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We propose a statistical procedure to determine the dimension of the nonstationary
subspace of cointegrated functional time series taking values in the Hilbert space of
square-integrable functions defined on a compact interval. The procedure is based
on sequential application of a proposed test for the dimension of the nonstationary
subspace. To avoid estimation of the long-run covariance operator, our test is based
on a variance ratio-type statistic. We derive the asymptotic null distribution and prove
consistency of the test. Monte Carlo simulations show good performance of our test
and provide evidence that it outperforms the existing testing procedure. We apply
our methodology to three empirical examples: age-specific U.S. employment rates,
Australian temperature curves, and Ontario electricity demand.

1. INTRODUCTION

Much recent research in time-series analysis has focused on so-called functional
time series; that is, time series that take values in possibly infinite-dimensional
Hilbert or Banach spaces rather than the usual finite-dimensional Euclidean space.
Each observation of a functional time series may be, for example, a continuous
function, a square-integrable function, or a probability density function (of course
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vector-valued time series are a special case). Recent monograph treatments include
Bosq (2000), who considers stationary linear processes taking values in Hilbert and
Banach spaces, and Horváth and Kokoszka (2012), who discuss statistical analysis
of functional data and functional time series with many empirical examples.

The majority of recent developments in functional time series depend crucially
on the assumption of stationarity. Despite its importance, this issue has received
very limited attention in the literature. In the context of functional time series, there
exists only a few articles that consider tests of the null hypothesis of stationarity. In
particular, Horváth, Kokoszka, and Rice (2014) and Kokoszka and Young (2016)
develop a modified version of the univariate Kwiatkowski, Phillips, Schmidt, and
Shin (KPSS) (1992) test of stationarity, and Aue and van Delft (2020) propose a
test of stationarity in the frequency domain.

Of course, testing for stationarity is an important first step. However, when a
time series is not stationary, an important problem is to determine the type and
magnitude of departure from stationarity. The type of nonstationarity that we
consider is the “unit root” or I(1) nonstationarity well known from autoregressive
processes. Thus, the issue is to determine the extent of nonstationarity, which we
interpret as the dimension of the nonstationary subspace (to be made precise later).
In this context, testing stationarity is the same as testing that the nonstationary
subspace has dimension zero. To the best of our knowledge, the only article
that considers this more general problem is the seminal contribution of Chang,
Kim, and Park (CKP) (2016), although they denote it the “unit root dimension.”
Specifically, Chang et al. (2016) propose a test based on generalized eigenvalues
associated with the covariance operator of the observations and the long-run
covariance operator of the first-differenced observations.

In the analysis of vector-valued time series in finite-dimensional space, the
dimension of the nonstationary subspace is the number of linearly independent
linear combinations that are nonstationary and is called the number of common
stochastic trends. Similarly, the dimension of the stationary subspace is the number
of linearly independent linear combinations that are stationary and is called the
cointegration rank. In finite-dimensional space, these numbers are both finite. In
that context, Stock and Watson (1988) is an important early contribution, providing
a statistical testing procedure for the dimension of the nonstationary subspace
(number of stochastic trends) in cointegrated vector time series. Differently from
most subsequent work, their procedure is interpreted as a way to find the number
of stochastic trends rather than the cointegration rank. In finite-dimensional space,
there is no meaningful difference between those interpretations since one deter-
mines the other. However, in infinite-dimensional spaces these two interpretations
are fundamentally different. Both the model of Chang et al. (2016) and our model
of cointegrated linear processes have finite-dimensional nonstationary subspaces,
and hence it is clear that the interpretation given in Stock and Watson (1988) is the
most natural.

In the context of time series in finite-dimensional space, there has been a very
large literature developing methods for determination of the cointegration rank or
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equivalently the number of common stochastic trends. These have mostly been
based on principal components analysis of long-run covariance matrices (e.g.,
Phillips and Ouliaris, 1988; Harris, 1997), canonical correlation analysis (e.g.,
Ahn and Reinsel, 1990; Bewley and Yang, 1995; Johansen, 1995), and eigenvalue
analysis (e.g., Stock and Watson, 1988; Johansen, 1995; Zhang, Robinson, and
Yao, 2019).

In an important contribution to finite-dimensional time series, Müller (2008)
demonstrates some desirable properties of variance ratio-type unit root test statis-
tics. In particular, tests based on variance ratio-type statistics that avoid estimation
of the long-run covariance are shown to be able to consistently discriminate
between the unit root null and the stationary alternative, in the sense of being
consistent with correct asymptotic size. Moreover, it is shown that these properties
are not shared by other popular unit root test statistics that have to estimate the long-
run covariance (either directly or indirectly). This is due to the fact that no estimator
of the long-run covariance exists that is consistent for all processes satisfying a
general unit root definition, and hence resulting tests will typically not control
asymptotic size; see also Müller (2007). More practically, variance ratio statistics
avoid estimation of the long-run covariance, which is known to be difficult even
in a finite-dimensional setting.

Inspired by the work of Müller (2008) and Chang et al. (2016), we consider
a nonparametric variance ratio-type test statistic for the dimension of the nonsta-
tionary subspace. In the univariate special case, our statistic reduces to the KPSS
statistic with bandwidth zero and in the finite-dimensional case to the statistic
considered by Breitung (2002); see also Nyblom and Harvey (2000), Taylor
(2005), Nielsen (2009, 2010), and Pedroni et al. (2015). As in Chang et al. (2016),
we assume that a cointegrated functional time series has a finite-dimensional
nonstationary subspace while the stationary subspace is infinite-dimensional (i.e.,
there are infinitely many cointegrating relations). We then discuss sequential appli-
cation of our test to determine the dimension of the nonstationary subspace (the
number of common stochastic trends). We derive the asymptotic null distribution
and prove consistency of the proposed test.

Our procedure has several attractive features. First, our test is nonparametric;
that is, we do not require the specification of a particular model. Second, it is easy to
implement in practice. The statistic is given by the sum of generalized eigenvalues
of sample covariance operators. Third, we do not need to estimate any long-run
covariance operators. This is an important difference from existing methods in
functional time series such as Horváth et al. (2014), Kokoszka and Young (2016),
and Chang et al. (2016). Fourth, Chang et al.’s (2016) test requires projection onto a
space that asymptotically includes the nonstationary subspace, and which is of the
same dimension. On the other hand, our proposed method requires projection onto
a space that asymptotically includes the nonstationary subspace, but it may be of
higher dimension than the latter. Clearly, this would appear to be easier in practice.
Fifth, the asymptotic null distribution of the proposed test statistic does not depend
on the choice of projection operator used to approximate the covariance operators,
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and is simply a functional of standard Brownian motion. In practice, therefore,
our testing procedure can be easily implemented in a familiar finite-dimensional
setting.

The Monte Carlo simulations in Section 4 suggest that our test has better finite-
sample properties than the existing test of Chang et al. (2016). First, our test has
much better size control across a wide range of simulation data generating pro-
cesses (DGPs). Second, our test has superior finite-sample power (size-corrected
power in cases where Chang et al.’s (2016) test is severely over-sized). Third,
Chang et al.’s (2016) test is subject to a power reversal problem, which is not
the case for our test. Fourth, and consequently, when implemented sequentially
to determine the dimension of the nonstationary subspace, our test is very robust
to the choice of the initial dimension, whereas Chang et al.’s (2016) test is very
sensitive to this choice.

We present several empirical illustrations of our methodology, where we also
compare with the test of Chang et al. (2016). In particular, we consider age-
specific employment curves, Australian temperature curves, and Ontario elec-
tricity demand curves. Other applications of Chang et al. (2016) include global
temperature distributions as in Chang et al. (2020).

The remainder of this paper is organized as follows. We review some essential
mathematical preliminaries in Section 2. Our testing procedure and asymptotic
theory is provided in Section 3. In Section 4, we present the results from our Monte
Carlo simulations. We then apply our methodology to three empirical data sets in
Section 5. All proofs are in the Appendixes and additional simulation results are
in the Supplementary Material to this article.

2. MATHEMATICAL PRELIMINARIES

Let H denote the space of square-integrable functions defined on a compact
interval I equipped with the inner product given by 〈f,g〉 = ∫

I f (u)g(u)du for f,g ∈
H and its induced norm ‖f ‖ = 〈f,f 〉1/2 for f ∈ H. Then H is a separable Hilbert
space. Without loss of generality, we normalize and assume that I = [0,1] and∫

f (u)du = ∫ 1
0 f (u)du throughout the paper. When there is no risk of confusion, we

suppress the argument u and we use the terms vector and function interchangeably
to denote an element of (the vector space) H.

Given a subset M ⊂ H, M⊥ denotes the orthogonal complement of M and clM
denotes the closure of M. Given two subspaces M1,M2 ⊂H with M1 ∩M2 = {0}, H
is said to be a direct sum of M1 and M2, denoted by H = M1 ⊕M2, if any element
x ∈ H can be written as x = xM1 + xM2 for some xM1 ∈ M1 and xM2 ∈ M2.

We let LH denote the space of bounded linear operators acting on H equipped
with the uniform operator norm, ‖A‖LH = sup‖x‖≤1 ‖Ax‖. For A ∈ LH, we denote
the kernel and range of A by kerA and ranA, respectively. The dimension of ranA
is called the rank of A.

The adjoint of an operator A ∈ LH is denoted by A∗. A linear operator A ∈ LH
is said to be positive semi-definite (resp. positive definite) if 〈Ax,x〉 ≥ 0 (resp.
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〈Ax,x〉 > 0) for any x ∈H. In this paper, f ⊗g denotes the operation (f,g) �→ 〈f,·〉g
for f,g ∈ H.

Sometimes we need to restrict the domain and the codomain of a bounded linear
operator to closed subspaces of H. Whenever this is required, we let A|M1→M2

denote the operator A ∈ LH whose domain is M1 ⊂ H and codomain is M2 ⊂ H.

2.1. H-Valued Random Variables

Let (�,F,P) be the underlying probability space. An H-valued random element
Z is a measurable function from � to H, where H is understood to be equipped
with the Borel σ -field. The random element is said to be integrable if E‖Z‖ < ∞
and square-integrable if E‖Z‖2 < ∞. If the random element is integrable, there
exists a unique element μ ∈ H such that E〈Z,f 〉 = 〈μ,f 〉 for any f ∈ H, and such
μ is called the mean function of Z. If the random element is square-integrable, we
define the covariance operator of Z as Cz = E[Z ⊗Z].

2.2. I(1) and Cointegrated Linear Processes in H
We require a notion of I(1) sequences and cointegration in our Hilbert space setting.
To this end, we adopt the setting of Beare, Seo, and Seo (2017), who generalize the
concept of a cointegrated I(1) sequence to an arbitrary complex Hilbert space and
provide a rigorous mathematical treatment, although some of the concepts were
introduced earlier by Chang et al. (2016).

A sequence (Xt,t ≥ 0) is said to be I(1) if its first differences �Xt = Xt − Xt−1

satisfy

�Xt =
∞∑

j=0

�jεt−j, t ≥ 1, (2.1)

where (εt,t ∈Z) is a square-integrable i.i.d. sequence, and (�j,j ≥ 0) is a sequence
inLH satisfying

∑∞
j=0 j‖�j‖LH < ∞ and �(1) = ∑∞

j=0 �j �= 0. We assume that the
covariance operator Cε of εt is positive definite and denote the long-run covariance
operator of (�Xt,t ≥ 1) by ��X = �(1)Cε�(1)∗. For the sequence (2.1), the
Beveridge–Nelson decomposition is

�Xt = �(1)εt +νt −νt−1, t ≥ 1, (2.2)

where νt = ∑∞
j=0 �̃jεt−j and �̃j = −∑∞

k=j+1 �k; see Phillips and Solo (1992).
The stationary subspace (cointegrating space) of X is the collection of all

h ∈ H such that the scalar sequence (〈Xt,h〉,t ≥ 0) is stationary for a suitable
choice of X0. Beare et al. (2017) showed that this space is given by ker��X .
Since Cε is positive definite, the stationary subspace is equal to [ran�(1)]⊥. The
nonstationary subspace (attractor space) is defined as the orthogonal complement
of the stationary subspace, i.e., cl ran�(1). This is the subspace of H in which the
I(1) stochastic trend in the Beveridge–Nelson decomposition (2.2) takes values.
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Throughout, A denotes the nonstationary subspace and A⊥ denotes the stationary
subspace.

Given the direct sum decomposition H = A⊕A⊥, any element h ∈ H can be
uniquely decomposed as h = hA +hA⊥ for some elements hA ∈ A and hA⊥ ∈ A⊥.
If hA �= 0 then 〈Xt,h〉 is I(1). If in fact h ∈A, then 〈Xt,h〉 may be called a stochastic
trend, generalizing the notion from finite-dimensional space. Furthermore, when
the nonstationary subspace, A, is finite-dimensional, its dimension can be called
the number of common stochastic trends.

3. INFERENCE ON THE DIMENSION OF THE NONSTATIONARY
SUBSPACE

In this section, we provide a statistical procedure to determine the dimension
of the nonstationary subspace. For simplicity, we first focus on the case where
(Xt,t ≥ 1) has zero mean. In Section 3.4, we consider I(1) sequences with
deterministic components.

3.1. Model and Hypotheses of Interest

We apply the following assumption throughout.

Assumption 1. (Xt,t ≥ 1) satisfies the conditions stated in Section 2.2, and in
particular (2.1) and (2.2). The rank of �(1) is given by the integer s ∈ [0,∞).

Under Assumption 1, the nonstationary subspace A is finite-dimensional and
given by ran�(1) since any finite-dimensional subspace is closed. Moreover, we
have the direct sum decomposition H= ran�(1)⊕ [ran�(1)]⊥ =A⊕A⊥ and the
relation dim(A) = rank(�(1)) = s.

Remark 1. For example, a sufficient condition for A to be finite-dimensional is
that (Xt,t ≥ 1) is autoregressive with compact autoregressive operators; see Beare
and Seo (2020, Rem. 3.6) or Franchi and Paruolo (2020). As another example, the
functional observations could be generated by a factor model, where the (possibly
nonstationary) factors could represent level, slope, curvature, etc., as in the Nelson
and Siegel (1987) term structure model. Finally, our empirical examples in Section
5 as well as those in Chang et al. (2016) all suggest that s < ∞ is empirically
reasonable.

Let (φj,j ∈ N) be an orthonormal basis of H satisfying span(φ1, . . . ,φs) =
ran�(1). We may then understand Xt as the basis expansion

Xt =
∞∑

j=1

〈Xt,φj〉φj with
∞∑

j=1

〈Xt,φj〉2 < ∞ almost surely.

Let 
2(N) denote the space of square-summable sequences equipped with the
inner product 〈{xj},{yj}〉
2(N) = ∑∞

j=1 xjyj for {xj},{yj} ∈ 
2(N). Then, under the
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isomorphism from H to 
2(N), (Xt,t ≥ 0) may be viewed as the random infinite
sequence

(〈Xt,φ1〉, . . . ,〈Xt,φs〉,〈Xt,φs+1〉, . . . ), t ≥ 0. (3.1)

Clearly, since span(φ1, . . . ,φs) = ran�(1), the first s components of (3.1) are
scalar-valued I(1) processes because

�〈Xt,φj〉 = 〈
�(1)εt,φj

〉+ 〈
νt −νt−1,φj

〉
, j = 1, . . . ,s

are stationary with long-run covariances 〈��Xφj,φj〉 �= 0. On the other hand, the
(infinitely many) remaining components of (3.1) are all stationary for a suitable
choice of X0 because

〈Xt,φj〉 = 〈
X0 −ν0,φj

〉+ 〈
νt,φj

〉
, j ≥ s+1,

and 〈νt,φj〉 is stationary since 〈νt,·〉 is a measurable transformation of a stationary
sequence. Moreover, 〈Xt,φj〉 has nonzero long-run covariance if

∑∞
j=1 j�j �= 0, i.e.,

it is I(0) in this case.
It thus follows that the dimension of the nonstationary subspace, dim(A) =

rank(�(1)), can be interpreted as the number of stochastic trends embedded in
the functional time series (Xt,t ≥ 0). We consider hypothesis testing on dim(A)

and provide a statistical procedure to determine dim(A). In finite-dimensional
Euclidean space, C

n or R
n, this is closely related to cointegration rank (see

references in Section 1). If the cointegration rank is r ≤ n in R
n, then there are

n−r stochastic trends in that setting. However, under Assumption 1 in our infinite-
dimensional setting, only the dimension of the nonstationary subspace (number of
stochastic trends) may be finitely identified while the cointegration rank is always
∞. Hence, it may not be proper to call our test a cointegration rank test, but it still
may be viewed as a generalization of conventional cointegration rank tests from
finite-dimensional space.

We apply the following assumption to obtain asymptotic results.

Assumption 2. In (2.1) and (2.2), it holds that (i) (εt,t ∈ Z) is an i.i.d. sequence
with E‖εt‖4 < ∞ and (ii) the covariance operator Cν of (νt,t ≥ 1) is positive
definite on A⊥, i.e., 〈Cνx,x〉 > 0 for all x ∈ A⊥.

The above assumption is convenient in our asymptotic analysis. Specifically,
Assumption 2(i) is a standard condition to obtain weak convergence of linear
processes in H as in Berkes, Horváth, and Rice (2013). Assumption 2(ii), which
does not seem restrictive in practice, ensures that a particular limiting quantity is
positive definite; see (B.4) in Appendix B.

We consider the following null and alternative hypotheses,

H0 : dim(A) = s0 vs H1 : dim(A) ≤ s0 −1. (3.2)

The null hypothesis in (3.2) can be either a prespecified hypothesis of interest, or
(3.2) can be applied sequentially to estimate s. We explore the latter possibility in
Theorem 2.
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3.2. Preliminary Asymptotic Analysis of Covariance Operators

We first fix notation for the subsequent discussion. Since ran��X = ran�(1)

under Assumption 1, only the first s eigenvalues of ��X are nonzero. We let(
(αj,ηj),j = 1, . . . ,s

)
denote the pairs of eigenvalues and eigenvectors of ��X and

assume α1 ≥ α2 ≥ ·· · ≥ αs > 0 without loss of generality. Note that these can
be used to define �

1/2
�X and �

−1/2
�X by the spectral decomposition. In addition, for

convenience, we let (ηj,j ≥ s + 1) denote an orthonormal basis of [ran�(1)]⊥ so
that (ηj,j ∈ N) is an orthonormal basis of H.

Let (W(r),r ∈ [0,1]) denote a Brownian motion taking values in H with
covariance operator

∑s
j=1 ηj ⊗ηj and defineV(r) = ∫ r

0 W(w)dw for r ∈ [0,1]. Then

〈W(r),ηj〉 d= Wj(r) and 〈V(r),ηj〉 d= Vj(r), j = 1, . . . ,s,

〈W(r),ηj〉 d= 0 and 〈V(r),ηj〉 d= 0, j ≥ s+1,
(3.3)

where “
d=” denotes equality in distribution, (Wj(r),r ∈ [0,1]), j = 1, . . . ,s, is

a sequence of standard Brownian motions independent across j, and Vj(r) =∫ r
0 Wj(w)dw. Under the isomorphism between s-dimensional real Hilbert space

with element h and the Euclidean space R
s with element (〈h,η1〉,〈h,η2〉, . . . ,

〈h,ηs〉)′, we can consider (W(r),r ∈ [0,1]) and (V(r),r ∈ [0,1]) as the usual s-
dimensional standard Brownian motion and integrated standard Brownian motion.

We define two random operators associated with (W(r),r ∈ [0,1]) and (V(r),r ∈
[0,1]) as

W̃ =
∫

W(r)⊗W(r)dr and Ṽ =
∫

V(r)⊗V(r)dr. (3.4)

Under the above-mentioned isomorphism, these operators may also be understood
as random matrices taking values in R

s×s. Then we find from (3.3) and (3.4) that

〈ηi,W̃ηj〉 d=
∫

Wi(r)Wj(r)dr and 〈ηi,Ṽηj〉 d=
∫

Vi(r)Vj(r)dr, 1 ≤ i,j ≤ s,

〈ηi,W̃ηj〉 d= 0 and 〈ηi,Ṽηj〉 d= 0, otherwise.

Given functional observations (Xt,t = 1, . . . ,T), let Yt = ∑t
j=1 Xj for t = 1, . . . ,T .

We define the unnormalized sample covariance operators

Ĉ =
T∑

t=1

Xt ⊗Xt and K̂ =
T∑

t=1

Yt ⊗Yt. (3.5)

Asymptotic properties of Ĉ and K̂ play a crucial role in our analysis.
In particular, Lemma 1 in Appendix A shows that T−2Ĉ and T−4K̂ converge to

C and K, respectively, where

C d= �
1/2
�XW̃�

1/2
�X and K d= �

1/2
�XṼ�

1/2
�X . (3.6)
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Given the definition of �
1/2
�X , for any element of h ∈ H allowing the unique

decomposition h = hA +hA⊥ , we have

Ch = C(hA +hA⊥) = ChA ∈ A and Kh = K(hA +hA⊥) = KhA ∈ A. (3.7)

That is, C and K eliminate any (infinite-dimensional) component in A⊥ and leave
only a (finite-dimensional) component in A. Moreover, the operators C and K are
almost surely invertible on A, even if they are not invertible on H. Note that, when

H=R
n, this result specializes to T−2 ∑

t XtX′
t

d→ C, where C satisfies Ch = h′C = 0
for h ∈A⊥ and h′Ch is invertible almost surely for h = [h1, . . . ,hs] with orthonormal
vectors h1, . . . ,hs ∈ A.

3.3. Variance Ratio Test

Suppose first that we have a projection operator, denoted P
, whose range is
an 
 ≥ s dimensional subspace that contains A. Since ((I − P
)Xt,t ≥ 1) is a
stationary sequence, its nonstationary subspace is {0}. Thus, we may disregard
this part of (Xt,t ≥ 1) and focus on the projected time series (P
Xt,t ≥ 1).
The latter is isomorphic to an 
-dimensional multivariate time series with 
 − s
cointegrating relationships and s (linearly independent) stochastic trends, i.e., with
s-dimensional nonstationary subspace.

Of course, the assumption that P
 is known is not reasonable in practice, so
we need to replace P
 with an estimate. We first apply the following high-level
condition.

Assumption 3. For some finite integer 
 ≥ s there exists (φT
1 , . . . ,φT


 ) such that

PT

 =


∑
j=1

φT
j ⊗φT

j and ‖PT

 x− x‖ = op(1) for any x ∈ A. (3.8)

Intuitively, Assumption 3 requires a finite collection of vectors whose span
asymptotically includes the nonstationary subspace, A. We call ranPT


 an estimate
of an asymptotic superspace of A. Of course, there are many possible empirical
projection operators that could be applied in practice (e.g., based on eigenanalysis
of various covariance, long-run covariance, or autocovariance operators), so we
find it convenient to use Assumption 3 as a practically important guideline for
what a candidate projection operator needs to satisfy. In Section 3.5, we discuss
some practical, data-dependent choices of 
 and PT


 that satisfy Assumption 3.
Some asymptotic implications of Assumption 3 are discussed in the following

remark.

Remark 2. Without loss of generality, we may assume that (φT
1 , . . . ,φT

s ) con-
verges to some orthonormal basis (φ1, . . . ,φs) of A under Assumption 3. The
orthonormal set (φ1, . . . ,φs) may be random elements; we do not require that
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(φT
1 , . . . ,φT

s ) converges to a fixed orthonormal basis of A. Under Assumption 3,
we also have

‖φT
j − (I −PA)φT

j ‖ = op(1), s+1 ≤ j ≤ 
.

That is, (φT
j ,j = s+1, . . . ,
) is asymptotically included in A⊥. It should be noted

that we do not require any limiting behavior of φT
j for j ≥ s+1 in our asymptotic

analysis, i.e., it is not required to converge to any (random or fixed) element of H.

On the subspace ranPT

 , consider the generalized eigenvalue problem

τ T
j PT


 K̂PT

 ξT

j = PT

 ĈPT


 ξT
j , ξT

j ∈ ranPT

 . (3.9)

The solution to the eigenvalue problem (3.9) can be characterized as

τ T
j = 〈PT


 ĈPT

 ξT

j ,ξT
j 〉

〈PT

 K̂PT


 ξT
j ,ξT

j 〉 . (3.10)

The stochastic order and limiting behavior of the eigenvalue, τ T
j , is different

depending on whether or not the corresponding eigenvector, ξT
j , falls inside the

nonstationary subspace, A. This is described in detail in Lemma 2 in Appendix
A, where it is shown that T2τ T

j converges to a nondegenerate limit if ξT
j ∈ A

while (Tτ T
j )−1 = Op(1) if ξT

j ∈ A⊥. The latter result is a lower bound on the
order of magnitude of τ T

j , and in particular ensures that T2τ T
j diverges to infinity

in that case. Thus, the s smallest eigenvalues have different stochastic order
than the remaining eigenvalues and T2 ∑s

j=1 τ T
j has a nondegenerate limiting

distribution.
In view of (3.10), we call T2 ∑s

j=1 τ T
j a variance ratio statistic. For univari-

ate time series it reduces to (the inverse of) the well-known KPSS statistic of
Kwiatkowski et al. (1992) with zero bandwidth. For finite-dimensional multivari-
ate time series it reduces to the statistic considered by Breitung (2002), which
is related to the inverse of the statistic of Nyblom and Harvey (2000) with zero
bandwidth. Additional motivation for the variance ratio statistic can therefore
be found from these references, where the statistic is derived as a Lagrange
multiplier or locally best invariant statistic for testing I(0) against I(1) in univariate
time series (Kwiatkowski et al., 1992), for testing the null of a moving average
unit root in univariate time series (Tanaka, 1990), or for testing the number
of common stochastic trends in multivariate time series (Nyblom and Harvey,
2000).

We prove the following theorem, which suggests a testing procedure to deter-
mine the dimension of the nonstationary subspace in our Hilbert space setting. An
extension to accommodate deterministic terms is presented in Section 3.4.
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THEOREM 1. Suppose that Assumptions 1–3 hold, and let (τ T
1 , . . . ,τ T


 ) with
τ T

1 ≤ ·· · ≤ τ T

 and (ξT

1 , . . . ,ξT

 ) ⊂ H be the pairs of eigenvalues and eigenvectors

satisfying (3.9). Then

T2
s∑

j=1

τ T
j

d→ tr
(
(Ṽ|A→A)−1W̃|A→A

)
, (3.11)

T2
q∑

j=1

τ T
j

p→ ∞ for any s+1 ≤ q ≤ 
. (3.12)

Remark 3. Suppose again that P
 is known and replaces PT

 . In this case,

additional intuition can be gained by considering the isomorphism between ranP


and R

, where an element x ∈ ranP
, with the unique basis expansion x =∑


j=1〈x,xj〉xj for an orthonormal basis (x1, . . . ,x
) of ranP
, is identified as the
vector (〈x,x1〉, . . . ,〈x,x
〉)′. Under this isomorphism, (P
Xt,t ≥ 1) may be viewed as
a multivariate 
-dimensional time series and (3.9) may be viewed as a generalized
eigenvalue problem in R


, where P
ĈP
 and P
K̂P
 appearing in (3.9) and (3.10)
are isomorphic to the sample covariance matrices of this 
-dimensional time
series and its cumulated sum, respectively. Then, as noted by Breitung (2002)
for cointegrated systems in a Euclidean space setting, the stochastic order of τ T

j

depends on whether or not the corresponding eigenvector ξT
j falls inside the span

of the cointegrating vectors (or equivalently the attractor space).

Remark 4. Theorem 1 suggests a consistent test for the hypothesis in (3.2).
Specifically, the statistic T2 ∑s0

j=1 τ T
j has a well-defined limiting distribution under

H0 : s = s0, while it diverges to infinity under H1. For a given significance level α,
we therefore reject H0 when T2 ∑s0

j=1 τ T
j > cα for some cα depending on α. Using

the isomorphism between A and R
s, it follows that the asymptotic distribution in

(3.11) satisfies

tr
(
(Ṽ|A→A)−1W̃|A→A

) d= tr

((∫ 1

0
Vs(r)V

′
s(r)dr

)−1 ∫ 1

0
Ws(r)W

′
s(r)dr

)
,

(3.13)

where Ws is s-dimensional standard Brownian motion and Vs(r) = ∫ r
0 Ws(w)dw.

Hence, critical values cα for the test statistic, T2 ∑s0
j=1 τ T

j , can be simulated from
(3.13) with s = s0 by standard methods.

To estimate or determine the dimension s of A, we apply a top-down procedure,
where we sequentially test (3.2) with s0 = smax,smax −1, . . . ,1 for some reasonably
chosen smax and using nominal level α. The estimate of the dimension of the
nonstationary subspace, ŝ, is then given by the first nonrejected null hypothesis.
If H0 is rejected for all values of s0 considered, then we set ŝ = 0. The following
result then follows from Theorem 1.
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THEOREM 2. Suppose that the assumptions of Theorem 1 hold and P{smax ≥
s} → 1. Then, for a fixed nominal level α, the test described in Remark 4 is
consistent, and if s ≥ 1,

P{ŝ = s} → 1−α and P{ŝ > s} → 0. (3.14)

If the nominal level is chosen such that α → 0 as T → ∞ then P{ŝ = s} → 1.
Finally, if s = 0 then P{ŝ = s} → 1, regardless of α.

We note that Theorem 2 requires that P{smax ≥ s} → 1. In theory, this could
be guaranteed by letting smax → ∞ as T → ∞. In practice we would normally
expect s to be quite small, so this would be guaranteed by letting smax be some
moderate number. As suggested by Chang et al. (2016, footnotes 4 and 13), smax

could be determined by graphical methods, like eigenvalue plots, or by the number
of functional principal components that determine a large proportion of the total
variance. The following remark considers the consequences of selecting smax < s.

Remark 5. From our proof of Theorem 1, it may easily be deduced that if smax <

s, then

T2
smax∑
j=1

τ T
j

d→ tr
(
(Ṽ|A′→A′)−1W̃|A′→A′

)
, (3.15)

where A′ denotes some smax-dimensional subspace of A. As in Remark 4, the
isomorphism between R

smax and any smax-dimensional subspace of H implies that
the limit in (3.15) satisfies

tr
(
(Ṽ|A′→A′)−1W̃|A′→A′

)
d= tr

((∫ 1

0
Vsmax(r)V

′
smax

(r)dr

)−1 ∫ 1

0
Wsmax(r)W

′
smax

(r)dr

)
.

Because smax < s, all the eigenvalues in the test statistic for the first hypothesis in
the sequential procedure, namely H0 : dim(A) = smax, are convergent and satisfy
(3.15). It follows that, in this case, instead of (3.14) we have P{ŝ = smax} → 1−α.

Remark 6. The consequence of Remark 5 is that, when smax < s, the sequential
testing procedure will conclude that ŝ = smax with probability converging to 1−α

as T → ∞. Therefore, in practice, if the sequential procedure results in ŝ = smax it
seems prudent to restart with a higher value of smax. Indeed, our test is very robust
to choice of smax, even when smax is much larger than s. For simulation evidence
on this point, see Section 4.4 and Table 4, and for empirical evidence, see Section
5.4 and Figure 5.

Remark 7. The proposed top-down testing procedure may be seen as an appli-
cation of the Pantula principle, which was originally developed by Pantula (1989)
to determine the order of integration of univariate time series. The procedure is
very similar to the Johansen procedure to determine the cointegration rank for
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multivariate time series taking values inRk, whereby one would test the hypotheses
s = k,k −1, . . . ,0 sequentially until nonrejection; see Johansen (1995, Chap. 12).

3.4. Deterministic Components

Until now, we assumed that (Xt,t ≥ 1) has mean zero. We now adapt the discussion
to allow a deterministic component. A nonzero intercept function or a linear trend
function seem most relevant in practice, so we focus on those, but an extension to
more general deterministic components requires only a slight modification of the
subsequent discussion.

Specifically, for some functions μ1,μ2 ∈ H, we consider the unobserved com-
ponents model

Xt = μ1 +μ2t +Ut, (3.16)

where (Ut,t ≥ 1) is an unobserved I(1) sequence with mean zero that is generated
like (Xt,t ≥ 1) in the previous sections. The model (3.16) includes the intercept
function, μ1, and the linear trend function, μ2. If only an intercept function is
wanted, then we set μ2 = 0.

We define the functional residuals from least squares estimation,

U(1)
t = Xt − 1

T

T∑
t=1

Xt and U(2)
t = U(1)

t −
(

t − T +1

2

) ∑T
t=1

(
t − T+1

2

)
Xt∑T

t=1

(
t − T+1

2

)2 ;

see Kokoszka and Young (2016) for details. Here, the superscript (1) denotes resid-
uals from the model with only an intercept function, while (2) denotes residuals
from the model with both intercept and linear trend functions. Analogously to
(3.5), we define, for � = 1,2,

Ĉ(�) =
T∑

t=1

U(�)
t ⊗U(�)

t and K̂(�) =
T∑

t=1

⎛⎝ t∑
j=1

U(�)

j ⊗
t∑

j=1

U(�)

j

⎞⎠ . (3.17)

We then consider the following generalized eigenvalue problem,

τ T
j,(�)P

T

 K̂(�)PT


 ξT
j,(�) = PT


 Ĉ(�)PT

 ξT

j,(�), ξT
j,(�) ∈ ranPT


 . (3.18)

To describe the asymptotic distributions, we hereafter, with a slight abuse of
notation, use ��X to denote the long-run covariance operator of either �Xt or �Ut

and use (ηj,j = 1, . . . ,s) to denote its associated eigenvectors. Furthermore, we let
(W (�)(r),r ∈ [0,1]) denote a demeaned (for � = 1) or demeaned and detrended (for
� = 2) Brownian motion taking values in H with covariance operator

∑s
j=1 ηj ⊗ηj

and define V (�)(r) = ∫ r
0 W (�)(w)dw for r ∈ [0,1] and � = 1,2. Based on these, we

then define W̃ (�) and Ṽ (�) as in (3.4).
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THEOREM 3. Suppose that Assumptions 1–3 hold, and let (τ T
1,(�), . . . ,τ

T

,(�))

with τ T
1,(�) ≤ ·· · ≤ τ T


,(�) and (ξT
1,(�), . . . ,ξ

T

,(�)) ⊂ H be the pairs of eigenvalues and

eigenvectors satisfying (3.18). Then, for � = 1,2,

T2
s∑

j=1

τ T
j,(�)

d→ tr
(
(Ṽ (�)|A→A)−1W̃ (�)|A→A

)
, (3.19)

T2
q∑

j=1

τ T
j,(�)

p→ ∞ for any s+1 ≤ q ≤ 
. (3.20)

Remark 8. As in Remark 4, it can be shown that the limiting distribution in
(3.19) satisfies

tr
(
(Ṽ (�)|A→A)−1W̃ (�)|A→A

)
d= tr

((∫ 1

0
V(�)

s (r)V(�)
s

′(r)dr

)−1 ∫ 1

0
W(�)

s (r)W(�)
s

′(r)dr

)
, (3.21)

where W(�)
s is s-dimensional demeaned (resp. detrended) Brownian motion when

� = 1 (resp. � = 2), and V(�)
s (r) = ∫ r

0 W(�)
s (w)dw. As in Remark 4, quantiles of this

distribution can be found by simulation. For � = 1,2 and s0 ≤ 8, these are tabulated
in Breitung (2002).

3.5. Practical Choice of PT
�

for Feasible Test

In this section, we discuss practical, data-dependent choices of the projection
operator, PT


 , that asymptotically span the nonstationary subspace, i.e., satisfy
Assumption 3. To avoid basing the generalized eigenvalue problems in (3.9) and
(3.18) on high-dimensional covariance matrices, which could lead to inaccuracy or
even inconsistency of eigenvalues (Yao, Kammoun, and Najim, 2012), we suggest
projection operators constructed from a small set of orthonormal vectors. The next
remark discusses one such projection, based on Ĉ or Ĉ(�), as applied by Chang et al.
(2016). The subsequent theorem discusses another projection, based on our K̂ or
K̂(�).

Remark 9. Let C̃ equal Ĉ or Ĉ(�) for � = 1,2, depending on the specification
of deterministic components, and let {γ T

j ,φT
j } be the pairs of eigenvalues and

eigenvectors satisfying γ T
j φT

j = C̃φT
j for γ T

1 ≥ γ T
2 ≥ . . . If Assumptions 1 and 2

hold, it follows from Thm. 3.3 of Chang et al. (2016) that PT

 = ∑


j=1 φT
j ⊗ φT

j
satisfies Assumption 3 for any 
 ≥ s.
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THEOREM 4. Suppose that Assumptions 1 and 2 hold. Let K̃ equal K̂ or K̂(�)

for � = 1,2, depending on the specification of deterministic components, and let
{γ T

j ,φT
j } be the pairs of eigenvalues and eigenvectors satisfying

γ T
j φT

j = K̃φT
j (3.22)

for γ T
1 ≥ γ T

2 ≥ . . . Then PT

 = ∑


j=1 φT
j ⊗φT

j satisfies Assumption 3 for any 
 ≥ s.

In Theorem 4, we suggest an estimate PT

 based on eigenanalysis of K̃ following

the idea of Chang et al. (2016) who estimate PT

 based on eigenanalysis of C̃; see

Remark 9. In either case, the space spanned by the first s eigenvectors converges to
the nonstationary subspace, such that Assumption 3 is satisfied for any 
 ≥ s. We
use these results to form a test statistic associated with the null hypothesis in (3.2)
following Remark 4. We let the required estimate PT


 be based on K̃ and Theorem
4, and define the test statistic

TK = T2
s0∑

j=1

τ T
j . (3.23)

Remark 10. Of course, we could also form a test statistic based on Remark
9 and C̃ instead of K̃. It follows from Theorem 4 and Remark 9 that all our
previous results and remarks apply to both versions of the test. From our experience
in simulations, the statistic TK in (3.23) is preferred in terms of finite-sample
performance.

The statistic TK depends on the tuning parameter 
, the choice of which is
discussed next. However, we note that the limiting distributions of TK in Theorems
1 and 3 do not depend on any nuisance parameters. Furthermore, the computation
of the statistic does not require an estimate of the long-run covariance operator
��X . In contrast, Chang et al.’s (2016) statistic requires computation of the long-
run covariance operator PT


 ��XPT

 for their choice of PT


 , and the functional
KPSS statistics of Horváth et al. (2014) and Kokoszka and Young (2016) require
estimation of the long-run covariance operator of the sequence (Xt,t ≥ 1).

Remark 11. Note that s in Theorem 4 and Remark 9 is the true dimension of the
nonstationary subspace, which of course is unknown in general. However, this is
not a problem in practice because we start with s0 = smax, where smax ≥ s, and test
down; see Theorem 2. Then we can apply Theorem 4 and Remark 9 with 
 ≥ s0,
which is feasible. See also Remarks 5 and 6 regarding the choice of smax.

Remark 12. For the choice of 
, we suggest either a fixed value, for example

 = smax + k for some integer k ≥ 0, or alternatively a value that depends on the
null hypothesis, 
 = s0 + k for some integer k ≥ 0. Note that both these choices
are feasible in practical application since both smax and s0 are chosen by the
practitioner. Clearly, the choice of 
 may be an important issue for finite sample
properties of our tests. We experimented with both 
 = s0 and 
 = s0 + 2 in
additional Monte Carlo simulations (the results for 
 = s0 can be found in Tables
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S.1–S.3 and S.5 in the Supplementary Material), and found that 
 = s0 +2, which
of course is feasible in practice, provides a good compromise between size and
power.

Remark 13. In Chang et al.’s (2016) test of (3.2), exactly s0 orthonormal
vectors that asymptotically span the nonstationary subspace, A, are required for
consistency. An interesting feature of our Assumption 3, which is supported in
practice by Theorem 4, is that our testing procedure does not require exactly s0

orthonormal vectors that asymptotically span A. Instead, our testing procedure
allows 
 to be larger than s0 in the estimate of the asymptotic superspace, ranPT


 ,
whose span asymptotically includes A. Intuitively, it seems clear that estimation
of A is much more difficult than estimation of any space that is asymptotically a
superspace ofA, and this may cause problems for Chang et al.’s (2016) test in finite
samples. This is, to some extent, confirmed in additional simulations (reported
in Tables S.1–S.3 and S.5 in the Supplementary Material), where the test with

 = s0 +2 outperforms that with 
 = s0.

Remark 14. Sometimes, estimation of A is of independent interest. Theorem
4 shows that the first s eigenvectors of K̃ converge to an orthonormal basis of A.
Therefore, estimation of A reduces to estimation of s, which can be determined by
our testing procedure. See also Thm. 3.3 of Chang et al. (2016), where it is shown
that the first s eigenvectors of C̃ converge to an orthonormal basis of A.

4. MONTE CARLO SIMULATIONS

In this section, we investigate the finite sample performance of our test by Monte
Carlo simulation. For all simulation experiments, the sample sizes are T = 200
and T = 500, the number of replications is 10,000, the nominal size is 5%, and
critical values for the variance ratio tests are from Table 6 in Breitung (2002)
(see Remarks 4 and 8). Note that s is the true value of the dimension of A in the
DGP and s0 is the value under the null hypothesis. Thus, we simulate size when
s0 = s and power when s0 ≥ s+1. We report results for two statistics: CKP is the
statistic of Chang, Kim, and Park (2016) and TK is our preferred variance ratio
statistic using 
 = s0 + 2 eigenvalues of the sample covariance operator K̂(1) to
construct PT


 ; see (3.23) and Remark 10. The performance of the CKP statistic is
sensitive to the choice of bandwidth parameter used in the estimation of the long-
run covariance operator. We follow Chang et al. (2016) and use the Parzen kernel
with the automatic data-dependent bandwidth rule of Andrews (1991). Finally, all
statistics include correction for a non-zero intercept function, but no linear trend
function.

4.1. Experiment 1: Densities of Individual Earnings

This simulation experiment is based on the time series of cross-sectional densities
of individual earnings that was analyzed in Chang et al. (2016). As pointed out by
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Petersen and Müller (2016), it is not, in general, advisable to treat density-valued
time series as elements of the square-integrable Hilbert space with the usual inner
product; see also Seo and Beare (2019). However, this experiment is useful in
examining the performance of our test in the same setting considered by Chang
et al. (2016).

The observations of individual weekly earnings are obtained from the Current
Population Survey (CPS) and deflated using inflation-adjustment factors suggested
by CPS with base year 2005; see https://cps.ipums.org/cps/cpi99.shtml. Moreover,
as in Chang et al. (2016), we drop top-coded earnings as well as zero earnings. As
a result, our data set provides cross-sectional observations of individual earnings
for 247 months from January 1994 to July 2014, and the number of cross-sectional
observations for each month ranges from 12,180 in April 1996 to 15,826 in October
2001. For convenience, we divide each observation by 3,500, which is strictly
larger than the historically maximal observation, 3,394.81, so that all observations
are in [0,1]. Clearly, this normalization does not cause any numerical differences
compared with the results without normalization. As in Chang et al. (2016), we
estimate monthly densities of individual earnings by kernel density estimation
with the Epanechnikov kernel and bandwidth given by 2.3449σ̂n−1/5, where σ̂ is
the standard deviation of cross-sectional observations and n is the cross-sectional
sample size.

The basic DGP for the simulation experiment is constructed in the same way
as in Chang et al. (2016) with the only difference that we use 247 B-spline basis
functions for the representation of L2[0,1]-functions, and obtain the eigenvectors
(v̂1, . . . ,v̂247) of the covariance operator Ĉ. We thus let

Xt − X̄T =
247∑
j=1

aj,t v̂j (4.1)

and

�aj,t = βj�aj,t−1 +σjηj,t, j = 1,2(= s),

aj,t = βjaj,t−1 +σjηj,t, j ≥ 3,
(4.2)

where ηj,t are i.i.d. N(0,1) across j and t, and βj and σj are replaced by the estimates
from the observations âj,t = 〈Xt − X̄T,v̂j〉 for t = 1, . . . ,T . Note that this DGP is a
special case of the functional AR(1) processes in Section 4.3.

In the basic DGP in (4.1) and (4.2) we have
∑2

j=1 σ 2
j /

∑247
j=1 σ 2

j � 0.65. This
implies that 65% of the random functional variation at time t + 1, given all the
information up to time t, occurs in the nonstationary subspace. In our empirical
examples to age-specific employment rates and to Ontario electricity demand in
Sections 5.1 and 5.3, this number is 14% and 1.6%, respectively. Thus, the value
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Table 1. Simulation results for DGP (4.1)–(4.3).

T = 200 T = 500

Test s0\q1 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5

TK 2 0.011 0.010 0.009 0.009 0.011 0.010 0.037 0.036 0.036 0.036 0.036 0.036

3 0.463 0.457 0.473 0.456 0.468 0.431 0.882 0.887 0.884 0.888 0.884 0.886

4 0.870 0.869 0.879 0.874 0.871 0.845 0.999 0.999 0.999 0.999 0.999 0.999

5 0.986 0.987 0.989 0.989 0.987 0.985 1.000 1.000 1.000 1.000 1.000 1.000

CKP 2 0.024 0.044 0.182 0.393 0.590 0.756 0.040 0.041 0.052 0.111 0.230 0.383

3 0.992 0.658 0.158 0.081 0.071 0.073 1.000 1.000 1.000 0.333 0.083 0.048

4 0.991 0.388 0.106 0.065 0.052 0.053 1.000 1.000 0.627 0.126 0.040 0.020

5 0.947 0.251 0.070 0.040 0.020 0.017 1.000 0.993 0.260 0.032 0.008 0.004

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s = 2 and the H0 value is s0.
The nominal size is 5%.

65% in the DGP (4.1) and (4.2) may seem like a very high value. We therefore
replace σj in (4.2) with σ̃j defined as

σ̃ 2
j = (1/q1)σ

2
j , j = 1,2(= s),

σ̃ 2
j = q1σ

2
j , j ≥ 3,

(4.3)

for q1 ∈ {1.0,1.5, . . . ,3.5}. Now
∑2

j=1 σ̃ 2
j /

∑247
j=1 σ̃ 2

j varies from approximately
65%–13% as q1 varies from 1.0 to 3.5.

In Table 1, we report the results from the DGP in (4.1)–(4.3). In the rows with
s0 = s = 2, we report the simulated size of the tests. It is clear that the CKP test is
very sensitive to the value of q1 with severe over-sizing when q1 ≥ 2 for T = 200
and when q1 ≥ 2.5 when T = 500. On the other hand, the TK variance ratio test is
very robust to q1, although it is somewhat under-sized when T = 200 and slightly
under-sized when T = 500.

Recalling that the true value is s = 2, the rows with s0 ≥ 3 report simulated
power. To make the comparison meaningful, these are size-corrected. To this end,
we need to modify the DGP in (4.2) such that data can be generated with s ≥ 3
nonstationary components. To do this, we randomly choose s−2 values from j =
3, . . . ,8 and set their values of βj equal to one. From the results in Table 1, we see
that the large size distortions of the CKP test imply that its power is nearly zero
in many cases. It is only with small values of q1 that the CKP test has meaningful
size and power. Furthermore, in some cases where the CKP test has accurate size
it suffers from a power-reversal problem, in the sense that power declines as s0

increases and is further away from the true s (e.g., when T = 500 and q1 = 2.0).
This phenomenon was also observed by Chang et al. (2016) in their Table 7, where
the true number of stochastic trends is one, and columns 1 and 2 are reasonable,
but columns 3–5 correspond to alternatives that are farther away from the null
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hypothesis with declining power. On the other hand, the power of the TK variance
ratio test is unaffected by the value of q1, as was the size.

4.2. Experiment 2: Densities of Individual Earnings with Measure-
ment Error

We next consider a modification of the basic DGP in (4.1) and (4.2), where we
include estimation/measurement error in the DGP. First, the time series in Chang
et al.’s (2016) DGP in (4.1)–(4.2) consist of estimated densities, so we should
not disregard estimation error. Second, the first step of functional time series
analysis typically includes smoothing of discrete observations to obtain functional
observations. This data preprocessing therefore entails estimation error for each
Xt, and we make the DGP a little more realistic by adding an i.i.d. noise to each
realization. That is, in addition to (4.1) and (4.2), we consider

X̃t = Xt +q2ut, ut = PF10Bt, (4.4)

where Bt is a sequence of i.i.d. standard Brownian bridges and PF10 denote the
projection operator onto the span of the first 10 Fourier basis functions (without
a constant function). The projection PF10 is not essential to this experiment and is
applied to make X̃t a smooth function for each t. The inverse signal-to-noise ratio
is q2 ∈ {0.00,0.05, . . . ,0.25}.

The results for the DGP in (4.1), (4.2), and (4.4) are reported in Table 2. Again,
the CKP test has very poor size control for this DGP. Even for the larger sample
with T = 500, the size of the CKP test is 10.8% with q2 = 0.10 and 60.1% with
q2 = 0.25. In contrast, the TK test has only slight size distortions for the largest
values of q2 considered.

Table 2. Simulation results for DGP (4.1), (4.2), (4.4).

T = 200 T = 500

Test s0\q2 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

TK 2 0.011 0.017 0.031 0.061 0.094 0.137 0.037 0.041 0.050 0.064 0.083 0.107

3 0.456 0.499 0.525 0.564 0.558 0.556 0.875 0.905 0.931 0.953 0.960 0.966

4 0.871 0.894 0.920 0.921 0.917 0.902 0.999 1.000 1.000 1.000 1.000 1.000

5 0.984 0.992 0.995 0.996 0.992 0.987 1.000 1.000 1.000 1.000 1.000 1.000

CKP 2 0.024 0.035 0.082 0.232 0.466 0.677 0.040 0.054 0.108 0.230 0.413 0.601

3 0.993 0.992 0.860 0.306 0.155 0.097 1.000 1.000 1.000 1.000 0.894 0.448

4 0.999 0.995 0.797 0.397 0.268 0.192 1.000 1.000 1.000 1.000 0.914 0.649

5 1.000 0.992 0.821 0.510 0.378 0.280 1.000 1.000 1.000 1.000 0.963 0.796

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s = 2 and the H0 value is s0.
The nominal size is 5%.
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We again consider size-corrected power due to the large size distortions for the
CKP test in particular. In cases where the size of the CKP test is reasonable, it
appears to have good power, and for the smallest values of q2 the CKP test has
higher power than the TK test. On balance, although, the TK test has higher power
than the CKP test in most cases.

Overall, the CKP test is clearly very sensitive to the specifications of q1 and q2

in our Experiments 1 and 2, in terms of both simulated size and power. In contrast,
the TK variance ratio test is very robust to all specifications.

4.3. Experiment 3: Functional AR(1) Process

For our next simulation experiment, we consider the commonly applied functional
AR(1) model. In particular, our setup follows that of Beare et al. (2017) and
Aue, Rice, and Sönmez (2017). Let (ζj,j = 1, . . . ,21) be the first 21 orthonormal
polynomial basis functions defined on [0,1], and let (ζ(j),j = 1, . . . ,21) be the same
collection in a different order obtained by randomly permuting (ζj,j = 1, . . . ,8) and
(ζj,j = 9, . . . ,21), separately. We generate the functional time series as

Xt = μ+
21∑

j=1

θj〈ζ(j),Xt−1〉ζ(j) +Bt, (4.5)

where (Bt,t = 1, . . . ,T) is a sequence of i.i.d. standard Brownian bridges and

θj =
{

1, for j ≤ s,
θ (j−s), for j ≥ s+1,

for 0 ≤ θ < 1. Following, e.g., Aue et al. (2017), we permute (ζj) as described
above to avoid any effects caused by the particular shape and ordering of the basis
functions, and hence the shapes of the stationary and nonstationary subspaces.
Intuitively, when the nonstationary subspace is s-dimensional, s elements are
randomly drawn from the first eight polynomials. Similarly, to avoid any effects
caused by the particular shape of the mean function μ in (4.5), it is generated
by

∑21
j=1 gjζj, where gj are i.i.d. standard normal random variables. Finally, the

functional observations are constructed by smoothing (Xt,t = 1, . . . ,T) in (4.5)
using 41 Fourier basis functions (the choice of basis functions has minimal effect
in this setting).

Table 3 presents simulation results for θ ∈ {0.0,0.5,0.8}. We first note that the
CKP test has very poor size control for all θ and all s = dim(A). Even though it
improves as the sample size increases, there is still severe over-rejection for T =
500. The size-corrected simulated power of the CKP test is very low in all cases,
presumably due to the large size distortions. On the other hand, the TK variance
ratio test has excellent size and power for all θ and s considered in this simulation
setup.

In additional simulations, reported in Tables S.4 and S.5 in the Supplementary
Material, we considered model (4.5) with the nonstationary subspace spanned by
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Table 3. Simulation results for functional AR(1).

T = 200 T = 500

θ Test s0 s = 0 s = 1 s = 2 s = 3 s = 0 s = 1 s = 2 s = 3

0.0 TK s 0.049 0.045 0.058 0.050 0.050 0.047

s+1 0.999 0.966 0.954 0.955 1.000 1.000 1.000 0.999

s+2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

s+3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CKP s 0.372 0.644 0.567 0.173 0.424 0.577

s+1 0.187 0.134 0.036 0.020 0.496 0.209 0.161 0.038

s+2 0.124 0.001 0.001 0.002 0.372 0.091 0.000 0.001

s+3 0.000 0.000 0.000 0.000 0.199 0.000 0.000 0.000

0.5 TK s 0.047 0.043 0.041 0.050 0.048 0.052

s+1 0.981 0.907 0.897 0.859 1.000 0.996 0.994 0.996

s+2 1.000 0.999 0.999 0.997 1.000 1.000 1.000 1.000

s+3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CKP s 0.390 0.688 0.799 0.195 0.455 0.635

s+1 0.149 0.067 0.044 0.032 0.342 0.117 0.060 0.032

s+2 0.000 0.009 0.010 0.012 0.000 0.002 0.003 0.003

s+3 0.000 0.001 0.002 0.004 0.000 0.000 0.000 0.000

0.8 TK s 0.027 0.023 0.019 0.045 0.042 0.041

s+1 0.785 0.618 0.537 0.437 0.976 0.915 0.901 0.860

s+2 0.982 0.959 0.940 0.917 1.000 1.000 1.000 0.999

s+3 1.000 0.999 0.999 0.997 1.000 1.000 1.000 1.000

CKP s 0.459 0.744 0.823 0.271 0.569 0.729

s+1 0.143 0.064 0.070 0.072 0.315 0.104 0.069 0.077

s+2 0.019 0.056 0.080 0.113 0.005 0.020 0.046 0.091

s+3 0.012 0.042 0.092 0.317 0.000 0.007 0.031 0.231

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and the H0 value is s0.
Nominal size is 5%.

the first s polynomial basis functions, i.e., without permutation of (ζj,j = 1, . . . ,8).
Because lower-order polynomial basis functions are much more smooth than
higher-order polynomials, all tests have better finite-sample properties in this case.
However, the CKP test still substantially over-rejects the null hypothesis when θ

is relatively large, while the TK test performs very well overall.

4.4. Experiment 4: Sequential Application of Tests

In practice, rather than testing a specific hypothesis of interest, we expect that the
most common application of our proposed test, and of the CKP test, is to estimate
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the dimension of the nonstationary subspace as in Theorem 2. To this end, both
procedures require a priori setting an upper bound, denoted smax. The hypotheses
H0 : dim(A) = s0 for s0 = smax,smax −1, . . . ,1 are then tested sequentially, and the
estimate ŝ is the first nonrejected null hypothesis. It is preferable that this ŝ is robust
to the choice of smax, i.e., that it does not depend on the choice of smax (as long as
smax ≥ s). In our last simulation experiment we consider this sequential application
of the tests to obtain ŝ. These data are generated by the functional AR(1) process
(4.5) with θ = 0.5.

Table 4 reports the results as relative frequencies of ŝ divided into the four “bins,”
ŝ < s, ŝ = s, ŝ = s+1, and ŝ > s+1. For each of four true values, s ∈ {0,1,5,8}, we

Table 4. Relative frequencies of ŝ for functional AR(1).

T = 200 T = 500

smax Test s ŝ < s ŝ = s ŝ = s+1 ŝ > s+1 ŝ < s ŝ = s ŝ = s+1 ŝ > s+1

s+1 TK 0 0.979 0.021 1.000 0.000

1 0.042 0.853 0.105 0.051 0.944 0.005

5 0.088 0.734 0.178 0.077 0.919 0.004

8 0.334 0.624 0.042 0.259 0.741 0.000

CKP 0 1.000 0.000 0.000 1.000 0.000 0.000

1 0.396 0.603 0.001 0.000 0.199 0.801 0.000 0.000

5 0.114 0.054 0.831 0.000 0.762 0.238 0.000 0.000

8 0.000 0.000 1.000 0.000 0.063 0.027 0.909 0.000

s+3 TK 0 0.979 0.021 0.000 1.000 0.000 0.000

1 0.041 0.853 0.105 0.001 0.051 0.944 0.005 0.000

5 0.088 0.734 0.176 0.002 0.077 0.919 0.004 0.000

8 0.334 0.624 0.041 0.000 0.259 0.741 0.000 0.000

CKP 0 1.000 0.000 0.000 1.000 0.000 0.000

1 0.354 0.528 0.000 0.117 0.199 0.801 0.000 0.000

5 0.000 0.000 0.000 1.000 0.757 0.235 0.000 0.008

8 0.000 0.000 0.000 1.000 0.001 0.000 0.000 0.999

20 TK 0 0.979 0.021 0.000 1.000 0.000 0.000

1 0.041 0.853 0.105 0.001 0.051 0.944 0.005 0.000

5 0.088 0.734 0.176 0.002 0.077 0.919 0.004 0.000

8 0.334 0.624 0.041 0.000 0.259 0.741 0.000 0.000

CKP 0 0.000 0.000 1.000 0.000 0.000 1.000

1 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

5 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

8 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000

Notes: Based on 10,000 Monte Carlo replications. The DGP true value is s and θ = 0.5. Nominal size
is 5%.
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consider three different choices for the initial hypothesis, smax ∈ {s + 1,s + 3,20}.
The first two choices are a simple way to simulate careful selection of smax based
on graphical or other measures as discussed in Chang et al. (2016, Sect. 5), with the
second choice being slightly more liberal in view of the requirement that smax ≥ s
(and s is unknown in practice).

The results in Table 4 are clearly favorable to the TK test. In particular, the CKP
test tends to find ŝ > s when either smax or s increases. This issue with the CKP test
is likely due to the power reversal problem of the test as mentioned in Section 4.1
and also observed by Chang et al. (2016) in their Table 7. On the other hand, our
TK test finds ŝ = s with large probability that is nearly unaffected by the choice
of smax. Although this probability decreases somewhat when s increases, it also
increases substantially with the sample size.

Additional simulations (reported in Tables S.1–S.3 and S.5 in the Supplementary
Material) have shown that the variance ratio tests based on Ĉ(1) and/or with 
 =
s0 are somewhat over-sized, although not nearly as much as the CKP test. This
suggests that estimation of A is more difficult than estimation of an asymptotic
superspace of A, and we conjecture that this may be the main reason for the size
distortion of the CKP test; see also Remarks 12 and 13.

Overall, our Monte Carlo simulations strongly support the use of the TK variance
ratio test. It is very robust to the DGP specifications with excellent size control
throughout. Further evidence on the robustness based on empirical applications is
presented in Section 5.4.

5. EMPIRICAL APPLICATIONS

5.1. Logit Transformed Age-Specific Employment Rates

We first apply our methodology to the time series of age-specific employment
rates in the United States observed monthly from January 1989 to November 2018.
These data are available from the CPS at https://ipums.org; see Flood et al. (2018).
We only consider individuals in the working age (15–64) population. For age a,
the age-specific employment rate at time t is computed as

Xa,t =
∑nt

i=1 wi,tZi,t1{ai,t = a}∑nt
i=1 wi,t1{ai,t = a} ,

where 1{·} denotes the indicator function, nt is the number of individuals observed
at time t, and wi,t, ai,t, and Zi,t denote the weight (WTFINL in CPS), age, and
employment status dummy of individual i at time t, respectively. The employment
rate specific to each age, Xa,t, is then seasonally adjusted using the software
package provided by the U.S. Census Bureau. The age-specific employment rate
takes values between 0 to 1 by construction, so as is common in the literature,
we hereafter consider the logit transformation, ψ(Xa,t), instead of Xa,t. Finally, the
functional observations Xt(u) for u ∈ [15,64] and t = 1, . . . ,T = 359 are obtained
by smoothing ψ(Xa,t) over a using 31 B-spline basis functions.

https://doi.org/10.1017/S0266466622000111 Published online by Cambridge University Press

https://ipums.org
https://doi.org/10.1017/S0266466622000111


466 MORTEN ØRREGAARD NIELSEN ET AL.

Figure 1. Group characteristics.

In Figure 1, we plot three real-valued sequences (〈Xt,v〉,t ≥ 1) to explore
characteristics of the functional time series. Specifically, we consider v = vy, vo,
and va, where

vy(u) = 1{u ≤ 25}, vo(u) = 1{u ≥ 54}, va(u) = 1, u ∈ [15,64].

Clearly, 〈Xt,vy〉 and 〈Xt,vo〉 are the average employment rates for the younger
and older age groups, respectively, and 〈Xt,va〉 is the overall average employment
rate. Firstly, Figure 1 suggests that the functional time series of age-specific
employment rates is nonstationary, because if it were stationary, then (〈Xt,v〉,t ≥ 1)

would be stationary for any choice of v ∈ H. Secondly, it seems that the series
may have a linear time trend. Thirdly, the three series clearly have some degree of
co-movement, but they also have their own characteristics. For example, in 2009
employment rates decline sharply in both age groups, but the decline seems more
severe in the younger age group than in the older age group. Note that, if we only
focus on the employment rate that is aggregated over ages as in Figure 1c, this
information is lost.

Panel (a) of Figure 2 displays the functional observations, and in panel (b),
we display the first six (largest) eigenvalues of K̂(2) from (3.22) on a logarith-
mic scale, where we use the detrended functional observations. This is because
Figure 1 suggested the possible presence of a linear time trend; note that the hori-
zontal axis in Figure 2a is age and not time, so a “trend” in the latter plot is related
to the shape of the intercept function and not the time trend. Let the inner product
of the jth eigenvector of (3.22) with (U(2)

t ,1 ≤ t ≤ T) denote jth score process.
Figure 2c–f displays the first four score processes.

The order of magnitude and rate of decay of the eigenvalues can be suggestive
of the dimension of the nonstationary subspace, as discussed in Chang et al. (2016)
for the eigenvalues of Ĉ. In particular, the number of “large” eigenvalues should
correspond to the dimension of the nonstationary subspace. Furthermore, based on
Theorem 4, we expect that the first s score processes behave as unit root processes.
From the plots of both the eigenvalues and the score processes, there seems to be
quite strong graphical evidence in favor of the dimension being at least one or two.

In addition to the graphical evidence, we also calculated the functional
KPSS test statistics of Horváth et al. (2014) and Kokoszka and Young (2016)
based on projection onto the space spanned by the first d eigenvectors of the
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Figure 2. Monthly age-specific employment rates January 1989 to November 2018.

Table 5. Test results for logit of age-specific employment rates.

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

Intercept only

TK 17.67 156.38 579.59 1623.55∗∗ 4411.19∗∗∗

CKP 0.1134 0.0325 0.0077∗∗∗ 0.0075∗∗∗ 0.0068∗∗∗

Linear trend and intercept

TK 130.43 426.18 1401.94∗∗ 4381.61∗∗∗ 7107.46∗∗∗

CKP 0.1110 0.0093∗∗∗ 0.0074∗∗∗ 0.0073∗∗∗ 0.0066∗∗∗

Notes: The functional data are smoothed with 31 B-spline functions, and the number of observations is
T = 359. We use ∗, ∗∗, and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, respectively.
Critical values for the CKP test in the linear trend case are calculated from the functional residuals U(2)

t
and 100,000 approximate realizations from the asymptotic distribution. Data and R code to replicate
this table are available on the authors’ websites.

long-run covariance operator of Xt. We used the Parzen kernel with bandwidth
given by T1/3, and the parameter d was chosen such that the cumulative variance
of the first d eigenvectors,

∑d
j=1 λ̂j/

∑T
j=1 λ̂j, was around 90% as recommended by

Horváth et al. (2014) and Kokoszka and Young (2016). The test statistics equal 5.99
(intercept) and 0.52 (linear trend and intercept), and in both cases are significant at
the 1% level using the critical values in Table 6.1 of Horváth and Kokoszka (2012)
and Table 1 of Kokoszka and Young (2016).

Table 5 summarizes the test results under two different specifications of the
deterministic component, nonzero intercept and linear trend. Even though Chang
et al. (2016) do not explicitly consider the case where the DGP includes a linear
trend function, we may apply their test to the functional residuals U(2)

t in which
case the asymptotic distribution of their test statistic under the null is given by the
minimum eigenvalue of

∫ 1
0 W(2)

s0
(r)W(2)

s0
′(r)dr.
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For both specifications of deterministic terms in Table 5, the CKP test rejects
more than the TK variance ratio test. In particular, with only an intercept, the CKP
test suggests that the dimension of the nonstationary subspace is ŝ = 2 and the TK
test suggests ŝ = 3. Allowing for a linear trend, which based on Figure 1 seems
prudent, the CKP and TK tests suggest ŝ = 1 and ŝ = 2, respectively. This pattern
is, at least to some extent, expected from the simulation evidence, where the CKP
test was often found to be over-sized. For that reason, we would be most inclined
to conclude that the logit transformed age-specific employment curves have a two-
dimensional nonstationary subspace (i.e., are driven by two stochastic trends).

5.2. Minimum Temperatures in Australia

The next empirical example is an application to yearly minimum temperature
curves in Australia. This example is also considered in Aue, Rice, and Sönmez
(2017), who reject the null of stationarity against the alternative of structural
change in the mean function. However, their finding could also be a consequence
of a nontrivial nonstationary subspace.

The raw data are obtained from the Australian Bureau of Meteorology at
http://www.bom.gov.au and consists of daily minimum temperature observations.
For each year, the observations are smoothed using 23 Fourier basis functions to
obtain a curve of minimum temperatures through the year. We consider six weather
stations that have relatively large samples, and we allow for a nonzero intercept
function in the processes. The functional KPSS test statistics for the six series
range from 1.20 to 3.77 and are significant at the 10% level (Gunnedah Pool), 5%
level (Cape Otway), or 1% level (remainder).

Figure 3 shows a graphical summary of the Sydney data set. In particular,
Figure 3b shows the six largest eigenvalues of K̂(1) on a logarithmic scale. The first
eigenvalue is clearly very different from the remaining eigenvalues, suggesting
a one-dimensional nonstationary subspace (one stochastic trend). This is also
suggested from the plots of the first and second scores in Figure 3c, of which only
the first seems nonstationary.

Table 6 reports the test results for the six temperature series. The findings for
the CKP test are very mixed. In all of the data sets, s0 = 5 is not rejected, although

Figure 3. Annual minimum temperature curves at Sydney station 1860–2018.
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Table 6. Test results for Australian minimum temperatures.

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

Sydney, 1860–2018

TK 16.27 440.81∗∗ 1,508.09∗∗∗ 3,348.58∗∗∗ 6,728.21∗∗∗

CKP 0.0523 0.0199∗∗ 0.0184 0.0149 0.0148

Melbourne, 1856–2014

TK 14.65 397.21∗∗ 1,331.09∗∗∗ 4,421.53∗∗∗ 7,933.17∗∗∗

CKP 0.0846 0.0194∗∗ 0.0174∗ 0.0138 0.0137

Gunnedah Pool, 1877–2011

TK 68.92∗ 393.15∗∗ 1,369.26∗∗∗ 2,809.60∗∗∗ 4,820.76∗∗∗

CKP 0.0202∗∗∗ 0.0166∗∗ 0.0141∗∗ 0.0142 0.0134

Cape Otway, 1864–2018

TK 55.64 980.81∗∗∗ 2,197.37∗∗∗ 4,611.09∗∗∗ 8,595.01∗∗∗

CKP 0.0187∗∗∗ 0.0140∗∗∗ 0.0143∗∗ 0.0138 0.0131

Boulia Airport, 1888–2018

TK 31.56 226.93 1,376.03∗∗∗ 3,510.24∗∗∗ 6,449.36∗∗∗

CKP 0.0176∗∗∗ 0.0160∗∗∗ 0.0129∗∗ 0.0130∗ 0.0140

Gaydah Post Office, 1894–2008

TK 16.72 429.14∗∗ 1,109.67∗∗ 2,574.92∗∗∗ 4,469.61∗∗∗

CKP 0.0517 0.0208∗∗ 0.0184 0.0182 0.0154

Notes: The functional data are smoothed with 23 Fourier basis functions. In the order of stations
reported in the table, the numbers of observations are 160, 161, 133, 155, 126, and 117, respectively.
We use ∗, ∗∗, and ∗∗∗ to denote rejection at 10%, 5%, and 1% significance level, respectively.

smaller values are rejected, and smaller yet are not. The CKP findings are thus
strongly dependent on the starting point, smax, of the procedure. On the other hand,
our TK test detects one stochastic trend for all temperature curves with at least 5%
significance (s0 = 1 is in fact rejected for the Gunnedah Pool series, but only at the
10% level).

Clearly, this strong dependence of the CKP procedure on the starting value, smax,
is undesirable in practice. At the same time, our TK variance ratio test seems to be
much less subject to this problem, and this should be a very appealing feature of our
test for applied researchers. The robustness (or lack thereof) of the CKP procedure
and the TK variance ratio test to the starting value, smax, is further explored in
Section 5.4.

5.3. Ontario Monthly Electricity Demand

In our final empirical example, we examine the existence of nonstationarity in
Ontario electricity demand. The raw data are observed every hour from January
1994 to November 2018, and is available at http://www.ieso.ca. We obtain T = 299
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Figure 4. Monthly electricity demand in Ontario January 1994 to November 2018.

Table 7. Test results for Ontario monthly electricity demand.

Test s0 = 1 s0 = 2 s0 = 3 s0 = 4 s0 = 5

TK 48.79 472.85∗∗ 2,614.72∗∗∗ 5,257.11∗∗∗ 8,342.73∗∗∗

CKP 0.0188∗∗∗ 0.0192∗∗ 0.0194 0.0097∗∗∗ 0.0074∗∗∗

Notes: The seasonally adjusted functional data are smoothed with 31 B-spline basis functions. The
number of observations is T = 299. We use ∗, ∗∗, and ∗∗∗ to denote rejection at 10%, 5%, and 1%
significance level, respectively.

monthly electricity demand curves using around 700 hourly data points for each
month smoothed with 31 B-spline basis functions. The monthly curves are log-
transformed and then seasonally adjusted by functional regression on a set of 12
seasonal dummies (of course, this implies that the series have zero mean, but in
the asymptotic theory it corresponds to inclusion of an intercept function).

Figure 4 shows a graphical summary of the time series of monthly electricity
demand curves. As in the previous example, the first eigenvalue is orders of
magnitude larger than the remaining eigenvalues, and the first score process looks
nonstationary while the second looks stationary. Again, this is suggestive of a one-
dimensional nonstationary subspace. The functional KPSS test rejects stationarity
at the 1% level with a test statistic of 1.84.

Table 7 presents test results for the electricity demand data set. The TK test
concludes that the nonstationary subspace is one-dimensional at the 5% signif-
icance level. The CKP test, on the other hand, concludes that the process is
either stationary or has a three-dimensional nonstationary subspace at the 1%
significance level (s0 = 3 is the only nonrejected hypothesis). In view of the Monte
Carlo simulation results, this is not too surprising.

5.4. Robustness to Choice of smax

In practice, rather than testing a specific hypothesis of interest, we expect that the
most common application of our proposed test, and of the CKP test, is to estimate
the dimension of the nonstationary subspace as in Theorem 2. To this end, both
procedures require a priori setting an upper bound, denoted smax. The hypotheses
H0 : dim(A) = s0 for s0 = smax,smax − 1, . . . ,1 are then tested sequentially. It is
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Figure 5. Estimates from the TK and CKP procedures for the data sets. Notes: For age-specific
employment rates a linear trend is included, for the minimum temperature series an intercept but
no trend is included, and for the electricity demand seasonal dummies are included. In all cases, the
significance level of the tests is 5%. The results for the minimum temperatures in Gaydah Post Office,
Melbourne, and Cape Otway are identical to those in Panels (b), (c), and (d), respectively.

preferable that the result of this procedure is robust to the choice of smax, i.e., that
it does not depend on the choice of smax (as long as smax ≥ s).

We know from the simulation evidence in Section 4.4 and Table 4, as well as
the empirical examples discussed above, that the CKP results depend heavily on
the choice of smax, while the TK variance ratio test is more robust to this choice.
We now investigate this issue further in Figure 5, where we report the estimated
dimension for each data set using the sequential testing procedure in Theorem 2
with 5% significance level for smax = 3, . . . ,20. It is obvious from Figure 5 that the
CKP procedure is very sensitive to the initial hypothesis, smax, while the variance
ratio test is very robust.

In particular, the CKP test tends not to reject the initial hypothesis, H0 :
dim(A) = smax, when smax gets bigger. Consequently, sequential application of
the CKP test would either lead to the conclusion that the dimension of the
nonstationary subspace is smax, or smax would be increased and the sequential test
repeated (as discussed in Remark 6) thus exacerbating the problem. In some cases,
this dependence of the CKP test on the choice of smax is a relatively minor issue,
and can be avoided by careful choice of smax. For example, for the age-specific
employment and electricity demand applications, the CKP procedure gives the
same estimate for smax ≤ 7 and smax ≤ 6, respectively. However, in all the other
applications, the CKP procedure finds that ŝ = smax for all choices of smax ≥ 4 (or
even less). This is problematic, not only in view of Remark 6, but also since two
researchers with different choices of smax would frequently find different estimates
from the CKP procedure, even though they retain the same significance level.
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On the other hand, our TK variance ratio procedure is very robust to the choice
of smax. For all the data sets, it gives the same estimate for all smax considered. For
practical application, this is a substantial advantage of our procedure.

6. CONCLUSION

We have proposed a testing procedure to determine the dimension of the nonsta-
tionary subspace (number of stochastic trends) in functional time series taking
values in a Hilbert space. Our test statistic is of the variance ratio type, and in the
univariate special case it reduces to the well-known KPSS statistic of Kwiatkowski
et al. (1992) with bandwidth zero. The test is based on a projection onto a subspace
of Hilbert space that is a superspace of the true nonstationary subspace with
probability converging to one. We provided an easily implemented candidate
for this required projection operator using empirical eigenvectors of covariance
operators. We have derived the asymptotic distribution of the test statistic under
the null hypothesis, which is a functional of standard Brownian motion. It does
not depend on the choice of projection operator nor on the number of eigenvectors
used to construct the projection operator. Monte Carlo simulation results were
reported which provide evidence that our test has good finite sample properties
and is preferred to the existing test of Chang et al. (2016). Finally, we applied our
methodology to three empirical data sets, age-specific U.S. employment curves,
Australian temperature curves, and Ontario electricity demand curves, and in all
cases found evidence of nontrivial nonstationary subspaces.

APPENDIX A. Preliminary Lemmas

The first lemma shows convergence of the sample covariance operators.

LEMMA 1. Suppose that Assumptions 1 and 2 are satisfied. With the notation in Section
3.2 it holds that

‖T−2Ĉ−C‖LH = op(1), (A.1)

‖T−4K̂−K‖LH = op(1). (A.2)

The next lemma shows the different behavior of the sample covariance operators in
different directions of the parameter space.

LEMMA 2. Suppose that Assumptions 1–3 are satisfied. With the notation in Section 3.3
the following holds.

(i) For any vT ∈ ranPT

 satisfying supT ‖vT‖ < ∞,

|〈T−2PT

 ĈPT


 vT,vT 〉−〈CvT,vT 〉| = op(1),

|〈T−4PT

 K̂PT


 vT,vT 〉−〈KvT,vT 〉| = op(1).
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(ii) For any vT ∈ A⊥ ∩ ranPT

 satisfying supT ‖vT‖ < ∞,

〈CvT,vT 〉 = 0 and 〈KvT,vT 〉 = 0,

|〈T−1PT

 ĈPT


 vT,vT 〉−〈(I −PA)Cν(I −PA)vT,vT 〉| = op(1),

〈T−2PT

 K̂PT


 vT,vT 〉 = Op(1).

The results of Lemmas 1 and 2 will be important in the derivation of the limiting
distribution of our test statistic. In the next two lemmas, these results are extended to
accommodate deterministic terms.

LEMMA 3. Suppose that Assumptions 1 and 2 are satisfied. With the notation in Section
3.4 it holds that, for � = 1,2,

‖T−2Ĉ(�) −C(�)‖LH = op(1), (A.3)

‖T−4K̂(�) −K(�)‖LH = op(1), (A.4)

where C(�) d= �
1/2
�XW̃

(�)�
1/2
�X and K(�) d= �

1/2
�X Ṽ

(�)�
1/2
�X.

LEMMA 4. Suppose that Assumptions 1–3 are satisfied. With the notation in Section 3.4
the following holds for � = 1,2.

(i) For any vT ∈ ranPT

 satisfying supT ‖vT‖ < ∞,

|〈T−2PT

 Ĉ(�)PT


 vT,vT 〉−〈C(�)vT,vT 〉| = op(1),

|〈T−4PT

 K̂(�)PT


 vT,vT 〉−〈K(�)vT,vT 〉| = op(1).

(ii) For any vT ∈ A⊥ ∩ ranPT

 satisfying supT ‖vT‖ < ∞,

〈C(�)vT,vT 〉 = 0 and 〈K(�)vT,vT 〉 = 0,

|〈T−1PT

 Ĉ(�)PT


 vT,vT 〉−〈(I −PA)Cν(I −PA)vT,vT 〉| = op(1),

〈T−2PT

 K̂(�)PT


 vT,vT 〉 = Op(1).

APPENDIX B. Proofs of Theorems

B.1. Proof of Theorem 1

We consider the decomposition PT



= PT



PA + PT


(I − PA) = PT


,A
+ PT


,A⊥ , for PT

,A

=
PT



PA and PT


,A⊥ = PT


(I −PA), and the following operator matrices,

K̂
 = PT

 K̂PT


 |ranPT

 →ranPT



=

(
(PT


,A
)∗K̂PT


,A
(PT


,A
)∗K̂PT


,A⊥
(PT


,A⊥)∗K̂PT

,A

(PT

,A⊥)∗K̂PT


,A⊥

)
,

Ĉ
 = PT

 ĈPT


 |ranPT

 →ranPT



=

(
(PT


,A
)∗ĈPT


,A
(PT


,A
)∗ĈPT


,A⊥
(PT


,A⊥)∗ĈPT

,A

(PT

,A⊥)∗ĈPT


,A⊥

)
.
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Let DT denote the normalization operator matrix

DT =
(

T−1/2I1 0
0 I2

)
,

where I1 and I2 are properly defined identity operators. Then the generalized eigenvalue
problem (3.9) can be rewritten as

(T2τT
j )(T−3DT K̂
DT )ξT

j = (T−1DT Ĉ
DT )ξT
j , ξT

j ∈ ranPT

 . (B.1)

By the isomorphism between R

 and any 
-dimensional subspace of H, the generalized

eigenvalue problem (B.1) may be understood as a standard eigenvalue problem in R

. Let

[T−1DT Ĉ
DT ] (resp. [T−3DT K̂
DT ]) be the matrix representation of T−1DT Ĉ
DT (resp.
T−3DT K̂
DT ) with respect to the orthonormal basis (φT

1 , . . . ,φT


) of ranPT



, as given by

[T−1DT Ĉ
DT ]ij = 〈T−1DT Ĉ
DTφT
j ,φT

i 〉, 1 ≤ i,j ≤ 
,

[T−3DT K̂
DT ]ij = 〈T−3DT K̂
DTφT
j ,φT

i 〉, 1 ≤ i,j ≤ 
.

From Assumption 3, Remark 2, and the results in Lemma 2, it follows that

[T−3DT K̂
DT ]−
(

[K] 0
0 0

)
p→ 0, [K]ij = 〈Kφj,φi〉, 1 ≤ i,j ≤ s, (B.2)

[T−1DT Ĉ
DT ]−
(

[C] 0
0 [C̃ν ]T

)
p→ 0, [C]ij = 〈Cφj,φi〉, 1 ≤ i,j ≤ s, (B.3)

[C̃ν ]T
ij = 〈C̃νφT

j ,φT
i 〉, s+1 ≤ i,j ≤ 
, (B.4)

where C̃ν = (I − PA)Cν(I − PA). Moreover, by our Assumption 2(ii) and Remark 2, the
matrix [C̃ν ]T is positive definite regardless of the limiting behavior of (φT

s+1, . . . ,φ
T


).

Given the results in (B.2)–(B.4), only the first s eigenvalues of (B.1) are finite in the limit
when normalized by T2. Specifically, it follows that

T2
s∑

j=1

τT
j

p→
s∑

j=1

τj,

(T2τT
j )−1 p→ 0, j = s+1, . . . ,
,

which proves (3.12). The limiting eigenvalues (τ1, . . . ,τs) and corresponding eigenvectors
(ξ1, . . . ,ξs) are defined by the limiting eigenvalue problem

τj[K]ξj = [C]ξj, ξj ∈ R
s. (B.5)

Thus, we may deduce from (B.5) and Remark 4 that

s∑
j=1

τj = tr
(

[K]−1[C]
)

= tr
(
(�

1/2
�X Ṽ�

1/2
�X |A→A)−1�

1/2
�XW̃�

1/2
�X

)
.
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Finally, recall that �1/2
�X :A→A and Ṽ :A→A are both invertible operators (almost surely

for Ṽ). By the properties of the trace, it then follows that

s∑
j=1

τj = tr
(
((�

1/2
�X)|A→A)−1(Ṽ|A→A)−1W̃|A→A(�

1/2
�X |A→A)

)
= tr

(
(Ṽ|A→A)−1W̃|A→A

)
,

which proves (3.11).

B.2. Proof of Theorem 2

The result that P{ŝ > s} → 0 is a direct consequence of the consistency of the test,
i.e., of (3.12) in Theorem 1, and the assumption that P{smax ≥ s} → 1. Thus, because
P{ŝ > s} → 0, the sequential test procedure will reach the test of the null hypothesis that
s0 = s with probability converging to one. This is a test of a true null, so we find from (3.11)
in Theorem 1 that P{ŝ = s} → 1−α, which proves the required result.

B.3. Proof of Theorem 3

The proof is nearly identical to that of Theorem 1, but using Lemmas 3 and 4 instead of
Lemmas 1 and 2, and hence is omitted.

B.4. Proof of Theorem 4

Let K̃∞ denote the limit K or K(�) depending on the specification of the deterministic
component. Then it follows from Lemmas 1 and 3 that ‖T−4K̃− K̃∞‖LH = op(1).

Let φT
j and φj denote the eigenvectors corresponding to the ordered eigenvalues of K̃

and K̃∞, respectively. Using the fact that the first s eigenvalues of K̃∞ are almost surely
distinct, it follows from Lemma 3.2 of Hörmann and Kokoszka (2010) (as a generalization
of Lemma 4.3 of Bosq, 2000) that

‖φT
j − sgn(〈φT

j ,φj〉)φj‖ = op(1), j = 1, . . . ,s. (B.6)

Note that (φ1, . . . ,φs) is a random orthonormal set, but the span is nonrandomly given by
span(φ1, . . . ,φs) = A. Therefore, (B.6) implies that the set of eigenvectors (φT

1 , . . . ,φT
s )

asymptotically spans A. Specifically, for any x ∈ A,

‖〈φT
j ,x〉φT

j −〈φj,x〉φj‖ p→ 0, j = 1, . . . ,s,

‖〈φT
j ,x〉φT

j ‖ p→ 0, j = s+1, . . . ,
.
(B.7)

From (B.7), we may easily deduce that Assumption 3 is satisfied.
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APPENDIX C. Proofs of Lemmas

C.1. Proof of Lemma 1

Recalling that Xt(u) is a random function of the argument u ∈ [0,1], we define the double-

indexed function ZT (r,u) = T−1/2X�Tr�(u) = T−1/2 ∑�Tr�
t=1 �Xt(u) for r ∈ [0,1] and at the

functional value u ∈ [0,1]. When there is no risk of confusion, we also use the notation
ZT (r) = T−1/2X�Tr� to denote the entire function of u. Under the summability condition∑∞

j=0 j‖�j‖LH < ∞ and Assumption 2, the sequence �Xt in (2.1) is a so-called L4-m-
approximable sequence; see Proposition 2.1 in Hörmann and Kokoszka (2010). Then, from
Theorem 1.1 in Berkes et al. (2013) and the Skorokhod representation, it follows that

sup
0≤r≤1

∥∥ZT (r)−W(r)
∥∥ p→ 0, (C.1)

where W
d= �

1/2
�XW . Let C = ∫

W(r)⊗W(r)dr, then clearly C d= �
1/2
�XW̃�

1/2
�X .

Similarly, for all r ∈ [0,1], we let W(r,u) denote the function value at u ∈ [0,1] and use
W(r) to denote the random (square-integrable) function of u. Both Ĉ and C are integral
operators, so we let ĉ(u,w) (resp. c(u,w)) denote the kernel function of T−2Ĉ (resp. C).
These are given as follows,

ĉ(u,w) = 1

T2

T∑
t=1

Xt(u)Xt(w) =
∫

ZT (r,u)ZT (r,w)dr,

c(u,w) =
∫

W(r,u)W(r,w)dr.

To prove (A.1) we show a stronger result. An operator A is a compact operator if there
exists two orthonormal bases, (fj,j ∈N) and (gj,j ∈N), and a real-valued sequence (γj,j ∈N)

tending to zero, such that

Ax =
∞∑

j=1

γjfj ⊗gj(x).

A compact operator A is said to be a Hilbert-Schmidt operator if
∑∞

j=1 γ 2
j < ∞. The so-

called Hilbert–Schmidt norm of A is then given by

‖A‖HS =
⎛⎝ ∞∑

j=1

‖Agj‖2

⎞⎠1/2

for any arbitrary orthonormal basis (gj,j ∈N). The following norm inequality is well known,

‖ · ‖LH ≤ ‖ ·‖HS. (C.2)

It thus suffices to show that ‖T−2Ĉ−C‖HS = op(1).
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Define the norm ‖g‖L×L =
(∫ ∫

g(u,w)2dudw
)1/2

for a kernel function g : [0,1] ×
[0,1] → R. Then note that

‖T−2Ĉ−C‖HS = ‖ĉ− c‖L×L

≤
(∫ ∫ ∫ (

ZT (r,u)ZT (r,w)−W(r,u)W(r,w)
)2

dudwdr

)1/2
, (C.3)

where the equality is because both T−2Ĉ and C are integral operators and the inequality is
the Cauchy–Schwarz inequality. The integrand in (C.3) is equal to the square of

(ZT (r,u)−W(r,u))(ZT (r,w)−W(r,w))

+W(r,u)(ZT (r,w)−W(r,w))+ (ZT (r,u)−W(r,u))W(r,w). (C.4)

Using (C.4) and Minkowski’s inequality, we deduce that (C.3) is bounded from above by(∫ ∫ ∫ (
ZT (r,u)−W(r,u)

)2 (
ZT (r,w)−W(r,w)

)2
dudwdr

)1/2

+2

(∫ ∫ ∫
W(r,u)2 (

ZT (r,w)−W(r,w)
)2

dudwdr

)1/2

=
(∫ (∫ (

ZT (r,u)−W(r,u)
)2du

)2
dr

)1/2

+2

(∫ (∫
W(r,u)2du

)(∫ (
ZT (r,w)−W(r,w)

)2dw

)
dr

)1/2

≤ sup
0≤r≤1

(∫ (
ZT (r,u)−W(r,u)

)2du

)

+2 sup
0≤r≤1

(∫
W(r,u)2du

)1/2
sup

0≤r≤1

(∫ (
ZT (r,w)−W(r,w)

)2dw

)1/2
= op(1),

where the last equality is from (C.1) and the fact that

sup
0≤r≤1

∥∥W(r)
∥∥ < ∞ almost surely

because W(r) is almost surely continuous on a bounded interval. Thus, (A.1) is established.
To prove (A.2), we note that instead of (C.1) we now have

sup
0≤r≤1

∥∥∥∥∥∥T−3/2
[Tr]∑
t=1

Xt −
∫ r

0
W(u)du

∥∥∥∥∥∥ = sup
0≤r≤1

∥∥∥∥∫ r

0
ZT (u)du−

∫ r

0
W(u)du

∥∥∥∥ = op(1),

(C.5)

which follows from Lemma B.3 in Horváth et al. (2014) and the Skorokhod representation.
The remainder of the proof is almost identical to that of (A.1), and is therefore omitted.
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C.2. Proof of Lemma 2

First note that vT ∈ ranPT



implies PT



vT = vT , so that

|〈T−2PT

 ĈPT


 vT,vT 〉−〈CvT,vT 〉| = |〈(T−2Ĉ−C)vT,vT 〉|
≤ ‖T−2Ĉ−C‖LH sup

T
‖vT‖2 = op(1).

The inequality follows from Cauchy–Schwarz and properties of the operator norm and
the final equality follows from Lemma 1. The proof of the second statement of part (i)
is identical.

Next, we prove part (ii). The first statement is a direct consequence of the definitions of
C and K; see (3.7). Because vT ∈ A⊥ ∩ ranPT



we have PT



(I −PA)vT = vT , so that

〈PT

 ĈPT


 vT,vT 〉 = 〈(I −PA)Ĉ(I −PA)vT,vT 〉. (C.6)

We then find that

|〈T−1PT

 ĈPT


 vT,vT 〉−〈(I −PA)Cν(I −PA)vT,vT 〉|
= |〈T−1(I −PA)Ĉ(I −PA)vT,vT 〉−〈(I −PA)Cν(I −PA)vT,vT 〉|
≤ ‖T−1(I −PA)Ĉ(I −PA)vT,vT 〉−〈(I −PA)Cν(I −PA)‖LH sup

T
‖vT‖2,

where the inequality follows from Cauchy–Schwarz and properties of the operator norm.
We note that T−1(I − PA)Ĉ(I − PA) may be viewed as the sample covariance operator of
((I −PA)νt,t ≥ 1), and it follows from Assumption 2 and Mas (2002) that

‖T−1(I −PA)Ĉ(I −PA)− (I −PA)Cν(I −PA)‖LH = op(1), (C.7)

which shows the second statement of part (ii). The proof of the third statement is identical.

C.3. Proof of Lemma 3

We need the result corresponding to (C.1) for the case with residuals. Similarly to the proof

of Lemma 1, we define Z(�)
T (r) = T−1/2U(�)

�Tr� and show that

sup
0≤r≤1

∥∥∥Z(�)
T (r)−W

(�)
(r)

∥∥∥ = op(1), (C.8)

where W
(�)

(r)
d= �

1/2
�XW

(�). After showing (C.8), the remainder of the proof is identical
to that of Lemma 1 and is therefore omitted.

The proof of (C.8) applies well-known techniques combined with the convergence results

in (C.1) and (C.5). For example, for � = 1, we have U(1)
t = Xt − T−1 ∑T

t=1 Xt, so that

Z(1)
T (r) = ZT (r) − ∫

ZT (w)dw. Since W
(1)

(r) = W(r) − ∫
W(w)dw, the left-hand side of

(C.8) for � = 1 is bounded by

sup
0≤r≤1

∥∥ZT (r)−W(r)
∥∥+ sup

0≤r≤1

∥∥∥∥∫
ZT (w)dw−

∫
W(w)dw

∥∥∥∥ = op(1), (C.9)

where the convergence is from (C.1) and (C.5).
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C.4. Proof of Lemma 4

This follows by nearly identical arguments to the proof of Lemma 2, using the results in
Lemma 3, and is therefore omitted.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit: https://doi.org/10.1017/
S0266466622000111.
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