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1. Introduction. All 2-by-2 matrices in this paper are to be viewed as linear
fractional transformations on the extended complex plane C*. Let L* and L~ be the open
half-planes to the right and left, respectively, of the extended imaginary axis L. Let A be
the set of complex 2-by-2 matrices A with real trace and determinant +1 such that
A(L*)eL™. Let Q=0Q,UQ,UQ,UQ,, where

Q={AecA:detA=1,|tr A|=2},

M, ={AeA:det A=1,|tr A|=2cos(n/q) for some integer q> 2},
Q;={AeA:tr A=0},

and
Q,={AecA:det A=-1,A%cA}.

Observe that the elements of , U, have infinite order, while those of Q,UQ; have
finite order.

We will prove that whenever A €} and B €} do not both have a fixed point on L,
then the group (A, B*) is the discrete free product (A)*(B'), where B’ denotes the
transpose of B. The case where both A and B have a fixed point on L is also discussed.
We show in addition that if A€ and Be () are real, then (A, B*) is the discrete free
product (A)*(B") if and only if for every real u,

0 -u }
Yu 0]|)

1 0
0 -1
The significance of these results is discussed in §3. In particular, we show there that the
latter result implies that the free products in [2, Theorem 1] are all discrete. We thereby
fill a gap in [2, §4], wherein the discreteness was proved only in a special case.
Discrete free products of two cyclic matrix groups have been extensively studied,
along different lines. For example, Purzitsky [S] has given necessary and sufficient
conditions for any group (A, B) generated by real linear fractional transformations A and
B of determinant 1 to be the discrete free product (A)*(B). (See also [6].)

?

{A,B’}st[

2. Definitions and notation. Let P denote the set of matrices : d of determinant
. ) b
+1 such that either a,b=0=c¢, d or a, b=<0=<¢c, d. We reserve the notation M= : d

for a matrix (or transformation) in N P. In fact, the symbol M can be used to denote an
arbitrary real matrix in ), in view of Lemma 5. Given a transformaticn M, we stipulate
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without loss of generality that a, b=0=c, d. If, moreover, c(a+d)=0, M is said to be
plussed.
Let w,, and wj, be the fixed points of M, with |wy,| =|w} if the fixed points are on

the extended real line R¥*, and with Im w,, >0 otherwise. Note that w,, is finite, because
*

1 .
otherwise wy = whyy=% and M would have the form o 1l which contradicts the fact

that M e P. Note also that Re wy, =0, since M(L*)c L~. Let L,, denote the extended
vertical line through wy,. Let L3, and Ly, denote the open half-planes to the right and left
of Ly, respectively.

If E is a nonsingular 2-by-2 matrix and & is a set of 2-by-2 matrices, write
AE ={A®:Ae o}, where AF=EAE™". A 2-by-2 matrix § is said to be an L-map if
S(L*)=L". Note that if S and S, are L-maps, then so are S~ and SS,. In addition,
S(L)=L, S(L7)=L", A=A, and O°=Q.

1 0 0 -u 1 r )
Let I—’O 1 T, = Yu o and W, = 0 _1‘. Write T=T, and W= W,

Given U< C#*, let cl U denote the closure of U in C* and let ccl U denote the
complement of the closure of U in C*.

3. Main results. We now present the main theorems. The proofs are postponed
until §6.

THEOREM 1. Let A, BeQ and C= B"Y. Suppose that A and C do not both have a fixed
point on L. Then (A, C) is the discrete free product (A)*(C).

THEOREM 2. Let A, BeQ and C=BY. If A and B are real, then (A, C) is the discrete
free product (A)*{C) if and only if for every real u, {A, C}2{W, T,}.

A 0
1 andT—1 0

well-known that when A =2cos(/q) for an integer q =3, then (S,, T) is the discrete free
product (TS,)*(T), and that when A is a complex number of modulus =2, then (S,, T) is
the discrete free product (S, )*(T). Theorem 1 is sufficiently general to imply these results.
For, if A =2cos(/q) for an integer q =3, apply Theorem 1 with A=TS,, B=T. If A€ C,

|A|= 2, apply Theorem 1 with A =SS B =TS, where G= I_l 1

Consider the Hecke group (S,, T) generated by S, = (1)

‘. It is

11

If, in Theorem 1, C is defined to be B' instead of BY, the resulting statement is
equivalent. To see this, we need only show that Q% = Q'. Assume that for some 7,€ L*
and some Ae€A, A"} (r;)=r,ecl(L*). Then A(r,)eL", so for some ;€ L* close to ,,
A(r;)e L*. This contradicts the fact that A(L*)< L™. Thus A~} (L*)< L~ for all A€A.

0

This proves that A=A"". Thus Q=050 Q'=TQ'T=Q". Since TW = 10
L-map, Q™ = Q. Therefore, Q' =Q7=QW.

Similarly, if C is defined to be B‘ instead of BY in Theorem 2, the resulting

statement is equivalent. Another equivalent formulation of Theorem 2 is as follows. “Let

lisan
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1 —_
1 H, and let C=B". If A and B are real, then (A, C) is

the discrete free product (A)*(C) if and only if, for every real pair r, s satisfying

sz—r2=1,wehave{A,C}¢{ ros] ot

A,BeQY, where V= 2’”2‘

3

-s ~r||1 0
[2, Lemma 9] and Lemma 5 below that Jc AY; hence K< QV, so Theorem 2 now
immediately implies that the free products in [2, Theorem 1] are all discrete.

Theorem 2 is, in fact, an extension of a theorem of Newman [4, Theorem 15, p. 162].
For if in Theorem 2 the determinants of A and B are restricted to be 1, then Theorem 2
becomes a restatement of Newman'’s theorem (see Lemma 5 below).

The following simple example shows that the requirement in Theorem 2 that A and

B are real cannot be dropped. Let A = I(l) ! ‘ and C= ll _(1)‘ Then Ae(}, CeQV,

}”. In the notation of [2], it follows from

—_ 1 7
but (A, C) is not the free product (A)*(C), since (AC)*= L

4. Real conjugates of complex matrices. Theorem 4 (below) will enable us to focus
attention on those matrices in € which are real. First a lemma is proved.

Lemma 3. If Ne() fixes =, then N=W, for some p. If N} fixes 0, then N= W, for
some p.

Proof. Suppose that N(x)=wo, so N= g g

L~. Let ¢ = arg(a/8) with —7 < < u. Suppose that ¢ € (-, 0]. If 7€ L™ has sufficiently
large modulus and arg 7 is sufficiently close to #/2, then N7 e L*, a contradiction. Suppose
then that ¢ € (0, 7). If 7€ L™ has sufficiently large modulus and arg 7 is sufficiently close to
—m/2, then Nre L*, a contradiction. Thus ¢ =, i.e., a/8<0.

Suppose that «€ R. Since tr N is real,”§ = a. Since a/a@ is a negative number of
B
-a

Suppose that a € R. Since a/8 <0, det N<0. Thus Ne; or NeQ,. For all reL™,
N?r=(a?/8%)7+ B(a+8)/8% If 7€ R is sufficiently large, then N>7e L*. Thus N*gA, so

NeQ,. Therefore, NeQ,. It follows that N = lg B f ’ ie., N=W, for some p. This

. For each Te L™, Nr=(a/8)7+B/8¢

modulus 1, a =—a. Thus N= g , .e.,, N=W, for some p.

proves the first assertion.

(1) is an L-map, N™ e and N™V

fixes . By the first assertion, N™" = W, for some p, so N= W._.

Suppose that N e Q fixes 0. Then, since TW = (1)

THEOREM 4. Let N= 'a g €$). Then there is an L-map S such that SNS™! is real.
Y

Proof. Note that the fixed points w and o' of N lie in cl(L™), since N(L*)cL".
Define w,=Re 0, w,=Im 0, 0, =Re o', and 0})=Im o'
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Case 1: w,0'eL. Assume that w=w'. If w#%, conjugate N by the L-map

1
(1) . Thus we may assume that both fixed points of N are «. Then N= 0 113
—w
some B, which contradicts the fact that Ne A. Hence w# w’. If neither w nor ' is o,
, g . ; if one of w or @’ is ®, say w =, then
w-0 -wle-o0)
) 1 -o
conjugate N by the L-map 0 1

and w =. By Lemma 3, N=W, and N= W;; for some pair p, v. Hence N=

for

conjugate N by the L-map

(which fixes w = ). Thus we may assume that w'=0
0
0 -1}

. 0
Case 2: w'eL,weL™. If o' #x, conjugate N by the L-map ] . Then we may

’

assume that w’=c, We may moreover assume that w = —1, for otherwise conjugate N by

the L-map l a.>2 (which fixes w'=®), Thus N= * a-—8' By Lemma 3, N=
0 —lw, 0 8

1 P _ 2

‘ 0 -1 for some p. Therefore, N= 0 -1l

Case 3: w,w'e L™ and w = w’. We may assume that w = —1, for otherwise conjugate

N by the L-map (; @2
1

-y -7 .
. Thus N—-‘ y 1+Y‘.Ifye R, then N is real, so suppose

1 k
that y2 R. Let n=argy. Let S= \k E where k =i tan(n/2). Then S is an L-map and
1 —_ -
SNS™ 1= " Y1 | where vi1=|vleR.
71 1+m
Case 4: 0, 0'€e L™, w# o'. We may assume that o'=~1, otherwise conjugate N by
i . xi 1 )
the L-map afz . Assume that w,#0. Let §'= .|, where x is a solution of the
0 —iw} 1 xi
equation

w0 x*+x(lwff-1) - w,=0.
Since the discriminant of this quadratic equation is
(03-1)+ 02+ 20202+202,

it follows that xeR. Therefore S' is an L-map. Since S'(-1)=-1 and S'(w)e R by
definition of x, we see that S'N(S')™! fixes the two distinct real points —1 and S'(w). It
may thus be assumed without loss of generality that w,=0, i.e., that N fixes —1 and o,
ol2-y B

Y al2+y
N(-1)=-1 and N(w)= w imply that B = yo and y=(1-w)y/2. Since

det N = o?/4— y*(1+ w)*/4,

where w<0, w#-1. Write N= , where o=tr N. The equalities
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we have
v2=4(0*/4—det N)/(1+ w)>.

Since o and det N are real by the hypothesis N €, v is real or purely imaginary. If ye R,
W-o 1 Then S is
1 iv-w|

, where z = iyv—w. Since this matrix is

then N is real, so suppose that vy is purely imaginary. Let $=

o/2-z z(1-w)2w
z2(1-w)/2 o/2+2z
real, the proof is complete.

an L-map and SNS™!=

5. Lemmas on real matrices in €2.

LEMMA 5. Let N= ‘;v : have real entries. Then Ne A if and only if Ne P.

Proof. Suppose that Ne A. It was shown in §3 that A=A"". Hence N~ '(®)ecl(L"),
so that either y, z=0 or y, z=<0. Further, for all t>0,

wt+Xx
<0
yt+2z

It follows that Ne P.
Conversely, suppose that Ne P. Then N~'()¢ L*, so for all 7eL*,

sgn Re(N(7)) = sgn{wy|7|*+ xz + (xy + wz)Re 7} <0.
It follows that N e A. This completes the proof.
The next lemma characterizes those matrices M e () which map L,, onto a straight

b €} with a,b=0, and ¢, d=<0.)

line. (Recall that M always denotes a matrix 4 d

Lemma 6. The following are equivalent:

(i) »e M(Ly);

(ii) M=W,, or both tr M=0 and det M=1;
(iii)y M(Ly) = Ly

Proof. We show that (i)= (i) > (iii) (note that (iii)=> (i) is obvious).

Case 1: det M= 1. Suppose that & M(Lyy). If M(x)=c, then M= g Z‘ where

a >0 and d <0. This contradicts the fact that det M = 1. Hence M(x)# =, i.e., ¢ <0. Then
—d/c€ Ly, s0 —d/c = Re wy. By definition of wpy,

~d/c=Re wpy=Re{(2c) (a—-d-vV(a+d)*-4)}. (1)

It is readily seen that (1) holds if and only if a +d =0. This proves (ii).
To prove that (ii) = (iii), suppose that tr M = 0. Then ¢+ 0 and by the second equality
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in (1),

M(») = a/c = Re wp; = Re w)y.
Thus M maps each of wy, w), and ® into Ly, s0 M(Ly) = Ly

Case 2: det M=—1. In this case, wy, wi € R*. Suppose that (i) holds. Assume that
¢<0. Then ~d/c€ Ly, so —d/c=Re wy = wp. Then

—dic=wy=(a—d—-V(a+d)*+4)/2,

which is impossible. Hence ¢ = 0, i.e., M(®) = . By Lemma 3, M = W,,. This proves (ii).
To prove that (ii) = (iii), note that if M = W,, then M fixes the line {z:Re z =—b/2}=
Ly This completes the proof.

Define II to be the set of (real) M e} which satisfy (ii) of Lemma 6. Define D,, as
follows. If Ml let Dy, = Ly, If M€ (), let Dy, be the interior of the circle M*(L,,). For
all other M e Q, let Dy, be the interior of the circle M(L,,). If M € Q,, define D’to be the
interior of the circle M(L,,). (See Figures 1 through 5.) Note that since M is real and
conformal, the circles M(L,,) and M?(L,,) are orthogonal to the real axis.

= L, > ¢« L Ly =
M(Ly) = Ly M ML)
v
D
Dy m
L-
Figure 1. Mell Figure 2. MeQ,, M plussed

Lemmas 7 through 11 (below) show that if M is plussed (recall that this means
c(a+d)=0), then M(Ly,) = Dy, when M&Q,, and M(L}) = D}; and M*(Ly,) = D\, when
Me),. Lemmas 8 through 11 also verify that Dy, and D},are positioned as suggested by
Figures 2 through 5. We note that if wy €L, then Me();. For if wy =ir, then M=
0 -r
r 0

Lemma 7. If Mell, then M(Lyy) = Dy,

Proof. First suppose that M = W,,. Then M maps the points —b/2, —b/2+i, » to —b/2,
—b/2—-i, =, respectively. Thus M fixes Ly, but reverses its orientation. Therefore M(L3y) =
L= Dy

when r>0, and M is as given in Lemma 3 when r=0.
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L’M - ¢« L
M(Ly)
¥
wM
\ 0
w /
M
Figure 3. MeQ,, M plussed
LM - €« L
M( LM)s
Dy
U wM 0
Figure 4. MeQ\I1
LM -> MZ ( L ) ¢ L
M
0]

Figure 5. MeQ,, M plussed
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Now suppose that M =

b\ with det M= 1. If ¢ =0, then det M <0; hence c# 0.

Therefore, M maps the points (a —i)/c, a/c, (a+i)/c to (a—i)/c, =, (a+i)/c, respectively.
Consequently, M fixes L,, but reverses its orientation, so M(Lj})= Ly = Dy, This
completes the proof.

Lemma 8. If MeQ, is plussed, then Dy, < L™ N Ly and M(L}) = Dy,

Proof. It suffices to show that wy, <M()=<0. For then, clearly D, < L™ NLy,. Also,
since the upper half-plane is invariant under M, the sequence M(wys), M{wp +i), M()
will determine a clockwise orientation on M(L,,), so M(L}) = Dy,

If ¢=0, then by Lemma 3, M = W, for some p. Then det M = —1, which contradicts
the fact thatt M€ ,. Hence ¢ <0. As M is plussed, o =a+d <0. Hence vo*-4<-o.
Dividing by —2c¢ and then adding (a — d)/2c, we have

wy=(a—d—-JVo*—4)/2c < alc= M(x).
Finally, a/c =<0 because M€ P. This completes the proof.
Lemma 9. If M e, is plussed, then Dy,< L™ and M(L}) = Dy,.

Proof. It suffices to show that Re wy; < M()<0. As shown in the proof of Lemma 8,
¢<0, a/c=0, and a+d <0. Thus,

Re wy=(a—d)/2c<alc = M(»)<0.
LemMma 10. If M e Q,\II, then Dy < Ly, and M(Ly) = Dy,

Proof. It suffices to show that M(®) < w,,. For then, clearly Dy, < L},. Also, since M
maps the upper half-plane to the lower half-plane, the sequence M(wys), M(wy, + i), M()
will determine a clockwise orientation on M(L,,), so M(L},) = Dy,.

If ¢ =0, then M= W, for some p, which contradicts the fact that MeIl. Hence ¢ <0
and

M(»)=a/c<(a—1)/c = wy.
This completes the proof.

LemMma 11. If MeQ, is plussed, then D\, Ly, Dy<L NL}, M(Ly)=Dj},, and
M(D}y) = Dy,

Proof. As in the proof of Lemma 10, it suffices to show that
M(=) < wp < M?(0) <0.

Write M2=| 2
(&1 d2

This proves that M? is plussed and that M?e(),. Thus, the inequality wy <M?*(®)=<0
follows exactly as in the proof of Lemma 8.
If ¢c=0, then by Lemma 3, M = W,, which contradicts the fact that M €},. Hence

. Since M is plussed, ¢,=c(a+d)=0. Also, a,+d,=(a+d)*+2=2.
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¢ <0. Clearly,
—(d+a)<V(a+dP+a.
Dividing by —2c¢ and then adding (a — d)/2¢c, we have
M(®)=a/c<(a—d—-V(a+d)>+4)/2c=wy.
This completes the proof.
LeEmMA 12. Define Oy = LU Dy, If M is plussed, then M"(ccl Oy) < Oy, for all n such

that M"# I,
Proof. Case 1: MeQ,. We have M(L})= Dy <Ly, by Lemma 8, and hence
ML) < Dy <Oy (n>0). 2)
Also, M~ '(ccl Dy) = L3<ccl Dy, and hence
M™"(ccl Dyy) < Lyyc Oy (n>0). 3)

Since ccl Gy, = L,MNccl Dy, the desired result follows from (2) and (3).
Case 2: Me(,. Let q be the order of M. Fix teccl0, Let K. =

{ze C*:|t,(2)| = |ty(7)|} where ¢, = H _w’,"l. If TeR, then K, = R*. If 7¢R, then K, is a
—ol
circle through 7 such that M(K,)= K.. (This can be shown using the formula #{(W(7r))=

p~2t() which occurs in [1, p. 112).) If Im >0, then K, ={z:Im z>0} and w,, is inside
K,; if Im 1 <0, then K, ={z:Im z <0} and w), is inside K,. Thus K, N@,, is an arc or a
ray. (See Figure 6.) By Lemma 9, M(L})= D,, and hence also M '(ccl D);)= Ly,
Consequently, M(7) € 0,, and M~(7) € 0,,. We claim that the points 7, M(7), ..., M (1)
occur in that cyclic order on K. To see this, choose a complex linear fractional
transformation Y such that Y() and Y(0) are the fixed points of M. Then X = Y 'MY =
u

0 1Ju for some complex u#0. We have a = X%a)= u*a for all a, so u??=1. Since

“Q
T
0
Wy
Y

Figure 6

Ly
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MeQ,, u*=exp(x2mi/q). Let a = Y~'(7). The points a, X(a), X*(a), ..., X9 '(a) occur
in that cyclic order on Y™ 'K, This proves the claim. It follows that the points
M(7), ..., M3 Y(7) all lie on K, N Oy Thus M"(7) € O for all n such that M"# L.

Case 3: Me(),. By Lemmas 7 and 10,

Miccl Oy) = M(LY) =Dy L= 0y

Since M is an involution, this is the desired result.
Case 4: Me(),. By Lemma 11, M*(L})= Dy < L}, and hence

M*™LycDu<cOy  (n>0). 4)
Also, M~?(ccl Dy,) = Ly, ccl Dy, and hence
M™2"(ccl D) € Lyy© Op (n>0). 5)
For all n>0, we have, by (5) and Lemma 11,
M2 Y(Ly) = M™2"(Dy) = M~2"(ccl Dyy) < Oy 6)
For all n>0, we have, by (4) and Lemma 11,
M YLy) € M~ (Dyy) = Dy < Ly < Opy. (7)

The desired result now follows from (4), (5), (6) and (7). This completes the proof.

6. Proofs of Theorems 1 and 2.

Proof of Theorem 1. By Theorem 4, there exist L-maps Q; and Q, such that
X=Q7'AQ, and Y=Q3;'BQ, are real. Since AeQ and Q, is an L-map, XeQ.
Similarly, Y (). We may assume without loss of generality that X is plussed, otherwise
replace A by A™'. Similarly, assume that Y is plussed. Let Z=Y™Y (recall that

W= (1) _2‘) Note that Z = Q3'CQ;, where Q;= QY. Define Oy and O, as in Lemma

12. Note that Oy < L~ and W(0,)< L* (see Figures 1 through 5). Since Q, and Q, are
L-maps, 0;= Q,(0x)= L™ and 0= Q;(W(0Oy))<=L". Define F=ccl(0,U 0,). Since, by
hypothesis, at least one of A and C fixes no point of L, we have F# . To see this,
suppose, for example, that A fixes no point of L. Then X fixes no point of L, so
L™ Nccl(0x) # D (see Figures 1 through 5). Thus L™ Ncel(0,) # &, so F# .

To show that (A, C) is the discrete free product (A)#*(C), we will show that for every
nontrivial reduced word U in (A, C), U(F)N F= . To show this, it suffices to prove that
for all integers n such that A"# [,

A"(FUO,)cO,, (8)
and that for all integers n such that C"# I,

C(FUO,)<0;. )
We give an example to illustrate why it suffices to prove (8) and (9). Let 7€ F and let U
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be the reduced word AC3A* By (8), 1,=A%re€0,. By (9), ,=C>r,€0,. By (8),
U(r)=A’1,e0,, so U(1)2F.

Putting M= X in Lemma 12, we have X"(ccl Ox)< Ox for all n such that X"# IL.
Since

Qi (ccl Ox) = ccl(Q4(Ox)) = ccl(0),

it follows that A"(ccl 0,) = @, for all n such that A"# I This yields (8). Putting M= Y in
Lemma 12, we have WZ"W(ccl 0y) < @, for all n such that Z"# I. Hence C"(ccl 0;) < 0,
for all n such that C"# I This yields (9) and completes the proof.

Before proving Theorem 2, we prove the following lemma.

LemMA 13. Let A and C be linear fractional transformations of order 2 such that A# C
and AC is not elliptic. Then (A, C) is the discrete free product (A)*(C).

Proof. The reduced words in (A, C) are the words alternating in the symbols A and
C, e.g., ACACACA. Since A# C, AC# I Since AC is not elliptic, AC has infinite order.
Hence (A, C)=(A)#*(C). Moreover, by [3, Theorem 1E, p. 87], (AC) is discrete. Since
[{A, C):(AC)]=2, it follows that (A, C) is discrete. This completes the proof.

Proof of Theorem 2. If {A, C}={W, T,} for some u, clearly (A, C) is not the free
product of {A) and (C). Conversely, assume that for every u, {A, C} 2 {W, T,}. It may be
assumed that both A and C have a fixed point on L, otherwise (A, C) is the discrete free
product {(A)*(C) by Theorem 1. As W(L)=L, B also has a fixed point on L. Let

b
Me{A, B} (where we write M = ’: d’ with a, b=0 and ¢, d =0). If M fixes 0 or =, then
M=W, (with b=0) or M= W, (with ¢=0) by Lemma 3. If M fixes a point ui

a —cu’

(0<u <), then an easy calculation shows that M= . But since the diagonal

elements of M cannot both be positive or negative, a = 0. Hence M = T,.. Since for every u,
{A, C}z{W, T,}, (A, C) is one of the following groups or their transposes:

G, =(W, W) (r=0,5s>0), (10)

G,=(WLW,) (r>0,5>0), 11

G:=(W, T,)  (s#0), (12)
or

G,=(T, T,) (u>v>0). (13)

Let U; and V; be the first and second given generator of G, respectively (i=
1,2, 3,4). It remains to show that each G; is the discrete free product (U;)*(V;). It is
easily checked that U; and V, are involutions and that U,V; is not elliptic (i=1, 2, 3, 4).
(Note, for example, that U, V; is loxodromic.) Hence the result follows from Lemma 13
and the proof is complete.
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7. Transformations with fixed points on L. We discuss the structure of (A, C) where
AeQ, CeQV, and both A and C have a fixed point on L. The case where these fixed
points are equal is treated in Theorem 14; the remaining case is treated in Theorem 15.

THEOREM 14. Let AcQ and Ce QY. Suppose that A and C both fix we L. Then
(A, C) is the discrete free product (A)*{C) unless A= C.

Proof. If w# o, conjugate A and C by the L-map (1)

without loss of generality that w =. By Lemma 3, A=W, and C= W}Y= W_, for some
|1 u

1
. Thus we may assume
-

pair p, v. Suppose that A# C. Then AC= for some u# 0. The result thus follows

from Lemma 13.

TueEOREM 15. Let A € and Ce QY. Suppose that A fixes wa € L and C fixes wc€ L,
where w, # wc. Then there exists an L-map S such that AS =W, and C° = W, for some
pair p, v. Also (A, C) is the discrete free product (A)*{C) if and only if A# C and AC is

not elliptic.

01

Proof. We begin by proving the first assertion. If w, # ®, conjugate A and C by the

L-map (1) . Thus it may be assumed without loss of generality that w, =. Let S
—w,
be the L-map 0 -;)C\ (note that we# w, =). Then AS(®)=c0 and C5(0)=0. Since

(C)¥ e and (C5)¥(0)=0, it follows from Lemma 3 that AS= W, for some p and
C% =W, for some v. Hence C°=W:.

To prove the second assertion, assume that AC is elliptic. If AC has finite order, then
(A, C) is not the free product (A)*(C). If AC has infinite order, then (AC), and hence
(A, ©), is not discrete. Conversely, assume that A# C and that AC is not elliptic. By the
first assertion of this theorem, A and C are involutions. Thus (A, C) is the discrete free
product (A)*(C) by Lemma 13.
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