
BULLETIN 13 (1), 1970 
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BY 

JAMES S. W. WONG 

Consider the linear ordinary differential equation 
(1) x'(t) = Ax(t), t>0, 

where x e En, the «-dimensional Euclidean space and A is an n x n constant matrix. 
Using a matrix result of Sylvester and a stability result of Perron, Lyapunov [4] 
established the following theorem which is basic in the stability theory of ordinary 
differential equations: 

THEOREM (Lyapunov). The following three statements are equivalent: 
(I) The spectrum o(A) of A lies in the negative half plane. 

(II) Equation (1) is exponentially stable, i.e. there exist /x, K>0 such that every 
solution x(t) of (I) satisfies 

(2) l |x(0|l<^||^(^)| | e-"«-'0, t>t0>0 

where || || denotes the Euclidean norm. 
(III) There exists a positive definite symmetric matrix Q, i.e. Q=Q* and there 

exist qi,q2>0 such that 

(3) qiH\\2<(Q^0^2H\\2, f e F » , 

satisfying 

(4) QA+A*Q = - J , 

where I is the identity matrix. 

The purpose of this little note is to show that the above theorem remains valid 
if the underlying space En is replaced by an arbitrary Hilbert space ^f, and A, Q 
are meant to be bounded linear operators on 34?. We shall prove this result by 
establishing the sequence of implications (I) => (II) => (III) => (I). The proof that 
(I) => (II) is well known, in fact, it is valid under more general conditions (see, e.g., 
Massera and Schaffer [5] for Banach spaces and Almkvist [1] for Banach algebras). 
We present a proof of this for the sake of completeness. To show that (II) => (III), 
we modify an ingenious proof due to Bellman [2] for the finite dimensional case. 
The proof that (III) => (I) seems new. For a related extension of this result of 
Lyapunov to semigroups of operators on a Banach space with a continuous posi­
tive definite Hermitian form, we refer the reader to Datko [3] 

(/) => (//) Since a(A)^{\: Re A<0}, and a(A) is closed, there exists by the 
Spectral Mapping Theorem, a 8 > 0 such that v(eA) ç{A: |À |<e - ( î <l} . Consequently, 
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the spectral radius v(ei4)=limn_»00 ||ei4n||1/n<e""a, and there exists a positive in­
teger N such that \\eAN\\<e-0. Denote ^^swpo^^ \\eAt\\. Let t=kN+tl9 

where 0<^<iV. 
We observe 

= K e'iô,nXkN+t^ e{ômti<Ke~ôt, 

where K=KX eô, from which (II) readily follows. 

(77) => (777) Consider the operator Q defined by 

(5) Q= lim f eAHeAtdt. 
T-+*> Jo 

From (2), we have for £ e 2tf, 

(6) (eAH eA% 0 = ||e* £||2<7HI||2 e~™, 

hence the limit defined in (5) exists and defines a linear operator on 34?. It is also a 
bounded operator with the operator norm < K2/2fi. Clearly, Q = Q*9 and it remains 
to show that Q satisfies (3) and (4). Integrating (6), we have 

= P (eAH eAt t 0 dt = {" \\eAt £\\2 dt 
Jo Jo 

On the other hand, 

U\\2 = \\e-M e" è\\* < ||e-*||a||** *ll2 

( } < e2*(eM eAH $, 0, 

where p= \\A\\ is the operator norm of A. From (7), we have 

showing that Q satisfies (3). On the other hand, we have by a simple differentiation 
the following identity 

(8) ~ (eAH eAt) = eAH eAt A+A* eAH eAt. 

Since limf_>oo eAH eAt exists and defines the null operator on account of (6), we 
integrate (8) from 0 to oo to obtain (4). 
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(///) => (/) Let A G a(A). Since A-X= Q~KQA-\Q), 0 e a(QA-\Q). For a 
bounded linear operator T, we denote its numerical range by W(T)={(T£, f): 
If || = 1}. By Hausdorff-Toeplitz Theorem [6], we have 

0eW(QA-\Q)Q W(QA)-XW(QJ. 

Note that W(QA)={z: Rez= -1} and W(Q)={z: z>qt>0}9 it follows that 
Re A < - 1jqi < 0, proving (I). 
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