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Abstract. Consider the quadratic family Ta(x) = ax(1 − x) for x ∈ [0, 1] and mixing
Collet–Eckmann (CE) parameters a ∈ (2, 4). For bounded ϕ, set ϕ̃a := ϕ − ∫ ϕ dμa , with
μa the unique acim of Ta , and put (σa(ϕ))

2 := ∫ ϕ̃2
a dμa + 2

∑
i>0
∫

ϕ̃a(ϕ̃a ◦ T i
a ) dμa .

For any mixing Misiurewicz parameter a∗, we find a positive measure set �∗ of mixing
CE parameters, containing a∗ as a Lebesgue density point, such that for any Hölder ϕ

with σa∗(ϕ) �= 0, there exists εϕ > 0 such that, for normalized Lebesgue measure on
�∗ ∩ [a∗ − εϕ , a∗ + εϕ], the functions ξi(a) = ϕ̃a(T

i+1
a (1/2))/σa(ϕ) satisfy an almost

sure invariance principle (ASIP) for any error exponent γ > 2/5. (In particular, the
Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnell-
mann’s proof for piecewise expanding maps. We need to introduce a variant of
Benedicks–Carleson parameter exclusion and to exploit fractional response and uniform
exponential decay of correlations from Baladi et al [Whitney–Hölder continuity of the
SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201 (2015),
773–844].
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1. Introduction
1.1. Background and motivation. Let (�∗, m∗, F∗) be a probability space. We say
that a sequence of measurable functions ξi : �∗ → R, i ≥ 1 satisfies the almost sure
invariance principle (ASIP) with error exponent γ < 1/2 if there exist a probability
space (�W , mW , FW) supporting a (centred) one-dimensional Brownian motion W and
a sequence of measurable functions ηi : �W → R, i ≥ 1, such that:
(i) the random variables {ξi}i≥1 and {ηi}i≥1 have the same distribution. (By definition

of the distribution of discrete-time real-valued stochastic processes, this means that
for any n ≥ 1 and any {yi ∈ R | 1 ≤ i ≤ n}, the joint probability that ξi ≤ yi for all
1 ≤ i ≤ n coincides with the joint probability that ηi ≤ yi for all 1 ≤ i ≤ n.)

(ii) Almost surely, |W(n) −∑n
i=1 ηi | = O(nγ ) as n → ∞.

Since a Brownian motion at integer times coincides with a sum of independent identi-
cally distributed (i.i.d.) Gaussian variables, the above definition can also be formulated as
an almost sure approximation, with error o(nγ ), by a sum of i.i.d. Gaussian variables.

It is a classical result (see [PS]) that if the {ξi} satisfies the ASIP, then it satisfies the
law of the iterated logarithm (LIL), the central limit theorem (CLT) and the functional
CLT: Letting σ 2 > 0 be the variance of the Brownian motion W (the expectation is zero
by assumption) and denoting Lebesgue measure by m, the LIL says that

lim sup
n→∞

1√
2n log log n

n∑
i=1

ξi(a) = σ for m∗-almost every (a.e.) a ∈ �∗,

and the CLT (for the functional CLT, see [DLS, Lemma 5.1]) says that

lim
n→∞ m∗

({
a ∈ �∗ | 1

σ
√
n

n∑
i=1

ξi(a) ≤ y

})
= 1√

2π

∫ y

−∞
e−s2/2 ds for all y ∈ R.

We consider I = [0, 1] and the quadratic family

Ta(x) = ax(1 − x), x ∈ I , a ∈ (2, 4].

Denote by c = 1/2 the critical point of Ta and set cj (a) = T
j
a (c) for j ≥ 1.
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If lim infn→∞ n−1 log ∂x(T
n
a )(Ta(c)) > 0, we say that a is a Collet–Eckmann (CE)

parameter. If a is CE, then Ta admits a unique absolutely continuous invariant probability
measure (acim) μa = ha dm. Our goal is to find a positive Lebesgue measure set �∗ of
CE parameters with a Lebesgue density point a∗ ∈ �∗ such that for any Hölder continuous
function ϕ : I → R with σa∗(ϕ) �= 0 (see equation (1.2)), there exists εϕ > 0 such that the
ASIP holds for m∗ the normalized Lebesgue measure on �∗ ∩ [a∗ − εϕ , a∗ + εϕ] and

ξj (a) := ϕa(cj+1(a)), j ≥ 0, a ∈ �∗ ∩ [a∗ − εϕ , a∗ + εϕ],

where ϕa is a suitable normalization of ϕ (see equation (1.6)). We follow the approach
of Schnellmann [Sch], who developed this program for transversal families of piecewise
expanding maps Ta , for which �∗ can be taken to be an interval.

Our main motivation is to extend to the quadratic family the method developed by de
Lima and Smania [DLS] in the setting of piecewise expanding maps, to study linear and
fractional response. (This method requires a functional central limit theorem, see [DLS,
Lemma 5.1].)

We say that Ta is mixing if it is topologically mixing on

K(a) := [c2(a), c1(a)].

It will be convenient below to restrict to mixing maps Ta . Tiozzo recently showed [Ti,
Corollary 3.15] (his result holds in fact for more general unimodal maps) that Ta is
(strongly) mixing for its unique measure of maximal entropy (MME) if its topological
entropy is greater than log(2)/2. If a is a CE parameter with strongly mixing MME, then
Ta is topologically mixing on K(a) since the measure of maximal entropy has full support
there. (Indeed, since Ta has no homtervals if a ∈ CE, it is conjugated to its piecewise
linear model Fa by a homeomorphism which maps the MME of Fa to the MME of Ta ,
and the MME of Fa is absolutely continuous with a positive density on [F 2

a (c), Fa(c)].)
Since the topological entropy of T4 is equal to log 2, and the topological entropy of Ta is
non-decreasing and continuous (in fact Hölder continuous [Gu]) in a, there exists amix < 4
such that for all a ∈ (amix, 4] ∩ CE, the map Ta is topologically mixing on K(a), and μa

is strongly mixing, with support K(a).
Melbourne and Nicol [MN] showed the ASIP in the phase space x ∈ K(a), setting

ξi = T i
a (x) for a fixed CE map Ta , using an induced uniformly expanding system (then

[PS, §7] provides an ASIP which projects to the ASIP for the original CE map). However,
to the best of our knowledge, the ASIP in the parameter a is still open.

In the parameter space, typicality (the law of large numbers, LLN) and the LIL are
known: Avila and Moreira [AM2] showed that for Lebesgue almost every CE map Ta , the
critical point is typical for its unique absolutely continuous invariant measure μa = hadm:

lim
n→∞

1
n

n∑
i=1

ϕ(ci(a)) =
∫ 1

0
ϕ dμa for all ϕ ∈ C0. (1.1)

(Benedicks and Carleson established typicality in [BC1] for the Cantor set of CE
parameters considered there.) For Hölder continuous ϕ : I → R and a topological mixing
CE parameter a, define σa(ϕ) ≥ 0 by
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4 M. Aspenberg et al

(σa(ϕ))
2 :=

∫ 1

0

(
ϕ −

∫
ϕ dμa

)2

dμa (1.2)

+ 2
∑
i>0

∫ 1

0

(
ϕ −

∫
ϕ dμa

)(
ϕ −

∫
ϕ dμa

)
◦ T i

a dμa , (1.3)

where the sum in equation (1.3) is finite because topological mixing (that is, the fact that
the map is non-renormalizable) implies [KN] exponential mixing for the acim and Hölder
continuous observables.

In a work in progress, Gao and Shen [GS2] show that, for Lebesgue-a.e. a in the set
of mixing CE parameters, for every Hölder observable ϕ, either σa(ϕ) = 0 or the critical
point c of Ta satisfies the LIL for ϕ, that is,

lim sup
n→∞

1√
2n log log n

n∑
i=1

(
ϕ(T i

a (c)) −
∫

ϕ dμa

)
= σa(ϕ).

1.2. Statement of the ASIP (Theorem 1.1). To state our main result, we need more
notation and definitions. For j ≥ 0 and a ∈ (amix, 4], set

xj (a) = cj+1(a) = T
j+1
a (c), T ′

a(x) = ∂xTa(x), x′
j (a) = ∂axj (a).

The family Ta is transversal at a∗ if (see [Ts1]) there exists C ≥ 1 such that

1
C

≤
∣∣∣∣ x′

j (a∗)

(T
j
a∗)

′(c1(a∗))

∣∣∣∣ ≤ C for all j ≥ 1. (1.4)

By [Ts2, Theorem 3], all CE parameters are transversal. We refer to [Ts1, (NVt )] for an
equivalent condition expressed in terms of the postcritical orbit.

The map Ta is (Ha , κa)-polynomially recurrent, for κa ≥ 1 and Ha ≥ 1, if

|xj−1(a) − c| = |T j
a (c) − c| ≥ 1

jκa
for all j ≥ Ha . (1.5)

If infj≥1 |T j
a (c) − c| > 0, then a is called a Misiurewicz parameter. Misiurewicz param-

eters are CE and thus transversal. Avila and Moreira [AM1] showed that, for any κ0 > 1,
the set of parameters a which are (Ha , κ0)-polynomially recurrent for some Ha has full
measure in the set of CE parameters. The set of Misiurewicz parameters a is uncountable
(it has full Hausdorff dimension [Za, Theorem 1.4] but zero Lebesgue measure).

Finally, we introduce the normalization ϕa : let ϕ be bounded such that σa(ϕ) �= 0 for a
mixing CE parameter a. Then the function

ϕa(x) := 1
σa(ϕ)

(
ϕ(x) −

∫ 1

0
ϕ dμa

)
(1.6)

is well defined and satisfies

σa(ϕa) = 1 and
∫

ϕa dμa = 0. (1.7)

https://doi.org/10.1017/etds.2024.67 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.67


Parameter ASIP for the quadratic family 5

THEOREM 1.1. (Main Theorem: ASIP) For any Misiurewicz parameter a∗ ∈ (amix, 4),
there exists a positive Lebesgue measure set �∗ of mixing polynomially recurrent
parameters, containing a∗ as a Lebesgue density point, such that for any Hölder
continuous function ϕ with σa∗(ϕ) �= 0, there exists εϕ > 0 such that the functions

ξn(a) := ϕa(xn(a)) = ϕa(T
n+1
a (c)), n ≥ 1, (1.8)

satisfy the ASIP for normalized Lebesgue measure m∗ on �∗ ∩ [a∗ − εϕ , a∗ + εϕ] and
all error exponents γ > 2/5. (The choice of εϕ ensures in particular that σa(ϕ) �= 0 if
σa∗(ϕ) �= 0.)

The value a∗ = 4 is not covered by our arguments for technical reasons, since c1 and c2

then lie on the boundary of I. (For example, the Banach space of [BBS] requires that the
function on level zero of the tower be supported in (0, 1), so this proof cannot cover the
case a = 4.) It is possible (but a bit cumbersome) to handle (a one-sided neighbourhood
of) this value by a change of coordinates as in [Ts1, Lemma 2.1].

We expect that the methods of this paper can be extended to the case when the ‘root’
a∗ is mixing, but only Collet–Eckmann and polynomially recurrent (for large enough
κ0 > 1), instead of Misiurewicz. (For example, [A, Lemma 8.1] would replace [DMS,
Lemma V.6.5] in the proof of Proposition 2.2.) We restrict here to Misiurewicz parameters
a∗ for the sake of simplicity. What is most desirable, in view of our original motivation to
extend the analysis of [DLS], is to obtain a ‘fatter’ Cantor set �∗ (as opposed to a fatter
set of root points a∗). Indeed, this extension will probably require the ASIP on a set �̃ for
which there exist β > 1 and a full measure subset �̃1 ⊂ �̃ such that

lim
ε→0

m([a − ε, a + ε] \ �̃)

εβ
= 0 for all a ∈ �̃1. (1.9)

(See [BS2, equation (5), Proposition F], note that [BS2, Lemma E] even uses β < 2
close to 2.) Equation (1.9) is known for all β < 2 for the sets �̃1 ⊂ �̃ studied by Tsujii
[Ts1]. (Beware that Tsujii’s result cannot be used immediately. In particular, the main
argument in the construction of the parameter set in Theorem 1 of ‘Pre-threshold fractional
susceptibility function: holomorphy and response formula’, arXiv:2203.07942, is flawed.)
For our Cantor set �∗ ⊂ �BC, we expect that for any κ > 1, taking κ0 large enough
in Proposition 2.2, the factor εβ in equation (1.9) must be replaced by ε| log ε|−κ (see
equation (2.20)), which does not seem good enough. Attaining the goal of our original
motivation may thus require establishing the ASIP on a Cantor set having larger density,
and thus weakening the polynomial lower recurrence in the construction (see comments in
the next paragraph). We view this as the most desirable improvement of our main theorem.

To clarify the role of �∗, it is useful to compare Schnellmann’s proof with ours.
In [Sch], Schnellmann studies suitable transversal one-parameter families of piecewise
expanding interval maps and obtains a parameter ASIP on a set �∗ which is just an
interval [0, εϕ] of parameters. Indeed, existence of an exponentially mixing acim enjoying
fractional response (with uniform bounds) holds in an entire interval [0, εϕ] in his setting
[Sch, Proposition 4.3, Lemma 4.5]. So, [0, εϕ] is the baseline parameter space for his
analysis. Some parameters in this baseline cause difficulties (‘exceptionally small sets’),
but Schnellmann can get away with just ignoring them (taking advantage of the fact
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6 M. Aspenberg et al

that their total measure is controlled [Sch, part (III), Theorem 3.2, Lemma 4.1, proof
of Lemmas 6.1 and 6.2]) instead of excluding them from the baseline. Our situation is
different, since we need to exclude parameters which do not have an acim or for which
exponential mixing or fractional response (with uniform bounds) does not hold. Our
baseline set is a Cantor set, and the best we can do is to make it as fat as possible.

The polynomial recurrence in equation (1.5) in our parameter exclusion (Proposition
2.2), which causes the ‘thinness’ of �∗, is needed to apply the results of [BBS] in §§2.4
and 2.5 (Propositions 2.5 and 2.6 on uniform decorrelation and fractional response, and its
consequence, Lemma 2.8). (See also (4.7) and (4.22), which may cause a different error
exponent.) Due to this, we already exclude the parameters which could have exceptionally
small image and we do not need to ignore them (Lemma 2.3, compare also [Sch, proof
of Lemma 6.1] with equation (4.13) below). In addition, we get an easy proof of the local
distortion estimate in equation (2.31). If the required consequences of [BBS] could be
extended to sets of parameters which enjoy only exponential recurrence bounds, then we
could use the (fatter) Benedicks–Carleson Cantor set �

ϕ
BC as a baseline instead of �∗

(if necessary, the Benedicks–Carleson technique could be replaced by ideas from Tsujii
[Ts1], Avila and Moreira [AM1] or Gao and Shen [GS1]). Next, one could try to ignore
the parameters with exceptionally small images in Lemma 2.3. For equation (2.31), our
proof is inspired from that of [DMS, Theorem V.6.2]. This is suboptimal but enough for
our purposes. Adapting instead [DMS, Lemma V.6.4] could enhance equation (2.31).

We also note for the record here that the characteristic function 1�̃ of a fat enough
Cantor set �̃ belongs to a Sobolev space Hs

q (I ) with s > 0 (see [HM, Propositions 4.9
and 4.10]). Thus, working with a Cantor set of larger density may simplify some of our
arguments (in the proof of Proposition 3.2, for example).

Finally, the results of this paper probably extend to more general families of smooth
unimodal maps. In the present ‘proof of concept’ work, we choose to restrict to the
quadratic family.

1.3. Structure of the text. Schnellmann pointed out [Sch, p. 370] that the ‘Markov
partitions’ given by the intervals in the celebrated Benedicks–Carleson [BC1, BC2]
parameter exclusion construction would be the key to extend his result to non-uniformly
expanding interval maps.

Our paper carries out this plan and is organized as follows. After recalling basic
facts in §2.1, we adapt in §2.2 the Benedicks–Carleson procedure to construct, in a
neighbourhood of a topologically mixing Misiurewicz point a∗, a sequence �n ⊂ �n−1

where �n is a finite union of intervals in Pn. At each step, some intervals in Pn

are partitioned and the intervals which do not satisfy a time-n polynomial recurrence
assumption are excluded. The remaining Cantor set �∗(a∗) =⋂n �n is a positive
Lebesgue measure set of parameters satisfying the Collet–Eckmann property, polynomial
returns and distortion control, with uniform constants. (Our distortion bound in equation
(2.31) is new.) In addition, the construction ensures that there are no ‘exceptionally small’
sets (Lemma 2.3). Applying results from [BBS], this ensures uniform exponential decay
of correlations (Proposition 2.5) and fractional response (Proposition 2.6), from which we
obtain regularity of the map a �→ σa (Lemma 2.8).
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Sections 3 and 4 contain the proof of the ASIP along the lines of [Sch]: first approximate
the Birkhoff sum by a sum of blocks of polynomial size (§§4.1 and 4.2), then (§4.3)
approximate these blocks by a martingale difference sequence Yj and apply Skorokhod’s
representation theorem linking a martingale with a Brownian motion (see [PS, §3]). The
usual application of the approach of [PS, Ch. 7] in dynamics uses a strong independence
condition (see [PS, 7.1.2]) which we do not have (the ξi terms are not iterations of a fixed
map and there is no underlying invariant measure). (See the example (see [Ka, p. 646])
discussed in [Sch]. Also, as pointed out in [Sch], it is not clear how to apply the spectral
techniques of [Go] in our setting.) We replace this strong independence condition by
uniformity of constants in the exponential decay of correlations (given by [BBS]) which
we translate into properties for the ξi by switching from parameter to phase space (see
Proposition 3.2), giving estimates similar to those in [PS, §3].

For � ∈ (0, 1), we shall denote by C� the set of � -Hölder continuous functions
ϕ : I → R, putting ‖ϕ‖� = sup |ϕ| + H�(ϕ), with H�(ϕ) the smallest H� such that
|ϕ(x) − ϕ(y)| ≤ H� |x − y|� for all x, y in I. The letter C is used throughout to represent
a (large) uniform constant, which may vary from place to place.

2. Bounds for the quadratic family. The Cantor set �∗(a∗)
2.1. Basic properties. Clearly, the maps

a �→ T ′
a(x) = ∂xTa(x) = a(1 − 2x), x �→ ∂aTa(x) = x(1 − x)

are Lipschitz continuous uniformly in x ∈ I and a ∈ (amix, 4], and, in addition,

sup
x∈I

|T ′
a(x)| ≤ � := 4 for all a ∈ (amix, 4]. (2.1)

Each Ta has two monotonicity intervals, with partition points 0, c = 1/2 and 1. The
following easy lemma replaces [Sch], (30)]. (We do not need as in [Sch, (30)] that x has
the same combinatorics under Ta1 and Ta2 up to the (n − 1)th iteration. We thus do not
need any analogue of [Sch, Sublemma 5.4].)

LEMMA 2.1. There exists C < ∞ such that, for any a1, a2 ∈ (2, 4], we have

|T n
a1
(x) − T n

a2
(x)| ≤ C�n|a1 − a2| for all x ∈ I , for all n ≥ 1. (2.2)

Proof. Clearly, |Ta1(x) − Ta2(x)| ≤ |a1 − a2|. For n ≥ 2, using the definition in equation
(2.1) of � and setting C =∑∞

j=0 �−j , we get

|T n
a1
(x) − T n

a2
(x)| ≤ |Ta1(T

n−1
a1

(x)) − Ta2(T
n−1
a1

(x))| + |Ta2(T
n−1
a1

(x)) − Ta2(T
n−1
a2

(x))|
≤ |a1 − a2| + �|T n−1

a1
(x) − T n−1

a2
(x)|

≤ |a1 − a2|(1 + �) + �2|T n−2
a1

(x) − T n−2
a2

(x)| ≤ · · ·

≤ |a1 − a2|
n−1∑
j=0

�j ≤ C�n|a1 − a2|.

2.2. A polynomial Benedicks–Carleson construction (�∗(a∗), Pn). For each j ≥ 0, the
function xj (a) = T

j+1
a (c) is a map from the parameter space (amix, 4] to the phase space
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8 M. Aspenberg et al

I = [0, 1], with xj (a) ∈ K(a) for all a. The transversality condition in equation (1.4) says
that the derivatives of xj and T

j
a are comparable at a∗, so that statistical properties (such as

the ASIP) can be transferred from the maps x �→ T
j
a (x) to the maps a �→ xj (a). To make

this precise, we next construct a sequence of partitions in the parameter space. Our starting
point is the following variant of the Benedicks–Carleson Cantor set �BC = �BC(a∗)
(see [BC1, BC2]) associated to a Misiurewicz parameter a∗ (which is automatically
transversal). (See equation (2.17) for the construction of �BC.)

PROPOSITION 2.2. (The Cantor set �∗ = �∗(a∗, κ0)) Let a∗ ∈ (amix, 4] be a Mis-
iurewicz parameter. There exist λCE ∈ (1, �) and C0 ∈ (0, 1) such that, for any
d1 ∈ (0, C0 log λCE/4) and d0 > 0, there exists ε > 0 such that for any κ0 > 1/d1, for
all large enough N0 ≥ 1, there exists a sequence Pj of finite sets of pairwise disjoint
subintervals of

ω0 := [a∗ − ε, a∗ + ε] ∩ (amix, 4]

such that P1 = P2 = · · · = PN0 and, setting

�∗ = �∗(a∗, κ0) :=
⋂

j≥N0

�j with �j :=
⋃

ω∈Pj

ω,

we have �j+1 ⊂ �j for j ≥ N0, and (the first bound of equation (2.4) implies that
a �→ xj (a) = T

j+1
a (c) is monotone on ω ∈ Pj )

for all j ≥ 1, for all ω ∈ Pj , for all 0 ≤ � < j , there exists ω′ ∈ P� such that ω ⊂ ω′,
(2.3)

|x′
j (a)| > 0, |T j+1

a (c) − c| > 0 for all a ∈ ω, for all ω ∈ Pj , for all j ≥ 0, (2.4)

and there exists (note that equation (2.6) replaces [Sch, Lemma 2.4]) C < ∞ such that for
all j ≥ N0 and ω ∈ Pj ,

|(T n
a )′(Ta(c))| ≥ λn

CE for all N0 ≤ n ≤ j , for all a ∈ ω, (2.5)

1
C

≤
∣∣∣∣ x′

n(a)

(T n
a )′(Ta(c))

∣∣∣∣ ≤ C for all N0 ≤ n ≤ j , for all a ∈ ω, (2.6)

|ω̃| ≤ Cλ−n
CE|xn(ω̃)| for all N0 ≤ n ≤ j , for all ω̃ ⊂ ω, (2.7)

and, moreover,

|T n+1
a (c) − c| > n−κ0 for all N0 ≤ n ≤ j , for all a ∈ ω. (2.8)

Finally, we have that a∗ ∈ �∗ is a Lebesgue density point of �∗, with

|�∗| ≥ (1 − d0 · ej )|�j−1| for all j ≥ N0, where ej :=
∞∑
n=j

n−d1·κ0 , (2.9)

and we have the more precise (semi-local) bound∑
ω∈P�

ω⊂ω′

|ω \ (ω ∩ �∗)| ≤ d0 · e�−�′ |ω′| for all ω′ ∈ P�′ , for all � ≥ �′ ≥ N0. (2.10)
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Parameter ASIP for the quadratic family 9

See Lemma 2.3 below regarding the absence of exceptionally small sets and §2.3 for a
Hölder distortion property refining equation (2.16).

Clearly, equation (2.8) means that any a ∈ �∗ is (N0, κ0)-polynomially recurrent.
The bound in equation (2.9) implies that the Cantor set �∗ has positive Lebesgue

measure as soon as d1 · κ0 > 1 (and N0 is large enough). Proposition 2.2 holds for such κ0,
but we will need the stronger condition d1 · κ0 ≥ 11/3 to use equation (2.9) in the proof of
Proposition 3.2 (and d1 · κ0 > 9/5 for Lemma 4.2).

The local bound in equation (2.10) is used in the proof of Lemma 4.1.

Proof of Proposition 2.2. Let r0 ≥ 2 be a large integer (to be chosen later, with ε → 0 as
r0 increases). For r ≥ r0, set Ir = I−

r ∪ I+
r , where

I+
r = [c + e−r−1, c + e−r ), I−

r = (c − e−r , c − e−r−1], Ur = (c − e−r , c + e−r ),

and cover each I±
r by r2 pairwise disjoint intervals I±

r ,� of equal size, each I±
r ,� containing

its boundary point closest to c. Let βBC > αBC > 0, where

e−nαBC ≤ n−κ0 for all n ≥ N0,

for N0 a large integer to be chosen later. (The constant αBC is usually called α, but we shall
need the letter α for another purpose in equation (2.30).)

For a ∈ (amix, 4], ν ≥ 1, and r ≥ r0 such that T ν
a (c) ∈ Ir , the binding time p(a) =

p(r , a, ν) of Ur with T ν
a (c) is the maximal p ∈ Z+ ∪ {∞} such that

|T j
a (x) − T

j+ν
a (c)| ≤ e−jβBC for all 1 ≤ j ≤ p, for all x ∈ Ur .

The first free return time ν1(a) of a ∈ (amix, 4] is the smallest integer j ≥ 1 for which
T

j
a (c) ∈ Ur0 . For an interval ω ⊂ (amix, 4], the first free return time ν1(ω) is the smallest

integer j ≥ 1 for which there exists a ∈ ω with T
j
a (c) ∈ Ur0 . If there exists r = r(ω) such

that xν1−1(ω) ⊂ Ir (recall that T ν1
a (c) = xν1−1(a)), we define the first binding time of ω

by p1(ω) = mina∈ω p(r , a, ν1(ω)). For i ≥ 2, define inductively the ith free return time
of (suitable) ω to be the largest integer νi(ω) > νi−1(ω) + pi−1(ω) + 1 such that

T
j
a (c) ∩ Ur0 = ∅ for all νi−1(ω) + pi−1(ω) + 1 ≤ j < νi(ω), for all a ∈ ω,

and, for r(ω) such that xνi−1−1(ω) ⊂ Ir , set the ith binding time of ω to be

pi(ω) = mina∈ω p(r , a, νi−1(ω)).

(Similarly, define inductively for i ≥ 2 and a such that T νi−1
a (c) ∈ Ir , the pointwise binding

times pi(a) and free returns νi(a).) The iterates between νi(ω) and νi(ω) + pi(ω) form
the ith bound period of ω, those between νi−1(ω) + pi−1(ω) + 1 and νi(ω) − 1 form its
ith free period. Finally, if there exist a ∈ ω and j ≥ ν1(ω) such that T j

a (c) ∈ Ur0 , we say
that j is a return time of ω. (Return times either are free returns νi(ω) or they occur during
the bound period.)

Note that for any fixed ε, setting ω0 = [a∗ − ε, a∗ + ε], there exists Nε such that
xNε (ω0) contains a neighbourhood of c (indeed, by transversality, for any a ∈ ω0 \ {a∗},
there exists N(a) such that T

N(a)+1
a∗ (c) and T

N(a)+1
a (c) lie on different sides of c). In

particular, ν1(ω0) < ∞. Similarly, all νi(ω0) and pi(ω0) are finite.
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10 M. Aspenberg et al

Let Wa∗ be a neighbourhood of c disjoint from {T n
a∗(c) | n ≥ 1}. From now on, we

only consider r0 large enough such that Ur0−1 ⊂ Wa∗ . Set W+
a∗,r0

= Wa∗ ∩ [c + e−r0 , 1]
and W−

a∗,r0
= Wa∗ ∩ [0, c − e−r0 ]. We claim that for any fixed large r0, we have that

xν1(ω0)−1(ω0) contains W+
a∗,r0

or W−
a∗,r0

for all small enough ε. (This fact is used in [DMS,
Lemma V.6.8]. There, Wa∗ is mistakenly mentioned instead of W±

a∗,r0
. Our r0 is denoted

by � and our xn(a) is denoted ξn+1(a) in [DMS].) Indeed, xν1(ω0)−1(ω0) is an interval
intersecting Ur0 , and xν1(ω0)−1(ω0) contains T

ν1(ω)
a∗ (c) /∈ Wa∗ .

For small ε > 0 (to be chosen depending on r0), the sequence Pj can now be
defined inductively: start with the single interval P0 = P1 = · · · = PN0 = {ω0} for ε

small enough such that ν1(ω0) ≥ N0 (note that ν1(ω0) increases if r0 increases or ε

decreases). (We refer throughout to [DMS, §V.6]. The original ideas and key estimates
appeared previously in the work of Benedicks and Carleson [BC1, BC2]. The original
construction in [BC1, BC2] is for a∗ = 4, see [Mo] for a self-contained account. It extends
to Misiurewicz parameters: for CE parameters, the condition in [DMS, Theorem 6.1] is
equivalent to equation (1.4), taking large enough k in the last line of [DMS, p. 406, Step 2].)

For j > N0, each ω ∈ Pj−1 is partitioned into finitely many (possibly just one)
intervals, at least one of which will be included into an auxiliary partition P ′

j , as follows.
If j is not a free return time of ω, we include ω in P ′

j . (That is, either j is not a return, or
it is a return within the bound period.) If j is a free return time of ω but xj−1(ω) does not
contain an interval I±

r ,� (we call this an inessential (free) return), we also include ω in P ′
j .

Otherwise, j is a free return time of ω such that xj−1(ω) contains at least one interval
I±
r ,�. We call this an essential (free) return. In that case, we decompose xj−1(ω) into the

following intervals:

xj−1(ω) \ Ur0 , {xj−1(ω) ∩ I±
r ,� | r ≥ r0, 1 ≤ � ≤ r2}.

If xj−1(ω) \ Ur0 �= ∅, but any of the (at most two) connected components of
xj−1(ω) \ Ur0 has size less than e−r0(1 − 1/e)r−2

0 = |I±
r0,�|, we join it to its neighbour

xj−1(ω) ∩ I±
r0,� = I±

r0,�. If a connected component of xj−1(ω) \ Ur0 has size larger than
S := √|Ur0 |, we subdivide it into pairwise disjoint intervals of lengths between S/2 and S.
If xj−1(ω) ∩ I±

r ,� �= ∅, but I±
r ,� is not contained in xj−1(ω) (this can happen for at most

two intervals I±
r ,�), we join xj−1(ω) ∩ I±

r ,� to its neighbour xj−1(ω) ∩ I±
r ′,�′ = I±

r ′,�′ . Denote
by {ω̂r ,� | r ≥ r0 − 1} the partition of xj−1(ω) thus obtained, where the index (r , �) refers
to the ‘host’ interval Ir ,� contained in ω̂r ,� if r ≥ r0, while ω̂r0−1,� ⊂ I \ Ur0 . Then we
discard all intervals ω̂r ,� for which

er ≥ (j − 1)κ0 . (2.11)

Mapping the remaining intervals via the inverse of the diffeomorphism (see [DMS,
Proposition V.6.2]) xj−1 gives finitely many subintervals of ω which we include in P ′

j .
Further intervals ω̂r ,� need to be discarded from P ′

j , using a requirement denoted (FAj )

or (FA′
j ) in [DMS, §V.6], [Mo], which finally defines Pj . For further use, we denote these

remaining intervals by

ωr ,� = x−1
j−1(ω̂r ,�). (2.12)
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It is well known (the original construction in [BC1, BC2] is for a∗ = 4, see [Mo] for
a self-contained account. It extends to Misiurewicz parameters: for CE parameters, the
condition in [DMS, Theorem 6.1] is equivalent to equation (1.4), taking large enough k in
the last line of [DMS, p. 406, Step 2]) [BC1, BC2, DMS] that, if we replace the condition
in equation (2.11) (used to discard intervals) by the exponential condition

ω ∩ I±
r ,� �= ∅ and er ≥ eαBC(j−1), (2.13)

to construct sequences P ′,BC
j and PBC

j , then there exists λCE > 1 (called eγ in [DMS,
(V.6.4), Theorem V.6.2]) such that for any small enough βBC > αBC > 0, there exist N ′

0
such that if r0 is large enough and ε > 0 small enough, then the PBC

j satisfy equations
(2.3)–(2.7) (equation (2.5) is called (EXj ) in [DMS, §V.6]) for some C < ∞, and the
following condition (noted (BAj ) in the literature) holds for all j ≥ N ′

0:

2|T n+1
a (c) − c| > e−nαBC for all N ′

0 ≤ n ≤ j , for all a ∈ ω for all ω ∈ P ′,BC
j . (2.14)

(Strictly speaking, the condition (BAj ) does not involve the factor 2, and a condition
(BA′

j ) requiring that for each ω ∈ P ′BC
j , there exists a ∈ ω with |T n+1

a (c) − c| > e−nαBC

for N ′
0 ≤ n ≤ j is used in some lemmas. See [DMS, §V.6, Step 5].) Since λCE does not

depend on αBC, N0 or N ′
0, we may assume that

14αBC < log λCE

and we may replace N0 by max{N0, N ′
0}.

In particular [DMS, Proposition V.6.1, Lemma V.6.1(b), (c)] give γ0 > 0, λCE = eγ ∈
(1, eγ0) and C0 > 0 (independent of r0 and ε) such that if a ∈ �n and ν�+1(a) ≤ n, writing
p�, ν� for p�(a), ν�(a), we have{

|(T ν�+1−(ν�+p�+1)
a )′(T ν�+p�+1

a (c))| ≥ C0e
γ0(ν�+1−(ν�+p�)),

|(T p�+1
a )′(T ν�

a (c))| ≥ λ
p�/4
CE .

(2.15)

To establish equation (2.5) (the bound below will also be used for equation (2.34)), one
takes r0 such that

r2
0C

2
0 log λCE > |log C0|.

The key distortion bound [DMS, Proposition V.6.3] gives C such that∣∣∣∣x′
j (a1)

x′
j (a2)

∣∣∣∣ ≤ C for all N0 ≤ j ≤ n, for all a1, a2 ∈ ω, (2.16)

whenever n + 1 is a free return time of ω ∈ Pn with xn+1(ω) ⊂ Ur0/2. The bound in
equation (2.6) follows from [DMS, Proposition V.6.2 and Theorem V.6.2].

Let �′
j :=⋃ω∈P ′

j
ω, recall �j , and define �BC

j and �
′,BC
j accordingly, setting

�BC = �BC(a∗, αBC) =
⋂
j

�BC
j so that �∗(a∗) ⊂ �BC(a∗). (2.17)

It is easy to check that equation (2.11) implies equation (2.8) (for returns during a bound
period, use that �−κ0 − e−�βBC ≥ j−κ0 for all N0 ≤ � ≤ j − 1, up to increasing N0 again).
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Our choice of N0 implies �j ⊂ �BC
j . Also, equation (2.6) with equation (2.4) imply that all

points in �∗ are transversal. Since equation (2.7) is an immediate consequence of equations
(2.5) and (2.6), it only remains to establish that a∗ is a Lebesgue density point in �∗
(clearly, a∗ ∈ �∗) and that equations (2.9) and (2.10) hold.

To show that a∗ is a Lebesgue density point of �∗, we may follow [DMS, Step 7 of
the proof of Theorem V.6.1], replacing Ce−iC0 there by C′i−κ0 . (We mention a typo there:
although the constant C = C(ε) in the unnumbered equation on [DMS, p. 433] tends to
zero as ε = |ω0|/2 → 0, the constant C0 is (fortunately) uniformly bounded away from
zero. See the proof of [DMS, Lemma V.6.5].)

We next establish equations (2.9) and (2.10). For suitably small η̄ > 0, and for J0 ≥ 1
such that

∏∞
j=J0

(1 − e−η̄j ) > 3/4 (since η̄ is independent of ε, r0, N0, we may take
N0 ≥ J0), the parameter exclusion rule in equation (2.13) gives d ′

0 > 0 (tending to zero
with ε) such that ([DMS, §V.6, Step 7], [Mo, §6]){

|ω ∩ �
′,BC
j | ≥ (1 − d ′

0e
−j η̄)|ω| for all ω ∈ PBC

j−1, for all j ≥ J0,

|�BC
j | ≥ |�′,BC

j | − e−j η̄|ω0| for all j ≥ J0.
(2.18)

The above implies |�BC
j | ≥ (1 − d ′

0e
−η̄j )|�BC

j−1| − e−η̄j |ω0| for j ≥ J0, and, exploiting
that |ω0| = |�BC

n | for all n ≤ N0 with N0 ≥ J0, and using the definition of J0, also that

|�BC
j | ≥

( j∏
n=J0

(1 − d ′
0e

−η̄n) −
j∑

n=J0

e−η̃n

)
|ω0| ≥ 1

2
|ω0| for all j ≥ J0.

(By taking larger J0, that is, smaller ε, we could replace 1/2 by a number close to 1.) Thus,
applying inductively

|�BC
j | ≥ ((1 − d ′

0e
−η̄j ) − 2e−η̄j )|�BC

j−1| for all j ≥ J0,

we find η̃ > 0 such that for any j ≥ J0,

|�BC| ≥
∞∏
n=j

(1 − (d ′
0 + 2)e−η̄n)|�BC

j−1| ≥ (1 − (d̃0 + 2)e−η̃j )|�BC
j−1|. (2.19)

Recall that we fixed d1 ∈ (0, C0/4 log λCE) (independently of κ0). Let J1 be such
that

∏∞
j=J1

(1 − e−η̄j − j−2) > 3/4 and return to the sets �j , �′
j constructed using the

(polynomial) exclusion rule in equation (2.11) for κ0 > 1/d1. We claim that for any d0 > 0,
if ε is small enough,{

|ω ∩ �′
j | ≥ (1 − d0 · j−d1κ0)|ω| for all ω ∈ Pj−1, for all j ≥ J1,

|�j | ≥ |�′
j | − e−j η̄|ω0| for all j ≥ J1.

(2.20)

Before establishing this claim, we note that, mutatis mutandis, equation (2.20) combined
with the arguments leading to equation (2.19) implies equation (2.9), while the more
precise claim in equation (2.10) follows from the refinement of equation (2.20) coming
from the second statement of [DMS, Lemma V.6.9] (see the use of [Mo, Lemma 6.3] in
[Mo, Lemma 6.4 and Proposition 6.5]).
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To show equation (2.20), we proceed in three steps, performing the necessary changes
in the proof in [DMS, §V.6]. Recall equation (2.12).

First, up to taking larger N0, the conclusion of [DMS, Lemma V.6.5] (which deals with
(BA′

j ) for ω ∈ Pj−1 satisfying (BA′
j−1) and (EXj−1) and having a return at time j), if

we replace the exponential rate (BA′
j−1) there by our polynomial rate in equation (2.8),

becomes

|ω \⋃r≥κ0 log j ωr ,�|
|ω| ≥ 1 − Cj−d1κ0 for all j ≥ N0. (2.21)

To show this first claim, use that the constant C0 ∈ (0, 1) (introduced above) is independent
of κ0 (because λCE does not depend on κ0) and that [DMS, Lemma V.6.1] gives that the
bound period p of a free return ν < j with

Ir ′,�′ ⊂ xν(ω) for r0 ≤ r ′ ≤ κ0 log ν ≤ κ0 log j , (2.22)

satisfies p ≥ C0r
′. Then, up to taking larger N0, we can replace [DMS, V.(6.20)] in the

proof of [DMS, Lemma V.6.5] by

|xj (ω)| ≥ λ
p/4
CE

e−r ′

(r ′)2 ≥ e(−1+d1)r
′

(r ′)2 ≥ 1
jκ0(1−d1)

, j ≥ N0, (2.23)

where we used d1 ≤ (C0/4) log λCE in the second inequality. We can thus replace the
chain of inequalities after [DMS, V.(6.20)] (using the distortion bound in equation (2.16)
for ω̃ ⊂ ω the largest interval with xn(ω̃) ⊂ Ur0/2, taking ε small enough and N0 large
enough such that equation (2.23) also holds for ω̃) by

|⋃r≥κ0 log j ωr ,�|
|ω| ≤ |⋃r≥κ0 log j ωr ,�|

|ω̃| ≤ C
1
jκ0

1
|xj (ω̃)| ≤ Cj−d1·κ0 .

Second, [DMS, Lemma V.6.6] (which deals with (FAj )) uses equation (2.14) only via
[DMS, Lemma V.6.3], while [DMS, Lemma V.6.3] still holds (with the same proof) if we
replace equation (2.14) by our stronger assumption in equation (2.8). (We mention here a
typo: [DMS, V.(6.24)] follows from [DMS, V.(6.22)] (and not [DMS, V.(6.20)] as stated
there).)

Third, [DMS, Lemmas V.6.7–6.9] are unchanged, establishing equation (2.20).

Lemma 2.3 is the analogue of [Sch, (III)′]).

LEMMA 2.3. (No exceptionally small sets) For any κ1 > κ0, there exists N1 ≥ N0 such
that |xj (ω)| > j−κ1 for all j ≥ N1 and ω ∈ Pj = Pj (a∗, κ0).

Proof. We first show the lemma assuming that there exists d2 ∈ (0, 1) such that for any
j ≥ N0 and any ω ∈ Pj , we have

|xj (ω)| ≥ d2e
−r0(1 − 1/e)

(κ0 log j)2jκ0
, (2.24)
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with r0 as in the proof of Proposition 2.2. Indeed, equation (2.24) implies that

|xj (ω)| ≥ d2e
−r0(1 − e−1)

κ2
0

1
jκ0(log j)2 for all ω ∈ Pj , for all j ≥ N0.

Clearly, there exists N1(κ1) ≥ N0 such that the right-hand side is larger than j−κ1 for all
j ≥ N1.

To establish equation (2.24), we shall use equation (2.8). If j + 1 is an essential free
return time of ω, then taking r minimal such that xj (ω) contains an interval I±

r ,�,

|xj (ω)| ≥ |I±
r ,�| = e−r 1 − 1/e

r2 >
j−κ0(1 − 1/e)
(κ0 log j)2 . (2.25)

Otherwise, letting j ′ + 1 = νi′(ω) ≥ ν1(ω) be the largest essential free return time of
ω such that j ′ + 1 < j + 1, we have ω ∈ Pj ′ (since if ω̃ ⊃ ω, ω̃ ∈ Pj ′ , then ω̃ is never cut
between time j ′ and j), so that equation (2.25) implies

|xj ′(ω)| > 1 − 1/e
(κ0 log j ′)2(j ′)κ0

>
1 − 1/e

(κ0 log j)2jκ0
.

We shall combine the above bound with [DMS, Lemma V.6.3 and Propositions V.6.1 and
V.6.2] to handle the three cases left, namely: the time j + 1 is an inessential free return of
ω; the time j + 1 is a return within a bound period of ω; and the intersection of xj (ω) and
Ur0 is empty.

If j + 1 = νi(ω) is an inessential free return, then [DMS, V.(6.15) in Lemma V.6.3]
gives, for i′ ≤ i as defined above,

|xj (ω)| ≥ 2i−i′ |xj ′(ω)| > 2i−i′ 1 − 1/e
(κ0 log j)2jκ0

. (2.26)

If j + 1 is a return within the bound period of a previous free return j ′′ + 1 of ω, then
using equation (2.25) for the bound period of an essential return, respectively equation
(2.26) for the bound period of a non-essential return, and applying the first claim of [DMS,
Lemma V.6.3], we find d2 ∈ (0, 1) such that

|xj (ω)| ≥ d2λ
j−j ′′
CE |xj ′′(ω)| > d2(1 − 1/e)

(κ0 log j)2jκ0
. (2.27)

If xj (ω) ∩ Ur0 = ∅, then [DMS, V.(6.2) in Propositions V.6.1 and V.6.2] and equation
(2.25) give

|xj (ω)| ≥ d2e
−r0 |xj ′(ω)| > d2e

−r0(1 − 1/e)
(κ0 log j)2jκ0

. (2.28)

We have shown equation (2.24) and thus Lemma 2.3.

2.3. A Hölder local distortion estimate. From now on, let a∗ ∈ (amix, 4) be a Misi-
urewicz parameter, fix κ0 ≥ 11/3d1 and let �∗ = �∗(a∗, κ0) ⊂ �BC = �BC(a∗) be the
positive measure Cantor set constructed in §2.2 via families Pj = Pj (a∗, κ0). The
following replaces [Sch, equations (33) and (31)]. (For [Sch, equation (30)], see equation
(2.2). We do not need [Sch, equation (32)].) The bound in equation (2.31) is new.
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LEMMA 2.4. (Hölder distortion bounds) There exists C < ∞ such that for all n ≥ N0

(with N0 as in Proposition 2.2) and any ω ∈ Pn = Pn(a∗, κ0),

1
C

≤
∣∣∣∣ x′

n(a)/x
′
j (a)

(T
n−j
a )′(xj (a))

∣∣∣∣ ≤ C for all 1 ≤ j ≤ n, for all a ∈ ω. (2.29)

In addition, there exist C < ∞ and M0 > κ0 such that, for all n ≥ N0, each ω̃ ∈ Pn =
Pn(a∗, κ0), and every ω ⊂ ω̃ and α ∈ [0, 1) satisfying

|xn(ω)| ≤ n−M0/(1−α), (2.30)

we have ∣∣∣∣x′
n(a1)

x′
n(a2)

∣∣∣∣ ≤ 1 + C|xn([a1, a2])|α for all a1, a2 ∈ ω. (2.31)

If α = 0, and n + 1 is a free return of ω ∈ Pn, the bound in equation (2.31) is just
equation (2.16). We shall require equation (2.31) for some α > 0 in Corollary 3.4.

Proof. The bound in equation (2.29) is an immediate consequence of equation (2.6).
We first claim that there exist C′ and κ2 > 0 such that for any n,

j−1∑
i=0

|xi(ω)| ≤ C′jκ0+1+κ2 |xj (ω)| for all 1 ≤ j ≤ n, for all ω ⊂ ω̃ ∈ Pn. (2.32)

(Our proof is inspired from that of [DMS, Theorem V.6.2]. This is suboptimal but enough
for our purposes. Adapting instead [DMS, Lemma V.6.4] could enhance equation (2.31).)
To start, there is C such that for any 0 ≤ i ≤ j ≤ n, using equations (2.3) and (2.29), there
exists a = a(i, j , ω) ∈ ω such that, setting Xi,j = xj ◦ x−1

i ,

|xi(ω)|
|xj (ω)| = |xi(ω)|

|Xi,j (xi(ω))| = |x′
i (a)|

|x′
j (a)|

≤ C

|(T j−i
a )′(T i+1

a (c))|
. (2.33)

(We used X′
i,j = x′

j /x
′
i and the mean value theorem in the second equality.) Next, let sj (a)

be the largest � with ν�(a) ≤ j , and put

q�(a) = ν�+1(a) − (ν�(a) + p�(a) + 1), � = 0, . . . , sj (a) − 1,

qsj (a)(a) = max{0, j − (νsj (a)(a) + psj (a)(a) + 1)}, Fj (a) =
sj (a)∑
�=0

q�(a).

(The condition (FA)n implicitly used in Proposition 2.2 says that for some fixed
arbitrarily small τ > 0, F�(a) ≥ �(1 − τ) for N0 ≤ � ≤ n. We shall not need this here.) Set
p� = p�(a), ν� = ν�(a), q� = q�(a), and sj = sj (a). Assume first that i = 0. Then, we
have (see e.g. [DMS, V.(6.11)])

|(T j−i
a )′(T i+1

a (c))| = |(T j
a )′(Ta(c))|

= |(T ν1−1
a )′(Ta(c))| · |(T j+1−νsj

a )′(T νs
a (c))|

·
( sj−1∏

�=1

|(T p�+1
a )′(T ν�

a (c))||(T q�
a )′(T ν�+p�+1

a (c))|
)

.
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Since a satisfies (BA)m and (FA)m for all m ≤ n, the bounds in equation (2.15) give λCE,
γ0 > 0 and C0 > 0 such that

sj−1∏
�=1

|(T p�+1
a )′(T ν�

a (c))||(T q�
a )′(T ν�+p�+1

a (c))| ≥
sj−1∏
�=1

C0e
γ0q�λ

p�/4
CE .

Similarly, |(T ν1−1
a )′(Ta(c))| > C0e

γ0ν1 . Next, if j ≤ νsj + psj + 1, we have

|(T j+1−νsj
a )′(T

νsj
a (c))| ≥ C2

0λ
j−νsj
BC j−κ0e−r0 ,

where we used equation (2.8) and [DMS, Lemma V.6.1.b, Proposition V.6.1]. If j > νsj +
psj + 1, we have, using [DMS, Lemma V.6.1.c, Proposition V.6.1],

|(T j+1−νsj
a )′(T νs

a (c))| ≥ C2
0λ

psj
/4

BC e
γ0(j−(νsj −psj

−1))
e−r0 .

Summarizing,

|(T j
a )′(Ta(c))| ≥ C

sj+4
0
C

λ
(j−Fj (a))/4
CE eγ0Fj (a)j−κ0 .

Since p� ≥C0r0 (see after equation (2.22)), we have j −Fj ≥ jC0r0 while sj ≤ j/(C0r0).
We took r0 large enough (see after equation (2.15)) such that

C
sj+4
0 λ

(j−Fj (a))/4
CE ≥ 1. (2.34)

Finally, using the trivial bound eγ0Fj (a) ≥ 1, we find

|(T j
a )′(Ta(c))| ≥ j−κ0

C
.

If i ≥ 1 and ν�i (a) + p�i (a) < i < ν�i+1(a) for some �i ≥ 1, then we proceed as

for i = 0, replacing |(T ν1−1
a )′(Ta(c))| by |(T ν�i+1−i

a )′(T i+1
a (c))| and setting Fi,j (a) =

ν�i+1(a) − i +∑sj (a)

�≥�i+1 q�(a). Then,

|(T j−i
a )′(T i+1

a (c))| ≥ C
sj−si+4
0
C

λ
((j−i)−Fi,j (a))/4
CE eγ0Fi,j (a)j−κ0 .

We have j − i − Fi,j ≥ (j − i)C0r0, while sj − si ≤ (j − i)/(C0r0), and we find, using
eγ0Fi,j (a) ≥ 1 (we do not know or need Fi,j (a) ≥ (1 − τ)(j − i)),

|(T j−i
a )′(T i+1

a (c))| ≥ j−κ0

C
.

Otherwise, ν�i (a) ≤ i − 1 ≤ ν�i (a) + p�i (a) for some �i ≥ 1. There may be (non-free)
returns during the �i th bound period. To bypass this difficulty, we exploit that the length
of the �th bound period is of the order r if xν�(a) ∈ Ir [DMS, Lemma V.6.1a]. By
equation (2.11), we have r�i = O(log(ν�i )) ≤ Cκ0 log i. Thus, the missing factor in the
�th bound period is ≤ �Cκ0 log i ≤ iκ2 , and

|(T j−i
a )′(T i+1

a (c))| ≥ j−κ0

Ciκ2
.

Summing over i, and recalling equation (2.33), this establishes equation (2.32).
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Next, taking a1, a2 ∈ ω, note that equation (2.7) (using the first bound of equation (2.4)
if i < N0) implies that for all N0 ≤ i ≤ n, recalling T ′

a(x) = a(1 − 2x),

|T ′
a1
(xi(a1)) − T ′

a2
(xi(a2))|

≤ |T ′
a1
(xi(a1)) − T ′

a2
(xi(a1))| + |T ′

a2
(xi(a1)) − T ′

a2
(xi(a2))|

≤ |a1 − a2| + 2a2|xi(a1) − xi(a2)| ≤ (C + 2a2)|xi(ω)|. (2.35)

(Note that equation (2.35) replaces [Sch, (36)].) We claim that there exists C′′ with∣∣∣∣ (T j
a1)

′(x0(a1))

(T
j
a2)

′(x0(a2))

∣∣∣∣ ≤ 1 + C′′eC′′
j2κ0+1+κ2 |xj (ω)| for all 1 ≤ j ≤ n. (2.36)

(The above replaces [Sch, (37)].) Indeed, using the classical bound

j−1∏
i=0

(1 + υi) ≤ exp
( j−1∑

i=0

υi

)
≤ 1 + e

∑j−1
i=0 υi

j−1∑
i=0

υi if all υi ≥ 0,

we have, setting C′′ = 2C′C(C + 2a2),∣∣∣∣ (T j
a1)

′(x0(a1))

(T
j
a2)

′(x0(a2))

∣∣∣∣ = ∣∣∣∣ j−1∏
i=0

T ′
a1
(xi(a1))

T ′
a2
(xi(a2))

∣∣∣∣
≤ 1 + e

∑
i |−1+T ′

a1
(xi (a1))/T

′
a2

(xi (a2))| ·
j−1∑
i=0

∣∣∣∣T ′
a1
(xi(a1))

T ′
a2
(xi(a2))

− 1
∣∣∣∣

≤ 1 + e(C+2a2)
∑j−1

i=0 C|xi (ω)|iκ0 · (C + 2a2)

j−1∑
i=0

C|xi(ω)|iκ0

≤ 1 + eC
′′j2κ0+1+κ2 |xj (ω)| · C′′j2κ0+1+κ2 |xj (ω)| for all j ≤ n, (2.37)

where we used equations (2.35) and (2.8) (the first bound of equation (2.4) if i < N0) in the
second inequality, and equation (2.32) in the last inequality. Setting M0 := 4κ0 + 3 + 2κ2,
if equation (2.30) holds for ω, then equation (2.32) gives for all N0 ≤ j ≤ n,

C′′j2κ0+1+κ2 |xj (ω)| ≤ C′′j2κ0+1+κ2C′jκ0+1+κ2 |xn(ω)|

≤ C′ j3κ0+3+2κ2

nM0/(1−α)
≤ C′′′.

This proves equation (2.36). Similarly, |(T j
a2)

′(x0(a2))/(T
j
a1)

′(x0(a1))| ≤ 1 + C′′eC′′

j2κ0+1+κ2 |xj (ω)|. Therefore,∣∣∣∣ 1

(T
j
a1)

′(x0(a1))
− 1

(T
j
a2)

′(x0(a2))

∣∣∣∣ ≤ C′′′ j2κ0+1+κ2 |xj (ω)|
|(T j

a1)
′(x0(a1))|

.

We can then adapt the end of the proof of [Sch, (31)]. Comparing each term on the
right-hand side of

x′
n(a)

(T n
a )′(x0(a))

= x′
0(a) +

n∑
j=1

(∂aTa)(xj−1(a))

(T
j
a )′(x0(a))

for all a ∈ ω̃ ∈ Pn,
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for a = a1 and a = a2, we find, since x′
0(a) = ∂ac1(a) = 1/4 and

|∂aTa|a1(xj−1(a1)) − ∂aTa|a2(xj−1(a2))| ≤ |xj−1(a1) − xj−1(a2)| ≤ |xj−1(ω)|,
recalling equation (2.5), and applying equation (2.32) and then equation (2.30) for
M0 = 4κ0 + 3 + 2κ2,∣∣∣∣ x′

n(a1)

(T n
a1
)′(x0(a1))

∣∣∣∣ ≤ ∣∣∣∣ x′
n(a2)

(T n
a2
)′(x0(a2))

∣∣∣∣+ Ĉ|a1 − a2| + Ĉ

n∑
j=1

j2κ0+1+κ2

λ
j

CE

|xj (ω)|

≤
∣∣∣∣ x′

n(a2)

(T n
a2
)′(x0(a2))

∣∣∣∣+ C̄C′n4κ0+3+2κ2 |xn(ω)|

≤
∣∣∣∣ x′

n(a2)

(T n
a2
)′(x0(a2))

∣∣∣∣+ C̃|xn(ω)|α .

Finally, we have, using equation (2.6) (which plays the role of [Sch, Lemma 2.4]),∣∣∣∣x′
n(a1)

x′
n(a2)

∣∣∣∣ ≤ ∣∣∣∣ (T n
a1
)′(x0(a1))

(T n
a2
)′(x0(a2))

∣∣∣∣(1 + C̃|xn(ω)|α |(T n
a2
)′(x0(a2))|

|x′
n(a2)|

)
≤ 1 + CC̃|xn(ω)|α .

2.4. Uniform decorrelation and Hölder response. The maps xj are not the iterates of a
fixed dynamical system admitting an invariant measure. To exploit statistical information
on the iterates of the mixing CE map (Ta0 , μa0), we will ‘switch locally’ from xj to T

j
a0

(see Lemma 3.3), using that any a ∈ �∗ satisfies the following uniform decorrelation result
for Hölder continuous observables. (The factor ‖ϕ‖L1(dm) in the right-hand side of [Sch,
Proposition 4.3] is replaced in Proposition 2.5 by ‖ϕ‖L1(dμa)

≤ ‖ϕ‖L∞(dm). This does not
impact the use of [Sch, p. 36, Proposition 4.3].) For q > 1 and s ∈ [0, 1/q), we denote by
Hs

q (I ) = F s
q,2(I ) the Sobolev space of functions of differentiability s and integrability q

supported in I (see [RS]).

PROPOSITION 2.5. (Uniform decay of correlations) For any s > 0 and q > 1, there exist
C < ∞ and ρs

q < 1 such that for all ϕ ∈ Hs
q (I ), ψ ∈ L∞(dm), a ∈ �∗(a∗, κ0),∣∣∣∣∫ 1

0
ϕ(ψ ◦ T n

a ) dm −
∫ 1

0
ϕ dm

∫ 1

0
ψ dμa

∣∣∣∣ ≤ C‖ϕ‖Hs
q
‖ψ‖L1(dμa)

(ρs
q)

n for all n ≥ 1.

For any � > 0, there exist C < ∞ and ρ� < 1 such that for all ϕ ∈ C� , ψ ∈ L∞(dm),
a ∈ �∗(a∗, κ0),∣∣∣∣∫ 1

0
ϕ(ψ ◦ T n

a ) dμa −
∫ 1

0
ϕ dμa

∫ 1

0
ψ dμa

∣∣∣∣ ≤ C‖ϕ‖�‖ψ‖L1(dμa)
(ρ� )n for all n ≥ 1.

We also use Hölder bounds on a �→ μa as a distribution (in Lemma 2.8).

PROPOSITION 2.6. (Fractional response) For any � ∈ (0, 1/2), there exists C such that
for all ϕ ∈ C1/2,
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Parameter ASIP for the quadratic family 19∣∣∣∣∫ ϕ dμa −
∫

ϕ dμa′

∣∣∣∣ ≤ C|a − a′|�‖ϕ‖1/2 for all a, a′ ∈ �∗(a∗, κ0). (2.38)

Our proof of Proposition 2.5 uses the following facts.

SUBLEMMA 2.7. For any a ∈ �BC, the density ha of μa lies in Hs
q (I ) for all s ∈ [0, 1/2)

and q ∈ (1, 2/(1 + 2s)). In addition, for any (H0, κ0) polynomially recurrent a∗, there
exists Cs,q,a∗ < ∞ such that

sup
a∈�∗a∗,κ0

‖ha‖Hs
q (I )

≤ Cs,q,a∗ .

Proof. In the Misiurewicz case, the first claim is [Se, Theorem 10], using Ruelle’s [Ru,
Theorem 9, Remark 16.a] decomposition of ha into the sum of a C1 function and an
exponentially decaying sum of ‘spikes’ x �→ |x − ck(a)|−1/2 and square root singularities
x �→ |x − ck(a)|1/2. For a general a ∈ �BC, set T −k

a,ς := (T k
a |Uk,a,ς )

−1 for k ≥ 1 and ς ∈
±, where Uk,a,ς is the monotonicity interval of T k

a containing c, located to the right of c
for ς = +, to the left of c for ς = −. Then, since we assumed λCE > e14αBC in the proof of
Proposition 2.2, use [BS1, Proposition 2.7] that there exist a C1 function ψa : I → R+ and
C∞ functions �k

a,± : [0, 1] → [0, 1] supported in a neighbourhood of ck(a) in T k
a (Uk,a,±),

such that

ha(x) = ψa(x) +
∞∑
k=1

∑
ς∈{+,−}

χk,a(x)
�k

a,ς (T
−k
a,ς (x))ψa(T

−k
a,ς (x))

|(T k
a )′(T −k

a,ς (x))|
, (2.39)

where χk,a(x) = 1±x<±ck(a) if ±T k
a has a local maximum at c. Setting � := �k

a,ς · ψa ,
we find C1 functions �k,� for � = 1, 2, 3, with

�(T −k
a,ς (x))

|(T k
a )′(T −k

a,ς (x))|
= �k,1(x)

|x − ck(a)|1/2 + �k,2(x)|x − ck(a)|1/2 + �k,3(x) (2.40)

for any x ∈ supp(χk,a). Finally, use [Se, Lemmas 11 and 12].
For the second claim, it is convenient to use an alternative decomposition of ha . First,

recall that [BBS, Corollary 1.6] gives a set �slow of full measure in the set of mixing
CE parameters such that for any ã ∈ �slow and each κ0 > 1, there exist H0 ≥ 1 and a set
�0(ã, κ0) ⊂ �slow of (H0, κ0)-polynomially recurrent (and thus transversal) parameters,
with ã as a Lebesgue density point, such that Proposition 2.5 holds for all a ∈ �0. (It is
unknown whether ã ∈ �0.) The proof involves constructing a tower for each parameter
in �0. We claim that, up to reducing the value of ε in the proof of Proposition 2.2,
we can replace ã by a∗ and �0 by �∗(a∗, κ0). Indeed, �0 was constructed in [BBS,
Proposition 2.1], and it suffices to observe that the required uniformity in constants is
satisfied by equations (2.5) and (2.8), while [BBS, equations (8) and (7)] are exactly [DMS,
V.(6.1), V.(6.2) in Proposition V.6.1].

Let then

�a(ψ̂)(x) =
∑

j≥0,ς∈±

λj

|(T j
a )′(T −j

a,ς (x))|
ψj(T

−j
a,ς (x))
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(for a suitable λ > 1) be the projection from the tower with polynomial recurrence
used in [BBS], and let L̂a be the lift La�a = �aL̂a of the transfer operator Laϕ(x) =∑

Ta(y)=x ϕ(y)/|T ′
a(y)|. Then ([BBS, (66)] gives uniform Lasota–Yorke estimates, [BBS,

Lemmas 3.8, 4.5 and 4.6, Proposition 4.1] give the weak norm bounds needed by Keller
and Liverani [KL]), there exist C < ∞ and θ < 1 such that, letting ‖ · ‖′

a be the norm of

the Sobolev space BW 1
1

a of [BBS],

‖L̂n
a(ϕ̂) − ĥaν̂(ϕ̂)‖′

a ≤ C‖ϕ̂‖′
aθ

n for all ϕ̂ ∈ BW 1
1

a , for all a ∈ �ã , (2.41)

where ĥa is the fixed point (the fixed point property determines ĥa by its value on the

level zero of the tower) of L̂a on BW 1
1

a normalized by
∫

�aĥa dm = 1, while ν̂, the
non-negative measure whose density with respect to Lebesgue in the level j of the tower is
λj , is the fixed point of the dual of L̂a (see [BS1, equation (85)], note that ν(ĥa) = 1
is automatic). Since �aĥa = ha and the W 1

1 norm dominates any Hs
q norm on I if

s ∈ [0, 1) and 1 < q < 1/s (by the Sobolev embedding, more precisely [RS, Ch. 2], the
bounded inclusions W 1

1 ⊂ Wσ
1 = Fσ

1,1 ⊂ Fσ
1,2 ⊂ F s

q,2 = Hs
q , if σ = 1 + s − 1/q ∈ (0, 1)

and q ∈ (1, ∞)), the decomposition in equation (2.40) combined with the uniform bound
in equation (2.41) (for ϕ̂ vanishing on all levels ≥ 1 and constant on level zero of the tower,
with ν̂(ϕ) = 1) gives the second claim of the sublemma, using again [Se, Lemmas 11
and 12].

Proof of Proposition 2.5. Recall from the proof of Proposition 2.2 that we have
λCE > e14αBC . By mollification, it is enough to prove both bounds for C1 functions ϕ.
It is in fact enough to show the first bound for ϕ ∈ C1 as follows. Indeed, again by
mollification (see e.g. the proof of [Se, Lemma 14]), if the first bound holds for ϕ ∈ C1,
then it holds for any ϕ ∈ Hs

q (I ) with q > 1 and s > 0. Therefore, since the density ha of
μa lies in Hs

q (I ) for all s ∈ (0, 1/2) and q ∈ (1, 2/(1 + 2s)) by Sublemma 2.7 (with norm
uniformly bounded in a), the second bound follows from the first bound for ϕ ∈ C1 (using
that C1 functions are bounded multipliers on Hs

q ).
Next, we observed in the proof of Sublemma 2.7 that we can replace the set called �0

in [BBS, Corollary 1.6] by �∗(a∗, κ0). The first bound for Lipschitz continuous ϕ thus
follows from the second assertion of [BBS, Corollary 1.6], since �∗ ⊂ [amix, 4). Indeed,
note first that a is topologically mixing if and only if its renormalization period Pa is equal
to one. Second, observe that the constant Cϕ,ψ in the second claim of [BBS, Corollary
1.6] can be replaced by C‖ϕ‖�‖ψ‖L1(dμa)

for a constant C uniform in a in view of [BBS,
Lemmas 4.5 and 4.6] and the principle of uniform boundedness. More precisely, using the
notation from the proof of Sublemma 2.7, we have∫

(ψ ◦ T n
a )ϕ dm =

∫
ψ�a(L̂n

a(ϕ̂)) dm if �a(ϕ̂) = ϕ,∫
(ψ ◦ T n

a )ϕha dm =
∫

ψ�a(L̂n
a(ϕ̂a)) dm if �a(ϕ̂a) = ϕha .

Since �aĥa = ha , any Lipschitz continuous ϕ can be written as �a(ϕ̂) (take ϕ̂0 = ϕ on
the level zero and ϕ̂j ≡ 0 on levels j ≥ 1) such that, on the one hand, ‖ϕ̂‖′

a ≤ C‖ϕ‖1
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uniformly in a, and, on the other hand, ν̂(ϕ̂) = ∫ ϕ dm. We conclude by applying equation
(2.41) from the proof of Sublemma 2.7. (The Banach space of [BBS] requires that the
function on level zero of the tower be supported in (0, 1), so this proof cannot cover the
case a = 4.)

Proof of Proposition 2.6. If a = a∗, the bound is an immediate consequence of the first
claim of [BBS, Corollary 1.6], since we can replace the set denoted �0 there by �∗(a∗, κ0),
as observed in the proof of Sublemma 2.7 and used in the proof of Proposition 2.5. If a �=
a∗, the uniformity of the constants given by Proposition 2.2 ensures that we may construct
the reference tower in [BBS] at a (instead of a∗), viewing a′ as a perturbation of a.

2.5. Hölder regularity of the variance σa(ϕ). Propositions 2.5 and 2.6 will imply the
following regularity of a �→ σa(ϕ) on �∗.

LEMMA 2.8. (Regularity of σa(ϕ)) For any � ∈ (0, 1], there exist θ ∈ (0, min{1/2, � })
and C < ∞ such that for each ϕ ∈ C� with σa∗(ϕ) > 0, there exists εϕ > 0 such that

Cεϕ (ϕ) := inf
a∈�a∗∩[a∗−εϕ ,a∗+εϕ ]

σa(ϕ) > 0,

and such that for all a, a′ ∈ �∗(a∗, κ0) ∩ [a∗ − εϕ , a∗ + εϕ], we have

|σa(ϕ) − σa′(ϕ)| ≤ C

2Cε(ϕ)
‖ϕ‖� |a − a′|θ . (2.42)

Proof. Let k0 > 1 be a large integer to be chosen at the end of the proof. By the second
claim of Proposition 2.5, there exist ρ = ρ� < 1 and C0 such that∑

k>k0

∣∣∣∣ ∫ (ϕ −
∫

ϕ dμa

)
·
((

ϕ −
∫

ϕ dμa

)
◦ T k

a

)
dμa

∣∣∣∣
≤ C0‖ϕ‖2

� · ρk0

1 − ρ
for all k0 ≥ 1, for all a ∈ �a∗ , for all ϕ ∈ C� .

Set Aa = ∫ ϕ dμa . Since
∫
((ϕ − Aa) ◦ T k

a )(ϕ − Aa) dμa = ∫ (ϕ ◦ T k
a )ϕ dμa − A2

a , we
have

|σa(ϕ)
2 − σa′(ϕ)2| ≤ 2

k0−1∑
k=0

∣∣∣∣ ∫ ϕ(ϕ ◦ T k
a ) dμa −

∫
ϕ(ϕ ◦ T k

a′) dμa

∣∣∣∣
+ 2

k0−1∑
k=0

∣∣∣∣ ∫ ϕ(ϕ ◦ T k
a′) dμa −

∫
ϕ(ϕ ◦ T k

a′) dμa′

∣∣∣∣
+ 2

k0−1∑
k=0

∣∣∣∣( ∫ ϕ dμa

)2

−
( ∫

ϕ dμa′
)2∣∣∣∣

+ 4C0‖ϕ‖2
�

ρk0

1 − ρ
for all k0 ≥ 1.

Assume for a moment that � ≥ 1/2. The � -Hölder constant of ϕ(ϕ ◦ T k
ā ) (for ā = a

or a′) is bounded by �k‖ϕ‖2
� . Thus, Proposition 2.6 gives for any � < 1/2 a constant
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C1 = C1(�) such that for a, a′ ∈ �a∗ and ϕ ∈ C� ,

|σa(ϕ)
2 − σa′(ϕ)2| ≤ k0C1‖ϕ‖2

��k0 |a − a′|� + C0‖ϕ‖2
�

ρk0

1 − ρ

+ 2
k0−1∑
k=0

∣∣∣∣ ∫ ϕ(ϕ ◦ T k
a ) dμa −

∫
ϕ(ϕ ◦ T k

a′) dμa

∣∣∣∣ for all k0 ≥ 1.

Next, equation (2.2) gives that∫
|ϕ ◦ T k

a − ϕ ◦ T k
a′ | dμa ≤ ‖ϕ‖�(C�k|a − a′|)� .

Therefore, we find

|σa(ϕ)
2 − σa′(ϕ)2| ≤ k0C1‖ϕ‖2

��k0 |a − a′|� + 4C0‖ϕ‖2
�

ρk0

1 − ρ

+ k0‖ϕ‖�(C�k0 |a − a′|)� . (2.43)

We conclude the proof for � ≥ 1/2 by dividing equation (2.43) by |a − a′|θ for small
enough θ > 0 and optimizing in k0, using also (σa − σa′)(σa + σa′) = σ 2

a − σ 2
a′ .

If � ∈ (0, 1/2), mollification gives ϕυ ∈ C1/2 and C4 such that

‖ϕυ‖1/2 ≤ C4υ
�−1/2‖ϕ‖� , sup |(ϕ ◦ T k

ā )ϕ − (ϕυ ◦ T k
ā )ϕυ | ≤ C4υ

��k‖ϕ‖�

for all small υ > 0, all 0 ≤ k ≤ k0 and all ā ∈ �a∗ . To conclude, optimize in
υ = |a − a′|θ0 for small θ0 > 0, taking θ smaller (in particular θ < �θ0).

3. Switching locally from the parameter to the phase space
Let a∗, Pj (a∗, κ0) and �∗ = �∗(a∗, κ0) be as in Proposition 2.2 for κ0 ≥ 11/(3d1), and
fix � ∈ (0, 1). This section is devoted to Proposition 3.2, the main estimate (analogous to
[Sch, Proposition 5.1]) towards a law of large numbers for the squares of the blocks which
will be defined in §4 (see Lemma 4.2).

From now on, fix � ∈ (0, 1) and a � -Hölder continuous function ϕ : I → R, recalling
ϕa , σa(ϕ) from equations (1.6) and (1.3), and assume σa∗(ϕ) > 0. Lemma 2.8 gives εϕ > 0
such that

σa(ϕ) > 0 for all a ∈ �
ϕ∗ := �∗ ∩ [a∗ − εϕ , a∗ + εϕ]. (3.1)

If εϕ < ε, we replace �∗ by �
ϕ∗ by replacing ε in the proof of Proposition 2.2 with εϕ .

(This is harmless as it can only improve the constants.)

Remark 3.1. (θ -Hölder–Whitney extensions of ϕa and ξn(a)) By Proposition 2.6, the
function a �→ ∫

ϕ dμa is �-Hölder continuous on �∗ for any � < 1/2. By Lemma 2.8,
the function a �→ σa(ϕ) ≥ 0 is θ -Hölder continuous on �∗ for some θ < min{1/2, � },
and uniformly bounded away from zero on �

ϕ∗ . Taking � ≥ θ , the map a �→ ϕa(u) =
(ϕ(u) − ∫ ϕdμa)/σa is θ -Hölder continuous on �

ϕ∗ uniformly in u ∈ I . By the Whitney
extension theorem, we extend each map a �→ ϕa(u) to a θ -Hölder continuous map on
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[a∗ − εϕ , a∗ + εϕ], uniformly in u ∈ I . In addition, there exists C̃ < ∞ such that

‖ϕa‖∞ ≤ ‖ϕa‖� ≤ C̃‖ϕ‖� for all a ∈ [a∗ − εϕ , a∗ + εϕ]. (3.2)

Then, using equation (2.2), we may extend each map a �→ ξn(a) = ϕa(T
n+1
a (c)) to a

θ -Hölder continuous map on [a∗ − εϕ , a∗ + εϕ], with θ -Hölder constant bounded by
C�θ(n+1). Indeed, recalling xn(a) = T n+1

a (c), just decompose

ξn(a) − ξn(a
′) = ϕa(xn(a)) − ϕa′(xn(a)) + ϕa′(T n+1

a (c)) − ϕa′(T n+1
a′ (c)). (3.3)

Fix α ∈ (0, 1) such that (in view of the use of equation (2.30) in Corollary 3.4)

M0

1 − α
≤ 3

α
. (3.4)

Fix q > 1 and 0 < s < min{� , 1/q}, and let

λ0 = min(λθ
CE, ρ−1/2) > 1, (3.5)

where λCE > 1 is given by equation (2.5), while ρ = max{ρs
q , ρ� } < 1 is given by

Proposition 2.5, and θ ∈ (0, min{1/2, � }) is given by Lemma 2.8. Finally, recalling �

from equation (2.1), let η ∈ (0, 1/2) be so small that(
2�
λCE

)η

≤ λ0 <
λ�

CE
�η�

. (3.6)

Define the expectation E(ψ) of ψ ∈ L∞(�
ϕ∗ ) by

E(ψ) := 1
m(�

ϕ∗ )

∫
�

ϕ∗
ψ dm. (3.7)

(We restrict to the Cantor set �ϕ∗ here and thus in equation (3.8). The bound in equation
(2.9) is used in the proof of equation (3.8) (but not for equation (3.9), Lemma 3.3 or
Corollary 3.4).) The following result is the key estimate on ξj (a) = ϕa(T

j+1
a (c)).

PROPOSITION 3.2. There exist Cϕ < ∞ and K < ∞ such that∣∣∣∣E( k+n−1∑
j=k

ξj

)2

− n

∣∣∣∣ ≤ Cϕ for all k ≥ max{2K , [2/η]}, for all 1 ≤ n ≤ ηk/2, (3.8)

and, setting (the stretched exponent 1/4 for v(k) and the lower bound can be replaced by
any number in (0, 1), without changing the statements, up to adjusting intermediate con-
stants) v(k) = [k − k1/4] for every non-trivial interval ω ⊂ ω̃ ∈ Pv(k) with ω ∩ �

ϕ∗ �= ∅
and λ−k1/4

0 ≤ |xv(k)(ω)| ≤ v(k)−3/α , we have∣∣∣∣ 1
|ω|
∫
ω

( k+n−1∑
j=k

ξj

)2

dm − n

∣∣∣∣ ≤ Cϕ for all k ≥ [2/η], for all 1 ≤ n ≤ ηk/2, (3.9)

and, for any sequence �k with C� := supk k−8/3 sup |�k| < ∞ and for any refinement
Qv(k) of Pv(k) such that λ−k1/4

0 ≤ |xv(ω)| ≤ v−3/α for all ω ∈ Qv(k) (we have λ−k1/4

0 ≤
|xv(ω)| for all ω ∈ Pv(k) by equation (3.21)), setting
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Q∗,v(k) := {ω ∈ Qv(k) | ω ∩ �
ϕ∗ �= ∅}, �Q

∗,v(k) =
⋃

ω∈Q∗,v(k)

ω, (3.10)

we have ∣∣∣∣E(�k) − 1

|�Q
∗,v(k)|

∫
�Q

∗,v(k)

�k dm

∣∣∣∣ ≤ C�Cϕ for all k ≥ [2/η]. (3.11)

Proposition 3.2 is proved in §3.1. Like for its analogue [Sch, Proposition 5.1], the first
step will be to show the local estimate in equation (3.9) using Lemma 3.3 through its
Corollary 3.4 (the analogues of [Sch, Lemma 5.3, Corollary 5.5]).

LEMMA 3.3. (Switching locally from parameter to phase space) Fix �0 ∈ {1, 2, 3, 4}.
There exists C < ∞ such that we have, for any integers

n ≤ ni ≤ n + ηn, 1 ≤ i ≤ �0,

for every ω̃ ∈ Pn and each non-trivial interval ω ⊂ ω̃ with ω ∩ �
ϕ∗ �= ∅,∫

xn(ω)

∣∣∣∣ �0∏
�=1

ξn�
(xn|−1

ω (y)) −
�0∏
�=1

ϕa0(T
n�−n
a0

(y))

∣∣∣∣ dy (3.12)

≤ Cλ−n
0 |xn(ω)| for all a0 ∈ ω ∩ �

ϕ∗ .

COROLLARY 3.4. There exists C3 > 1 such that for �0, n, n1, . . . , n�0 , and ω as in Lemma
3.3, if, in addition, |xn(ω)| ≤ n−3/α , then for any a0 ∈ ω ∩ �

ϕ∗ ,∣∣∣∣ 1
|ω|
∫
ω

�0∏
�=1

ξn�
(a) da − 1

|xn(ω)|
∫
xn(ω)

�0∏
�=1

ϕa0(T
n�−n
a0

(y)) dy

∣∣∣∣
≤ C3(|xn(ω)|α + λ−n

0 ).

Proof. Since equation (3.4) implies equation (2.30) for ω, the change of variables
y = xn(a) on ω, combined with the distortion estimate in equation (2.31), gives∣∣∣∣ 1

|ω|
∫
ω

�0∏
�=1

ξn�
(a) da − 1

|xn(ω)|
∫
xn(ω)

�0∏
�=1

ξn�
(xn|−1

ω (y)) dy

∣∣∣∣
= 1

|xn(ω)|
∣∣∣∣ ∫

xn(ω)

�0∏
�=1

ξn�
(xn|−1

ω (y))

(
1

|x′
n(xn|−1

ω y)|
|xn(ω)|

|ω| − 1
)
dy

∣∣∣∣ (3.13)

≤ C
|xn(ω)|α
|xn(ω)|

∫
xn(ω)

�0∏
�=1

|ξn�
(xn|−1

ω (y))| dy.

Since supk ‖ξk‖L∞ < ∞, the claim then follows from Lemma 3.3.

Proof of Lemma 3.3. For a0 ∈ ω as in the statement, the functions

ϕ̃�(y) = ϕ̃�,a0(y) = ϕa0(T
n�−n
a0

(y)), ξ̃�(y) = ξ̃�,ω(y) = ξn�
(xn|−1

ω (y))
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with

ξn�
(xn|−1

ω (y)) = ϕ
xn|−1

ω (y)
(xn�

(xn|−1
ω (y)) = ϕ

xn|−1
ω (y)

(T
n�+1
xn|−1

ω (y)
(c))

are bounded on xn(ω ∩ �
ϕ∗ ). Decomposing

|ξ̃1ξ̃2ξ̃3ξ̃4 − ϕ̃1ϕ̃2ϕ̃3ϕ̃4| ≤ |(ξ̃1 − ϕ̃1)ξ̃2ξ̃3ξ̃4| + |ϕ̃1(ξ̃2 − ϕ̃2)ξ̃3ξ̃4|
+ |ϕ̃1ϕ̃2(ξ̃3 − ϕ̃3)ξ̃4| + |ϕ̃1ϕ̃2ϕ̃3(ξ̃4 − ϕ̃4)|, (3.14)

it is enough to find a uniform constant C̄ > 1 such that

1
|xn(ω)|

∫
xn(ω)

|ξ̃�,ω − ϕ̃�,a0 | dy ≤ C̄λ−n
0 for all a0 ∈ ω ∩ �

ϕ∗ , 1 ≤ � ≤ �0.

We will do so by showing the pointwise estimate

|ξ̃�,ω(y) − ϕ̃�,a0(y)| ≤ C̄λ−n
0 for all y ∈ xn(ω), for all a0 ∈ ω ∩ �

ϕ∗ , 1 ≤ � ≤ �0.

For a = xn|−1
ω (y), we decompose

ξ̃�,ω(y) − ϕ̃�,a0(y) = ξn�
(a) − ϕa0(T

n�−n
a0

(xn(a)))

= ϕa(xn�
(a)) − ϕa0(T

n�−n
a0

(xn(a)))

= ϕa(xn�
(a)) − ϕa0(xn�

(a)) + ϕa0(xn�
(a)) − ϕa0(T

n�−n
a0

(xn(a))). (3.15)

Using Remark 3.1, there exists C, independent of n�, such that

|ϕa(xn�
(a)) − ϕa0(xn�

(a))| ≤ C|ω|θ for all {a, a0} ⊂ ω. (3.16)

Hence, using our choice in equation (3.5) of λ0, and since |ω| ≤ Cλ−n
CE by equation (2.7),

we get

|ϕa(xn�
(a)) − ϕa0(xn�

(a))| ≤ C|ω|θ ≤ Cλ−n
0 . (3.17)

For the last two terms in the right-hand side of equation (3.15), note that since
a = xn|−1

ω (y) implies xn�
(a) = T

n�+1
a (c) = T

n�−n
a (T n+1

a (c)) = T
n�−n
a (y), we have, using

equation (2.2),

|xn�
(xn|−1

ω (y)) − T n�−n
a0

(y)| = |T n�−n
a (y) − T n�−n

a0
(y)|

≤ C�n�−n|a − a0| ≤ C�n�−n|ω| for all y ∈ xn(ω). (3.18)

Then, since n� − n ≤ ηn, our choice of λ0, η, with equation (3.2) at a = a0 give (we do
not need the analogue of [Sch, Sublemma 5.4] here)

|ϕa0(xn�
(a)) − ϕa0(T

n�−n
a0

(xn(a)))|
= |ϕa0(xn�

(xn|−1
ω (y))) − ϕa0(T

n�−n
a0

(y))|
≤ CC̃�(n�−n)� |ω|� ≤ CC̃��ηn|ω|� ≤ CC̃λ−n

0 , (3.19)

using again in the last inequality that |ω| ≤ Cλ−n
CE from equation (2.7). We conclude by

combining equations (3.17) and (3.19) into equation (3.15).
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3.1. Proof of Proposition 3.2. We first show equation (3.9). Let ω ⊂ ω̃ ∈ P[k−k1/4], with
k ≥ 2n/η, be as in the assertion. Writing

∫
ω

( k+n−1∑
j=k

ξj

)2

dm =
k+n−1∑
j=k

( ∫
ω

ξ2
j dm + 2

k+n−1∑
�=j+1

∫
ω

ξj ξ� dm

)
,

it is sufficient to show that

k+n−1∑
j=k

∣∣∣∣1 − 1
|ω|
∫
ω

(
ξ2
j + 2

k+n−1∑
�=j+1

ξj ξ�

)
dm

∣∣∣∣ = O(1). (3.20)

Fix a0 ∈ ω ∩ �
ϕ∗ . By Corollary 3.4 for �0 = 2, we have, for k ≤ j ≤ k + n − 1,

1
|ω|
∫
ω

(
ξ2
j + 2

k+n−1∑
�=j+1

ξj ξ�

)
dm

= 1
|xv(ω)|

∫
xv(ω)

(
ϕ2
a0

◦ T
j−v
a0 + 2

k+n−1∑
�=j+1

ϕa0 ◦ T
j−v
a0 ϕa0 ◦ T �−v

a0

)
dm

+ O((k + n − j)(λ
−(k−k1/4)
0 + |xv(ω)|α))

(recall v = [k − k1/4]). Since 0 < s < 1/q < 1, we have that 1xv(ω) ∈ Hs
q , uniformly in v

and ω (see [St]), so the first claim of Proposition 2.5 gives∫
xv(ω)

(ϕa0 ◦ T
j−v
a0 )(ϕa0 ◦ T �−v

a0
) dm

= |xv(ω)|
∫

ϕa0 · (ϕa0 ◦ T
�−j
a0 ) dμa0 + O(ρj−v) for all � ≥ j .

Hence,

1
|ω|
∫
ω

(
ξ2
j + 2

k+n−1∑
�=j+1

ξj ξ�

)
dm =

∫ (
ϕ2
a0

+ 2
k+n−1∑
�=k+1

ϕa0 · (ϕa0 ◦ T
�−j
a0 )

)
dμa0

+ O((k + n − j)(λ
−(k−k1/4)
0 + |xv(ω)|α + ρj−v|xv(ω)|−1)).

By equations (1.3) and (1.7), we have

1 =
∫

ϕ2
a0

dμa0 + 2
∞∑
i=1

∫
ϕa0 · ϕa0 ◦ T i

a0
dμa0 .

Therefore, the second claim of Proposition 2.5 gives

∫ (
ϕ2
a0

+ 2
k+n−1∑
�=j+1

ϕa0 · (ϕa0 ◦ T
�−j
a0 )

)
dμa0 = 1 + O(ρk+n−j ).
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Hence, we find, for k ≤ j ≤ k + n − 1 and v = [k − k1/4],∣∣∣∣1 − 1
|ω|
∫
ω

(
ξ2
j + 2

k+n−1∑
�=j+1

ξj ξ�

)∣∣∣∣
≤ C(k + n − j)(λ

−(k−k1/4)
0 + |xv(ω)|α + ρj−v|xv(ω)|−1) + Cρk+n−j .

To proceed, we shall use several times that

sup
n

sup
k

k+n−1∑
j=k

1
(k + n − j)2 ≤ sup

n

n∑
�=1

1
�2 < ∞.

Clearly, ρk+n−j ≤ C/(k + n − j)2. For the term (k + n − j)ρj−v|xv(ω)|−1, we use
|xv(ω)| ≥ λ−k1/4

0 and the definition in equation (3.5) of λ0 to get, since k ≥ 2n/η,

ρj−v

|xv(ω)| ≤ ρk1/4
λk1/4

0 ≤ λ−k1/4

0 ≤ C

n3 ≤ C

(k + n − j)3 , k ≤ j ≤ k + n − 1.

The term (k + n − j)λ
−(k−k1/4)
0 is similar. Finally, |xv(ω)| ≤ v−3/α gives

k+n−1∑
j=k

(k + n − j)|xv(ω)|α ≤
k+n−1∑
j=k

k + n − j

n3 ≤ n
k + n − k

n3 = 1
n

.

This proves equation (3.20), and hence equation (3.9).
We will next deduce equations (3.8) and (3.11) from equation (3.9). Fix κ1 > κ0, let

N1(κ1) ≥ N0 be given by Lemma 2.3 and let K ≥ N1 be such that kκ1 ≤ λk1/4

0 for all
k ≥ K . Then, if v = v(k) ≥ K (so that k ≥ K), we have

|xv(ω̃)| > v−κ1 = [k − k1/4]−κ1 > λ−k1/4

0 for all ω̃ ∈ Pv . (3.21)

Refining Pv to a partition Qv such that

λ−k1/4

0 ≤ |xv(ω)| ≤ v−3/α for all ω ∈ Qv ,

we set �Q∗,v as in equation (3.10) and we decompose

|�ϕ∗ | · E
( k+n−1∑

j=k

ξj

)2

=
∫
�Q∗,v

( k+n−1∑
j=k

ξj

)2

dm −
∫
�Q∗,v\�ϕ∗

( k+n−1∑
j=k

ξj

)2

dm

=
∫
�v

( k+n−1∑
j=k

ξj

)2

dm −
∫
�v\�ϕ∗

( k+n−1∑
j=k

ξj

)2

dm.

Then, using equation (2.9), supk sup |ξk| < ∞, κ0 ≥ 3/d1 and v(k) ≥ k/2 ≥ n/η,

0 ≤
∫
�Q∗,v\�ϕ∗

( k+n−1∑
j=k

ξj

)2

dm ≤
∫
�v\�ϕ∗

( k+n−1∑
j=k

ξj

)2

dm

≤ Cn2ev ≤ Cn2n1−d1κ0 ≤ C, (3.22)
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which shows that∫
�

ϕ∗

( k+n−1∑
j=k

ξj

)2

dm =
∫
�Q∗,v

( k+n−1∑
j=k

ξj

)2

dm + O(1)

=
∫
�v

( k+n−1∑
j=k

ξj

)2

dm + O(1).

By equation (3.9),∫
ω

( k+n−1∑
j=k

ξj

)2

dm = |ω|(n + O(1)) for all ω ∈ Q∗
v . (3.23)

Summing equation (3.23) over ω ∈ Q∗
v , we get that∫

�Q∗,v

( k+n−1∑
j=k

ξj

)2

dm = n + O(1).

Finally, using again equation (2.9) to see

0 ≤ |�Q∗,v|
|�ϕ∗ | − 1 ≤ |�v|

|�ϕ∗ | − 1 = O(ev) = O(en),

we have established equation (3.8), and also equation (3.11) in the case �k = (
∑k+n−1

j=k ξj )
2

(note that |�k| ≤ Cn2 ≤ Ck2). For more general �k , the same argument, using
d1κ0 ≥ 11/3 in equation (3.22), gives equation (3.11). This ends the proof of
Proposition 3.2.

4. Proof of Theorem 1.1 via Skorokhod’s representation theorem
We will rearrange the Birkhoff sum as a sum of blocks of polynomial size, approximate
the blocks by a martingale and finally apply Skorokhod’s representation theorem to this
martingale. The size for the jth block Ij is j2/3, which will give the error exponent γ > 2/5
in our ASIP. (A block size #Ij = jb replaces 3/5 in equation (4.4) by 1/(1 + b), so that
the first constraint becomes Nγ > Nb/(1+b), see equation (4.5). Our bounds in equations
(4.25) and (4.26) (with Gál–Koksma’s strong law of large numbers, Theorem 4.3, and
M(N) ∼ N1/(1+b)) give Nγ > N(b+2)/(4(b+1)). Hence, b = 2/3 is the optimum. In the
independent and identically distributed case, a block size j1/2 gives γ > 1/3 [PS, p. 25],
see also the beginning of [Sch, §6].)

4.1. Blocks IM . Approximations χi and yj . Fix a∗, � ∈ (0, 1), q, s ∈ (0, min{� , 1/q}),
ρ, θ , λ0, η, α, ϕ ∈ C� , �ϕ∗ = �∗ ∩ [a∗ − εϕ , a∗ + εϕ] as in the beginning of §3. Set

P∗,k := {ω ∈ Pk | |ω ∩ �
ϕ∗ | > 0}, �∗,k :=

⋃
ω∈P∗,k

ω, k ≥ 1.

Fix γ ∈ (2/5, 1/2) and δ ∈ (0, min{1/5, 2(γ − 2/5)}). (See Lemma 4.4 for the con-
dition δ < 2(γ − 2/5).) For i ≥ 1, we shall approach ξi : [a∗ − εϕ , a∗ + εϕ] → C (see
Remark 3.1) by the stepfunction
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χi : �∗,ri → C, χi = E(ξi |Fri ) where ri = i + [iδ],

with Fk the σ -algebra generated by the intervals in P∗,k . Conditional expectations are only
defined almost everywhere, but we may set (see equation (3.7))

χi |ω ≡
∫
ω∩�

ϕ∗ ξi dm

|ω ∩ �
ϕ∗ | for all ω ∈ P∗,ri , for all i ≥ 1. (4.1)

Thus, χi is defined everywhere on �∗,ri , allowing pointwise claims about it.
Recalling e� from equation (2.9) and our assumption λCE > e14αBC in the proof of

Proposition 2.2, we have the following basic lemma.

LEMMA 4.1. For any λ̃CE ∈ (eαBC ,
√
λCE · e−αBC), there exists C such that

|ξi(a) − χi(a)| ≤ Cλ̃−θiδ

CE for all i ≥ 1, for all a ∈ �∗,ri , (4.2)

and for all i ≥ 1, j ≥ 0 and all a ∈ �∗,ri ,

|E(ξi+j |Fri )(a)| = |E(χi+j |Fri )(a)| ≤ C min(1, e[η(j−2iδ)]). (4.3)

(The constant C in equation (4.3) goes to infinity as δ → 0, that is, if γ → 2/5.)

Following [PS, §3.3], [Sch, §6.1], we define inductively consecutive blocks Ij of
integers and associated functions yj as follows. Let I1 = {1} and let Ij for j ≥ 2 contain
[j2/3] consecutive integers. The first blocks are

1,︸︷︷︸
I1

2,︸︷︷︸
I2

3, 4,︸︷︷︸
I3

5, 6,︸︷︷︸
I4

7, 8,︸︷︷︸
I5

9, 10, 11,︸ ︷︷ ︸
I6

12, 13, 14,︸ ︷︷ ︸
I7

15, 16, 17, 18,︸ ︷︷ ︸
I8

19, 20, 21, 22,︸ ︷︷ ︸
I9

. . .

Let M = M(N) be uniquely defined by N ∈ IM . There exists C such that

C−1N3/5 ≤ M(N) ≤ CN3/5 for all N ≥ 1. (4.4)

By equation (4.2) in Lemma 4.1, there is C such that, for all i ≥ 1 and all a ∈ �∗,ri ,∣∣∣∣ N∑
i=1

ξi(a) −
M(N)∑
j=1

∑
i∈Ij

χi(a)

∣∣∣∣ ≤ N∑
i=1

|ξi(a) − χi(a)| + C#IM ≤ CN2/5 (4.5)

for all N ≥ 1. Hence, to prove Theorem 1.1, it is sufficient to consider

yj : �∗,[Cr
5/3
j ] → C, yj :=

∑
i∈Ij

χi , j ≥ 1.

Proof of Lemma 4.1. By equation (4.1), since ξi is continuous (see Remark 3.1), for any
ω ∈ P∗,ri , there exists a′ ∈ ω such that χi |ω = ξi(a

′). Revisiting the decomposition in
equation (3.3), and using equation (3.2) and the θ -Hölder continuity of a �→ ϕa(u) (as
for equation (3.16)), we find C such that for all i ≥ 1 and ω ∈ P∗,ri ,

|ξi(a) − χi(a)| = |ξi(a) − ξi(a
′)| ≤ C(|ω|θ + |xi(ω)|�) ≤ C|xi(ω)|θ for all a ∈ ω,
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where we used θ ≤ � and equation (2.7) in the second inequality. This establishes
equation (4.2), since for any λ̄CE ∈ (eαBC ,

√
λCE · e−αBC), there exists C̄ such that

|xi(ω)| ≤ C̄ · λ̄−iδ

CE · iκ0 for all ω ∈ P∗,ri , for all i. (4.6)

To show equation (4.6), first note, using equation (2.29), that there exists a ∈ ω such that

|xi(ω)| ≤ C
|xri (ω)|

|(T iδ
a )′(xi(a))|

.

Then, if a ∈ �∗, the polynomial recurrence in equation (2.8) and standard arguments give

|(T iδ

a )′(xi(a))| ≥ Ci−κ0 λ̄−iδ

CE (4.7)

(see e.g. [BS1, Proposition 3.7] in the exponentially recurrent case). If a /∈ �∗, we may
use bounded distortion in equation (2.31) (α = 0 suffices here) since |ω ∩ �∗| > 0.

The equality in equation (4.3) follows from the definition since Fri ⊂ Fri+j
. Indeed, for

a ∈ ω ∈ P∗,ri ,

|ω ∩ �
ϕ∗ | · |E(ξi+j |Fri )(a)| =

∫
ω∩�

ϕ∗
ξi+j dm

=
∑

ω′∈P∗,ri+j

ω′⊂ω

|ω′ ∩ �
ϕ∗ | ·
∫
ω′∩�

ϕ∗ ξi+j dm

|ω′ ∩ �
ϕ∗ |

=
∑

ω′∈P∗,ri+j

ω′⊂ω

|ω′ ∩ �
ϕ∗ | · χi+j |ω′ =

∑
ω′∈P∗,ri+j

ω′⊂ω

∫
ω′∩�

ϕ∗
χi+j dm.

(4.8)

Since supk ‖ξk‖L∞ < ∞, we may and shall assume that j ≥ 2iδ to prove the upper bound
in equation (4.3). For such j, recalling η ∈ (0, 1/2) from equation (3.6), define

k = k(i, j) = max
{
i + [iδ] + η(j − iδ),

⌈
i + j

1 + η

⌉}
(4.9)

so that k ≤ i + j − η/(1 + η)(j − iδ) ≤ i + j and i + j ≤ k(1 + η).
Since δ is fixed, we may and shall assume that i is large enough such that k(i, j) ≥ N1

(with N1 from Lemma 2.3) and

max{λ−(j+i)/(1+η)

0 , ρηj/3 · (2j)(κ0+1)/δ} ≤ e[η(j−iδ)]. (4.10)

Since k(i, j) ≥ ri , we have, similarly as for equation (4.8),

|E(ξi+j |Fri )(a)| = |E(E(ξi+j |Fk(i,j))|Fri )(a)| for all a ∈ ω̃ ∈ P∗,ri .

We must analyse the above decomposition more closely than in the proof of [Sch, Lemma
6.1] as follows. Let a ∈ ω̃ ∈ P∗,ri , then,
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|ω̃ ∩ �
ϕ∗ | · |E(E(ξi+j |Fk(i,j))|Fri )(a)| =

∣∣∣∣ ∑
ω∈P∗,k(i,j)

ω⊂ω̃

|ω ∩ �
ϕ∗ |

|ω ∩ �
ϕ∗ |
∫
ω∩�

ϕ∗
ξi+j dm

∣∣∣∣
≤
∣∣∣∣ ∑
ω∈P∗,k(i,j)

ω⊂ω̃

|ω|
|ω|
∫
ω

ξi+j dm

∣∣∣∣+ sup
ã

‖ϕã‖L∞ ·
∑

ω∈P∗,k(i,j)
ω⊂ω̃

|ω \ (ω ∩ �
ϕ∗ )|. (4.11)

Since ω̃ ∈ P∗,ri , the bound in equation (2.10) implies⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
ω∈P∗,k(i,j)

ω⊂ω̃

|ω \ (ω ∩ �∗)|
|ω̃ ∩ �

ϕ∗ | ≤ d0ek(i,j)−ri |ω̃|
(1 − d0eri )|ω̃| ≤ Cd0e[η(j−iδ)],

|ω̃|/|ω̃ ∩ �
ϕ∗ | ≤ |ω̃|

(1 − d0eri )|ω̃| ≤ C.

(4.12)

In view of equations (2.10), (4.12) and (4.11), it suffices to show

1
|ω|
∣∣∣∣ ∫

ω

ξi+j dm

∣∣∣∣ ≤ C min(1, e[η(j−2iδ)]) for all ω ∈ P∗,k(i,j).

Fix ω ∈ P∗,k(i,j). First note that, by equation (2.31) for α = 0,

1
|ω|
∣∣∣∣ ∫

ω

ξi+j (a) da

∣∣∣∣ ≤ C

|xk(ω)|
∣∣∣∣ ∫

xk(ω)

ξi+j (xk|−1
ω (y)) dy

∣∣∣∣. (4.13)

Then, on the one hand, Lemma 3.3 for �0 = 1 gives a0 ∈ ω ∩ �
ϕ∗ such that

1
|xk(ω)|

∣∣∣∣ ∫
xk(ω)

(ξi+j (xk|−1
ω (y)) − ϕa0(T

i+j−k
a0 (y))) dy

∣∣∣∣
≤ Cλ

−k(i,j)
0 ≤ Cλ

−(i+j)/(1+η)

0 . (4.14)

On the other hand, recalling 0 < s < 1/q, since 1xk(ω) ∈ Hs
q (uniformly in k and ω), the

first claim of Proposition 2.5, with
∫

ϕa0dμa0 = 0, gives (a factor |xk(ω)|−1 was omitted
when applying [Sch], Proposition 4.3] on [Sch, p. 400]. We fix this by using our polyno-
mial lower bound on |xk(ω)| (considering two different values of δ should work for [Sch]))

1
|xk(ω)|

∣∣∣∣ ∫
xk(ω)

ϕa0(T
i+j−k
a0 (y)) dy

∣∣∣∣ ≤ C · k(i, j)(κ0+1)ρi+j−k(i,j)

≤ C · (i + j)κ0+1ρη(j−iδ)/(1+η) ≤ C · (2j)(κ0+1)/δρηj/(2+2η). (4.15)

(We used |xk(ω)| > Ck−κ0+1 from Lemma 2.3.) Putting together equations (4.13), (4.14),
(4.15) and (4.10), we conclude the proof of equation (4.3).

4.2. Law of large numbers for y2
j . Recall that γ ∈ (2/5, 1/2) is fixed. The main

ingredient in the proof of Theorem 1.1 is the following analogue of [Sch, Lemma 6.2],
itself inspired by [PS, Lemma 3.3.1].
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LEMMA 4.2. For m∗-a.e. a ∈ �
ϕ∗ , there exists C(a) such that∣∣∣∣N −

M(N)∑
j=1

y2
j (a)

∣∣∣∣ ≤ C(a)N2γ for all N ≥ 1. (4.16)

The proof of Lemma 4.2 (which uses Proposition 3.2 and equation (4.2), but not
equation (4.3)) is based on the following theorem ([GK], see also [PS, Theorem A.1]).

THEOREM 4.3. (Gál–Koksma’s strong law of large numbers) Let zj , j ≥ 1, be zero-mean
random variables. Assume there exist p ≥ 1 and C < ∞ with

E

( m+n∑
j=m+1

zj

)2

≤ C((m + n)p − mp) for all m ≥ 0 and n ≥ 1.

Then, for all ι > 0, we have (1/np/2+ι)
∑n

j=1 zj → 0 almost surely.

Proof of Lemma 4.2. Set wj =∑i∈Ij ξi . Since y2
j − w2

j = (yj + wj)(yj − wj) and

|yj + wj | ≤ Cj2/3, the bound in equation (4.2) gives C such that |y2
j − w2

j | ≤ Cj2/3λ̃
−θjδ

CE
for all j ≥ 1 and a ∈ �∗,r

Cj5/3 . Hence, supa∈�
ϕ∗
∑

j≥1 |y2
j − w2

j | is finite, and it suffices
to show equation (4.16) with yj replaced by wj .

By equation (3.8), we have |E(w2
j ) − #Ij | ≤ C, and, since

∑M(N)
j=1 #Ij = N , we get

|∑M(N)
j=1 E(w2

j ) − N | ≤ CM(N). Therefore,∣∣∣∣N −
M(N)∑
j=1

w2
j

∣∣∣∣ ≤ CM(N) +
∣∣∣∣ M(N)∑

j=1

w2
j − E(w2

j )

∣∣∣∣. (4.17)

Assume there exists C such that

E

( m+n∑
j=m+1

w2
j − E(w2

j )

)2

≤ C((m + n)8/3 − m8/3) for all m ≥ 0, n ≥ 1. (4.18)

Then, Theorem 4.3 (Gál–Koksma) applied to ι ∈ (0, 10(γ − 2/5)/3], p = 8/3 and the
zero-mean random variables zj = w2

j − E(w2
j ), implies that

M(N)∑
j=1

w2
j − E(w2

j ) = o(M4/3+ι) almost surely.

Hence, equation (4.17) gives |N −∑M(N)
j=1 w2

j (a)| ≤ C(a)N4/5+3ι/5 ≤ C(a)N2γ , almost
surely (recall M(N) ∼ N3/5 by equation (4.4)). It remains to prove equation (4.18).

By Jensen’s inequality, we have (E(w2
j ))

2 ≤ E(w4
j ) and, therefore,

E

( m+n∑
j=m+1

w2
j − E(w2

j )

)2

≤ 2
m+n∑

j=m+1

(
E(w4

j ) +
m+n∑

k=j+1

|E(w2
jw

2
k) − E(w2

j )E(w2
k)|
)

.

(4.19)
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We consider first E(w4
j ). Fix υ ∈ (0, 1/6) and, for j ≥ 1, let

Sj = { �v ∈ I
4
j | v1 ≤ v2 ≤ v3 ≤ v4 and max{v2 − v1, v4 − v3} ≥ jυ }.

Then, since #({ �v ∈ I
4
j | v1 ≤ v2 ≤ v3 ≤ v4} \ Sj ) ≤ (j2/3+υ)2 = j4/3+2υ , we find∫

�
ϕ∗

wj(a)
4 da =

∑
�v∈Ij

∣∣∣∣ ∫
�

ϕ∗

4∏
�=1

ξv�(a) da

∣∣∣∣ ≤ C
∑
�v∈I4

j
v1≤···≤v4

∣∣∣∣ ∫
�

ϕ∗

4∏
�=1

ξv�(a) da

∣∣∣∣
≤ C

∑
�v∈Sj

∣∣∣∣ ∫
�

ϕ∗

4∏
�=1

ξv�(a) da

∣∣∣∣+ Cj4/3+2υ . (4.20)

Let �v ∈ Sj be such that v4 − v3 ≥ jυ . For ω ∈ Pv3 such that ω ∩ �
ϕ∗ �= ∅, the change of

variable in equation (3.13), together with an easy variant of Lemma 3.3 deduced from
equation (3.14), give a0 ∈ ω ∩ �

ϕ∗ such that

1
|ω|
∣∣∣∣ ∫

ω

4∏
�=1

ξv�(a) da

∣∣∣∣
≤ C

|xv3(ω)|
∣∣∣∣ ∫

xv3 (ω)

( 3∏
�=1

ξv�(xv3 |−1
ω (y))

)
ϕa0(T

v4−v3
a0

(y)) dy

∣∣∣∣+ Cλ
−v3
0 .

For y ∈ xv3(ω), setting a = xv3 |−1
ω (y), and recalling Remark 3.1, we find

|ξv�(xv3 |−1
ω (y)) − ϕa0(xv� ◦ xv3 |−1

ω (y))|
= |ϕa(xv� ◦ xv3 |−1

ω (y)) − ϕa0(xv� ◦ xv3 |−1
ω (y))| ≤ C|ω|θ

for � = 1, 2, 3. Thus, equations (2.9) and (2.7) imply (using supk ‖ξk‖L∞ < ∞)∣∣∣∣ ∫
�

ϕ∗

4∏
�=1

ξv�(a) da

∣∣∣∣ ≤ Cev3 +
∑

ω∈P∗,v3

|ω|
[
Cλ

−v3θ
CE

|xv3(ω)| + Cλ
−v3
0

]

+
∑

ω∈P∗,v3

|ω| C

|xv3(ω)|
∣∣∣∣ ∫

xv3 (ω)

( 3∏
�=1

ϕa0(xv� ◦ (xv3 |−1
ω )(y))

)
ϕa0(T

v4−v3
a0

(y)) dy

∣∣∣∣.
(4.21)

We claim that for � = 1, 2, 3, and for each ω ∈ P∗,v3 ,

|∂y(xv� ◦ (xv3 |−1
ω ))(y)| ≤ Cv

κ0
� for all y ∈ xv3(ω). (4.22)

Indeed, by equation (2.29), there exists a ∈ ω such that

|∂y(xv� ◦ (xv3 |−1
ω ))(y)| ≤ C|(T v3−v�

a )′(T v�+1
a (c))|−1.

Thus, if a ∈ �∗, standard arguments (see e.g. [BS1, Proposition 3.7], using our polynomial
recurrence in equation (2.8)) give the claim. Otherwise, since |ω ∩ �∗| > 0, we may use
equation (2.31) as for equation (4.6).
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Therefore, we find C such that for each v3 and ω ∈ P∗,v3 ,

‖1xv3 (ω) ·
3∏

�=1

(ϕa0 ◦ xv� ◦ xv3 |−1
ω )‖Hs

q
≤ C(v1v2)

�κ0‖ϕa0‖2
C� ‖ϕa0‖Hs

q
.

Indeed, on the one hand, there exists C such that, for any C2 map T , we have

‖ϕa0 ◦ T ‖C� ≤ C sup |T ′|�‖ϕa0‖C� .

On the other hand, since 0 < s < 1/q < 1, the characteristic function of an interval is a
bounded multiplier on Hs

q (I ) (uniformly in the size of the interval), and since s < � , a
function in C� is a bounded multiplier on Hs

q (I ) [St, Th].
Hence, by the first claim of Proposition 2.5 (with equation (3.2) and

∫
ϕa0dμa0 = 0),

we have

| ∫
xv3 (ω)

(
∏3

�=1 ϕa0(xv� ◦ xv3 |−1
ω ))ϕa0(T

v4−v3
a0 ) dy|

|xv3(ω)| ≤ C(v1v2)
�κ0

ρv4−v3

|xv3(ω)|
≤ Cj10�κ0/3v

κ1
3 ρjυ

.

(We used Lemma 2.3 and that v� ∈ Ij implies v� ≤ Cj5/3.) Next,∣∣∣∣ ∫
�

ϕ∗

4∏
�=1

ξv� da

∣∣∣∣ ≤ C(e[Cj5/3] + j10�κ0/3j5κ1/3ρjυ + j5κ1/3λ
j5/3

0 ) ≤ Ce[Cj5/3]

for all �v ∈ Sj with v4 − v3 ≥ jυ (if j is large enough).
Let now �v ∈ Sj with v2 − v1 ≥ jυ . Then applying directly Lemma 3.3 with �0 = 4, a

similar reasoning gives | ∫
�

ϕ∗
∏4

�=1 ξv� da| ≤ Ce[Cj5/3].
Finally, since #Sj ≤ #I4

j ≤ j8/3 and ej ≤ j−d1κ0+1 with d1κ0 ≥ 3 > 9/5, the bound in
equation (4.20) gives C such that

E(w4
j ) ≤ C(j8/3e[Cj5/3] + j4/3+2υ) ≤ Cj4/3+2υ for all j ≥ 1. (4.23)

(For the purposes of the present lemma, a version of equation (4.23) with Cj5/3 in the
right-hand side would suffice. The stronger statement is needed for equation (4.31).)

We next bound |E(w2
jw

2
k) − E(w2

j )E(w2
k)| for k ≥ j + 1. If k = j + 1, by Cauchy’s

inequality and equation (4.23),

E(w2
jw

2
j+1) ≤

√
E(w4

j )E(w4
j+1) ≤ Cj5/3.

By equation (3.8), we have E(w2
j )E(w2

j+1) ≤ Cj4/3. Hence,

|E(w2
jw

2
j+1) − E(w2

j )E(w2
j+1)| ≤ Cj5/3. (4.24)

Assume now that k ≥ j + 2. By construction, yj is constant on elements of Pv if
v ≥ rj1 = j1 + [jδ

1 ], where j1 is the largest number in Ij . Let

k0 = k0(k) := min Ik ≥ k5/3

C
.
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Then, for large enough j, using that x �→ x − x1/4 is increasing for large x, we find

k0 − k
1/4
0 ≥ j1 + #Ij+1 − (j1 + #Ij+1)

1/4 ≥ j1 + 2j2/3
1 − 2j1/4

1 ≥ j1 + j
1/4
1 .

Since k ≥ j + 2 and δ < 1
4 , we have that yj is constant on elements of Pv for

v = v(k0) = [k0 − k
1/4
0 ].

Lemma 2.3 gives |xv(k0)(ω)| ≥ λ
−k0

1/4

0 if ω ∈ Pv(k0). Thus, there exists a refinement
Qv(k0) of Pv(k0) such that

λ
−k0

1/4

0 ≤ |xv(k0)(ω)| ≤ v(k0)
−3/α = [k0 − k

1/4
0 ]−3/α for all ω ∈ Qv(k0).

Therefore, for large enough k, the local bound in equation (3.9) in Proposition 3.2 gives for
all ω ∈ Qv with non-empty intersection with �

ϕ∗ that∣∣∣∣ 1
|ω|
∫
ω

w2
k dm − #Ik

∣∣∣∣ ≤ C,

since n = #Ik = [k2/3] ≤ ηk0/2. As in equation (3.10), we write Q∗,v for the set of ω ∈ Qv

with non-empty intersection with �
ϕ∗ , and �Q∗,v = ∪Q∗,v . Thus, using that yj is constant

on each ω ∈ Qv (since Qv refines Pv),∫
�Q∗,v

(y2
j w

2
k) dm =

∑
ω∈Q∗

v

|ω| · y2
j |ω · 1

|ω|
∫
ω

w2
k dm

∈
[ ∫

�Q∗,v

y2
j dm(#Ik − C),

∫
�Q∗,v

y2
j dm(#Ik + C)

]
.

Recall that j ≤ k − 2. Since |y2
j | ≤ Cj4/3 ≤ Ck4/3, we get

1

m(�Q∗,v)

∫
�Q∗,v

y2
j dm = E(y2

j ) + O(1),

by equation (3.11) applied to �k = y2
j , and since |y2

j w
2
k | ≤ Ck8/3, we have

1

m(�Q∗,v)

∫
�Q∗,v

(y2
j w

2
k) dm = E(y2

j w
2
k) + O(1),

by equation (3.11) applied to �k = (y2
j w

2
k). That is,

|E(y2
j w

2
k) − #IkE(y2

j )| ≤ C(E(y2
j ) + 1).

Next, the global estimate in equation (3.8) in Proposition 3.2 gives |E(y2
j )E(w2

k) −
#IkE(y2

j )| ≤ CE(y2
j ). Therefore, (the expression #Ij = jb = j2/3 in the right-hand side

already leads to γ > 2/5. A block size #Ij = jb replaces 3/5 in equation (4.4) by
1/(1 + b), so that the first constraint becomes Nγ > Nb/(1+b), see equation (4.5). Our
bounds in equations (4.25) and (4.26) (with Gál–Koksma’s strong law of large numbers,
Theorem 4.3, and M(N) ∼ N1/(1+b)) give Nγ > N(b+2)/(4(b+1)). Hence, b = 2/3 is the
optimum. In the independent and identically distributed case, a block size j1/2 gives
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γ > 1/3 [PS, p. 25], see also the beginning of [Sch, §6])

|E(y2
j w

2
k) − E(y2

j )E(w2
k)| ≤ C(2E(y2

j ) + 1)) ≤ C#Ij .

Hence, for large enough j and all k ≥ j + 2, since sup |wj + yj | ≤ C#Ij ,

|E(w2
jw

2
k) − E(w2

j )E(w2
k)| ≤ |E(y2

j w
2
k) − E(y2

j )E(w2
k)|

+ |E(y2
j w

2
k) − E(w2

jw
2
k)| + |E(w2

j )E(w2
k) − E(y2

j )E(w2
k)|

≤ C#Ij + CE(w2
k) sup |wj − yj | · sup |wj + yj |

≤ Cj2/3 + Ck2/3j2/3λ̃
−θj5δ/3

CE . (4.25)

(We used equation (4.2) to get sup |wj − yj | ≤ C#Ij λ̃
−θj5δ/3

CE .)
Finally, we plug equations (4.25), (4.24) and (4.23) into equation (4.19), and get, since

2υ < 1/3,

E

( m+n∑
j=m+1

w2
j − E(w2

j )

)2

≤ C

m+n∑
k=m+3

k2/3
∞∑

j=m+1

j2/3λ̃
−θj5δ/3

CE + C

m+n∑
j=m+1

(
j5/3 +

m+n∑
k=j+2

j2/3
)

≤ C

(
(m + n)5/3 − m5/3 +

m+n∑
j=m+1

(j5/3 + (m + n − j)j2/3)

)
. (4.26)

This proves equation (4.18).

4.3. Martingale differences Yj . Skorokhod’s representation theorem. As in Schnell-
mann’s adaptation of [PS, §§3.4 and 3.5] in [Sch, §6.3], let Lj be the σ -algebra generated
by {y�}1≤�≤j , and set

uj =
∑
k≥0

E(yj+k | Lj−1), Yj = yj + uj+1 − uj , j ≥ 2. (4.27)

Then, {Yj , Lj } is a martingale difference sequence. Using equation (4.3), we show that
{Yj } inherits the law of large numbers established for {yj } in Lemma 4.2:

LEMMA 4.4. For m∗-a.e. a ∈ �
ϕ∗ , there exists C(a) such that∣∣∣∣N −

M(N)∑
j=1

Y 2
j (a)

∣∣∣∣ ≤ C(a)N2γ for all N ≥ 1, (4.28)

and ∣∣∣∣ M(N)∑
j=1

E(Y 2
j | Lj−1) − Y 2

j (a)

∣∣∣∣ ≤ C(a)N2γ for all N ≥ 1. (4.29)
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Proof. Recalling the σ -algebra Fri generated by the intervals in Pri , we have
L�−1 ⊂ Fri(�) , where i(�) = max{i ∈ I�−1} ≤ C�5/3 by equation (4.4). Then,

u� =
∑
j≥1

E(E(ξi(�)+j | Fri(�) ) | L�−1).

Since
∑∞

j=1 ej < ∞, the bound in equation (4.3) in Lemma 4.1 gives

|u�(a)| ≤
∑
j≥1

C min{1, e[η(j−2i(�)δ))]} ≤ 2C
η

i(�)δ ≤ C�5δ/3. (4.30)

Put vj = uj − uj+1, so that Y 2
j = y2

j − 2yjvj + v2
j .

We claim that equation (4.28) follows if for a.e. a ∈ �
ϕ∗ , there exists C such that∑M(N)

j=1 v2
j ≤ CN4γ−1. Indeed, since γ < 1/2, Lemma 4.2 and Cauchy’s inequality then

give (using
∑M(N)

j=1 y2
j ≤ CN)

∣∣∣∣N −
M(N)∑
j=1

Y 2
j

∣∣∣∣ = ∣∣∣∣N −
M(N)∑
j=1

(y2
j − 2yjvj + v2

j )

∣∣∣∣
≤
∣∣∣∣N −

M(N)∑
j=1

y2
j

∣∣∣∣+ M(N)∑
j=1

v2
j + 2

√√√√√M(N)∑
j=1

y2
j

M(N)∑
j=1

v2
j

≤ C(a)N2γ + CN2γ + C
√
NN4γ−1 ≤ C(a)N2γ .

However, since we have v2
j ≤ Cj10δ/3 (by equation (4.30)), we find, using δ < 2(γ − 2/5),

M(N)∑
j=1

v2
j ≤ CM1+10δ/3 ≤ N3/5+2δ ≤ CN4γ−1.

It remains to prove equation (4.29). Set Rj = Y 2
j − E(Y 2

j | Lj−1) and observe that
{Rj , Lj } is a martingale difference sequence. By Minkowski’s inequality

E(R2
j ) ≤

(√
E(Y 4

j ) +
√
E(E(Y 2

j | Lj−1)2)

)2

≤
(

2
√
E(Y 4

j )

)2

= 4E(Y 4
j ).

Since Yj = yj − vj , we have, again by Minkowski’s inequality,

E(R2
j ) ≤ 4E(Y 4

j ) ≤ 4((E(y4
j ))

1
4 + (E(v4

j ))
1
4 )4 ≤ C(E(y4

j ) + E(v4
j ))

≤ C(E(w4
j ) + E(|w4

j − y4
j |) + E(v4

j )).

Since w4
j − y4

j = (w2
j + y2

j )(wj + yj )(wj − yj ), we get from equation (4.2) that
E(|w4

j − y4
j |) is uniformly bounded. By equation (4.30), we have |uj | ≤ Cj5δ/3.
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Hence, |vj | ≤ |uj | + |uj−1| ≤ Cj5δ/3 and E(v4
j ) ≤ Cj20δ/3 ≤ Cj4/3, since δ < 1/5. For

arbitrary ι > 0, the bound in equation (4.23) gives C such that E(w4
j ) ≤ Cj4/3+ι. Thus,

∑
j≥1

E(R2
j )

j7/3+ι
< ∞, (4.31)

and a martingale result (see [Ch]) implies that
∑

j≥1 Rj/j
7/6+ι converges almost surely.

For m∗-a.e. a ∈ �
ϕ∗ , Kronecker’s lemma gives C(a) with

M(N)∑
j=1

Rj ≤ C(a)M7/6+ι ≤ C(a)N21/30+ι,

using equation (4.4) in the last inequality. Since 21/30 < 2γ , this establishes equation
(4.29).

We shall apply the following embedding result. (See [HH, Theorem A.1].)

THEOREM 4.5. (Skorokhod’s representation theorem) For any zero-mean square-
integrable martingale {∑j

k=1 Yk , Lj | j ≥ 1}, there exist a probability space supporting
a (standard) Brownian motion W, and non-negative variables {Tk , k ≥ 1}, such that
{∑j

k=1 Yk}j≥1 and {W(
∑j

k=1 Tk)}j≥1 have the same distribution, and, in addition, letting
G0 be the trivial σ -algebra (the empty set and the entire space), and Gj , for j ≥ 1, be the
σ -algebra generated by

{W(t) | 0 ≤ t ≤ τj } where τj :=
j∑

k=1

Tk ,

then τj is Gj -measurable, while E(T1 | G0) = E(W(T1)
2 | G0), and

E(Tj | Gj−1) = E((W(τj ) − W(τj−1))
2 | Gj−1) for all j ≥ 2, almost surely.

By the last claim of Theorem 4.5 and properties of Brownian motion,

E(Tj | Gj−1) = E(W(Tj )
2 | Gj−1) for all j ≥ 1, (4.32)

almost surely. (Indeed, letting W1 be an independent copy of W, we have
W(τj ) = W1(τj−1 + Tj ) = W1(τj−1) + W(Tj ) in distribution, so that W(τj ) −
W(τj−1) = W(Tj ) in distribution.)

We need one last lemma. Recall that γ ∈ (2/5, 1/2) is fixed.

LEMMA 4.6. (Strong law of large numbers for the sequence Tj ) For m∗-a.e. a ∈ �
ϕ∗ , there

exists C(a) such that ∣∣∣∣N −
M(N)∑
j=1

Tj

∣∣∣∣ ≤ C(a)N2γ for all N ≥ 1. (4.33)

https://doi.org/10.1017/etds.2024.67 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.67


Parameter ASIP for the quadratic family 39

Proof. To start, apply Theorem 4.5 to the martingale difference sequence Yj from
equation (4.27), with Lj generated by {y�}1≤�≤j . Let Ỹj = W(τj ) − W(τj−1), so that
W(τj ) =∑j

k=1 Ỹk and Ỹj = W(Tj ). By equation (4.32), we have, almost surely,

N −
M(N)∑
j=1

Tj =
[
N −

M∑
j=1

Ỹ 2
j

]
+

M∑
j=1

[Ỹj
2 − E(Ỹ 2

j | Gj−1)]

+
M∑
j=1

[E(Tj | Gj−1) − Tj ] for all N ≥ 1.

Then, since Yj and Ỹj have the same distribution, the bound in equation (4.28) in
Lemma 4.4 gives C(a) such that, for all N ≥ 1, the first sum in the right-hand side above
is not larger than C(a)N2γ .

For the second sum in the right-hand side above, we use equation (4.29). Since
conditional expectations can be expressed in terms of distributions, equation (4.29) is also
valid with Yj replaced by Ỹj . Thus, the second sum in the right-hand side is also bounded
by C(a)N2γ for all N ≥ 1.

Finally, let Rj = E(Tj | Gj−1) − Tj . Then, {Rj , Gj } is a martingale difference
sequence by equation (4.32). As in the proof of equation (4.29), we can estimate
E(R2

j ) ≤ 4E(W(Tj )
4), and thus there exists C(a) such that, for all N ≥ 1, we have∑M(N)

j=1 Rj ≤ CN21/30+ι ≤ C(a)N2γ almost surely.

Proof of Theorem 1.1. Just like Schnellmann, we follow the proof of [PS, Lemma 3.5.3],
replacing their 1/2 − α/2 + γ by γ , and replacing Lemma 3.5.1 there by our Lemma 4.6.
We then obtain that, almost surely,∣∣∣∣ M(N)∑

j=1

Yj − W(N)

∣∣∣∣ = O(Nγ ).

Then, using equations (4.30) and (4.4), we find∣∣∣∣ M(N)∑
j=1

yj − Yj

∣∣∣∣ = ∣∣∣∣ M(N)∑
j=1

(uj+1 − uj )

∣∣∣∣ = |uM(N)+1 − u1| ≤ CNδ . (4.34)

Since δ < 2/5, and recalling equation (4.5), this establishes Theorem 1.1.
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