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Abstract
Instrument delivery is critical part in vascular intervention surgery. Due to the soft-body structure of instruments,
the relationship between manipulation commands and instrument motion is non-linear, making instrument delivery
challenging and time-consuming. Reinforcement learning has the potential to learn manipulation skills and auto-
mate instrument delivery with enhanced success rates and reduced workload of physicians. However, due to the
sample inefficiency when using high-dimensional images, existing reinforcement learning algorithms are limited on
realistic vascular robotic systems. To alleviate this problem, this paper proposes discrete soft actor-critic with auto-
encoder (DSAC-AE) that augments SAC-discrete with an auxiliary reconstruction task. The algorithm is applied
with distributed sample collection and parameter update in a robot-assisted preclinical environment. Experimental
results indicate that guidewire delivery can be automatically implemented after 50k sampling steps in less than
15 h, demonstrating the proposed algorithm has the great potential to learn manipulation skill for vascular robotic
systems.

1. Introduction
Vascular intervention surgery (VIS) is a mainstay for the treatment of coronary artery disease, which
is a major cause of death worldwide [1, 2]. VIS is achieved through the use of catheters, guidewires,
and other instruments that are percutaneously introduced into the vasculature and navigated to target
locations within the vascular system [3, 4]. During VIS, physicians use X-ray fluoroscopy for guidance
and are required to wear heavy lead-lined garments for radiation protection, causing radiation-associated
hazards [5–7] and orthopedic strain injuries [8]. To reduce those risks, vascular robotic systems with
the master-slave structure and tactile perception [9–12] have been developed. Clinical trials have shown
the advantages of vascular robotic systems in X-ray exposure reduction, instrument control precision,
procedural duration reduction, and remote operation [13].

Learning instrument-manipulation skills, which is the core in VIS, requires extensive specialized
training for physicians. VIS instruments are designed as soft-body structures to advance in tortuous
vessels. Due to soft-body structures of instruments, the relationship between manipulation commands
and instrument motion is non-linear, making instrument delivery challenging and time-consuming. In
addition, the diversity of VIS instruments and scenarios also greatly extends the training cycle for VIS.
Vascular robotic systems are expected to have higher-level autonomy [14], assist physicians in some
operations, reduce the difficulty of VIS, and shorten training time for VIS. Besides shorter training time,
potential advantages of vascular robotic systems with high-level autonomy include shorter surgery time,
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increased accuracy of instrument manipulation [15], and reduced fatigue of clinicians. However, most
existing vascular robotic systems have no autonomy and completely follow manual teleoperation.

Learning instrument-manipulation skills and augmenting vascular robotic systems with high-level
autonomy has attracted a wide range of research interests. Statistical models [16–18] and imitation
learning [19–21] have been used to automate instrument delivery. However, both statistical model and
imitation learning require high-quality datasets. Due to the scarcity of VIS data and the diversity of VIS
scenarios, it is different to obtain a large-scale comprehensive dataset covering most scenarios.

Reinforcement learning (RL) is achieved by trial-and-error without prior labeled datasets and
has been widely used in many fields including games, robots, and autonomous vehicles [22–24].
Some research uses RL algorithms to learn instrument-manipulation skills based on vectorized low-
dimensional representations of VIS scenarios [21, 25–27]. However, in clinical scenarios, it is difficult
to obtain vectorized information such as the position and velocity of instruments. Analogous to physi-
cians using X-ray fluoroscopy for intraoperative navigation [28], it is more realistic to use images
for instrument-manipulation skills. Several state-of-the-art RL algorithms, such as Dueling Deep
Q-Network [29] and Asynchronous Advantage Actor-Critic [30], have been applied with preoperative
vascular models to learn instrument-manipulation skills with high-dimension images [31, 32]. Due to
notorious sample inefficiency of RL, existing research is limited to digital simulation environments [31,
32]. However, there is a non-negligible gap between digital simulations and real environments, which
limits the clinical value of learned instrument-manipulation skills. VIS instruments are designed as
soft-body structures, which are difficult to model for digital simulations. Moreover, motion deviation,
communication fluctuation, friction, and other disturbances are also challenging to simulate. Therefore,
applying RL with realistic vascular robotic systems is of great value for more realistic instrument-
manipulation skills. However, sample collection in real-world environments is much slower than in
simulation. Furthermore, to apply RL algorithms in clinic, the training should be completed within
the interval between obtaining the preoperative vascular model and performing VIS. Thus, RL algo-
rithms with higher sample efficiency are required. Some unsupervised learning methods in computer
vision can be used as auxiliary tasks to improve sample efficiency of RL [33, 34]. But to the best of our
knowledge, such methods have not been used for instrument-manipulation skill learning.

The main contributions of this paper are as follows:

(1) This paper proposes a novel RL method DSAC-AE that uses an auxiliary reconstruction task to
accelerate training with foreground-background imbalanced images.

(2) Sample collection and parameter update of DSAC-AE are executed distributedly to shorten
training time with realistic vascular robotic systems.

(3) Preclinical experiments demonstrate that DSAC-AE has high sample efficiency and can learn
guidewire delivery within 50k sampling steps (less than 15 h).

(4) Ablation experiments demonstrate the effectiveness of auxiliary loss function choice and reward
function design.

The paper is structured as follows: Section 2 introduces the preclinical environment and the proposed
algorithm. Sections 3 and 4 show and analyze the results, respectively. Section 5 summarizes the paper.

2. Material and method
2.1. Environment and problem definition
As shown in Fig. 1, the whole environment consists of a vascular robotic system, a 3D-printed vascular
model, a guidewire, and a catheter. The vascular robotic system (hereinafter referred to as robot) has two
degrees of freedom (translation and rotation) [35]. The robot needs to deliver the guidewire to a target in
the vascular model. The target is illustrated in Fig. 1(c). The size of the vascular model is 15×15×1.5 cm,
where vessels are about 3−5 mm thick. The environment is randomly reset to avoid overfitting to specific
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Figure 1. The preclinical environment. (a) The whole environment. The camera and lights are omitted
for simplicity. (b) Close-up of the guidewire and the vascular model. (c) The target in the vascular model
and the correct path from the outset to the target.

states. Episodes start in initial states where the distal tip of the guidewire is randomly 10−15 pixels from
the outset and the guidewire is rotated randomly, and end when the distal tip reaches the target or borders.

The guidewire delivery problem is defined as a partially observable Markov decision process
〈S , O, A, P, R, γ 〉, where S is the state space, O is the observation space, A is the action space,
P:S ×A× S �→ [0, 1] is the transition probability, R:S ×A �→R is the reward function, and γ is the
discount factor. At time-step t, the robot receives an observation ot ∈O and chooses an action at ∈A
based on the stochastic policy π ( · |ot). Observations are 140×140 size images taken from a fixed cam-
era directly above the vascular model. For generality and simplicity, each observation is prepossessed
into binary images of the vessel and the guidewire as in Fig. 2. Actions are speed commands in transla-
tion and rotation freedom. The action space consists of 10 discrete actions. There are two sub-actions in
the translation freedom, which are forward and backward with the same speed, and five sub-actions in
the rotation freedom, including static, two-speed counterclockwise, and clockwise rotation. The interval
between actions is 0.5 s. Then the state of environment st changes to st+1 according to the transition prob-
ability P(st+1|st, at), and the robot gets a reward rt = R(st, at) and a new observation ot+1. The goal is to
find optimal policy that maximizes the maximum entropy objective

∑
t Eot{Eat∼π (·|ot){rt + αH[π ( · |ot)]}}

[36], where α is the temperature parameter that balances the reward and the policy stochasticity. In the
following, the subscript indicating the time-step will be truncated if the time-step does not need to be
considered.

The reward rt guides the learning process and requires careful design. To ensure efficacy and safety,
the reward consists of three sub-rewards :

(1) The sparse sub-reward that indicates completion of guidewire delivery. The agent will receive a
large sparse bonus of size 400 if the target is reached; otherwise, the sparse sub-reward is 0. The
guidewire is considered as reaching the target when the distal tip of the guidewire is within five
pixels from the target.
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Figure 2. Prepossessed images as observations in RL. (a) The vessel. (b) The guidewire.

Figure 3. DSAC-AE: SAC-Discrete is augmented with an auto-encoder. The encoder is updated with
gradients from soft Bellman residual J(Q) and the auxiliary reconstruction task. Focal loss is used
as the loss function of auxiliary reconstruction task to mitigate the impact of foreground-background
imbalance.

(2) The dense sub-reward that encourages the guidewire to approach the target along the correct
path. The correct path is the shortest path from the outset to the target as shown in Fig. 1(c),
which is automatically generated by the Dijkstra’s algorithm. When the guidewire keeps on the
correct path, the robot will get a reward that is equal to the decrease in distance to the target.
The distance of each point to the target is calculated by the Dijkstra’s algorithm simultaneously
with the correct path. The robot will get a penalty of size 20 if the guidewire deviates from the
correct path and goes into a wrong vessel branch, and a bonus of size 20 if the guidewire leaves
the wrong vessel branch and goes back to the correct path. The robot will receive another penalty
of size 50 if the guidewire exits the vascular model.

(3) The safe sub-reward. The robot will get a large penalty of size 200 if the contact force exceeds a
safe threshold.

As it is a challenge to measure the contact force between the guidewire and the vascular model, safety
during RL is ensured by limiting the contact force between the robot and the guidewire. The contact
force between the robot and the guidewire is represented by the motor current.

2.2. Discrete soft actor-critic with auto-encoder
To improve sample efficiency, we propose discrete soft actor-critic with auto-encoder (DSAC-AE) that
uses an auxiliary reconstruction task as SAC-AE [33]. The whole architecture of DSAC-AE is shown
in Fig. 3. The shared encoder compresses the input images into a vectorized embedding. Following the
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encoder, the decoder reconstructs the input, while the two multilayer perceptrons (MLP) represent soft
Q-function Q and policy π , respectively. The output of soft Q-function Q and policy π is |A|-dimension
vectors representing soft Q-value and probability of each action, respectively. In the following, Q(o) and
π (o) represent output vectors of soft Q-function Q and policy π respectively, while Q(o, a) and π (a|o)
represent elements corresponding to action a in Q(o) and π (o), respectively.

Soft Q-function Q and policy π is updated according to SAC [37]. Soft Q-function Q are trained by
minimizing the soft Bellman residual

J(Q) =E(ot ,at ,rt ,ot+1)

{[
Q(ot, at) − rt − γ V(ot+1)

]2
}

, (1)

where V is the soft state value function

V(o) =Ea∼π (·|o)

[
Q̄(o, a) − α log π (a|o)

]
. (2)

Q̄ denotes the target Q-function whose parameters are the exponentially moving average of soft
Q-function parameters. Policy π is updated by minimizing the following formula

J(π ) =Eo

{
Ea∼π (·|o){α log [π (a|o)] − Q(o, a)}}. (3)

The temperature parameter α is updated by minimizing the following loss function

J(α) =Eo

{
Ea∼π (·|o){−α log [π (a|o)] − αH̄}}, (4)

where hyperparameter H̄ is the target entropy. Since the action space A is discrete, expectations on
actions are directly computed without Monte Carlo method as in SAC-Discrete [38] to decrease variance
of loss functions. This means that Eqs. (2), (3), and (4) are changed to:

V(o) = π (o)T[Q̄(o) − α log π (o)], (5)

J(π ) =Eo

{
π (o)T{α log [π (o)] − Q(o)}}, (6)

J(α) =Eo

{−απ (o)T log [π (o)] − αH̄}
. (7)

The decoder is updated by minimizing reconstruction error. Since vessels and guidewires are narrow,
the foreground is much smaller than the background in prepossessed images. To mitigate the impact of
foreground-background imbalance, focal loss [39] is used for the auxiliary reconstruction task:

FL(ô, o) =
∑

i,j

−oij

(
1 − ôij

)τ
log (ôij) − (1 − oij)ô

τ

ij log
(
1 − ôij

)
, (8)

where ô is the reconstruction obtained from the decoder, hyperparameter τ controls sensitivity to the
foreground, and the subscript indicates the position of image pixels.

The shared encoder is updated by the gradient from the decoder and soft Q-function, while the
gradient from policy is prevented to update the encoder to improve stability [33].

2.3. Distributed actor and learner
Using digital simulation, sample collection can be performed quickly and in parallel with negligible
time. In such cases, RL algorithm are often applied with the paradigm that alternately collects samples
and updates parameters. But in the environment which uses a real robot as shown in Section 2.1, each
step of sample collection has to wait for the action execution. Therefore, both sample collection and
parameter update are time-consuming. To shorten the training time, sample collection and parameter
update of DSAC-AE are decoupled and performed parallelly in two processes.

The distributed structure is shown in Fig. 4. The structure is composed of an actor, a dataset, and a
learner. The actor interacts with the environment and transmits transitions (ot, at, rt, ot+1) to the dataset.
The actor copies parameters from the leaner at set intervals. It is worth noting that only the encoder and
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Table I Hyperparameters of DSAC-AE.

Hyperparameter Value
Batch size 512
Replay buffer size 1e4
Optimizer Adam
Learning rate of critic 1e-4
Learning rate of actor 3e-5
Learning rate of encoder 1e-3
Learning rate of decoder 1e-3
Hidden units (MLP) 512
Number of layers (MLP) 2
Channels (encoder) (2,16,32,64,64)
Channels (decoder) (64,64,32,16,2)
Discount factor γ 0.99
Initial temperature α 1.0
Exponentially moving average 3e-5
Target entropy H̄ 0.98∗ln (|A|)

Figure 4. Distributed actor, dataset, and learner: collecting transitions, storing and sampling tran-
sitions, and updating parameters of DSAC-AE are performed distributedly by actor, dataset, and
learner.

the policy are used in the actor. The dataset acts as a common replay buffer in off-policy RL algorithms,
storing transitions obtained from the actor and providing randomly sampled transitions to the learner.
The learner updates parameters of the whole model as described in Section 2.2. Sample collection and
parameter update are executed asynchronously. The data transmission among the actor, the dataset, and
the learner is implemented using the ray package [40].

3. Results
Hyperparameters are set as in Table I. The vascular model is shown in Fig. 1(b), and the target is set as
in Fig. 1(c). A Terumo RF∗GA35153M guidewire is used in experiments. For details of the robot, we
refer readers to ref. [35]. All experiments were performed with three random seeds. The robot randomly
chooses actions during the first 2k sampling steps. Random actions at the beginning of training not only
extensively explore the action space to avoid falling into local optimum, but also collect diverse images
that are beneficial to the learning of the auto-encoder. After every 50 sampling steps, the actor copies the
parameters from the learner. The learner uses a single NVIDIA TITAN Xp GPU for parameter update.
The actor uses INTEL i7-10700 CPU to compute neural network without GPU acceleration.

3.1. Performance of DSAC-AE
The mean reward of DSAC-AE and the baseline SAC-Discrete is shown in Fig. 5. The mean reward of
DSAC-AE quickly rises to around 400 within 20k sampling steps and is about 470 after 50k sampling
steps, while the mean reward of SAC-Discrete shows no upward trend and is less than 100 after 50k
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Figure 5. Performance of DSAC-AE. (a) The mean reward with DSAC-AE and SAC-Discrete. The
mean reward is calculated from the last 10 trajectories during the sample collection process of actor.
Light-colored parts indicate standard deviation. (b) The guidewire is oriented and passed through the
bifurcation during the test.

sampling steps. Under the reward designed in Section 2.1, the episode reward is about 530 when success-
fully reaching the target. Otherwise, the episode reward is less than 130. This means after 50k sampling
steps, DSAC-AE could automate guidewire delivery with more than 85% probability. The results prove
that the auxiliary reconstruction task in DSAC-AE can significantly improve sample efficiency.

Here is a test video1 of DSAC-AE within 50k sampling steps. During the test, the robot directly
selects the action with the highest probability. Figure 5(b) shows an example of the guidewire passing
through a bifurcation in the test. The guidewire is directed towards the wrong branch at first ( 1 ). The
robot can adjust the guidewire to the correct branch ( 2 − 8 ) and then deliver the guidewire through the
bifurcation ( 9 ).

Training time and inference speed are important factors for potential clinical applications. DSAC-
AE takes an average of 14.79 h (16.03, 14.08, and 14.27 h, respectively, in three experiments) for 50k
sampling steps. Since all neural networks in DSAC-AE are shallow and simple, our algorithm is able to
complete an action selection in about 1 ms without GPU acceleration.

3.2. Results with different auxiliary loss functions
Experiments with different auxiliary loss functions are designed to demonstrate the effectiveness of
focal loss. Figure 6(a) shows the auxiliary loss during training. Focal loss is reduced to less than 0.001
within 1k training steps, while cross-entropy is reduced to less than 0.003 within 3k training steps.
Besides, cross-entropy has larger standard deviation especially in the early 2k training steps when the
robot chooses action randomly. The result indicates that focal loss converges faster and more stably than
cross-entropy.

Since reconstructions cannot be quantitatively compared by values of different loss functions, several
guidewire reconstruction examples after 10k training steps are shown in Fig. 6(b) for qualitative com-
parison. In all cases, the decoder is able to reconstruct the approximate shape of the guidewire with both
auxiliary loss functions. In most cases (e.g., the first input), the decoder is able to accurately reconstruct
the position and orientation of the distal tip. Since the position and orientation of the distal tip are the
most critical information in guidewire manipulation, small deviation in the width of the guidewire will
not affect the operation of the robot. And in the cases where the guidewire is close to borders (e.g., the
second input), there is identifiable ambiguity in the distal tip. In the above cases, reconstructions with

1 https://github.com/CASIAHaoLi/DSAC-AE-Image-Based-Reinforcement-Learning-for-Vascular-Robotic-System/blob/main/
test.mp4
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Figure 6. Performance in the auxiliary reconstruction task. (a) The auxiliary loss within 10k training
steps. (b) Several guidewire reconstruction examples after 10k training steps.

Figure 7. The mean reward curves with different auxiliary loss functions and different sub-rewards.
(a) The mean reward with different auxiliary loss function. (b) The mean reward when using differ-
ent sub-rewards. Reward curves for all settings are calculated with the whole reward function for
comparison.

focal loss and those with cross-entropy have similar quality. However, details of reconstructions with
cross-entropy are unsatisfactory in some cases. There may be noise spots at the background (e.g., the
third input) or direction deviation of the distal tip (e.g., the fourth input).

Figure 7(a) shows the mean reward of DSAC-AE with different auxiliary loss functions. When
using cross-entropy, the mean reward exceeds 300 after 50k sampling steps, indicating that DSAC-AE
with cross-entropy can learn guidewire-manipulation skills but significantly slower than that with focal
loss. The results demonstrate that the advantages of focal loss in the auxiliary reconstruction task can
significantly improve the performance of downstream RL.

In conclusion, both DSAC-AE with focal loss and DSAC-AE with cross-entropy obtain better perfor-
mance than baseline SAC-Discrete. But focal loss brings faster convergence, better stability, and better
performance to both the auxiliary reconstruction task and the downstream RL.

3.3. Results with different reward design
The reward function guides the learning of the robot and has a great influence on the performance of
RL algorithms. Ablation experiments of sparse and dense sub-rewards are designed to demonstrate their
effect, while the safe sub-reward works in all settings for safety. The results are shown in Fig. 7(b). With
the sparse sub-reward, the mean reward keeps lower than 0 within 50k sampling steps. With the dense
sub-reward and with both the dense sub-reward and the sparse sub-reward, mean rewards are larger than
300 within 15k sampling steps, which indicates the robot is able to deliver the guidewire to the target.
Under the two settings, the robot has similar performances within 30k sampling steps. However, after
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Figure 8. DSAC-AE on another vascular model. (a) The new vascular model and the target. (b) Mean
reward on the vascular model.

30k sampling steps, the mean reward with only the dense sub-reward is less than 400 and worse than
that with both the dense sub-reward and the sparse sub-reward. This result shows that combining sparse
sub-reward and dense sub-reward as in Section 2.1 can help the robot learn more efficiently.

3.4. Validation on another vascular model
To verify the generality of our method, DSAC-AE is applied on another vascular model. The vascular
model and the target are shown in Fig. 8(a). In this vascular model, vessels are more tortuous and have
more complex branches, making guidewire delivery more difficult. Other settings are the same as those
in Section 3.1. The mean reward of DSAC-AE and SAC-Discrete is shown in Fig. 8(b). On this complex
vascular model, the mean reward of DSAC-AE is about 380 after 50k sampling steps, while the mean
reward of SAC-Discrete is less than 20 after 50k sampling steps. Although the learning speed becomes
slower as the task becomes more difficult, DSAC-AE still significantly outperforms SAC-Discrete. This
result demonstrates the generality of DSAC-AE on different vascular models.

On this vascular model, the three experiments take an average of 12.39 h (12.38, 12.35, and 12.44
h, respectively), which is less than the mean time on the origin vascular model. This is because in the
this complex vascular model, the robot cannot complete the task quickly and the environment resets less
often.

4. Discussion
4.1. Analysis of temporal performance
Training time and inference speed (i.e., speed of choosing an action) are key factors for potential clinical
applications. DSAC-AE takes an average of 14.79 h for training with 50k sampling steps. Moreover,
while applying the proposed algorithm in clinic, it is necessary to train the algorithm with a preoperative
vascular model before performing VIS. To the best of our knowledge, there is no specific standard or
statistics about the interval between obtaining preoperative vascular models and performing VIS. The
interval can be as long as several days for non-acute patients, but only several hours for acute patients.
Therefore, our algorithm meets training time requirements for non-acute patients, while more sample-
efficient algorithms with shorter training time are needed for urgent situations. As for inference speed,
DSAC-AE can choose an action based on input images in about 1 ms. The time of choosing an action is
significantly shorter than the average human reaction time which is about hundreds of milliseconds [41].
Furthermore, X-ray fluoroscopy for intraoperative images is usually applied with less than 10 frames per
second in clinic [42]. Consequently, the proposed algorithm meets clinical inference speed requirements.
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4.2. Comparison of different auxiliary loss functions
Changing input images and foreground−background imbalance are two challenges for the auxiliary
reconstruction task, resulting in the advantage of focal loss. Unlike supervised learning with given data,
input images in RL are collected by the robot and are constantly changing. As cross-entropy fluctuates
more than focal loss after convergence, cross-entropy cannot cope with data changes well. Moreover,
the change of input images is most dramatic at the beginning of training when the robot chooses action
randomly for exploration. Accordingly, the variance of the cross-entropy is particularly large at the first
2k training steps. On the other hand, the foreground-background imbalance leads to the gap between
the reconstruction performance of focal loss and cross-entropy. Due to foreground-background imbal-
ance, details of the vessel and the guidewire are hard to predict. Furthermore, the pixels hard to predict
have higher weights in focal loss as shown in Eq. (8), while in cross-entropy all pixels have the same
weight. Therefore, focal loss pays more attention to details and has better reconstruction performance
with foreground-background imbalance.

In the cases where the guidewire is close to borders, reconstructions with focal loss and those with
cross-entropy both have identifiable ambiguity in the distal tip. This may be because, in addition to the
auxiliary reconstruction task, soft Bellman residual (i.e., Eq. (1)) is also used to update the encoder.
Since trajectories end when the distal tip reaches borders and the dense reward does not work when
the distal tip is in the wrong branch, those inputs where the distal tip is close to borders have similar
Q-functions. Thus there may be similarities in the embedding of these inputs, which cause the ambiguity
in reconstructions.

4.3. Impact of different sub-rewards
With sparse sub-reward or dense sub-reward alone, the robot performs worse than with both sub-rewards.
The sparse reward is zero and has no useful information unless the target is reached. Moreover, the
robot is in near-random exploration until obtaining useful information. Thus, when only using sparse
sub-reward, the robot must first reach the target with a near-random exploration to obtain useful samples
with no-zero rewards. This is almost impossible in our scenario. Consequently, the robot learns almost
nothing with sparse sub-reward alone. With the dense sub-reward alone and with both dense and sparse
sub-rewards, the robot has similar performance in 30k sampling steps. This is because the sparse sub-
reward is always zero and has little effect until learning a passable strategy that can often reach the target.
After learning a passable strategy, the sparse sub-reward makes actions that are effective to reach the
target have larger Q-functions, reinforcing the probability of those actions. Therefore, with both dense
and sparse sub-rewards, the robot has better final performance than with the dense sub-reward alone.

5. Conclusions and future work
A novel RL algorithm DSAC-AE is proposed to automate guidewire delivery on realistic vascular
robotic systems. Using auxiliary reconstruction task, DSAC-AE has high sample efficiency with high-
dimensional image input. The use of focal loss in DSAC-AE can effectively mitigate the impact of
foreground-background imbalance. Besides, distributed sample collection and parameter update can
further shorten training time. The task can be completed within an acceptable amount (50k) of sampling
steps in less than 15 h. In the subsequent work, generalization among various instruments and diverse
vascular models will be considered. In addition, we will try to combine prior data such as images and
human demonstrations with our algorithm to further improve the sample efficiency and meet stricter
training time requirements in clinic.
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