, and let µ̃ be a α̃-invariant
measure on X̃ = X ×�. Fix n ∈ Zd , and let V < U−

n < Am be a closed α-invariant
subspace. Let Virred,A < Am be the rational subspace projecting modulo Qm to Yirred. Then

hµ̃(̃α
n, V | Xbase ×�) ≤

hλ(α
n
irred, V ∩ Virred,A)

hλ(α
n
irred)

· hµ̃(̃α
n | Xbase ×�). (5.1)

Notice that this estimate is sharp for a product measure µ̃ = λ × ν with λ being the

Haar measure on X. Our treatment here follows closely in content (if not in notation) that

of [7, §4]. A special case of this theorem appeared in [27, Theorem 2.4].

Proof. We first note that

hµ̃(̃α
n, V ∩ Virred,A | Xbase ×�) = hµ̃(̃α

n, V | Xbase ×�).

Indeed, if π : X → Xbase is the natural projection, then for any x ∈ X, we have that

(x + V ) ∩ π−1 ◦ π(x) = x + (V ∩ Virred,A),

hence if CV is a decreasing V-subordinate σ -algebra of subsets of X, then CV ∨ Bbase is

a decreasing σ -algebra subordinate to V ∩ Virred,A (with Bbase denoting the σ algebra of

Borel subsets of Xbase, or more precisely the image under π−1 of this σ -algebra in X).

Therefore applying (3.8′) twice, once for the V-subordinate σ -algebra CV and once for the

V ∩ Virred,A-subordinate σ -algebra CV ∨ Bbase, we get

hµ̃(̃α
n, V | Xbase ×�) = Hµ̃(CV | α̃−nCV ∨ Bbase ∨ B�)

= Hµ̃(CV ∨ Bbase | α̃−nCV ∨ Bbase ∨ B�)

= hµ̃(̃α
n, V ∩ Virred,A | Xbase ×�).
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Since the right-hand side of (5.1) depends only on V ∩ Virred,A, we may (and will, for

the remainder of the proof) assume that V ≤ U−
n ∩ Virred,A. We may also assume V is a

proper subgroup of U−
n ∩ Virred,A since for V = U−

n ∩ Virred,A by first applying the above

discussion and then using the second part of Proposition 3.4 twice,

hµ̃(̃α
n, U−

n ∩ Virred,A | Xbase ×�) = hµ̃(̃α
n, U−

n | Xbase ×�) = hµ̃(̃α
n | Xbase ×�),

hλ(α
n
irred, U−

n ∩ Virred,A) = hλ(α
n
irred),

establishing (5.1) in this case.

Let the rank of Virred,A as a free A-module be k. Since Yirred is α-invariant and

A-irreducible, by Proposition 2.2, there is a global field K with [K : Q] = k, an injective

homomorphism of Q-vector spaces φ : K → Qm, and d non-zero elements ζ1, . . . , ζd ∈

K× so that A ⊗ φ(K) = Virred,A and so that for any n = (n1, . . . , nd) and ξ ∈ AK =

A ⊗ K

αn.φA(ξ) = φA(ζnξ) ζn := ζ
n1

1 . . . ζ
nd
d

with φA the isomorphism of A-modules AK → Virred,A induced from φ.

Fix n ∈ Zd . Then U−
n is S-linear for a finite set S of places of Q (including ∞)

as in (3.5). Let SK be the (finite) set of places of K lying over the places S of Q.

The A-irreducibility of the action of α on Yirred
∼= AK/K implies that every α-invariant

subspace V ≤ Virred,A ∩ U−
n has the form

V = φA

( ∏

σ∈S′
K

Kσ

)
, (5.2)

with S′
K

⊆ SK. Similarly,

Virred,A ∩ U−
n = φA

( ∏

σ∈S−
K

Kσ

)
,

with S−
K

⊆ SK a finite set of places of K with S′
K

⊂ S−
K

. It follows from the relation

between entropy contribution and leafwise measures in Proposition 3.4 that

hλ(α
n
irred, V ) =

∑

σ∈S′
K

δσ log 1/|ζn|σ ,

hλ(α
n
irred) = hλ(α

n
irred, U−

n ∩ Virred,A) =
∑

σ∈S−
K

δσ log 1/|ζn|σ ;

note that by definition of U−
n and ζn, we have that |ζn|σ < 1 for every σ ∈ S−

K
. Let

κ =

∑
σ∈S′

K
δσ log |ζn|σ∑

σ∈S−
K
δσ log |ζn|σ

=
hλ(α

n
irred, V )

hλ(α
n
irred)

< 1.

Let P be a sufficiently fine finite partition with small boundaries of X, as in (3.6) and (3.7)

(indeed, we will take it to be even finer), let PV be a corresponding σ -algebra of subsets

of X ×� as in p. 50, and let CV =
⋃
i≥0 α̃

−inPV be as in §3.3. Then CV and PV are both
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subordinate to V, and CV is in addition decreasing with respect to α̃n. Moreover,

CV = α̃−nCV ∨ P = α̃−nCV ∨ PV . (5.3)

Setting T̃ = α̃n, it follows from (5.3) that for any j ∈ N,

CV = P(0,j−1) ∨ C
j
V ,

where we recall that C
j
V = T̃ −jCV and P(0,j−1) =

∨
0≤i≤j−1 T̃

−iP. The key point in the

proof of Theorem 5.1 is that for ℓ = ⌈κj⌉, the atoms of P(0,ℓ) ∨ C
j
V are already very close

to being equal to the atoms of CV = P(0,j−1) ∨ C
j
V (recall that κ < 1). In some simple

cases (e.g. that considered in [27]), these σ -algebras literally coincide, though in general

there may be a small disparity. What we now proceed to show (cf. [7, Lemma 4.2]) is that

there is a set Xj with µ(X \Xj ) ≤ exp(−cj) for appropriate c > 0 so that

[x]
P
(0,ℓ) ∩ [x]

C
j
V

= [x]CV for any x ∈ Xj . (5.4)

Since C
j
V is V-subordinate for V as in (5.2), there is some B ⊂

∏
σ∈S′

K
Kσ (depending

on x and j) so that

[x]
C
j
V

= x + φA(B);

moreover for any η > 0, by choosing P sufficiently fine depending on η, one can ensure

that

B ⊂
∏

σ∈S′
K

{t ∈ Kσ : |t |σ ≤ η|ζn|−jσ }.

Notice that [x]
P
(0,ℓ)∨Bbase

⊂ x + Virred,A, hence there is some D ⊂ AK so that

[x]
P
(0,ℓ)∨Bbase

= x + φA(D).

If the partition P was chosen to be sufficiently fine (again, depending on the parameter

η > 0 introduced above), we may assume that

D ⊂
∏

σ∈SK

{t ∈ Kσ : |t |σ ≤ η min(1, |ζn|−ℓσ )} ×
∏

σ 6∈SK

OK,σ .

Note that |ζn|σ < 1 for every σ ∈ S′
K

but may be< 1, = 1, or> 1 for σ ∈ SK; however by

choice of S (hence of SK), |ζn|σ = 1 for σ 6∈ SK. Since Qm ∩ Virred,A = φA(K), and using

the fact that Bbase ⊆ C
j
V (modulo µ̃), we see that

[x]
P
(0,ℓ) ∩ [x]

C
j
V

= [x]
P
(0,ℓ)∨Bbase

∩ [x]
C
j
V

= x + φA

( ⋃

ξ∈K

(B ∩ (D + ξ))

)
.
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However, if B ∩ (D + ξ) 6= ∅, that is ξ ∈ B −D, then

|ξ |σ ≤





2η|ζn|
−j
σ if σ ∈ S′

K
,

2η if σ ∈ S−
K

\ S′
K

,

2η|ζn|−ℓσ if σ ∈ SK \ S−
K

,

1 otherwise.

By Proposition 2.3, if moreover ξ ∈ K× and η was chosen small enough (< 1/2),

1 =
∏

places σ of K

|ξ |δ(σ )σ <
∏

σ∈S′
K

|ζn|−δ(σ )jσ ×
∏

σ∈SK\S−
K

|ζn|−δ(σ )ℓσ . (5.5)

Applying Proposition 2.3 to ζn,

1 =
∏

places σ of K

|ζn|δ(σ )σ =
∏

σ∈S−
K

|ζn|δ(σ )σ ×
∏

σ∈SK\S−
K

|ζn|δ(σ )σ ,

hence
∏
σ∈S−

K
|ζn|

δ(σ )
σ =

∏
σ∈SK\S−

K
|ζn|

−δ(σ )
σ . Thus (5.5) implies

0 < j

( ∑

σ∈S′
K

δ(σ ) log 1/|ζn|σ

)
− ℓ

( ∑

σ∈S−
K

δ(σ ) log 1/|ζn|σ

)
.

But this contradicts the definition of κ and ℓ ≥ κj .

Thus we obtain the important conclusion that if ℓ = ⌈κj⌉,

[x]
P
(0,ℓ) ∩ [x]

C
j
V

= x + φA(B
′),

where

B ′ = B ∩D ⊂
∏

σ∈S′
K

{t ∈ Kσ : |t |σ ≤ η}.

It follows that

[x]
P
(0,ℓ) ∩ [x]

C
j
V

= [x]
P
(0,j−1) ∩ [x]

C
j
V

= [x]CV

unless there is a ℓ < ℓ′ < j so that

T̃ ℓ
′
(x + φA(B

′)) 6⊂ [x]P.

If s = maxσ∈S′
K

|ζn|σ < 1, then T̃ ℓ
′
(x + φA(B

′)) = T̃ ℓ
′
(x)+ φA(B

′′), where

B ′′ ⊂
∏

σ∈S′
K

{t ∈ Kσ : |t |σ ≤ ηsℓ
′
}.

By (3.6), the set of such x has µ̃ measure which decays exponentially in ℓ′, hence in j,
establishing (5.4).

https://doi.org/10.1017/etds.2021.74 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.74


714 M. Einsiedler and E. Lindenstrauss

Once (5.4) has been established, establishing (5.1) is easy. Indeed, if A = {Xj , X∁
j } for

Xj , as in (5.4), then for j large and ℓ = ⌈κj⌉,

hµ̃(̃α
n, V | Xbase ×�) = j−1Hµ̃(C

(0,j−1)
V | C

j
V ∨ Bbase ∨ B�)

= j−1Hµ̃(P
(0,j−1) | C

j
V ∨ Bbase ∨ B�)

= j−1(Hµ̃(P
(0,ℓ) | C

j
V ∨ Bbase ∨ B�)

+Hµ̃(P
(0,j−1) | P(0,ℓ) ∨ C

j
V ∨ Bbase ∨ B�))

≤ j−1(Hµ̃(P
(0,ℓ) | Xbase ×�)+Hµ̃(A)

+Hµ̃(P
(0,j−1) | P(0,ℓ) ∨ C

j
V ∨ Bbase ∨ B� ∨ A)). (5.6)

By definition,

Hµ̃(P
(0,j−1) | P(0,ℓ) ∨ C

j
V ∨ Bbase ∨ B� ∨ A)

= µ̃(Xj )Hµ̃|Xj (P
(0,j−1) | P(0,ℓ) ∨ C

j
V ∨ Bbase ∨ B�)

+ µ̃(X∁
j )Hµ̃|X∁

j
(P(0,j−1) | P(0,ℓ) ∨ C

j
V ∨ Bbase ∨ B�).

On Xj , the atom [x]
P
(0,j−1) ∩ [x]

C
j
V

= [x]
P
(0,ℓ) ∩ [x]

C
j
V

by (5.4), hence

Hµ̃|Xj (P
(0,j−1) | P(0,ℓ) ∨ C

j
V ∨ Bbase ∨ B�) = 0.

On X∁
j , we use the trivial bound

H
µ̃|X∁

j
(P(0,j−1) | P(0,ℓ) ∨ C

j
V ∨ Bbase ∨ B�) ≤ j log(#P).

Plugging these back in (5.6) and using µ̃(X∁
j ) → 0 as j → ∞, we see that

(5.6) → κhµ̃(̃α
n | Xbase ×�) as j → ∞,

establishing (5.1).

6. Coarse Lyapunov subgroups and the product structure
A crucial property of the leafwise measures for our argument is their product structure for

the coarse Lyapunov subgroups as obtained by the first named author and Anatole Katok

[5] (see also [4, 28]). For an introduction of the product structure, we also recommend

[10, §8]. However, all of these papers assumed that the Zd -action under consideration

is semisimple. In our case we do not make this assumption, so our action is given by

α = αdiagαuni, with both αdiag and αuni defined over Q, that is, these can be thought of as

homomorphisms from Zd to GLm(Q); cf. p. 17. The purpose of this section is to recall the

relevant notions and overcome the problems arising from the lack of semi-simplicity in the

cases of interest.

6.1. Lyapunov subgroups over Qσ . Fix σ a place of Q, that is, either σ = ∞ or σ = p

a prime. We consider the linear maps αn for n ∈ Zd on Qmσ and are mostly interested in

https://doi.org/10.1017/etds.2021.74 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.74


Rigidity properties for commuting automorphisms on tori and solenoids 715

the asymptotic behavior of its elements with respect to the norm defined by

‖v‖σ = max
j=1,...,m

|vj |σ

for all v ∈ Qmσ . We will also consider this behavior restricted to an α-invariant Qσ -linear

subspace V (even when not explicitly stated, V will always be assumed to be α-invariant).

For this, we will initially ignore αuni (with polynomial behavior) and focus on αdiag (with

exponential behavior).

Since αdiag is semisimple, Qmσ (as well as any α-invariant subspace V) is a direct sum

of Qσ -irreducible linear subspaces. On each of these irreducible subspaces, the action of

αdiag is isomorphic to the action defined by multiplication by d elements ζ1, . . . , ζd ∈ K

on a local field K (similar to the discussion in the proof of Proposition 2.2). Recall that we

extend the the norm on Qσ to K; this extended norm is denoted by | · |σ . We refer to the

linear functional χ : Zd → R given by

χ : (n1, . . . , nd) 7→
∑

i

ni log |ζi |σ ∈ R

as the Lyapunov weight associated with the invariant subspace K, and denote the pairing

of a functional χ and a vector n ∈ Zd (or Rd ) by χ · n. We note that for a vector v in this

subspace, we have

‖αn
diagv‖σ ≍ eχ ·n‖v‖σ (6.1)

for all n ∈ Zd , where we write ≍ to indicate that we can bound each of the two terms by a

multiple of the other. Here the implicit constants only depend on the action and not on the

vector v or on n. We will call K an Qσ -irreducible eigenspace (for αdiag) with Lyapunov

weight χ .

It follows that Qmσ (respectively V) is isomorphic to a finite direct product of local fields

K extending Qσ so that the linear maps α
e1

diag, . . . , α
ed
diag are written in diagonal form using

this isomorphism. Moreover, we obtain in this way finitely many Lyapunov weights arising

from the action on Qmσ . Note however that these Lyapunov weights are all functionals into

R (independent of the place σ ).

6.2. Coarse Lyapunov weights and subgroups. We now apply the above for each place

σ of Q. Let S be a finite set of places containing ∞ so that α
e1

diag, . . . , α
ed
diag all belong to

GLm(Zσ ) for σ /∈ S. For σ /∈ S, the only Lyapunov weight for the action of αdiag on Qσ
is the zero weight. Hence by varying σ over all places of Q, we only obtain finitely many

non-zero Lyapunov weights.

We say that two non-zero Lyapunov weights χ , χ ′ (possibly arising from different

places of Q) are equivalent if there exists some t > 0 so that χ ′ = tχ . We will denote

the equivalence class of a non-zero Laypunov weight χ by [χ] and will refer to [χ] as a

coarse Lyapunov weight.

For a coarse Lyapunov weight [χ], we define the coarse Lyapunov subgroup W [χ ] to

be the S-linear subspace defined as the subgroup generated by all irreducible eigenspaces

with Lyapunov weight χ ′ equivalent to χ . Alternatively, we can use (6.1) to see that the

coarse Lyapunov subgroup could also be defined as an intersection of stable horospherical
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subgroups for αdiag, namely

W [χ ] =
⋂

n∈Zd :χ ·n<0

U−
αn

diag
;

this relation to the horospherical subgroups is the reason for the dynamical importance of

the coarse Lyapunov subgroups.

Because of the polynomial nature of αuni, we have that U−
αn

diag
= U−

αn for all n ∈ Zd and

hence W [χ ] can be defined directly in terms of the action α by

W [χ ] =
⋂

n∈Z:χ ·n<0

U−
αn .

In particular, W [χ ] is invariant under αn for all n ∈ Zd .

Conversely, any stable horospherical group is a product of coarse Lyapunov subgroups:

indeed, for any n ∈ Zd , we have

U−
αn = U−

αn
diag

=
⊕

[χ ]:χ ·n<0

W [χ ], (6.2)

where the direct sum runs over all the coarse Lyapunov subspaces W [χ ] satisfying that

χ · n < 0.

Given an α-invariant S-linear subgroup V < U−
αn , we define V [χ ] = V ∩W [χ ] for any

non-zero coarse Lyapunov weight [χ]. These also satisfy that V is the direct sum of V [χ ]

for all [χ] with χ · n < 0.

6.3. Product structure of leafwise measures. Recall that we assume that µ is as in

Theorem 4.1. Let� be an arbitrary compact metric space as in §3.1 equipped with an action

of Zd , let X̃ = X ×�, and consider an invariant probability measure µ̃ on X̃ projecting

to µ.

THEOREM 6.1. (Entropy and product structure) Let X → Xpos → Xbase with Xpos =

X/Ypos and Xbase = X/Ybase be as in (4.1) and let Vbase,A < Am be the rational
α-invariant subspace so that Ybase is the image of Vbase,A modulo Qm. Let n0 ∈ Zd . Then
the leafwise measure on X̃ for

V −
n0

= Vbase,A ∩ U−
αn0

is, up to proportionality, the product of the leafwise measures for its coarse Lyapunov
subgroups V [χ ] = V −

n0
∩W [χ ], that is,

µ̃
V−

n0
x ∝

∏

[χ ]:(χ ·n0)<0

µ̃V
[χ ]

x

for a.e. x ∈ X̃. In particular, the relative entropy of αn0 conditional on the factorXbase ×�

is equal to the sum of the entropy contributions of these coarse Lyapunov subgroups, that is,

hµ̃(̃α
n0 | Xbase ×�) = hµ̃(̃α

n0 , V −
n0
) =

∑

[χ ]:χ ·n0<0

hµ̃(̃α
n0 , V [χ ]). (6.3)
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We note that our proof relies on the assumption that X is a zero entropy extension of

Xpos, and does not extend the product structure to other cases with Jordan blocks. In fact

our setup is used to show that Jordan blocks of αn cannot appear within the subspace

V [χ ] ∩ Rm and for ‘ n in the kernel of χ’ (in the sense described below). Moreover, in the

non-Archimedean parts of V −
n0

, we use a different argument.

For any α-invariant S-linear subgroup V, we let P < V be the minimal S-linear

α-invariant subspace so that

µ̃Vx (V \ P) = 0

for a.e. x ∈ X̃. We will refer to P as the supporting subgroup of V. We note that µVx = µPx
a.s. and ifW < P is another S-linear α-invariant subspace withW 6= P , then µVx (W) = 0

a.s. This follows from [11, Lemma 5.2] (as we restrict here to α-invariant subspaces the

assumption of class A′ can easily be avoided in the proof of that lemma).

We say that [χ] is an exposed coarse Lyapunov weight for an α-invariant S-linear

subgroup V < U−
αn if V [χ ] is non-trivial, V = V [χ ] + V ′ for a sum V ′ of coarse Lyapunov

subgroups, and there exists some n′ ∈ Rd with χ · n′ = 0 and χ ′ · n′ < 0 for all Lyapunov

weights χ ′ of V ′.

We also recall that αn
uni is a polynomial map from Zd → GLm(Q) and so extends to a

homomorphism from Rd to GLm(R) that will also be denoted by αuni.

6.4. No shearing and proving the product structure. The following lemma stands in

stark contrast to the non-Archimedean case, where αuni takes values in a compact group.

LEMMA 6.2. (Existence of logarithmic sequence for real Jordan blocks) Let α be a
representation of Zd on a real vector space P. Suppose that χ is a non-zero Lyapunov
weight for α and that all other Lyapunov weights are equivalent to χ . Suppose that αm

uni is
non-trivial for some m ∈ Rd with χ · m = 0. Then there exists a sequence nk ∈ Zd so that
αnk ∈ End(P ) converges to a non-zero non-invertible linear map L ∈ End(P ).

We will refer to the sequence nk as a logarithmic sequence for P since it can be defined

using the logarithm map in easy special cases.

Proof of Lemma 6.2. Let α|·| be the representation of Zd on P, which has every eigenvector

of αdiag with eigenvalue λ also as eigenvector but with eigenvalue |λ|. Note that α|·|

extends continuously to all n ∈ Rd . Moreover for n ∈ Zd , the map αn
diagα

−n
|·| belongs to

a fixed compact subgroup of GL(P ). Using nearest integer vectors, we see that it suffices

to construct a sequence nk ∈ Rd so that α
nk
uniα

nk
|·| converges to a non-zero non-invertible

linear map L.

For this, we apply our assumption and pick a direction m ∈ Rd with χ · m = 0 so that

αm
uni is non-trivial. Also let n− ∈ Rd with χ · n− < 0. As a non-zero real polynomial,

αkm
uni diverges as k → ∞ and α

tn−

|·| → 0 as t → ∞. Also note that α
tn−

|·| → 0 converges

exponentially fast, while α
tn−

uni can only diverge polynomially fast as t → ∞.

This shows that for each sufficiently large k ∈ N, we can define nk = km + tkn−,

where tk > 0 is chosen (using the intermediate value theorem) minimally so that the
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Hilbert–Schmidt norms satisfy

‖α
nk
uniα

nk
|·| ‖ = ‖α

km+tkn−

uni α
tkn−

|·| ‖ = 1.

Since αkm
uni diverges as k → ∞, we see that also tk → ∞. If now v ∈ P is a common

eigenvector for α, then αkm
univ = v, and so

α
nk
uniα

nk
|·| v = α

tkn−

uni α
tkn−

|·| v → 0

as k → ∞ (since α
tkn−

uni is polynomial and α
tkn−

|·| contracts P at exponential rate).

From this and the compactness of the unit ball in finite dimensions, it follows that there

exists a converging subsequence of α
nk
uniα

nk
|·| whose limit is non-zero and non-invertible.

As indicated at the beginning of the proof, a subsequence of the integer vectors closest to

nk ∈ Rd will satisfy the conclusions of the lemma.

We need the following upgrade to the above concerning exposed coarse Lyapunov

weights.

LEMMA 6.3. (Properties of logarithmic sequence for adelic action) Let α be a linear
representation of Zd on Qm defining an adelic action on Xm. Let n− ∈ Zd \ {0} and V <

U−
αn− be an S-linear subspace. Let [χ] be an exposed coarse Lyapunov weight [χ] of V.

Suppose that there exists some m ∈ Rd with χ · m = 0 so that (αuni|V∩Rm)
m is non-trivial.

Then there exists a sequence nk ∈ Zd so that (α|V )
nk converges (uniformly within compact

subsets) to a non-zero map L ∈ End(V ) that vanishes on all non-Archimedean subspaces,
vanishes on all coarse Lyapunov subgroups V [χ ′] with [χ ′] 6= [χ], and whose restriction
to V [χ ] ∩ Rm is non-invertible.

Proof. This actually follows by the same argument as Lemma 6.2 after choosing m ∈ Rd

correctly. Indeed, we first note that the kernel of the homomorphism n ∈ χ⊥ 7→ αn
uni ∈

GL(V ∩ Rm) is a proper subspace K < χ⊥, and hence our first constraint on m is simply

m ∈ χ⊥ \K .

By definition, [χ] is an exposed coarse Lyapunov weight for V if there exists some

m ∈ χ⊥ with χ ′ · m < 0 for all Lyapunov weights χ ′ of V inequivalent to χ . The latter

condition is clearly satisfied by all elements of an open subset of χ⊥. Hence we can find

m ∈ χ⊥ \K with m · χ ′ < 0 for all Lyapunov weights χ ′ of V inequivalent to χ .

Using this m together with n−, as in the assumptions of the lemma, we now go again

through the construction in the proof of Lemma 6.2. Let n′
k ∈ Zd be a nearest integer

approximation of km and let nk be the nearest integer approximation of km + tkn−. For

all non-Archimedean subspaces Vσ , we note that αuni(Z
d)|Vσ has compact closure. Hence

the restriction αn′
k |Vσ belongs to a compact subset of Hom(Vσ ), which implies together

with n− contracting V and tk → ∞ that the restriction αnk |Vσ converges to zero. Similarly,

our choice of m implies that for a coarse Lyapunov weight [χ ′] 6= [χ], both αn′
k |
V [χ ′] and

αnk |
V [χ ′] converge to the trivial map. Finally our proof of Lemma 6.2 ensures the claimed

properties of the limit map L|
V

[χ ]
∞

.

We will now combine the above with the setup of §4.4 to prove a restriction concerning

the supporting subgroups (cf. §6.3).
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PROPOSITION 6.4. (No shearing on supporting subgroup) Let P be the supporting
subgroup of V −

n0
= Vbase,A ∩ U−

αn0
(with Vbase,A as defined in Theorem 6.1). Let χ be

an exposed Lyapunov weight of P. Then (αuni|P [χ ]∩Rm)
n is trivial for all n ∈ Rd with

χ · n = 0.

Here we identified Rm with the corresponding subgroup of Am, and hence P [χ ] ∩ Rm

is the maximal real subspace of the supporting subgroup P.

Proof. We suppose in contradiction that (αuni|P [χ ]∩Rm)
m is non-trivial for some m ∈ Rd

with χ · m = 0. Applying Lemma 6.3, we find a logarithmic sequence nk and the limit

L ∈ End(P ) of (α|P )
nk .

Recall that Ybase < X is the adelic subgroup so that Xbase = X/Ybase, and that Vbase,A

is the rational subspace of Am so that Ybase is the image of Vbase,A modulo Qm. Recall also

that Ypos < Ybase is the adelic subgroup so thatXpos = X/Ypos, and let Vpos,A < Vbase,A be

the rational subspace so that Ypos is the image of Vpos,A modulo Qm.

By construction we have that the action on Ybase/Ypos is A-irreducible, or equivalently

that the linear representation of Zd on Vbase,A/Vpos,A (defined over Q) is irreducible over

Q. In particular, this representation is semisimple. Unfolding the definitions and restricting

to P [χ ] ∩ Rm, it follows that for any v ∈ P [χ ] ∩ Rm,

αm
uni(v) ∈ v + V [χ ],

where V [χ ] = W [χ ] ∩ Vpos,A. Combining this information with the construction of the

logarithmic sequence and its limit L, it follows that

L(P [χ ] ∩ Rm) ⊆ V [χ ].

Next recall from (4.1) that X is a zero entropy extension over Xpos = X/Ypos, that is,

hµ̃(α
n | Xpos ×�) ≤ hµ(α

n | Xpos) = 0 for all n ∈ Zd . This implies by the relationship

between the leafwise measures and entropy that the leafwise measures µ̃V
[χ ]

x must be trivial

almost everywhere—indeed otherwise there would be a positive entropy contribution for

the relative entropy over the factorXpos ×�. By the compatibility property (3.1), it follows

that there exists a set X′ ⊆ X̃ = X ×� of full measure so that x, x + w ∈ X′ for some

w ∈ V [χ ] implies w = 0. Using regularity of the Borel probability measure, we choose

some compact K ⊆ X′ of measure µ̃(K) > 0.99.

Our aim in the proof is to use the logarithmic sequence nk and the limit L to derive a

contradiction to the properties of K. For this, let A be a σ -algebra that is subordinate to P.

We define

Xk = {x ∈ α−nkK | µ̃A
x (α

−nkK) > 0.9}

and note that µ̃(Xk) > 0.89. By the Lemma of Fatou (applied for the probability measure

µ̃), it follows that

µ̃(lim supk→∞Xk) > 0.89.

Hence there exists some x0 and some subsequence n′
k of nk so that αn′

kx0 ∈ K and

µ̃A
x0
(α−n′

kK) > 0.9. Applying Lemma of Fatou again—but this time for the probability
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measure µ̃A
x0

—we obtain

µ̃A
x0
(lim supk→∞α

−n′
kK) > 0.9. (6.4)

Also recall that P is the supporting subgroup of V −
n0

and that ker L < P is a proper

S-linear α-invariant subgroup. Using [11, Lemma 5.2] (cf. p. 112 above) this implies that

µ̃Px (ker L) = 0, which in turns implies µ̃A
x (x + ker L) = 0 a.s. We may assume that our

x0 constructed above has this property. Hence there exists some x1 ∈ [x0]A \ (x0 + ker L)

and another subsequence n′′
k of n′

k so that αn′′
kx1 ∈ K .

To summarize, we have found a subsequence n′′
k of the logarithmic sequence nk , some

x0 ∈ X, and some x1 = x0 + v ∈ [x]A with v ∈ P \ ker L so that αn′′
kxj ∈ K for j = 0, 1.

Using compactness of K, we can find yet another subsequence of n′′
k so that αn′′

kx0 → y0

and αn′′
kx1 → y1 with y0, y1 ∈ K . Moreover, since αnkv → Lv as k → ∞, we also have

y1 = y0 + Lv with Lv ∈ V [χ ] \ {0} by the properties of L. However, this contradicts the

properties of K ⊂ X′ and so concludes the proof.

Proof of Theorem 6.1. In view of Proposition 6.4, the product structure of the leafwise

measure follows from [4, Theorem 8.2] (or more precisely its proof).

For this, we first recall that if P < V −
n0

is the corresponding supporting subgroup, then

by Proposition 3.2, the leafwise measure µ
V−

n0
x coincides with µPx for µ-a.e. x. Next we

recall that by Proposition 6.4, we have for any non-trivial coarse Lyapunov weight [χ]

that αm
uni|P [χ ]∩Rm is trivial for any m ∈ ker χ . We also note that αuni(Z

d) restricted to the

p-adic subspaces P [χ ] ∩ Qmp of the coarse Lyapunov subspace P [χ ] has compact closure

in GL(P [χ ] ∩ Qmp ). Hence we may assume that the metric on P [χ ] ∩ Qmp is invariant under

αuni(Z
d). With these two observations, the inductive argument for [4, Theorem 8.2] applies

and proves the product structure for µ̃
V−

n0
x = µ̃Px .

The product structure implies now quite directly using (3.9) that the entropy contribu-

tion for V −
n0

equals the sum of the entropy contributions of its coarse Lyapunov subgroups

V [χ ], hence the second equality in (6.3).

The first equality in (6.3), that is, the fact that h(̃αn0 , V −
n0
) equals the conditional entropy

of α̃n0 over the factor Xbase ×� follows e.g. from the proof of [10, Theorem 7.6]. Indeed

by conditioning the calculation there on the factor Xbase ×�, the leafwise measure on the

full stable horospherical is automatically supported on V −
n0

, since a displacement by some

element of the stable horospherical not belonging to Vbase,A would change the point within

Xbase.

7. Proof of Theorem 4.1
7.1. Rigidity of the entropy function. In the following, we will again consider entropy

contributions for various coarse Lyapunov subgroups with varying definitions of the

second factor � in the framework of §3. Consistent with our notation so far, we will use

e.g. hµ̃(̃α
n, W [χ ] | Xbase ×�) for the entropy contribution of a coarse Lyapunov subgroup

W [χ ] on X ×� and similarly for other factors and foliations.

We now establish the following identity regarding the relation between the entropies of

individual elements of the action. This identity is central to our approach.
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THEOREM 7.1. Let α be a Zd -action onX = Xm without cyclic factors as in Theorem 4.1.
Let µ be an α-invariant probability measure, letXpos, Xbase, Yirred be as (4.1), and denote
the Haar measure on Yirred by λ. Moreover, let� be a compact metric space equipped with
an action of Zd , let α̃ be the corresponding Zd -action onX ×�, and let µ̃ be an invariant
measure on X ×� projecting to µ. Then there exists a constant κµ̃,� > 0 with

hµ̃(̃α
n, W [χ ] | Xbase ×�) = κµ̃,�hλ(α

n
Yirred

, W [χ ]) (7.1)

for every n ∈ Zd .

We recall that we use λ to denote the Haar measure on the appropriate adelic quotient (that

should hopefully be clear from the context; e.g. in (7.1), λ is the Haar measure on Yirred).

While the proof of Theorem 7.1 is much more complicated than in the case considered

by Rudolph, this theorem plays a similar role in our proof as [34, Theorem 3.7] did in

Rudolph’s proof in [34].

As a first step towards the theorem, we consider just one coarse Lyapunov subgroup.

Note that unlike Theorem 7.1, which uses in an essential way the irreducibility of Yirred,

the next lemma only uses the fact that W [χ ] is a coarse Lyapunov group.

LEMMA 7.2. Using the same notation as in Theorem 7.1, let [χ] be a coarse Lyapunov
weight for Yirred. Then there exists some κµ̃,�,[χ ] ≥ 0 with

hµ̃(̃α
n, W [χ ] | Xbase ×�) = κµ̃,�,[χ ]hλ(α

n
Yirred

, W [χ ])

for every n ∈ Zd .

Proof. We first note that for n ∈ Zd with χ · n < 0 and k ∈ N, Proposition 3.4 implies

hµ̃(̃α
kn, W [χ ] | Xbase ×�) = khµ̃(̃α

n, W [χ ] | Xbase ×�). (7.2)

Moreover, since W [χ ] is a coarse Lyapunov subgroup, for all n, m ∈ Zd with χ · n < χ ·

m < 0, we have that

hµ̃(̃α
n, W [χ ] | Xbase ×�) ≥ hµ̃(̃α

m, W [χ ] | Xbase ×�).

In conjunction with (7.2), this implies elementarily that there is a constant c ≥ 0 depending

only on µ̃, W [χ ], and α so that hµ̃(̃α
n, W [χ ]) = c|χ · n| for all n ∈ Zd .

Next notice that for similar reasons hλ(α
n, W [χ ]) is given by a similar formula for a

constant cλ ≥ 0. As [χ] is assumed to be a coarse Lyapunov weight for Yirred, we have

cλ > 0 and obtain the lemma with κµ̃,�,[χ ] = c/cλ.

LEMMA 7.3. We again use the notation in Theorem 7.1. For any coarse Lyapunov weight
[χ] of X, we have

hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�) = 0,

where Vpos,A < Am is the rationally defined subspace so that Ypos is the image of Vpos,A

modulo Qm. Moreover, if [χ] is not a coarse Lyapunov weight for Yirred, then

hµ̃(α
n, W [χ ] | Xbase ×�) = 0.
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Proof. We claim for the entropy contributions for W [χ ] ∩ Vpos,A that

hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�) = hµ̃(̃α

n, W [χ ] ∩ Vpos,A | Xpos ×�). (7.3)

To see this, recall that Ypos < Ybase, and correspondingly Xbase = X/Ybase is a factor of

Xpos = X/Ypos. By (3.8′), the conditional entropy contribution

hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�)

is given by

hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�) = Hµ̃(C | α̃−nC ∨ Bbase ∨ B�)

for C a W [χ ] ∩ Vpos,A-subordinate σ -algebra for X ×� (and Bbase and B� the σ -algebras

of Borel measurable sets on Xbase and �, respectively). However, since each atom of C is

contained in a single orbit of Ypos, its image under the projection from X toXpos = X/Ypos

consists of a single point, so modulo µ̃,

α̃−nC ∨ Bbase = α̃−nC ∨ Bpos

(with Bpos the Borel σ -algebra on Xpos). It follows that

hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�) = Hµ̃(C | α̃−nC ∨ Bbase ∨ B�)

= Hµ̃(C | α̃−nC ∨ Bpos ∨ B�)

= hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xpos ×�)

as claimed.

Using (7.3) and the relation between entropy contributions and entropy in Proposition 3.4,

we now obtain

hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�) ≤ hµ̃(̃α

n | Xpos ×�)

≤ hµ(α
n
X | Xpos) = 0,

where the last inequality follows from the choice of Xpos in §4.4.

So suppose now that [χ] is not a coarse Lyapunov weight for Yirred. Let Vbase,A < Am

be the rational subspace corresponding to Ybase. Since we consider entropy contribution

conditional on Xbase ×�, we may use the above argument again and replace the coarse

Lyapunov subgroup W [χ ] with intersection W [χ ] ∩ Vbase,A. However, since [χ] is not a

coarse Lyapunov weight for Yirred = Ybase/Ypos, it follows that W [χ ] ∩ Vbase,A = W [χ ] ∩

Vpos,A. Now the first part of the lemma implies that the entropy contribution vanishes.

Since the entropy contribution for the Haar measure λ on Yirred vanishes too, this proves

the lemma.

Proof of Theorem 7.1. By the Abromov–Rokhlin entropy addition formula, we have

hµ̃(̃α
n | Xbase ×�) = hµ̃(̃α

n | Xpos ×�)+ hµ̃(α
n
Xpos×�

| Xbase ×�)

for all n ∈ Zd . However, by properties of Xpos = X/Ypos in (4.1), we have

hµ̃(̃α
n | Xpos ×�) ≤ hµ(α

n | Xpos) = 0. (7.4)
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Therefore,

hµ̃(̃α
n | Xbase ×�) = hµ̃(α

n
Xpos×�

| Xbase ×�) for all n ∈ Zd . (7.5)

We claim that the entropy contributions for all coarse Lyapunov subgroupsW [χ ] satisfy

a similar equation, namely

hµ̃(̃α
n, W [χ ] | Xbase ×�) = hµ̃(α

n
Xpos×�

, W
[χ ]
pos | Xbase ×�) (7.6)

for all n ∈ Zd with χ · n < 0, whereW [χ ] andW
[χ ]
pos denote the coarse Lyapunov subgroups

for X andXpos, respectively. Applying Proposition 3.5 toW [χ ] andW
[χ ]
pos (and withXbase ×

� playing the role of � in Proposition 3.5), we conclude that

hµ̃(̃α
n, W [χ ] | Xbase ×�) ≤ hµ̃(α

n
Xpos×�

, W
[χ ]
pos | Xbase ×�)

+ hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�)

with Vpos,A < Am as in Lemma 7.3. By Lemma 7.3,

hµ̃(̃α
n, W [χ ] ∩ Vpos,A | Xbase ×�) = 0,

hence

hµ̃(̃α
n, W [χ ] | Xbase ×�) ≤ hµ̃(α

n
Xpos×�

, W
[χ ]
pos | Xbase ×�). (7.7)

Now fix some n ∈ Zd and take the sum over all coarse Lyapunov weights [χ] with

(χ · n) < 0. By the second claim in Theorem 6.1 (applied both to X and to Xpos), this

leads to an inequality between the two terms in (7.5). However, since in (7.5) equality

holds, equality for the entropy contributions in (7.7) must hold as well. Varying n ∈ Zd

gives (7.6) for all coarse Lyapunov weights [χ].

Next we are going to combine Theorem 5.1 and Theorem 6.1. By Theorem 5.1,

hµ̃(α
n
Xpos×�

, W
[χ ]
pos | Xbase ×�) ≤

hµ̃(α
n|Xbase ×�)

hλ(α
n
Yirred

)
hλ(α

n
Yirred

, W
[χ ]
Yirred

). (7.8)

Set κn,µ̃,� = hµ̃(α
n|Xbase ×�)/hλ(α

n
Yirred

); note that it does not depend on the coarse

Lyapunov weight [χ]. Taking the sum over all coarse Lyapunov weights [χ] with χ · n < 0

gives, by (6.3) of Theorem 6.1 on the left-hand side, the conditional entropy hµ̃(α
n|Xbase ×

�) and on the right-hand side, we obtain κn,µ̃,�hλ(α
n
Yirred

), which in view of the definition

of κn,µ̃,� also equals hµ̃(α
n|Xbase ×�). This shows that in fact

hµ̃(α
n
Xpos×�

, W
[χ ]
pos | Xbase ×�) = κn,µ̃,� hλ(α

n
Yirred

, W
[χ ]
Yirred

), (7.8′)

for all coarse Lyapunov weights [χ] with χ · n < 0.

We now choose n0 so that χ · n0 6= 0 for all coarse Lyapunov weights [χ]. Since

κn0,µ̃,� = κ−n0,µ̃,�,

equation (7.8′), together with (7.6), implies that

hµ̃(̃α
n0 , W [χ ] | Xbase ×�) = κn0,µ̃,�hλ(α

n0

Yirred
, W [χ ])
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for all coarse Lyapunov weights [χ]. It follows that the constants appearing in Lemma 7.2,

which may depend on [χ] but not on n0, agree with κn0,µ̃,�, which may depend on n0 but

not on [χ]. This gives the theorem.

7.2. Rigidity of the entropy function implies invariance. We are now ready to prove

Theorem 4.1. As before, we work with the setup explained in §4.4, specifically (4.1):

Xpos = X/Ypos is a factor of X so that hµ(α
n|Xpos) = 0 for all n ∈ Zd , Yirred is an

α-invariant A-irreducible subgroup of Xpos, and Xbase = X/Ybase = Xpos/Yirred satisfies

that for some n ∈ Zd we have that hµ(α
n
Xpos

|Xbase) > 0.

Applying Theorem 7.1 with � being the trivial factor, we obtain a constant κµ > 0 so

that hµ(α
n|Xbase) = κµhλ(α

n
Yirred

) > 0 for all n ∈ Zd .

Next we choose a coarse Lyapunov weight [χ] of Yirred and consider it as a coarse

Lyapunov weight for X. Let Vbase,A < Am be the rational α-invariant subspace so that Ybase

is the image of Vbase,A modulo Q. We also set W = W [χ ] ∩ Vbase,A. Let fW be a positive

function on W, which is integrable with respect to µWx for every x in a set of full measure

as in §3.1. We take

� =

{
[ν] : νis a locally finite measure on W with

∫
fW dν < ∞

}
,

where [ν] denotes the equivalence class of ν in the space of locally finite measures with

respect to proportionality. One can equip � with the structure of a compact metric space

in a standard way. The map (defined for a.e. x ∈ X) that takes x ∈ X and maps it to

the proportionality class of its leafwise measure [µWx ] is, by (3.4), a factor map of the

Zd -action α on X to the action of Zd on elements of � by pushforward with respect to the

linear action corresponding to α on W. Taking the product of � with Xbase, we get a factor

of X and we apply Theorem 7.1 once more over this factor Xbase ×� to obtain a constant

κµ̃,� ≥ 0 so that

hµ̃(α
n, W [χ ] | Xbase ×�) = κµ̃,�hλ(α

n
Yirred

, W [χ ]) > 0 (7.9)

for all coarse Lyapunov weights [χ] and n ∈ Zd .

LEMMA 7.4. Yirred has at least two linearly independent Lyapunov weights.

Proof. Since Yirred is irreducible, we may apply Proposition 2.2 and describe the action

on Yirred using a global field K and its elements. Also recall that the eigenspaces for Yirred

correspond to the completions of K.

Suppose in contradiction that α has no two linearly independent Lyapunov weights.

Then every non-zero Lyapunov weight must be a multiple of χ . We now define the

hyperplane H < Rd as the kernel of χ . Suppose n ∈ Zd is close to H, that is, satisfies

χ ′ · n ∈ (−ǫ, ǫ) for all Lyapunov weights χ ′ of Yirred and some ǫ > 0 to be determined

later. For the algebraic number ζn corresponding to n, this becomes the inequality

e−ǫ < |ζn|σ < eǫ (7.10)

for all places σ of K (and |ζn|σ = 1 for places σ lying over finite primes p not in S, with

S as in (3.5). However, for small enough ǫ > 0, it follows from (7.10) applied to all finite
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places that ζn must be an algebraic unit. Applying (7.10) also to all infinite places, we get

that this unit satisfies that all its real and complex embeddings have absolute value close

to one. It follows from Dirichlet’s unit theorem that ζ must be a root of unity and n ∈ H .

However, this implies that the action of α(Zd) on Yirred is virtually cyclic. By the Jordan

decomposition over Q, X has a factor isomorphic to Yirred; the fact that α(Zd) on Yirred

is virtually cyclic now contradicts our standing assumption that X has no virtually cyclic

factors.

PROPOSITION 7.5. In fact, κµ̃,� = κµ (hence κµ̃,� > 0).

Proof. Let χ ′ be a Lyapunov weight of Yirred that is linearly independent to χ . The

existence of χ ′ follows from Lemma 7.4. Choose some n ∈ Zd so that χ · n < 0 and

χ ′ · n < 0. The product structure of the leafwise measures in Theorem 6.1 (see also [10,

Corollary 8.6]) now implies that for a set X′ ⊂ X of full measure, we have the following

property: for any x ∈ X′ and any w′ ∈ W [χ ′] with x + w′ ∈ X′, we have [µW
[χ ]

x+w′] =

[µW
[χ ]

x ]. For a σ -algebra A subordinate to W [χ ′], this means that, on the complement of a

null set, all points in a given atom of A are contained in the same fiber of the factor map

from X to�. In other words, the map x 7→ (x, [µW
[χ ]

x ]) from X toX ×�maps σ -algebras

subordinate to W [χ ′] on X to σ -algebras subordinate to W [χ ′] on X ×�. From this it

follows that the leafwise measures for X and forX ×� with respect to the subgroupW [χ ′]

agree. In particular, we have

hµ̃(α
n, W [χ ′] | Xbase ×�) = hµ(α

n, W [χ ′] | Xbase),

which together with Theorem 7.1 proves the proposition.

We continue working under the assumptions stated at the beginning of §7.2.

COROLLARY 7.6. For any subset X′′ ⊂ X of full measure, there exist x ∈ X′′ and a
non-zero v ∈ W with x + v ∈ X′′ and µWx ∝ µWx+v .

Proof. By Proposition 7.5, we have κµ̃,� > 0. We now apply this to the coarse Lyapunov

weight [χ] and the subgroup W = W [χ ] ∩ Vbase,A that was used to define the factor �.

Choose n ∈ Zd with χ · n < 0. It now follows from the definition of κµ̃,� in Theorem 7.1

that

hµ̃(α
n, W [χ ] | Xbase ×�) = κµ̃,�hλ(α

n
Yirred

, W [χ ]) > 0.

We also note that hµ̃(α
n, W | Xbase ×�) = hµ̃(α

n, W [χ ] | Xbase ×�) (c.f. e.g. the first

lines in the proof of Theorem 5.1). We note that positive entropy contribution, as in (3.9),

shows in particular that the leafwise measure µ̃Wx gives zero mass to 0 ∈ W .

By the characterizing properties of leafwise measures in terms of W-subordinate

σ -algebras, the fact that the leafwise measure µ̃Wx gives zero mass to 0 ∈ W implies that

for any subset X′′ ⊂ X̃ of full measure for µ̃,

there exist x ∈ X′′ and v ∈ W \ {0} so thatx + v ∈ X′′. (7.11)

Since the action of W on X̃ = X ×� was defined to be trivial on � and µ̃ was defined

as the push forward of µ under the map x 7→ (x, [µWx ]), (7.11) translates to the following
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statement: for every subset X′′ ⊂ X of full measure for µ, there exists x ∈ X′′ and v ∈

W \ {0} with x + v ∈ X′′ and [µWx ] = [µWx+v]. However, this is precisely the claim in the

corollary.

Proof of Theorem 4.1. We first show how the statement in Corollary 7.6 implies invariance

of µ under translation by all elements of a non-trivial adelic subgroup. We note that

by (3.1), the claim in Corollary 7.6 amounts to saying that for any set X′′ ⊆ X′ of full

measure, there exists some x ∈ X′′ and v ∈ W \ {0} withµWx + v ∝ µWx . Moreover, by our

discussion concerning (3.2)–(3.3), there exists X′′ of full measure so that for any x ∈ X′′,

there is some v ∈ W with µWx + v = µWx (see also [4, Lemma 5.10]). Hence Corollary 7.6

implies that for all x ∈ X′′, the closed subgroup

Wx = {v ∈ W : µWx + v = µWx }

is non-trivial. We define W̃x as the maximal S-linear subgroup ofWx . We will show below

(using the equivariance formula (3.4) and Poincarè recurrence) that a.s. W̃x is non-trivial.

In fact, [4, Proposition 6.2] shows that Wx = W̃x is itself S-linear, at least if the action is

semisimple.

We define the dimension Dx of W̃x as the sum of the dimensions of the maximal

subspaces over Qσ contained in W̃x for all σ ∈ S. Even though W̃x may not be normalized

by α, the equivariance formula (3.4) implies that both Wx and W̃x are equivariant for the

action. Hence the dimension of W̃x is invariant under α. Therefore, Dx is constant (say

equal to D) for a.e. x.

We claim that Corollary 7.6 implies a.s. that W̃x is non-trivial, or equivalently that

Dx ≥ 1 a.s. For this, we apply Luzin’s theorem and let K ⊂ X′ be a compact subset of

measure close to 1, on which all almost sure properties of the leafwise measures hold,

and on which the map x ∈ K 7→ µWx is continuous. To obtain the almost sure conclusion,

we apply the following argument for an increasing sequence of such Luzin sets that cover

almost all of the space.

By Poincaré recurrence, we see that for a.e. x ∈ K , there exists two increasing

sequences n−
k , n+

k ∈ N with T −n−
k x, T n

+
k x ∈ K converging to x as k → ∞. Suppose now

v ∈ Wx \ {0} for one such x so that µWx + v = µWx . If v has a non-trivial real component,

we are going to use the sequence n+
k . Indeed applying (3.4) for these powers, we see that

the leafwise measure at T n
+
k x has translation invariance under Z(T n

+
k v). Note that T n

+
k v

converges to 0 as k → ∞. However, since the unit ball in Rm is compact, we may choose

a subsequence and assume in addition that the direction of T n
+
k v converges in projective

space to Rṽ for some ṽ 6= 0. Note that this implies that the subgroups Z(T n
+
k v) converge

in the Chabauty topology to Rṽ. Combined with continuity of the leafwise measures

restricted to K, this now implies thatµWx is invariant under translation by Rṽ, which implies

ṽ ∈ W̃x and Dx ≥ 1 as desired.

So suppose now v has trivial real component and let us write vp for the p-adic

component of v for all p ∈ S. In this case, the invariance of µWx under Zv implies

invariance under Zv, which by the Chinese Remainder Theorem is the product of the

compact subgroups Zpvp for all primes p ∈ S. To obtain a non-trivial S-linear subgroup,

we fix a prime p ∈ S with vp 6= 0 and we are going to use the sequence n−
k . Indeed, as
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above, T −n−
k x ∈ K has invariance under ZpT

−n−
k vp, where T −n−

k vp diverges to infinity

but projectively converges to some Qpṽ. By continuity of the leafwise measures on K, this

again implies ṽ ∈ W̃x and Dx ≥ 1 as desired.

We define the (measurable) factor map as

φ : x 7→ W̃x ,

from X to the space F of closed subgroups of W in the Chabauty topology. We also

decompose µ over φ, that is, we consider the conditional measures µ
φ−1BF

x . By the

compatibility condition (3.1) and the definition of W̃x , we have φ(x) = φ(x + v)whenever

v ∈ W and both x, x + v belong to X′′. In particular, this shows for a W-subordinate

σ -algebra A that A contains φ−1BF modulo null sets. Hence, after fixing a choice of

the conditional measures µA
x , we have that the (doubly) conditional measure (µ

φ−1BF

x0
)Ax

agrees with µA
x for µ

φ−1BF

x0
-a.e. x and µ-a.e. x0. This in turn implies for the leafwise

measures of µ and µ
φ−1BF

x0
with respect to W by the characterizing properties that

(µφ
−1BF

x0
)Wx = µWx (7.12)

for µ
φ−1BF

x0
-a.e. x and for µ-a.e. x0.

Fix some x0. Then essentially by definition of the factor φ, we have that W̃x = W̃x0
for

µ
φ−1BF

x0
-a.e. x. In other words, by definition of W̃x and (7.12), we have that for µ

φ−1BF

x0
-a.e

x, the leafwise measures (µ
φ−1BF

x0
)Wx are invariant under the group W̃x0

, hence by the

standard properties of leafwise measures that µ
φ−1BF

x0
is itself invariant under the action of

W̃x0
by translations. Note that, as far as we know at this point, the group W̃x may depend

on x, and hence we have not established the invariance of µ itself under any translations

yet.

AsX = Am/Qm is an abelian group and Qm acts trivially, this implies that µ
φ−1BF

x0
is in

fact invariant under the closureGx of W̃x0
+ Qm in X. Since W̃x0

, as an S-linear subgroup,

is invariant under multiplication by Q, we have that its annihilator G⊥
x in the Pontryagin

dual Qm to X is a vector space over Q. Hence Gx is an adelic subgroup of X.

The equivariance formula (3.4) implies a similar equivariance formula for Wx , for W̃x ,

and hence also for Gx . In other words, x 7→ Gx is a (measurable) factor map for α with

values in the countable set of all adelic subspaces of Xm. Hence there exists an adelic

subspace G so that Gx = G on a set of positive measure. By Poincaré recurrence, we

may conclude that there is a finite index subgroup 3 of Zd so that α(3) normalizes G.

However, the assumption in Theorem 4.1 now implies that G is actually normalized by Zd .

Ergodicity under α now implies that Gx = G a.s. Therefore, µ is invariant under G.

8. Disjointness
We will deduce in this section the rigidity of joinings and in particular prove Corollary 1.4.

We say a measure on a solenoid X is homogeneous if it is the Y-invariant measure on a coset

Y + y of a closed subgroup Y < X.
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PROPOSITION 8.1. Let d , r ≥ 2 and let αi be Zd -actions on solenoids Xi (equipped with
Haar measure λXi ) with no virtually cyclic factors for i = 1, . . . , r . Suppose there exists a
non-trivial joining µ between αi for i = 1, . . . , r . Then there exists a finite index subgroup
3 ⊆ Zd such that there exists also a homogeneous non-trivial joining λG between αi,3
for i = 1, . . . , r . In fact, the subgroup G can be chosen to be any of the groups in the
conclusion of Theorem 1.3 when applied to an ergodic component of the positive entropy
measure µ on X1 × · · · ×Xr .

Proof. Let X = X1 × · · · ×Xr and α = α1 × · · · × αr be the product group and action,

and let µ be a non-trivial joining. Without loss of generality, we can assume µ is α-ergodic

(since a.e. ergodic component of a joining is again a joining). We apply Theorem 1.3 and

obtain a finite index subgroup 3 ⊂ Zd and an α3-invariant closed subgroup G = G1 ⊂

X. We claim that the Haar measure of G is an homogeneous non-trivial joining for the

3-action.

To see this, let µj for j = 1, . . . , J be as in Theorem 1.3 and let πi : X → Xi for i =

1, . . . , r be the coordinate projection map. First notice that the Haar measure of G cannot

be the trivial joining. If it were, it would follow that G = X, µ1 = λX, µj = (αn)∗µ1 =

λX for all j and some n (that depends on j), and so µ = λX would be the trivial joining.

To show the claim, we only need to prove that πi(G) = Xj for i = 1, . . . , r .

Fix some i. Clearly λ̃j = (πi)∗µj defines a measure on Xi that is invariant under αi,3.

By assumption, λXi = (1/M)(λ̃1 + · · · + λ̃J ). Note that αi,3 acts ergodically on Xi with

respect to λXi by the assumption that there are no virtually cyclic factors. Therefore, λ̃j =

λXi for all j, in other words, µ1 is a joining. Consider now the group Y = Xi/πi(G) ∼=

X/(G+ ker πi) endowed with the measure ν induced by µ1. However, by the above, the

projection of µ1 toXi is λXi , and so ν = λY . Since Y is a factor ofX/G, the entropy (with

respect to ν) of every element on Y of the action must vanish. However, the action on Xi

contains elements with completely positive entropy. Therefore, Y = {0} and πj (G) = Xi

for all i.

Proof of Corollary 1.4, simpler case. Assume first that α1 and α2 are totally irreducible

not virtually cyclic actions and let α = α1 × α2. Suppose α1,3 and α2,3 are algebraically

weakly isomorphic for some finite index subgroup 3 ⊂ Zd . So there exists a finite-to-one

algebraic factor map ϕ : X1 → X2 for the two subactions. Clearly, the graph G of ϕ is

α3-invariant and so is its Haar measure λG. The average µ over the elements αn
∗λG in the

(finite) orbit of λG under the action of α defines a non-trivial joining between α1 and α2.

Let µ be a joining between α1 and α2. We have to show that either µ = λX1
× λX2

is the trivial joining, or find a finite index subgroup 3 ⊂ Zd such that α1,3 and α2,3 are

algebraically weakly isomorphic. Assume that µ is not the trivial joining, then there exists

a finite index subgroup 3 and a homogeneous non-trivial joining λG between α1,3 and

α2,3 by Proposition 8.1. Here G ⊂ X is a proper closed subgroup with π1(G) = X1 and

π2(G) = X2.

Next we study the factors X′
1 = X1/{x1 : (x1, 0) ∈ G} and X′

2 = X2/{x2 : (0, x2) ∈

G}. Suppose X′
1 is trivial, then X1 × {0} ⊂ G and π2(G) = X2 implies that G = X1 ×

X2, a contradiction to G being proper.
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So assume now X′
1 and X′

2 are non-trivial, and let G′ ⊂ X′
1 ×X′

2 be the subgroup

defined by G. Then G′ ∩ (X′
1 × {0}) = G′ ∩ ({0} ×X′

2) = {0}, so G′ is the graph of an

isomorphism betweenX′
1 andX′

2. SinceG′ is closed, compactness shows the isomorphism

is continuous. Since all of the above are invariant subgroups, it follows that α1,3 and α2,3

have a common non-trivial factor X′
1

∼= X′
2. By assumption α1,3 and α2,3 are irreducible,

so the kernel of the above factor maps must be finite. Let N be the order of the kernel, then

multiplication by N defines a factor map ψN fromX1 toX1 that can be extended to a factor

map ψN from X′
1 to X1, that is, the two actions on X1 and X′

1 are weakly algebraically

isomorphic.

Proof of Corollary 1.4, general case. Let X =
∏r

=1 Xj and α = α1 × · · · × αr be the

product group and action. Suppose j 6= k ∈ {1, . . . , r} and αj ,3 and αk,3 have a common

non-trivial factor β on a solenoid Y, where 3 ⊂ Zd is a finite index subgroup. Let

ϕj : Xj → Y and ϕk : Xk → Y be the corresponding group homomorphisms. Then G =

{x ∈ X : ϕj (xj ) = ϕk(xk)} is a non-trivial closed α3-invariant subgroup of X such that

πi(G) = Xi for i = 1, . . . , r . The Haar measure λG on G has finite orbit under α, and the

average µ over the elements in the (finite) orbit of λG is a non-trivial joining.

Suppose now that µ is a non-trivial joining between αi for i = 1, . . . , r , and apply

Proposition 8.1. We obtain a finite index subgroup 3 ⊂ Zd and an α3-invariant proper

closed subgroup G < X that satisfies πi(G) = Xi for i = 1, . . . , r .

Next we factor Xi by the subgroup

Hi = πi(G ∩ ({0}i−1 ×Xi × {0}r−i))

to get X′
i = Xi/Hi for i = 1, . . . , r and the factor X′ =

∏
i X

′
i of X. If X′ = {0}, then

G = X which contradicts G being a proper subgroup.

So assume that X′ is non-trivial, and therefore infinite. Let G′ < X′ be the image of G.

Clearly πi(G
′) = X′

i for i = 1, . . . , r . Let i be minimal such thatH = G′ ∩ Zi is infinite,

where Zi = X′
1 × · · · ×X′

i × {0}r−i . Then the kernel {x ∈ H : xi = 0} of πi |H is finite,

and so πi(H) is an infinite closed α3-invariant subgroup of X′
i . Let β be an irreducible

component of α3|H . Since πi |H is finite-to-one, β is also an irreducible component of

αi,3|πi (H). Since an irreducible component of a subgroup is also an irreducible component

of the whole group, we see that α3|H and αi,3 share β as an irreducible component.

By construction of X′, we have {z ∈ H : zk = 0 for all k 6= i} = {0}. Therefore H is

isomorphic to a subgroup of X′
1 × · · · ×X′

i−1. We conclude that there exists j < i such

that αi,3 and αj ,3 have β as a common factor.

9. Invariant σ -algebras and measurable factors
In addition to the characterization of factors stated in Corollary 1.5, we prove in this

section a generalization of the isomorphism rigidity [21] for higher rank actions. Indeed we

characterize when two actions by automorphisms of solenoids have a common measurable

factor.

Suppose α1, α2 are Zd -actions by automorphisms of the solenoids X1 and X2. Let Ŵ1

respectively Ŵ2 be finite groups of affine automorphisms ofX1 andX2 that are normalized

by the respective actions. We say that the two factors of X1 and X2 arising from Ŵ1
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respectively Ŵ2 are isomorphic if there exists an affine isomorphism 8 : X1 → X2 such

that 8 ◦ αn
1 ◦ Ŵ1 = αn

2 ◦ Ŵ2 ◦8 for all n ∈ Zd .

We claim that this is essentially the only way common measurable factors of higher

rank actions on solenoids can arise.

COROLLARY 9.1. (Classification of common factors) Let d ≥ 2 and let α1, α2 be
Zd -actions by automorphisms of the solenoids X1 and X2 without virtually cyclic factors.
Suppose α1 and α2 have a common measurable factor. Then there exist closed invariant
subgroups X′

1 ⊆ X1 and X′
2 ⊆ X2, finite groups Ŵ1 of affine automorphisms of X1/X

′
1

and Ŵ2 of affine automorphisms of X2/X
′
2 that are normalized by the corresponding

actions such that this common measurable factor can be described alternatively as the
factor of X1/X

′
1 by the orbit equivalence relation of Ŵ1, or similarly using X2/X

′
2 and Ŵ2.

Moreover, the isomorphism between these two realizations of the factor is algebraic in the
following sense: there exists an affine isomorphism 8 : X1/X

′
1 → X2/X

′
2 such that

8 ◦ αn
X1/X

′
1
◦ Ŵ1 = αn

X2/X
′
2
◦ Ŵ2 ◦8 (9.1)

for all n ∈ Zd .

Note that we have more rigidity for the factors than we had for joinings in Corollary 1.4.

In particular, there is no need to consider finite index subactions in order to classify when

two Zd actions on tori have a common factor; we illustrate this point with the following

example.

Example 9.2. Let α1 be the Z2-action by automorphisms of the solenoid X1 dual to

Z[1/2, 1/3] generated by multiplication by 2 and by 3 on X1 (i.e. the α1 action on X1 is

the invertible extension of the ×2, ×3 action on T). We define a Z2-action α2 onX2 = X2
1

by

α
e1

2 (x1, x2) = (−2x2, 2x1),

α
e2

2 (x1, x2) = (3x1, 3x2) for (x1, x2) ∈ X2.

Then α
4e1

2 (x1, x2) = (16x1, 16x2) for (x1, x2) ∈ X2 and so the restriction α2,3 of α2 to

3 = (4Z)× Z is identical to the action α1,3 × α1,3 on X2 = X2
1 . By Theorem 1.4 α1 and

α2 are not disjoint. In fact, let

Z = {(x1, (x1, x2) : x1, x2 ∈ X} ⊆ X1 ×X2.

Then π1(Z) = X1 and π2(Z) = X2. Therefore, the Haar measure mZ of Z satisfies

(π1)∗mZ = mX1
and (π2)∗mZ = mX2

. Since Z is only invariant under (α1 × α2)3, mZ is

not a joining. However, it is easy to check thatµ = 1
4

∑3
j=0(α1 × α2)

je1mZ is a non-trivial

joining between α1 and α2.

We note that α1 and α2 are both irreducible actions. Suppose now that α1 and α2 have a

common measurable factor. By Corollary 9.1, there exist closed invariant subgroups X′
1 ⊆

X1 andX′
2 ⊆ X2 such thatX1/X

′
1 andX2/X

′
2 are isomorphic as groups. By irreducibility,

X′
1 and X′

2 are either finite or everything. However, if X′
1 and X′

2 are finite, then X1/X
′
1 is

still one-dimensional while X2/X
′
2 is still two-dimensional, and so these groups cannot be

https://doi.org/10.1017/etds.2021.74 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.74


Rigidity properties for commuting automorphisms on tori and solenoids 731

isomorphic. Therefore, X′
1 = X1, X′

2 = X2, and the common measurable factor has to be

the trivial factor.

Before we start with the proofs of Corollary 1.5 and Corollary 9.1, we recall some basic

facts about conditional measures and the construction of the relatively independent joining.

9.1. The relatively independent joining. Let α1, α2, β be Zd -actions on the standard

Borel probability spaces (X1, B1, m1), (X2, B2, m2), and (Y , BY , ρ), respectively, and let

ψ1 : X1 → Y and ψ2 : X2 → Y be factor maps. Then A1 = ψ−1
1 BY and A2 = ψ−1

2 BY

are invariant σ -algebras with conditional measures m
A1

1,x for x ∈ X1 and m
A2

2,x for x ∈ X2.

By the basic properties of conditional measures, there is some null set N1 ⊂ X1 so that

m
A1

1,x = m
A1

1,x′ for every x, x′ ∈ X1 \N1 with ψ1(x) = ψ1(x
′), and so we can remove a

nullset from X1 and Y and define m
ψ−1

1 y
= m

A1

1,x for x ∈ ψ−1
1 y. We do this similarly for

A2 to define m
ψ−1

2 y
. The relatively independent joining m1 ×(Y ,ρ) m2 of m1 and m2 over

the common factor (Y , ρ) is defined by

m1 ×(Y ,ρ) m2 =

∫

Y

m
ψ−1

1 y
×m

ψ−1
2 y

dρ(y). (9.2)

It is well known (and easy to verify directly) thatm1 ×(Y ,ρ) m2 projects tom1 onX1 and to

m2 on X2 and thatm1 ×(Y ,ρ) m2 is invariant under α1 × α2 (hence is a joining between α1

and α2). Furthermore, the relatively independent joining m1 ×(Y ,ρ) m2 gives full measure

to the set

DY = {(x1, x2) : ψ1(x1) = ψ2(x2)} ⊂ X1 ×X2 (9.3)

and moreover

ψ−1
1 C ×X2, X1 × ψ−1

2 C, and ψ−1
1 C × ψ−1

2 C

are equal up to a m1 ×(Y ,ρ) m2-nullset for any C ∈ BY .

9.2. Proofs of Corollary 1.5 and Corollary 9.1. Let α1, α2, X1, X2 be as in Corollary

9.1, and suppose the Zd -action β on (Y , BY , ρ) is a common factor of α1 and α2. Let

ψ1 and ψ2 be the corresponding factor maps, A1 = ψ−1
1 BY and A2 = ψ−1

2 BY the cor-

responding invariant σ -algebras, and let ν = λX1
×(Y ,ρ)λX2

be the relatively independent

joining.

The main idea for the proof is to use Theorem 1.3 to study ν. In the following example,

we see how the algebraic construction of the factor is encoded in the relatively independent

joining, and that the latter does not have to be ergodic.

Example 9.3. Let α be a Zd -action on a solenoid X, and let A = B
{Id,− Id}
X be the

α-invariant σ -algebra of measurable subsets A satisfying A = −A. Then the relatively

independent joining ν = λX×AλX of λX over the factor described by A is ν = 1
2
(λD +

λD−), where D = {(x, x) : x ∈ X} and D− = {(x, −x) : x ∈ X}. The ergodic compo-

nents of ν are λD and λD− .
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This example shows that for the relatively independent joining over a factor, we have to

take ergodic components in order to apply Theorem 1.3. However, in general, we also have

to take ergodic components as in Theorem 1.3 with respect to a finite index subgroup to

obtain measures invariant under translation by elements of certain subgroups.

LEMMA 9.4. The set

X′
1 = {x′ ∈ X1 : ψ1(t) = ψ1(t + x′) for λX1

-a.e. t ∈ X1}

is a closed α-invariant subgroup of X1. Furthermore, ψ1 descends (on the complement of
a nullset) to a well-defined factor map from X1/X

′
1 to Y.

Proof. Since A1 = ψ−1
1 BY is countably generated, it is easily seen that

X1 = {x′ ∈ X1 : λX1
(A △ (A+ x′)) = 0 for all A ∈ A1}.

Furthermore, it is well known that λX1
(A △ (A+ x′)) depends continuously on x′ ∈ X

for any A ∈ BX1
. From this, it follows that X′

1 is a closed subgroup. Moreover, X′
1 is

α1-invariant since A1 is invariant (equivalently, since ψ1 is a factor map).

Note that ψ1(t) = ψ1(t + x′) for λX1
× λX′

1
-a.e. (t , x′) ∈ X1 ×X′

1 by definition of X′
1

and Fubini’s theorem. Therefore, for λX1
-a.e. t ∈ X1, we know that ψ1(t) = ψ1(t + x′)

for λX′
1
-a.e. x′ ∈ X′

1. Therefore, ψ1(t) is (outside some nullset) independent of the

representative t ∈ X1 of the coset t +X′
1, which implies the second part of the lemma.

By Lemma 9.4, we can replace X1 by X1/X
′
1 and similarly X2 by X2/X

′
2 for the

remainder of the proof. Hence we assume that

X′
1 = {x′ ∈ X1 : ψ1(t) = ψ1(t + x′) for λX1

-a.e. t ∈ X1} = {0} (9.4)

and similarly for X2, and will show the existence of finite groups Ŵ1 and Ŵ2 of affine

automorphisms of X1 and X2, and the existence of the affine isomorphism 8 : X1 → X2

satisfying (9.1).

Since Theorem 1.3 assumes ergodicity, we need to study the ergodic components of the

relatively independent joining. The following easy consequence of the definition of the

ergodic decomposition gives all the properties we will need for the ergodic components.

LEMMA 9.5. Almost every ergodic component µ of the relatively independent joining ν of
X1 and X2 over Y is still a joining between α1 and α2 that satisfies µ(DY ) = 1, where DY
is defined as in (9.3).

In the next lemma, we analyze what translation invariance for a measure µ as above

tells us about the factor maps.

LEMMA 9.6. Let µ be a measure on X1 ×X2 that projects to the Haar measure λX1

respectively λX2
and satisfies µ(DY ) = 1 where DY is defined in (9.3). Suppose µ is

translation invariant under elements of G ⊂ X1 ×X2 and that G projects surjectively to
X1 and X2. Then G is the graph of a group isomorphism φ : X1 → X2. Moreover, there
exists some wφ ∈ X2 such that the affine isomorphism 8(x) = φ(x)+ wφ satisfies

ψ1(x) = ψ2(8(x)) for a.e. x ∈ X1 (9.5)
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and that µ is the Haar measure of the graph of 8. The element wφ ∈ X2 is uniquely
determined by φ and (9.5).

Proof. Suppose (x′, 0) ∈ G, C ∈ BY , and A = ψ−1
1 C ∈ A1. Then A×X2 = X1 ×

ψ−1
2 C (modulo µ) and

(A+ x′)×X2 = A×X2 + (x′, 0)

= X1 × ψ−1
2 C + (x′, 0) (modulo µ)

= X1 × ψ−1
2 C

= A×X2 (modulo µ),

where we used invariance of µ under translation by (x′, 0) in the transition from the first

to the second line. It follows that

λX1
((A+ x′) △ A) = µ(((A+ x′)×X2) △ (A×X2)) = 0

for any A ∈ A1 and so x′ ∈ X′
1. Therefore, x′ = 0 by assumption (9.4). The same holds

for elements of the form (0, x′) ∈ G. Together with our assumption that G projects onto

X1 and onto X2, this implies that G is the graph of a group isomorphisms φ : X1 → X2.

We show next that wφ is uniquely determined. So suppose w, w′ ∈ X2 are such that

(9.5) holds independently of whether 8 is defined using w or using w′. Let v = φ−1(w −

w′). Then

ψ1(x) = ψ2(φ(x)+ w) = ψ2(φ(x + v)+ w′) = ψ1(x + v)

for λX1
-a.e. x ∈ X. Therefore, v ∈ X1 = {0} (by (9.4) again) and w = w′.

It remains to show the existence of wφ and that µ is the Haar measure of the graph of

8. Since µ is invariant under translation by elements of G and since µ(DY ) = 1, it follows

that

µ(DY − (x, φ(x))) = 1 for every x ∈ X1.

In other words, we know for µ× λX1
-a.e. ((z1, z2), x) ∈ (X1 ×X2)×X1 that (z1, z2)+

(x, φ(x)) ∈ DY . By Fubini’s theorem, this shows for µ-a.e. (z1, z2) ∈ X1 ×X2 that

(z1, z2)+ (x, φ(x)) ∈ DY for λX1
-a.e. x ∈ X1.

However, by definition of DY , this is equivalent to

ψ1(z1 + x) = ψ2(z2 + φ(x)) for λX1
-a.e. x ∈ X1.

We define w = z2 − φ(z1), then (9.5) follows for8(x) = φ(x)+ w. However, by unique-

ness w = wφ is independent of (z1, z2). Therefore, z2 = φ(z1)+ wφ and (z1, z2) belong

to the graph of 8(x) = φ(x)+ wφ . This holds for µ-a.e. (z1, z2), and together with

invariance of µ under translation by elements of G, it follows that µ is the Haar measure

of the graph of 8.

Finally, we can describe the structure of the relatively independent joining.
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LEMMA 9.7. The relatively independent joining is a convex combination

ν =
∑

j∈J

ajλ8j with aj > 0

of at most countably many Haar measures λ8j on graphs of affine isomorphisms 8j that
satisfy (9.5).

Proof. Let µ be an ergodic component of ν as in Lemma 9.5. By Theorem 1.3, there exist

µ1, . . . , µM and G1, . . . , GM , such that µ = 1/M
∑M
i=1 µi and µi is invariant under

translation by elements of Gi . By Proposition 8.1, each Gi projects surjectively to X1 and

X2. Therefore, Lemma 9.6 shows that µi is the Haar measure λ8 of the graph of an affine

isomorphism 8(x) = φ(x)+ wφ that satisfies (9.5).

We claim that there are at most countably many group isomorphisms φ : X1 → X2.

Since φ uniquely determines wφ , 8, µi , and by ergodicity also µ, the above claim implies

that there are at most countably many ergodic components µ, each of which is a convex

combinations of Haar measures.

To prove the claim, it is enough to notice that every φ as above is uniquely determined

by its dual φ̂ : X̂2 → X̂1 that is the restriction of a Q-linear map from Qn2 ⊇ X̂2 to

Qn1 ⊇ X̂1.

Proof of Corollary 1.5. It is well known that every invariant σ -algebra A can be realized

as ψ−1BY for some factor map ψ : X → Y and some Zd -action on a standard Borel

probability space (Y , BY , ρ). Recall that by Lemma 9.4, we may assume that (9.4) holds.

Let ν be the relatively independent joining of λX and λX over (Y , ρ). Let

Ŵ = {γ : γ is an affine automorphism

such that ψ(γ (x)) = ψ(x) for λX-a.e. x ∈ X}. (9.6)

Then Ŵ is a group normalized by α that is at most countable (see proof of Lemma 9.7) and

satisfies

ν =
∑

γ∈Ŵ

aγλγ with aγ ≥ 0

by Lemma 9.7. From the construction (9.2) of the relatively independent joining, it follows

that the conditional measures of ν with respect to the σ -algebra C = BX × {∅, X} are

νC(x,x′) = δx × (λX)
A
x for ν-a.e. (x, x′) ∈ X ×X.

However, from the above decomposition of ν, it is also easy to calculate the conditional

measures of ν with respect to C, which shows that

(λX)
A
x =

∑

γ∈Ŵ

aγ δγ (x) λX-almost everywhere.

Since every γ0 ∈ Ŵ preserves λX and A, it follows that (λX)
A
γ0x

= (γ0)∗(λX)
A
x almost

everywhere, and hence

(λX)
A
γ0x

= (γ0)∗
∑

γ∈Ŵ

aγ δγ (x) =
∑

γ∈Ŵ

aγ δγ0(γ (x)) almost everywhere.
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However, by definition γ0 also preserves a.e. atom of A and so (λX)
A
γ0x

= (λX)
A
x almost

everywhere, hence

(λX)
A
γ0x

=
∑

γ∈Ŵ

aγ δγ (x) λX-almost everywhere.

By comparing the above two displayed formulæ we conclude that Ŵ is finite, and all the

coefficients aγ0
are equal to each other, that is to say

(λX)
A
x =

1

|Ŵ|

∑

γ∈Ŵ

δγ (x).

Since the conditional measures determine the σ -algebra (modulo λX), the corollary

follows.

Proof of Corollary 9.1. We already constructed X′
1 and X′

2 in Lemma 9.4. Applying

Corollary 1.5, we find Ŵ1 and Ŵ2. Finally, let 8 : X1 → X2 be an affine isomorphism as

in (9.5) that exists by Lemma 9.7. Then 8−1 ◦ γ2 ◦8 belongs to Ŵ1 (defined as in (9.6))

for any γ2 ∈ Ŵ2. By symmetry, Ŵ2 ◦8 = 8 ◦ Ŵ1 which concludes the proof.
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