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A macroscale floating object moving downwards will encounter an increasing buoyancy
force exerted by the liquid. However, considering the surface tension and the deformed
meniscus, we find an exotic floating object of specific shape that withstands a constant
total force exerted by the liquid when it moves vertically and slowly. This constant total
force consists of the surface tension force and the hydrostatic pressure force, from which a
model to determine the shape of the exotic floating object is proposed. Results show that
there exist three types of exotic floating objects in both the two-dimensional symmetric
and axisymmetric cases, dependent on their concavity and convexity. To ensure that the
menisci around the exotic floating objects can be sustained in practice, the stabilities of
these menisci are checked. Apart from the meniscus stabilities (of liquid surfaces), the
floating stabilities (of solid objects) are also studied. It is demonstrated that the exotic
floating object remains in a critical state of floating stabilities no matter where this object
locates vertically, from which a new method to predict the floating stabilities for general
floating objects of arbitrary shape is put forward, based on the contact angle and the
geometrical parameters at the contact point. With the new method, the floating stabilities
can be predicted conveniently, without performing an extra force analysis.

Key words: capillary flows

1. Introduction

Phenomena of interfacial flotation are ubiquitous in nature and industry, including insects
capable of walking on the water surface (Bush & Hu 2006), self-assembly of mesoscale
objects driven by the capillary force (Bowden et al. 1997) and interfacial micro-robots (Hu
et al. 2018; Basualdo et al. 2021). The surface tension force plays an important role in the
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flotation of mesoscale or microscale objects, which can lead to complex phenomenology,
such as the non-uniqueness (a finite number) of equilibrium positions for a given weight
of floating object (for a review, see Vella 2015).

Under surface tension effects, two or more possible equilibrium menisci (denoting the
non-uniqueness of equilibrium menisci) may exist around the stationary solid of a special
shape (e.g. Finn 1988; Tan, Zhang & Zhou 2022). An exotic property that there exists a
continuum of distinct menisci in an axisymmetric container with a certain volume of liquid
was investigated (Callahan, Concus & Finn 1991; Concus & Finn 1991; Concus, Finn &
Weislogel 1999). The exotic property for existence of a continuum of distinct menisci in
(or around) an exotic cylinder (or tube) at an appropriate height in an infinite liquid with a
pressure constraint was then investigated (Wente 2011; Zhang & Zhou 2020a). Eight types
of general exotic tubes under positive and negative loads were depicted (Zhang & Zhou
2020b). Inspired by the non-uniqueness of (vertical) equilibrium positions of a floating
object and the exotic property with a continuum of distinct menisci, we put forward and
study an interesting exotic floating object, which can permit a continuum of (vertical)
equilibrium positions if its weight is kept counterbalanced by the constant total force from
the liquid (including the surface tension force and the hydrostatic pressure force).

The equilibrium positions of a small floating object affected by the surface tension force
depend on the meniscus shape, which can be calculated by the well-known Young–Laplace
equation together with Young’s relation as the boundary condition. Although retaining
the nonlinearity, the Young–Laplace equation can be solved under the two-dimensional
hypothesis (Bhatnagar & Finn 2016). The equilibrium configurations of an infinite
horizontal cylinder floating in an unbounded bath can be determined by a force analysis
approach (Bhatnagar & Finn 2006; Vella, Lee & Kim 2006). Further research shows that
the total force exerted by the liquid is exactly equal to the total weight of liquid displaced
by the wetted solid surface and the deformed meniscus (Keller 1998; Mccuan & Treinen
2013), while the volume of the displaced liquid is not easy to obtain. Decomposing the
hydrostatic pressure force into the quasi-buoyancy force (proportional to the volume of
submerged solid) and the compensating pressure force with Green’s theorem, Zhang, Zhou
& Zhu (2018) proposed a model that can be used to calculate the total force exerted by
the liquid for an arbitrary two-dimensional floating object. With this model, the vertical
equilibria and the floating stabilities in two dimensions can both be determined.

Apart from the floating stability problems (for solid objects) in interfacial flotation, there
are also meniscus stability problems (for liquid surfaces). An equilibrium configuration for
interfacial flotation could exist in practice on the implicit premise that the menisci around
the floating object are stable. The contact line boundary condition and the geometry of
the solid surface can both influence the stabilities of menisci (for a review, see Bostwick
& Steen 2015). The stability of a meniscus can be determined by the direct computation
method (Myshkis et al. 1987; Slobozhanin & Perales 1993; Pesci et al. 2015) and the
bifurcation diagram method (Maddocks 1987; Lowry & Steen 1995). Based on the direct
computation method, the stability of a meniscus can also be predicted by comparing the
boundary parameter χ and the critical boundary parameter χ∗ (Slobozhanin & Tyuptsov
1974; Slobozhanin & Alexander 2003), whereas χ∗ is still obtained by solving the
Sturm–Liouville problem L0φ0 = 0 directly.

For the exotic cylinder (or tube) that permits a continuum of equilibrium menisci
(Wente 2011; Zhang & Zhou 2020a), Zhang & Zhou (2020a,b) showed that its boundary
parameter is exactly equal to the critical boundary parameter χ∗. Based on this finding, the
stability of a meniscus meeting an arbitrary solid surface can be predicted by comparing
the boundary parameter and the critical one (of the exotic cylinder), without solving the
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Sturm–Liouville problem. This critical parameter comparison method (based on the exotic
cylinder) can also be applied to determine effectively the stabilities of menisci around the
exotic floating object proposed in this paper. The exotic cylinder corresponds essentially to
a critical state of meniscus stabilities (for general liquid surfaces). Likewise, the proposed
exotic floating object may provide new insights into floating stabilities (for general floating
solid objects).

The exotic floating object is investigated theoretically, and its application to the floating
stability analysis is then studied in this paper. In § 2, the geometry property of the
exotic floating object is derived by calculating the surrounding meniscus shape and
performing the force analysis. In § 3, based on the geometry property, the shapes of the
exotic floating objects are determined numerically and classified into three types. The
stabilities of menisci around the exotic floating object are examined to guarantee that
these exotic floating configurations can exist in practice. In § 4, developed from our exotic
flotation theory, a new and equivalent criterion is proposed to predict stabilities of general
symmetric floating objects, and related examples using the new method are given. In § 5,
the main conclusions are drawn from the analysis.

2. Model

According to Archimedes’ principle, to press a floating solid object of macroscale into
deeper water very slowly, the pressing force tends to get larger and larger due to an
increasing volume of the immersed solid. However, this may not be the case for the floating
object of mesoscale or microscale under surface tension effects. At a uniform contact
angle, an exotic floating object of two-dimensional (2-D) or axial symmetry is proposed
here, which can be pressed into (or pulled up from) the infinite liquid bath steadily by a
constant vertical force f , as shown in figure 1. During the movement, the exotic floating
object stays in force balance. If we regard this constant external force f as an extra part
of the constant weight of the exotic floating object, then it can be claimed that the exotic
floating object can permit infinitely many continuous vertical equilibrium positions.

2.1. Two-dimensional and axisymmetric menisci
Considering the meniscus in equilibrium, its shape is governed by the known
Young–Laplace equation. The lengths are scaled relative to the capillary length lc =√
σ/ρg, where σ denotes the surface tension coefficient, and ρ denotes the density

difference between liquid and gas (while the density of the gas is neglected).
For the 2-D case, if the meniscus extends infinitely to the right (see red curves of x > 0

in figure 1), then its dimensionless shape ũ(x̃) can be obtained by a first integral of the
2-D Young–Laplace equation (Huh & Scriven 1969; Finn 1986; Bhatnagar & Finn 2016),
which gives

ũ = −2 sin
ψ̃

2
, (2.1a)

x̃ − x̃0 = −2 cos
ψ̃

2
+ 2 cos

ψ̃0

2
− ln

(
tan ψ̃/4

tan ψ̃0/4

)
, (2.1b)

where ˜( · ) indicates that the quantity is related to the meniscus, ˜( · )0 indicates that the
quantity is evaluated for the meniscus at the contact point, and ψ̃ denotes the inclination
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Figure 1. Cross-section schematic of a symmetric solid object floating in an unbounded liquid bath. For the
2-D-symmetric case, the origin of the dimensionless Cartesian coordinates (x, u) is located on the symmetry
axis (while for the axisymmetric case, the dimensionless cylindrical coordinates (r, u) are used instead). The
height of the undisturbed liquid surface at infinity is set as u = 0. The (side) shape of this solid object at a
contact angle θ is expressed as x( y) for the 2-D-symmetric case, or r( y) for the axisymmetric case. At the
contact point A, ϕ denotes the angle between the normal of the solid surface and the horizontal line; ψ̃ denotes
the inclination angle of the meniscus. Here, ϕ and ψ̃ are both measured anticlockwise starting from the positive
x axis. Under a constant vertical force f , the solid object moves down from the initial equilibrium configuration
(see orange region and solid red curves) to another (see dashed black and dashed red curves). Points A and A′
correspond to the same point on the solid for the two configurations.

angle of the meniscus (which varies for different points on the meniscus). The boundary
condition for the meniscus at infinity is satisfied automatically in (2.1).

For the axisymmetric case, the dimensionless cylindrical coordinates (r, u) and the
dimensionless axisymmetric menisci shape ũ(r̃) are used instead. Accordingly, the exotic
floating object and the surrounding menisci in figure 1 are regarded as axisymmetric.
The Young–Laplace equation for the axisymmetric meniscus of unbounded extent can
be expressed in the parametric form (Huh & Scriven 1969)

dr̃(ψ̃)

dψ̃
= r̃ cos ψ̃

r̃ũ − sin ψ̃
,

dũ(ψ̃)

dψ̃
= r̃ sin ψ̃

r̃ũ − sin ψ̃
. (2.2a,b)

The associated boundary conditions at the contact point give

ψ̃ = ψ̃0, for r̃ = r̃0. (2.3)

For the associated boundary condition at infinity (r̃ → +∞), both the values of ψ̃ and ũ
tend to 0, which makes it impractical to implement a numerical scheme for (2.2a,b) since
the singularity occurs at ũ = ψ̃ = 0. Therefore, an asymptotic prediction at very small
values of ũ and ψ̃ is used as the boundary condition far from the contact point, which is
given by (Huh & Scriven 1969)

ũ∗ = − tan ψ̃∗ K0(r̃∗)/K1(r̃∗), for r̃ = r̃∗, (2.4)

where Ki denotes the modified Bessel function of the second kind of order i (i = 0 and
1 here). As ψ̃∗ tends to 0, ũ∗(r̃∗) in (2.4) exhibits good convergence and accuracy as
the asymptotic solution of the Young–Laplace equation in the axisymmetric case (Huh
& Scriven 1969). In our calculations, ψ̃∗ of small value is set as ψ̃∗ = ±0.001◦, where
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the sign is the same as ψ̃0 in (2.3). The shooting method is used to solve the two-point
boundary value problem (2.2)–(2.4). By guessing a value of r̃∗ > 0, we can integrate (2.2)
numerically from the initial point ψ̃ = ψ̃∗ to the end point ψ̃ = ψ̃0 with the Runge–Kutta
method. At ψ̃ = ψ̃0, r̃ may not be equal to r̃0, so the secant method is applied to adjust
r̃∗ to satisfy (2.3). With a proper r̃∗, the axisymmetric meniscus shape ũ(r̃) satisfying
(2.2)–(2.4) can be determined.

2.2. Force analysis for symmetric floating objects
Although dimensionless lengths have been adopted in § 2.1, we use the dimensional forms
for all physical quantities to aid in the comprehension of the force derivation temporarily.
But at the end of this derivation, the dimensionless scaling will be adopted again. For
a floating object of arbitrary shape in two dimensions, Zhang et al. (2018) proposed a
convenient model to calculate its vertical resultant force (including the weight force and
the total force exerted by the liquid), which is obviously applicable for 2-D-symmetric
floating objects. Our investigation suggests that this model can also be extended to the
axisymmetric floating objects.

The forces acting on the 2-D-symmetric or axisymmetric floating object are the surface
tension force F σ , the hydrostatic pressure force F p and the weight force F g, as shown
in figure 2. The total force exerted by the liquid is the sum of F σ and F p. The vertical
component of the surface tension force can be expressed as

Fσ,v =
{

2σ sinψ, for the 2-D-symmetric case,
2πR0σ sinψ, for the axisymmetric case,

(2.5)

where ψ denotes the inclination angle of the meniscus for the contact point on the solid
surface. For the floating object with an undetermined vertical position, ψ varies as the
contact point moves on the solid surface. Obviously, there is ψ = ψ̃0 for a prescribed
position of the contact point. The vertical component of the hydrostatic pressure force is
calculated by integrating the hydrostatic pressure p (where p = −ρgU) over the wetted
solid surface (see thick black curve Σ in figure 2), which gives

Fp,v =

⎧⎪⎪⎨
⎪⎪⎩

−
∫
Σ

ρgU sinα ds, for the 2-D-symmetric case,

−
∫
Σ

2πRρgU sinα ds, for the axisymmetric case,
(2.6)

where s denotes the arc length coordinate, and α denotes the direction angle of the local
hydrostatic pressure (see figure 2). The local hydrostatic pressure is always normal to the
solid surface, which implies the relationship sinα ds = dX (or sinα ds = dR).

Following Zhang et al. (2018), we imagine that there exists fictitious hydrostatic pressure
p′ = −ρgU0 acting on the waterline (see blue curve Σ ′ and dashed blue arrows in
figure 2). Applying Green’s theorem for the anticlockwise closed curve merged by Σ
and Σ ′, we have

−
∮
Σ+Σ ′

ρgU sinα ds = ρgSb, for the 2-D-symmetric case,

−
∮
Σ+Σ ′

2πRρgU sinα ds = ρgVb, for the axisymmetric case,

⎫⎪⎪⎬
⎪⎪⎭ (2.7)

where Sb (Vb) denotes the area (volume) of the solid part immersed in liquid (see orange
region in figure 2). For the waterline Σ ′, we have U = U0 and α = −π/2. Thus the
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σ
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p′

σ

g

ψ

U

X or R

Σ

Σ′

α

Undisturbed interface

(X0, U0) or (R0, U0)  

Figure 2. Force diagram for a symmetric solid object floating in an infinite liquid bath. For the 2-D-symmetric
case, the dimensional Cartesian coordinate system (X,U) is utilized, while for the axisymmetric case, the
dimensional cylindrical coordinate system (R,U) is utilized. The contact point on the right locates at (X0,U0)

or (R0,U0). The anticlockwise thick black curve (or generatrix)Σ and blue curve (or generatrix)Σ ′ correspond
to the wetted solid surface and the waterline, respectively. The submerged solid part (orange region) is enclosed
by Σ and Σ ′. The surface tension σ , the actual hydrostatic pressure p, and the fictitious hydrostatic pressure
p′ are denoted by green, orange and dashed blue arrows, respectively. The direction angle α for the local
hydrostatic pressure is measured anticlockwise from the positive X axis.

fictitious pressure force acting on Σ ′ can be reduced to the form

−
∫
Σ ′
ρgU sinα ds = 2ρgX0U0, for the 2-D-symmetric case,

−
∫
Σ ′

2πRρgU sinα ds = ρgπR2
0U0, for the axisymmetric case,

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where the integration on Σ ′ is performed from right to left. Comparing (2.6)–(2.8), the
vertical component of the hydrostatic pressure force can be expressed in the simple form

Fp,v =
{
ρg(Sb − 2X0U0), for the 2-D-symmetric case,

ρg(Vb − πR2
0U0), for the axisymmetric case.

(2.9)

Adding the three vertical force components Fσ,v , Fp,v and Fg (norm of the weight force
F g), we can obtain the dimensional vertical resultant force

Fv =
{

2σ sinψ + ρg(Sb − 2X0U0)− Fg, for the 2-D-symmetric case,

2πR0σ sinψ + ρg(Vb − πR2
0U0)− Fg, for the axisymmetric case.

(2.10)

The following dimensionless sizes (including the area or volume) and dimensionless force
components are used in this paper:

{
fv, fg

} =
{
Fv,Fg

}
σ

, {x, u, sb} = {X0,U0, Sb/lc}
lc

, for the 2-D-symmetric case,

{
fv, fg

} =
{
Fv,Fg

}
σ lc

, {r, u, vb} =
{
R0,U0,Vb/l2c

}
lc

, for the axisymmetric case.

⎫⎪⎪⎬
⎪⎪⎭

(2.11)
Substituting (2.11) into (2.10), the dimensionless form of the vertical resultant force gives

fv =
{

2 sinψ + sb − 2xu − fg, for the 2-D-symmetric case,

2πr sinψ + vb − πr2u − fg, for the axisymmetric case.
(2.12a,b)
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For a prescribed contact point, the dimensionless height u can be obtained from (2.1a)
for the 2-D-symmetric case, or from the ordinary differential equation (ODE) system
(2.2)–(2.4) for the axisymmetric case. Notably, (2.12) is applicable under the precondition
that the menisci around the floating object are stable; otherwise, the floating configuration
cannot exist in practice.

For the exotic floating object of constant weight fg in both the 2-D-symmetric and
axisymmetric cases, its ‘exotic’ property indicates that the vertical resultant force fv
remains constant no matter where the exotic floating object locates vertically, which gives

fv ≡ const. (2.13)

for the exotic floating object; fv of non-zero constant can be counterbalanced by the
constant external force f (see in figure 1), where f = −fv . With (2.12) and (2.13), the
relation between the ‘exotic’ property and the geometrical shape for the exotic floating
object will be constructed. Only the vertical equilibrium is considered because the
horizontal equilibrium and the rotational equilibrium are satisfied automatically from the
symmetry of the exotic floating object.

2.3. Curvatures of the exotic floating objects
To determine directly the shape for the exotic floating object may be challenging, while
it is relatively easy to derive the curvature of the exotic floating object as a transitional
approach, from which the shape can also be obtained.

2.3.1. Two-dimensional-symmetric case
To determine the shape of a solid object moving vertically, it is advantageous to utilize
the coordinate system (x, y) that is fixed to the object. This system (x, y) is linked to the
coordinate system (x, u) fixed to the liquid through the floating height h (defined as the u
coordinate of y = 0 on the solid object; see points A and A′ in figure 1):

y = u − h. (2.14)

Due to the symmetry, only the right half configuration of x ≥ 0 is considered.
Introducing the arc length s, the solid shape x( y) can be expressed in the parametric form

d x(s)
ds

= − sinϕ,
dy(s)

ds
= cosϕ and

dϕ(s)
ds

= K, (2.15a–c)

where K in (2.15c) denotes the dimensionless curvature of the solid surface (K > 0 if
the solid surface is convex to the liquid). Once the curvature K is derived, the whole
solid shape curve can be obtained accordingly. In (2.15c), ϕ denotes the angle between
the normal of x( y) and the horizontal line (see figure 1). According to Young’s relation,
the normal angle ϕ for the solid surface is related to the inclination angle ψ for the liquid
surface as

ψ = θ + ϕ − π/2, at the contact point, (2.16)

where θ denotes the constant contact angle, and ψ and ϕ depend on the position of the
contact point on the solid surface (i.e. they are both functions of s).

For the exotic floating object, the contact point changes with the floating height h. In the
two coordinate systems (fixed to the solid and the liquid), both the coordinates (x, y) and
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(x, u) for the contact point are variable. For the 2-D-symmetric case, the differential of the
(constant) vertical resultant fv in (2.12a) gives

dfv = dsb − 2(x du + u d x)+ 2 sin(ϕ + θ) dϕ ≡ 0, (2.17)

where dsb denotes the differential of the solid area submerged in the liquid, given in simple
form by dsb = 2x dy. The first two terms in the middle represent the variation of the
hydrostatic pressure force, while the last term in the middle represents the variation of
the surface tension force. Essentially, the ‘exotic’ property is due to the relation that these
two variations keep counteracting each other.

In order to derive the curvature K in (2.15c), we try to transform dfv in terms of ds. From
(2.1a) and (2.16), du at the contact point can be expressed as

du = −sin
π + 2(θ + ϕ)

4
dϕ. (2.18)

Substituting (2.1a) and (2.18) into (2.17), dfv can be expressed in terms of d x, dy and dϕ.
With (2.15a–c), dfv is then expressed in terms of ds only:

dfv = 2
[

x cosϕ + 2 cos
π + 2(θ + ϕ)

4
+ K sin(θ + ϕ)+ Kx sin

π + 2(θ + ϕ)

4

]
ds.

(2.19)
By letting dfv in (2.19) be equal to zero, the solid surface curvature of the exotic floating
object for the 2-D-symmetric case can be obtained as

K̄2-D = −
x cosϕ + 2 cos

π + 2(θ + ϕ)

4
sinϕ

sin(θ + ϕ)+ x sin
π + 2(θ + ϕ)

4

. (2.20)

Substituting this curvature K̄2-D into (2.15c), the shape x( y) of the 2-D-symmetric exotic
floating object can be obtained by solving (2.15a–c).

2.3.2. Axisymmetric case
For the axisymmetric exotic floating object, we adopt the cylindrical coordinate system
(r, y) fixed to the solid to determine its shape. Similar to the 2-D-symmetric case, the
generatrix r( y) (where r ≥ 0) can be expressed in the parametric form of the arc length s:

dr(s)
ds

= − sinϕ,
dy(s)

ds
= cosϕ and

dϕ(s)
ds

= K, (2.21a–c)

where K denotes the dimensionless generatrix curvature of the solid surface (K > 0 if the
generatrix is convex to the liquid).

Following Zhang et al. (2018), we have developed an approach to calculating the vertical
resultant force for the axisymmetric floating object in (2.12b). Analogous to (2.17), we give
the differential of the (constant) vertical resultant fv in (2.12b) for the axisymmetric exotic
floating object as

dfv = dvb − πr2 du − 2π[ru + cos(θ + ϕ)] dr + 2πr sin(θ + ϕ) dϕ ≡ 0, (2.22)

where the differential of the submerged solid volume is dvb = πr2 dy.
For the axisymmetric case, the height u at the contact point depends on both the

corresponding radius r and inclination angle ψ , while it depends only on ψ for

973 A25-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.770
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the 2-D-symmetric case from (2.1a). At the contact point, the differential du for the
axisymmetric case can be expressed as

du(r, ψ) = ∂u
∂r

dr + ∂u
∂ψ

dψ, (2.23)

where u is short for u(r, ψ) on the right-hand side. At the contact point, the values of ∂u/∂r
and ∂u/∂ψ can be obtained during the determination of the corresponding axisymmetric
meniscus, which is seen in Appendix A.

From Young’s relation (2.16), we have dψ = dϕ for (2.23). Substituting (2.23) into
(2.22), dfv can be expressed in terms of dr, dy and dϕ, while these three can all be
expressed in terms of ds by (2.21a–c). Then dfv for the axisymmetric case is given by

dfv = π

{[
2 cos(θ + ϕ)+ 2ru + r2 ∂u

∂r

]
sinϕ

+r
[

2K sin(θ + ϕ)− rK
∂u
∂ψ

+ r cosϕ
]}

ds. (2.24)

For the exotic floating object, dfv in (2.24) is equal to zero, from which we can obtain its
generatrix curvature:

K̄axi =
r2 cosϕ + 2 sinϕ [ru + cos(θ + ϕ)] + r2 sinϕ

∂u
∂r

−2r sin(θ + ϕ)+ r2 ∂u
∂ψ

. (2.25)

In this paper, ( · )axi denotes the quantity for the axisymmetric case. Substituting this
curvature K̄axi into (2.21c) and solving (2.21a–c), the generatrix shape r( y) of the
axisymmetric exotic floating object can be determined.

3. Shape determination and existence of the exotic floating objects

3.1. Shapes of the exotic floating objects
With the curvatures given in (2.20) and (2.25), the shapes of the 2-D-symmetric
and axisymmetric exotic floating objects are obtained in this subsection. Through the
Runge–Kutta integration, the two ODE systems (2.15a–c) and (2.21a–c) are solved with
the initial conditions

x = xi, y = yi and ϕ = ϕi, for the 2-D-symmetric case,
r = ri, y = yi and ϕ = ϕi, for the axisymmetric case,

}
(3.1)

respectively. Since K̄2-D in (2.20) and K̄axi in (2.25) are both independent of y, the initial
value yi can be chosen arbitrarily, which will not influence the shape of the exotic floating
object but just change its vertical position. Without loss of generality, we set yi = 0 in
our calculations. Examples of exotic shape curves with the contact angle θ = π/3 and
the initial point (xi, yi) or (ri, yi) = (1, 0) are given in figure 3. Selecting an arbitrary
part of x ≥ 0 or r ≥ 0 for an exotic shape curve as the solid surface, we can obtain the
corresponding exotic floating object (see thick black curves and the corresponding inset
in figure 3b). With the increase of ϕi from −π/2 to π/2 (see figure 3a), three distinct
types of exotic shape curves are observed for both the 2-D-symmetric case (see left-hand
images in figures 3b–d) and the axisymmetric case (see right-hand images in figures 3b–d).
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Figure 3. Types of shape curves for the exotic floating objects at the contact angle θ = π/3 and the initial
point (xi, yi) or (ri, yi) = (1, 0). (a) Parameter intervals of ϕi for types I, II and III. The left-hand (right-hand)
image corresponds to the 2-D-symmetric (axisymmetric) case, similar to the other pairs of plots below.
(b–d) Exotic shape curves (in black) for types I, II and III, respectively. Each red curve denotes a possible
meniscus (for some floating height h), and the blue circles in (b,d) denote singular points with infinitely large
curvatures. The insets in (b) show the exotic floating objects corresponding to the thick black curves.
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When exploring various initial points and contact angles, we have not discovered any
additional types beyond these three.

No significant difference is found between the same type of exotic shape curves for
the 2-D-symmetric case and the axisymmetric case. The exotic shape curves of type II
(in figure 3c) stay concave to the liquid. In other words, K̄2-D < 0 or K̄axi < 0 for type
II. However, for types I and III (in figures 3b,d), the exotic shape curves are partially
convex and partially concave to the liquid, each with an inflection point (where K̄2-D = 0
or K̄axi = 0). The inflection points of the exotic shape curves in figures 3(b,d) are set on
the y axis deliberately, with the result that the exotic shape curves of type I (III) are convex
(concave) to the liquid for y < 0, and concave (convex) to the liquid for y > 0. In addition,
on the exotic shape curve of type I or type III, there exists a singular point (see blue circles
in figures 3b,d) where the curvature K̄2-D in (2.20) or K̄axi in (2.25) tends towards positive
infinity.

3.2. Stabilities of menisci around the exotic floating object
Despite the determination of the exotic floating object, the corresponding exotic flotation
phenomenon may not exist in practice due to the instabilities of the menisci around it.
Especially for the concave solid surface (see examples in figures 3b–d), the menisci around
it are more likely to be unstable and reconfigure spontaneously (Tan et al. 2022). To
examine the meniscus stabilities, the direct computation method (Myshkis et al. 1987;
Slobozhanin & Perales 1993; Pesci et al. 2015) can be a viable option by solving the
eigenvalue problem related to the second variation of the total energy functional, while
the direct computation method has been developed further into a critical parameter
comparison method (Zhang & Zhou 2020a,b), which enables us to determine the meniscus
stabilities with only the physical parameters at the contact point. For convenience, the
critical parameter comparison method is utilized in this subsection to determine the
stabilities of menisci around the exotic floating object.

3.2.1. Two-dimensional-symmetric case
To find out whether a 2-D meniscus without volume constraint is stable or not, the potential
energy functional of the whole capillary system can be derived. The second variation of
the potential energy functional gives the unified eigenvalue problem in two dimensions
(Myshkis et al. 1987; Bostwick & Steen 2015; Zhang & Zhou 2020a):

−φ′′
0 + (3 cosψ − 2)φ0 = λφ0, for the meniscus,

φ′
0 + χφ0 = 0, at the contact point,

}
(3.2)

where φ0 denotes the allowable disturbance for the 2-D meniscus, ( · )′ denotes the
derivative with respect to the arc length s along the meniscus, λ denotes the eigenvalue,
and the boundary parameter χ of the solid surface at the contact point is expressed as
(Zhang & Zhou 2020a)

χ =
−2 sin

ψ

2
cos θ + K

sin θ
, (3.3)

where K denotes the signed curvature of the solid surface at the contact point. It should
be noted that in this study, the right half configuration (of x ≥ 0) is considered, and the
curvature of the solid surface convex towards the liquid is defined as positive, possibly
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leading to a sign difference between (3.3) and the literature (e.g. Zhang & Zhou 2020a;
Tan et al. 2022).

The eigenvalues of the Sturm–Liouville problem (3.2) are real and can be sorted as λ1 <
λ2 < λ3 < · · · < λn < · · · < +∞. The lowest eigenvalue λ1 in (3.2) dictates the stabilities
of the meniscus. Specifically, the meniscus is stable (unstable) if λ1 > 0 (λ1 < 0), and
the stable meniscus indicates a local minimum of the potential energy functional. It is
feasible but laborious to solve (3.2) directly for the value of λ1, so an alternative approach
is employed here. According to the modal monotonicity (Myshkis et al. 1987; Bostwick
& Steen 2015), the function λ1(χ) increases monotonically with χ . Consequently, there
can exist a critical boundary parameter χ∗ satisfying λ1(χ

∗) = 0, and the stable condition
λ1 > 0 for the meniscus is equivalent to

χ − χ∗ > 0. (3.4)

The total potential energies for all possible equilibrium menisci around the exotic
cylinder are exactly the same (Wente 2011; Zhang & Zhou 2020a). This remarkable
property indicates that all the possible menisci around the exotic cylinder are in critical
stable states of λ1 = 0 and χ = χ∗, which has been shown in Zhang & Zhou (2020a). It
should be emphasized that the proposed exotic floating object is distinct from the exotic
cylinder (which is typically considered as stationary, not floating). The related discussion
about the exotic cylinder is available in Appendix B. For a certain meniscus meeting a
certain solid surface (with ψ and θ known in (3.3)), substituting the (critical) curvature
K∗

2-D of the 2-D exotic cylinder in (B3) into (3.3), we can obtain the critical boundary
parameter χ∗ for the 2-D case as

χ∗ = − cosψ

cos
ψ

2

. (3.5)

Using the critical parameter comparison method (3.3)–(3.5), the stability of a 2-D
meniscus meeting an arbitrary solid surface can be determined. This method is used to
predict the stabilities of menisci around the exotic floating object. As the floating height
h changes, every point on the solid surface of the exotic floating object may serve as the
contact point, and every contact point corresponds to a meniscus in equilibrium. At a
given contact point, the curvature of the solid surface can be obtained from (2.20), and the
meniscus inclination angle can be obtained from (2.16), enabling the calculation of both
the boundary parameter χ in (3.3) and the critical boundary parameter χ∗ in (3.5). The
stabilities of all the possible menisci around the 2-D-symmetric exotic floating object are
then assessed using the criterion (3.4).

For the shape curves of the 2-D-symmetric exotic floating objects (in figure 3), the
values of χ − χ∗ at different contact points are shown in figure 4. All the possible menisci
around these 2-D-symmetric exotic floating objects are stable because χ − χ∗ > 0. At a
large value of x, χ − χ∗ for the exotic floating object of type I and type III is close to that
of type II. This is because the exotic curve shapes of type I and type III (in figures 3b,d)
become increasingly similar to those of type II (in figure 3c) as x increases. As x decreases
for type I and type III, the contact point gets closer to the singular point (see blue circles
in figures 3b,d), and the meniscus stability is enhanced due to the increase of the (convex)
solid surface curvature. For a singular contact point of positive infinite curvature, the
corresponding meniscus is actually pinned at a sharp edge (Zhang & Zhou 2020b), whose
stability is the most stable (with χ − χ∗ → +∞).
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Figure 4. The meniscus stabilities for different contact points on the 2-D-symmetric exotic floating objects.
The boundary parameters are obtained from the shape curves of the 2-D-symmetric exotic floating objects (see
black curves in left-hand images of figures 3b–d). All the corresponding menisci are stable because χ − χ∗ >0.

3.2.2. Axisymmetric case
Previous research (e.g. Myshkis et al. 1987; Slobozhanin & Alexander 2003) has shown
that axisymmetric disturbances pose a greater threat to the stability of an axisymmetric
meniscus in the absence of volume constraint, compared to non-axisymmetric
disturbances. Consequently, considering only the axisymmetric disturbance is sufficient
for stability analysis on the axisymmetric menisci. Under the axisymmetric disturbance,
the eigenvalue problem for the axisymmetric meniscus is given by (Myshkis et al. 1987;
Bostwick & Steen 2015; Zhang & Zhou 2020a)

−φ′′
0 − r′

r
φ′

0 +
[

cosψ − (ψ ′)2 − sin2ψ

r2

]
φ0 = λφ0, for the meniscus,

φ′
0 + χφ0 = 0, at the contact point,

⎫⎬
⎭ (3.6)

where ( · )′ denotes the derivative with respect to the arc length s along the meniscus
generatrix. The boundary parameter χ of the solid surface generatrix at the contact point
is expressed as (Myshkis et al. 1987; Bostwick & Steen 2015; Zhang & Zhou 2020a)

χ =

(
u − sinψ

r

)
cos θ + K

sin θ
, (3.7)

where the height u at the contact point is determined by the ODE system (2.2)–(2.4), and
K denotes the curvature of the solid surface generatrix at the contact point.

Due to the modal monotonicity (Myshkis et al. 1987; Bostwick & Steen 2015), the
stable condition that the lowest eigenvalue satisfies λ1(χ) > 0 can be transformed into
the comparison of the boundary parameter and the critical one:

χ − χ∗ > 0. (3.8)

Similar to the 2-D case, all the possible menisci around the axisymmetric exotic cylinder
are also in critical stable states of λ1 = 0 and χ = χ∗ (Zhang & Zhou 2020a). For the
axisymmetric meniscus, the critical boundary parameter χ∗ is obtained by substituting the
(critical) generatrix curvature K∗

axi of the axisymmetric exotic cylinder in (B6) together
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Figure 5. The meniscus stabilities for different contact points on the axisymmetric exotic floating objects. The
boundary parameters are obtained from the shape curves for the axisymmetric exotic floating objects (see black
curves in right-hand images of figures 3b–d). All the corresponding menisci are stable because χ − χ∗ > 0.

with the partial derivative relation (A2) into (3.7), which gives

χ∗ =
cosψ + sinψ

∂u
∂r

∂u
∂ψ

, (3.9)

where the determination of ∂u/∂r and ∂u/∂ψ at the contact point is discussed in
Appendix A. Using the critical parameter comparison method (3.7)–(3.9), the stability
of an axisymmetric meniscus meeting an arbitrary solid surface of axial symmetry can be
determined.

For a variable floating height h, the menisci around the axisymmetric exotic floating
object may meet any (contact) point on the generatrix of the axisymmetric exotic floating
object. The meniscus stabilities are assessed using the criterion (3.8). For the shape curves
of the axisymmetric exotic floating objects in figure 3, the associated values of χ − χ∗
are shown in figure 5. The curves of χ − χ∗ for the axisymmetric case are similar to the
2-D-symmetric case (in figure 4), and all the possible menisci around these axisymmetric
exotic floating objects are stable. For the exotic curves with the initial condition xi > 0
or ri > 0 and −π/2 ≤ ϕi ≤ π/2, we have not found any unstable equilibrium meniscus
around the exotic floating object at a contact angle θ between 0 and π. In conclusion, the
exotic flotation phenomenon can exist in practice.

4. New method for floating stability analysis of general symmetric floating objects

For the interfacial flotation, not only the menisci but also the floating object can
be unstable. Accordingly, the stabilities can be classified into the meniscus stabilities
for liquid surfaces and the floating stabilities for solid objects. The critical parameter
comparison method (see (3.3)–(3.5) and (3.7)–(3.9)) to assess the meniscus stabilities
has been inspired by the exotic cylinder (Zhang & Zhou 2020a,b). Likewise, from the
proposed exotic floating object, a new method can also be developed to analyse the
(vertical) stabilities of general symmetric floating objects.
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Exotic flotation with application to stability analysis

4.1. Two-dimensional-symmetric case
For a solid floating object (regardless of dimensions, symmetry and shape) in an
equilibrium state (i.e. fv = 0), its vertical stability can be predicted by the vertical resultant
force profile (Bhatnagar & Finn 2006; Chen & Siegel 2018; Zhang et al. 2018). The floating
object is vertically stable if

d fv
dh

< 0, (4.1)

i.e. the movement direction of the solid (sign of dh) is opposite to the direction of the
corresponding restoring force (sign of dfv). Generally, we will try to obtain the function
fv(h) to use (4.1) directly. Nevertheless, the determination of fv(h) may be arduous, as it is
heavily dependent on the whole solid shape.

From (2.14), the floating height h is related by the u coordinate and the y coordinate of
the contact point. The differential of (2.14) gives

dh = du − dy. (4.2)

Substituting (2.18) and (2.15b,c) into (4.2) in turn, dh for the 2-D-symmetric case can be
expressed in terms of ds:

dh = −
[

cosϕ + K sin
π + 2(θ + ϕ)

4

]
ds. (4.3)

For a 2-D-symmetric floating object, only the right half configuration of x ≥ 0 is taken
into account. Substituting (2.19) and (4.3) into (4.1) gives

dfv
dh

=
x cosϕ + 2 cos

π + 2(θ + ϕ)

4
sinϕ + K

[
sin(θ + ϕ)+ x sin

π + 2(θ + ϕ)

4

]

−1
2

[
cosϕ + K sin

π + 2(θ + ϕ)

4

] .

(4.4)
From (4.4), besides the the contact angle θ , the floating stability is actually related to the
geometrical parameters (i.e. x, ϕ and K) at the contact point only, rather than the whole
solid surface. Likewise, the meniscus stability is related to the parameters only at the
contact point (see (3.3)–(3.5) or (3.7)–(3.9)), rather than the whole meniscus profile.

Comparing (4.4) and (2.20), the numerator on the right-hand side of (4.4) can be
expressed in terms of K̄2-D. So the original stability criterion (4.1) can be expressed in
terms of K̄2-D, giving the new stability criterion as

dfv
dh

= (K − K̄2-D)m < 0,

m = −
2
[

sin(θ + ϕ)+ x sin
π + 2(θ + ϕ)

4

]

cosϕ + K sin
π + 2(θ + ϕ)

4

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.5a,b)

From (4.5), dfv/dh is equal to zero if the local curvature is K = K̄2-D. Similar to the exotic
cylinder (whose curvature K∗

2-D is critical for the 2-D meniscus stability), the curvature
K̄2-D of the exotic flotation is critical for the stabilities of 2-D-symmetric floating objects.

For a 2-D-symmetric floating object whose solid surface x( y) is smooth and convex
everywhere, such as horizontally placed uniform cylinders and ellipses, we can deduce
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dy/d x|x=0 = 0 from the symmetry and K > 0 from the convexity. This implies that
there are two points of x = 0 on the solid surface with ϕ = π/2 and −π/2, and ϕ is
monotonic along the right half solid surface (see (2.15c)). Thus, on the smooth and convex
solid surface, we have −π/2 ≤ ϕ ≤ π/2 and K > 0 for the right half side of x ≥ 0. An
observation can be made that if −π/2 ≤ ϕ ≤ π/2, K > 0, x ≥ 0 and 0 < θ + ϕ < π,
then every term of the numerator and the denominator in (4.5b) is at least non-negative.
Noticing the negative sign on the right-hand side of (4.5b), it is clear that m < 0 in
(4.5) for this case, which can specially give a simpler form for (4.5a). The condition
0 < ϕ + θ < π is equivalent to |ψ | < π/2 from Young’s relation (2.16), and the condition
x ≥ 0 is the basic premise for (4.5). Therefore, with a smooth and convex solid surface,
the 2-D-symmetric floating object is vertically stable when

K − K̄2-D > 0, for |ψ | < π/2 (4.6)

at the contact point. The criterion (4.6) is a special case of m < 0 for (4.5).
The stabilities of a uniform cylinder floating horizontally in an unbounded bath are

studied using the criterion (4.5), as shown in figure 6. With 0 < ϕ < π/2 for the contact
point, it is easy to verify that all the possible menisci around the uniform cylinder of
θ = π/2 are stable from (3.3)–(3.5), so the precondition for the flotation is satisfied. For
a certain floating configuration (e.g. in figure 6b), it is assumed that the corresponding
weight force fg can achieve the vertical balance of forces (i.e. fv = 0). Excellent agreement
is found in figure 6(a) between our theoretical prediction and the numerical result in
Zhang et al. (2018), which has been non-dimensionalized in the scaling of this paper.
From (2.16), the meniscus inclination angle at the contact point satisfies |ψ | < π/2 for
this neutral wetted uniform cylinder, so the floating stability can also be predicted by the
special criterion (4.6). This criterion is used by comparing the local curvature K of the
solid surface and the critical curvature K̄2-D of the corresponding exotic floating object.
As is shown in figure 6(b), at the contact point the stable (unstable) floating configuration
satisfies K > K̄2-D (K < K̄2-D), while the critical stable floating configuration satisfies
K = K̄2-D, which verifies the special criterion (4.6).

4.2. Axisymmetric case
For the axisymmetric case, (4.1) and (4.2) are still applicable. Substituting (2.23) and
(2.21a–c) into (4.2), together with dψ = dϕ from (2.16), dh can be expressed in terms of
ds as

dh =
(

− cosϕ − ∂u
∂r

sinϕ + ∂u
∂ψ

K
)

ds. (4.7)

For an axisymmetric floating object, substituting (2.24) and (4.7) into (4.1), dfv/dh in
the stability criterion (4.1) becomes

dfv
dh

= −
π

{
r2 cosϕ +

[
2ru + r2 ∂u

∂r
+ 2 cos(θ + ϕ)

]
sinϕ + rK

[
−r

∂u
∂ψ

+ 2 sin(θ + ϕ)

]}

cosϕ + sinϕ
∂u
∂r

− K
∂u
∂ψ

.

(4.8)
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Figure 6. (a) Stability prediction for the horizontally floating uniform cylinder. The positive (negative) value
of dfv/dh indicates unstable (stable) flotation. (b) The floating configurations for points P1, P2 and P3 in (a).
The red curves denote the menisci around the cylinder, and the blue dashed curves denote shape curves of the
exotic floating objects that are generated from the contact points. The parameters for the uniform cylinder are
the constant curvature (reciprocal of radius) K = 1.806 and the contact angle θ = π/2.

Comparing (4.8) and (2.25), the numerator on the right-hand side of (4.8) can be expressed
in terms of K̄axi. Therefore, the new stability criterion is given by

dfv
dh

= (K − K̄axi)m < 0,

m =
πr
[

r
∂u
∂ψ

− 2 sin(θ + ϕ)

]

cosϕ + sinϕ
∂u
∂r

− K
∂u
∂ψ

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.9a,b)

Also, the curvature K̄axi of the exotic flotation is critical for the stability of axisymmetric
floating objects.

Using the new criterion (4.9) in the axisymmetric case, we can predict the floating
stability conveniently, without calculating the force profile, which may be troublesome
for some complicated solid shape. The floating stabilities for an axisymmetric object of a
selected generatrix shape r( y) are shown in figure 7. This object is pressed into the liquid
very slowly (to keep the force balance) with a vertical external force f . We can regard the
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Figure 7. (a) Floating object with the contact angle θ = π/4 and the generatrix shape r( y) = 0.5 +
0.2 cos(π + 2πy). The red curves denote possible menisci (for different floating heights h), and the contact
point on the thick black curve satisfies both conditions χ − χ∗ > 0 and dfv/dh < 0, i.e. both the corresponding
meniscus and flotation are stable. (b) Stabilities for the menisci with the contact point on r( y). The grey region
of χ − χ∗ < 0 denotes unstable menisci. (c) Stabilities for the floating object with the contact point on r( y).
The grey region of dfv/dh > 0 denotes unstable flotation.

external force as an extra part of the weight. Without the ‘exotic’ property of the exotic
flotation, the external force f is variable rather than constant.

As the floating height h changes, we assume that the equilibrium meniscus may meet
any possible contact point at the solid surface generatrix r( y) (see the menisci denoted
by red curves in figure 7a). At a given contact point, both the local curvature K and
the normal angle ϕ can be obtained from (2.21) with ds = [(dr)2 + (dy)2]1/2. For the
contact point, to ensure that the corresponding floating configuration can be sustained,
the meniscus stability is examined in figure 7(b) using the critical parameter comparison
method, i.e. with (3.7)–(3.9). And then the floating stability is assessed in figure 7(c)
using the proposed method, i.e. with the criterion (4.9). If the contact point is located on
the generatrix where χ − χ∗ > 0 and dfv/dh < 0 (see thick black curves in figure 7a),
then the corresponding meniscus and the floating object are both stable, indicating that
the flotation can exist in practice and is resilient.

An interesting observation is made in figure 7, that if the contact point satisfies the
critical condition χ − χ∗ = 0 for the meniscus stabilities, then dfv/dh → ∞ is also
satisfied (see blue dashed lines in figures 7b,c). Comparing (4.9b) and (B6), if the local
curvature is K = K∗

axi in (4.9), then it is easy to prove that m and dfv/dh in (4.9) will tend
to infinity using Young’s relation (2.16). Apparently, m and dfv/dh in (4.5) also tend to
infinity if K = K∗

2-D. Actually, for the exotic cylinder (of curvature K∗
2-D or K∗

axi) permitting
infinitely many menisci in equilibrium around it, neglecting the pinning of the contact line,
any height disturbance �h will result in no equilibrium meniscus being permitted around
it (as discussed in Appendix B; see figures 8b,c). In the system of statics, no equilibrium
solution for the meniscus leads to the singularity when K = K∗

2-D for the 2-D-symmetric
case, or K = K∗

axi for the axisymmetric case.
In conclusion, the curvature of the proposed exotic floating object is critical for the

floating stability (i.e. dfv/dh = 0), while the curvature of the exotic cylinder is critical
for the meniscus stabilities (i.e. χ − χ∗ = 0) and singular for the floating stability (i.e.
dfv/dh → ∞).
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Figure 8. (a) Axisymmetric exotic cylinder at the contact angle θ = π/3 and the initial point (r, u) = (1, 0),
fixed at the initial height h = 0. The red curves denote possible menisci. (b) The exotic cylinder floating at the
initial height. The blue curve denotes the meniscus that can achieve the force balance for the exotic cylinder.
(c) The exotic cylinder at the non-initial height. No meniscus in equilibrium is permitted around the exotic
cylinder. The blue dashed and red dashed curves in (c) are the same as the corresponding curves in (b) except
for the vertical locations.

5. Conclusions

In contrast to the traditional Archimedes’ principle, the proposed exotic floating object will
encounter a constant total force exerted by the liquid, no matter where it locates vertically.
A mathematical model for determining the shapes of the exotic floating objects is present
by letting the variation of the hydrostatic pressure force counteract the variation of the
surface tension force. Three types of the exotic floating objects are obtained for both the
2-D-symmetric case and the axisymmetric case. For the reason that stable menisci are
the precondition for the interfacial flotation, the investigation is conducted to check the
stabilities of the menisci around these exotic floating objects with the critical parameter
comparison method. The results show that the menisci around the exotic floating objects
of the three types stay stable, which demonstrates that the exotic floating objects can exist
in reality.

Inspired by the exotic cylinder (in Zhang & Zhou 2020a) whose curvature is critical
for the meniscus stabilities (of liquid surfaces), it has been shown in this paper that the
curvature of the proposed exotic floating object is critical for the floating stabilities (of
solid objects). From the exotic flotation theory, we put forward a new method to predict
the floating stabilities, with which the floating stabilities of general symmetric objects can
be predicted only by the wettability and the geometrical condition at the contact point.
Specially, for a 2-D-symmetric floating object with a smooth, convex solid surface (such
as ellipses and uniform cylinders), if the absolute value of the inclination angle of the
meniscus at the contact point is less than π/2, then the floating stability can be assessed
only by a curvature comparison between the local one and the critical one (of the exotic
floating object).
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In addition, we find that the proposed exotic floating object and the exotic cylinder have
an interesting relationship. From the aspect of statics, the exotic floating object can remain
in equilibrium under any vertical disturbance, but the exotic cylinder cannot withstand any
vertical disturbance because there will be no equilibrium meniscus around it. Thus the
exotic floating object remains in a critical stable state, while the exotic cylinder is singular
for floating stabilities.
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Appendix A

In (2.2b) for the axisymmetric meniscus, ũ(ψ̃) can also be expressed as ũ(r̃(ψ̃), ψ̃), the
derivative of which gives

dũ(r̃(ψ̃), ψ̃)

dψ̃
= ∂ ũ
∂ r̃

dr̃

dψ̃
+ ∂ ũ

∂ψ̃
. (A1)

Substituting (2.2a,b) into (A1), the relationship between ∂ ũ/∂ r̃ and ∂ ũ/∂ψ̃ is obtained:

∂ ũ

∂ψ̃
= r̃ sin ψ̃

r̃ũ − sin ψ̃

(
1 − ∂ ũ

∂ r̃
cot ψ̃

)
, (A2)

which can also be derived with the geometrical method in Zhang & Zhou (2020a). To
obtain ∂ ũ/∂ r̃ (or ∂ ũ/∂ψ̃) directly is difficult, while the derivative of ∂ ũ/∂ r̃ with respect to
ψ̃ has been derived (see equation (3.34) in Zhang & Zhou 2020a):

d(∂ ũ/∂ r̃)

dψ̃
= ∂(dũ/dψ̃)

∂ r̃
+ ∂ ũ
∂ r̃
∂(dũ/dψ̃)

∂ ũ
− ∂ ũ
∂ r̃

[
∂(dr̃/dψ̃)

∂ r̃
+ ∂ ũ
∂ r̃
∂(dr̃/dψ̃)

∂ ũ

]
. (A3)

Substituting (2.2a,b) into (A3), we can obtain a further result as
d(∂ ũ/∂ r̃)

dψ̃
=
(
∂ ũ
∂ r̃

cos ψ̃ − sin ψ̃
)(

∂ ũ
∂ r̃

r̃2 + sin ψ̃
)/

(sin ψ̃ − r̃ũ)2. (A4)

Regarding ∂ ũ/∂ r̃ as a function of ψ̃ , we can obtain the value of ∂ ũ/∂ r̃ by integrating
(A4) together with (2.2a,b). Accordingly, at the initial point (r̃∗, ũ∗) for the integration,
the initial value of ∂ ũ/∂ r̃ can be derived from (2.4) as(

∂ ũ
∂ r̃

)∗
= − tan ψ̃∗ d(K0(r̃)/K1(r̃))

dr̃

∣∣∣∣
r̃=r̃∗

, (A5)

where
d(K0(r̃)/K1(r̃))

dr̃
= K0(r̃)[K0(r̃)+ K2(r̃)]

2K2
1(r̃)

− 1 (A6)

is satisfied for the modified Bessel functions. While solving the two-point boundary value
problem (2.2)–(2.4), (A5) can be appended to (2.4) as an additional initial point condition,
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and (A4) can be appended to (2.2a,b) for the integration. With the shooting method
to satisfy the contact point condition (2.3), ∂ ũ/∂ r̃ can be determined together with the
meniscus ũ(r̃), and ∂ ũ/∂ψ̃ can be obtained from (A2) with the known value of ∂ ũ/∂ r̃.

Obviously, the contact point lies on both the meniscus and the solid surface. At the
contact point, ∂ ũ/∂ψ̃ (or ∂ ũ/∂ r̃) for the meniscus is exactly equivalent to ∂u/∂ψ (or
∂u/∂r) for the solid surface, with the same meaning and value.

Appendix B

The exotic cylinder permits a continuum of equilibrium menisci (Zhang & Zhou 2020a), as
depicted in figure 8(a). Typically, the exotic cylinder is fixed vertically. So the coordinate
system (x, u) for the 2-D case, or (r, u) for the axisymmetric case, which is fixed to the
liquid, is more advantageous to determine the shape of the exotic cylinder. We extend the
method for the determination of the exotic tube in Zhang & Zhou (2020b) into the exotic
cylinder case.

For the 2-D exotic cylinder, its shape x(u) can be expressed in the parametric form of
the arc length s as

d x(s)
ds

= − sinϕ(s),
du(s)

ds
= cosϕ and

dϕ(s)
ds

= K∗
2-D, (B1a–c)

where K∗
2-D is the solid surface curvature of the 2-D exotic cylinder. Substituting (2.1a)

and (2.16) into (B1b), we have

− cos
ψ

2
dψ
ds

= − sin(ψ − θ), (B2)

where dψ is equal to dϕ from Young’s relation (2.16). Comparing (B2) and (B1c), we can
derive K∗

2-D as

K∗
2-D = sin(ψ − θ)

cos
ψ

2

. (B3)

Some signs in (B3) are different from those in the corresponding formula in Zhang & Zhou
(2020a) because of the slight differences in the definitions of concavity and orientation.

Similarly, the generatrix shape u(r) for the axisymmetric exotic cylinder can be given
parametrically by

dr(s)
ds

= − sinϕ(s),
du(s)

ds
= cosϕ and

dϕ(s)
ds

= K∗
axi. (B4a–c)

Substituting (2.23) and (2.16) into (B4b) gives

∂u
∂r

dr
ds

+ ∂u
∂ψ

dψ
ds

= − sin(ψ − θ), (B5)

where dψ = dϕ, and dr/ds can be obtained from (B4a). Comparing (B5) and (B4c), the
generatrix curvature K∗

axi can be expressed as

K∗
axi =

sin(θ − ψ)+ ∂u
∂r

cos(θ − ψ)

∂u
∂ψ

, (B6)

where the determination of ∂u/∂ψ and ∂u/∂r at the contact point is shown in Appendix
A. The corresponding formula (B6) is also seen in Zhang & Zhou (2020a).
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Actually, the shape u(x) for the 2-D exotic cylinder is analytical (see (2.14) in Zhang
& Zhou 2020a). As for the axisymmetric exotic cylinder, its shape u(r) can be obtained
by integrating (B4) numerically through the Runge–Kutta method. At the contact angle
θ = π/3 and the initial condition (r, u, ϕ) = (1, 0,π/6), the axisymmetric exotic cylinder
is shown in figure 8(a).

Under typical circumstances, the exotic cylinder is fixed at a certain height (set as the
initial height h = 0), while we select a part of the exotic cylinder as a (vertically movable)
floating object, as shown in figure 8(b). Although there can be infinitely many equilibrium
menisci around the exotic cylinder, one of them may satisfy the force balance for the
exotic cylinder. Without loss of generality, it is assumed that the blue meniscus curve
in figure 8(b) can achieve the force balance for the exotic cylinder at the initial height
h = 0. Under an arbitrary floating height disturbance �h, theoretically, no meniscus in
equilibrium will be allowed to be around the exotic cylinder. Specifically, if a meniscus
curve (see red dashed and blue dashed curves in figure 8c) can satisfy the boundary
condition (2.3) at the contact point, then it can never satisfy the boundary condition u = 0
at infinity. Neglecting the pinning of the contact line, no solution curve of the meniscus
in equilibrium can exist for the exotic cylinder at a non-initial height (comparing figures
8b,c). For the exotic cylinder, fv(h) exists only at the initial height h = 0. As a result,
considering menisci in equilibrium only, dfv/dh does not exist if the local curvature of a
floating object at the contact point is equal to the curvature of the exotic cylinder (see the
singularity in figure 7c).
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