Nagoya Math. J., 249 (2023), 107-118
DOI 10.1017/nmj.2022.23

EVALUATION OF CERTAIN EXOTIC 3F5(1)-SERIES

MARTA NA CHEN® anp WENCHANG CHU

Abstract. A class of exotic 3F>(1)-series is examined by integral represen-
tations, which enables the authors to present relatively easier proofs for a
few remarkable formulae. By means of the linearization method, these 3F5(1)-
series are further extended with two integer parameters. A general summation
theorem is explicitly established for these extended series, and several sample
summation identities are highlighted as consequences.

81. Introduction and motivation

For an indeterminate z and an integer n € Z, the shifted factorial (also called
Pochhammer symbol) is defined as (z)o =1 and
z(z+1)---(x+n—-1), n >0,
(@)n = 1
(x—1)(x—2)---(z+n)’
whose multiparameter form is abbreviated compactly to

|:Ot,,8,...,")/:| _ (a)n(ﬂ)n(f)/)n
AB,...C| T (A)uB)n(C)n

The shifted factorial can also be expressed as a I'-function quotient

_ I'(z+n)

There are several useful properties of the I'-function (see [15, §17]). One of them is the
reflection formula

n < 0,

,  where F(x):/ e T dr.
0

T
rxo)rl—z)=———-.

()T —) sin(mx)
Following [3], the classical hypergeometric series reads as
ap, A1, --., Qp

”pr[ bi, ..oy byl

R (a0)w(a1)k - (ap)k
}_Z kU bk (bp)r

This series is always convergent for |z| < 1. However, for z =1, the series converges only when

the real part of the sum of the numerator parameters is less than that of the denominator
parameters.

There exist numerous summation identities of hypergeometric series in the literature (see,
e.g., [7], [8], [10]-[13]). Recently, Asakura et al. [1] examined the following exotic 3 F>-series:

a, b, x

Flab,x) =5k, [a+b,1+x

‘1], where a,b,x € Q.
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108 M. N. CHEN AND W. CHU

Assuming further that
a,b,x, t—a,x—bx—a—-b&Z
and
Mz} +{Az—a-b)} ={Az—a)} +{A(@—b)} for any X € 7x,
where {x} denotes the fractional part of z € R, they showed that
B(a,b) x F(a,b,x) € Q+QlogQ*.

Here, Q4+ QlogQ* denotes the Q-linear subspace spanned by 1,27i and log « for all o € Q*.
This result characterizes the F(a,b,z) values in quality, but not in quantity, that is, it does
not contribute to find explicit formulae for the F(a,b,z) values.

Some of the F(a,b,z) values were subsequently determined by Asakura and Yabu [2], who

listed without proofs the F (6’ g,x) -values for all the irreducible proper rational numbers z

with denominators in {2,3,4,6}. In particular, they provide a lengthy proof of five pages
and half to the following elegant formula:

1

5
6’6" 3[
}-(%a%a%):l%FQ ° (13 ‘1 (2+f)

[SIUINITE

Chen [5] examined further the series F (3, g,x+n) withn e Z and succeeded in expressing
this series explicitly as a linear combination of 7= and F(% 5 6, x) with rational coefficients.
The objective of this paper is twofold. First, we derive an integral representation for
the F(a,1— ) -series, which enables us to provide relatively easy proofs for the closed
formulae of .7-" (a 1- ,2) when « is one of the irreducible proper rational numbers with
denominators belonging to {2,3,4,5,6,8,10,12}.
Second, we extend Chen’s series by considering the following 3 Fh-series:

a,l—a, z+m ‘

3Fy for m,n €Z subject to m <n.

1, 1+x+n

By means of the linearization method (cf. [6], [9], [14]), we show that this series is always
evaluable as a linear function of F(«,1— «,z) with the coefficients being two sums of finite
terms. In particular, when x = %, several explicit formulae for the above 3Fb-series are
presented as consequences.

§2. Integral representation of F(a,1— 2

Recalling the Beta function (see [15, §16])

! I'(a)T'(b
B(a,b):/o x“l(l—x)bldlem, where a,b >0,

we have the equalities

Bla+k,1—a+k)= k)] B(a,1—a)
T (@)k(1—a)g
sin(ma) x (2k)
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Then we can rewrite the F(a, 1 — «, 3)-series as

1y _ = (@)r(1—a)k
f(o"l_o‘ﬂ)_;)(zkﬂ) (k)2

2k\ B(a+k,1—a+k)
2k+1

(&)
(2k> /01 A U L

2k+1

_ sin(7a) acl/q = 2K\ 2R (1 —x)”
= /Ox (1—2x) Z(k)%—i—l dz,

k=0

where the interchanging between summation and integral is justified by Lebesgue’s
monotone convergence theorem.
Taking into account the Maclaurin series

oo
) 2k y2k+1
arcsiny = E < ) Y
= \k/4 (2k+1)
we can evaluate, in closed forms,

i <2k> tF(1—z)%  aresin(2/2(1— 1))

k 2%k+1 2/z(1—x)

k=0

By substitution, we get the following integral expression

i Larcsin (24/z(1 — 2
Flot-a.b) = ) [ Vil o), 1)
27 0 $§_°‘(1 —;1:)5"‘0‘
According to [0,1] = [0, %} U [%, 1], splitting the above integral into two and then making

changes of variables z = sin?f# and z = cos?#, respectively, we can state the resulting
expression as

Fla,l—a,3) = W{I(Q)WLIGO‘)}’

i 0
where I(a):/
0

sin?® @ cos2—22 9

Making further change of variables § = arctany, we deduce the next expression:

1
arctany
I(a) = / Tdy
0 Y

When a = %, we come across the Catalan constant G (cf. [16]):

1 o] 1 o]
1y [ arctany (—1)”/ oy (-n~
I<2)/0 W=D 5t o’ dyfz(znﬂ)?*G'

Yy n=0 n=0
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From this, we recover the following remarkable evaluation formula due to Ramanujan (cf.

14, (20.3))):

2smf

Fb5H="02(G40) = 26,

l\')\»—t
l\')\»—t

By means of the integration by parts, we can further reformulate

1
I(@)+I(1-a) :/ {arctany n arctany}dy
0

y2a y2—2a

1-2a 20—1 1
= arctany X i _
1-2a 1-2«
1 /1 y2a71 _ y172o¢
+ 5 dy.
1-2a J 1+y

Keeping in mind that 0 < a < 1 with « # %, we can check that the expression in the middle
line vanishes. By making the substitution y — ,/y in the last integral, we get a slightly
reduced one

1 1ya—1_y—a
[(a)+[(1—a)—2_4a/0 Ty dy.

Therefore, we finally arrive at an integral expression as in the theorem below.

THEOREM 1. Let a be a real number with 0 < a <1 and o # % The following formula
holds:

sin(ra)  [tyrl—ym@
l—a,l)= :

When « is a rational number, the above integral can be transformed into that about
rational functions. By assigning « to small rational numbers, we can compute, by means

of this theorem, the exact values of the corresponding F(a,1—«, 2) series. The first values

are highlighted in the following proposition.

PROPOSITION 2. (Evaluation formulae for series F(a,1—a, 3))
T
3
) 33 ="Pma,
(c) F(3.5.3)= —ln(l—i-\f)
3V3
(d) F(§.5.4) = ;{ln(Z—i-\/g).

Among these four values, the first one (a) is already determined.
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Proof of (b). By making the substitution y — 23, we can rewrite

1

3sin / Y3 —y iy 9v/3 an
0

F( )=

N [—=

)

winN

)

Wl

T 1+y Y7 on 0 1 + a3
According to the partial fraction decomposition

l—x 2 n 1—-2x
1+23  3(14+2) 3(1—-z+22)

the integral can be evaluated as follows:

3v3 [t 2 1-2z
Fran=20 2 g
2 Jo 14+2 l1—2+x
3‘f(21 2+0) = ﬂl 2
This confirms the value given in (b). 0

Proof of (¢). By making the substitution y — 2%, we can rewrite

2sin 7 Yy iy 1 4\f
CERI w=" 1

T 14y

=
N[

1—{—3:4

According to the partial fraction decomposition

1—x2_ 1{ 20+ /2 2 —/2 }
T+zt 2v2 2242241 22—+V2z+1

the integral can be evaluated as follows:

! 2z —/2
T Jo l224+vV2x+1 22—V2z+1
2
{1n(2+\f)—1n(2 f)}——ln(urf)
This confirms the value given in (c). 0

Proof of (d). By making the substitution y — 2%, we can rewrite

3sin g Y- g—y 5 9 [l1—z*
F(},2. 0= / dy = — d
(5:5:3) = 2 Jo 1+y Y= or o 1426 v

N

According to the partial fraction decomposition

1—1‘4_\/§{ 2r++/3 3 2r — /3 }
224V3x+1 22—V3x+1

1+26 6
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the integral can be evaluated as follows:

Hlél)iwﬁ 1{ 20 +V3 2043 }dx
626227 ar Jo la24+v38z+1 22—V3Bz+1
3 3
[{m(ﬂf)—l (2 \/3)} iln(%\f)
This confirms the value given in (d). 0

By carrying out the same procedure, we can further evaluate, in closed forms, the
following series by expressing their values in terms of radicals:

P =0 P a0 Y el

-t

ATy 22 242+V2 22— 2+\/7
(5:52)= 73, Yo 2+ﬁ+ 3” Va2

FE) - 2\/ 2+\/m 22+v2) 2+\/7
87872

“Verve T 22
5%10—2f L2V5 V54 V10
T 6 a5 V10
+5\/5—2\f 21/5+/5+v/10
RNV
5V10+2V5  2v/5 -5+ /10

iy fooh) ="
T 255D
_5V5+2v5 2V5 V5410
RN
Lo o1, 24In(14++/2 3V3 5+2v6
Flazm) = 57r(§+\f))+57r(1+\/§)1n5—2\/6’
F(E L= 24ln(1+v2) 33 | 5+2v6

n .
T(1-v3)  w(1-v3) 5-2V6
§3. Extension by integer parameters m and n

In this section, we examine the series

[a,l—a,m—}—m
302

1| for mneZ with m<n.
Ll+z4+n

By means of the linearization method (cf. [6], [9], [14]), a surprising formula (see Theorem 5)
is shown, which expresses the above series on the left as a linear function of F(«,1—a,x)
with the coeflicients being two finite sums.

We begin with the following recurrence relation.
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LEMMA 3. (Recurrence relation)

(x+a)(1+w_a)}'(a,1—a v11)— sin(ﬂa).

1— —
Fla,1—a,x) 2+ 1) -

Proof. As done by Chen [5], by putting the initial term aside, we can write

Fla, z el

B (r(l—a); [(a+k)(1—a+k)x
_H/; 2 {(k+1)2(1+:c+k:) }

According to the partial fractions

(a+k)(1—a+k)x_a—oa2+x+x2+ a—a® a—d’4w
(k+1)2(1+z+k)  (I+z+kz  (k+1)2 (k+1)z '

we can evaluate, by making use of the Gauss summation theorem [3, §1.3]

a,b

C

2F1[

I'(e)I'(c—a—0b)
1| = h R(c—a—->b)>0
} Tle—a(c_p) "here Rle—a=>0,
the three corresponding sums

apa—al+r+z?  (z+a)(l+z—a)

OM8

(14+z+k)x z(l+z)
a,l—a, 14z
><3F2[ 1’2_1_1,”7
0 2
a)p a—a a—1,—«
5L s
)2
— (k+1)2 1
') r(
L fmre)
F14+a)l'(2—a)
> )pa—al+r  a—aot+zx a,l—a
Z )2 - 21 ‘1
= (k+1)x x 2

a—a?+z  T(1)T(2)
x Frl+a)l'2—a)

Putting them together and making some simplifications, we find that

(x4 a)(l+z—a) a,l—a,1+x (a—a?)T(1) I'(2)
Flal-ar) =——m" 33 2[ 1, 2+x‘1] T rD(1+a)l(2—
_(zHa)(l4+z—a) ol—alta _ sin(ma)
- r(1+x) Flay1-a,1+2) T

This proves the recurrence relation in Lemma 3.
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Iterating n times the equation in Lemma 3 gives rise to the following general one:

r+o,l+r—«

1-— = 1-— ’

F(a, a,z) = F(a, a,x+n)[ v 14 ]

nfl
sm Z r+ao,l+r—a

1+z, 1+x '

k=0 k

PROPOSITION 4. (n € Ny)

(a)]—"(a,l—a,x—i—n)—[ z, 14w }{}"(a,l—a,x)

r4+o,l+r—o
n

—_

+sin(7roz)n_ rt+ao,l+r—a
T l+z, 1+x |, )’

a—x,l—a—=x

~
I
o

(b) f(a,l—a,a:—n):[ L{f(a,1—a,:p)

—x, 1—=x

It should be pointed out that when a = %, the corresponding transformation formulae in
Proposition 4 were previously obtained by Chen [5].

Proof. The first formula (a) is obtained by inverting (3).
To prove the second one (b), making the replacement x — x —n in (3), we have the
following two equalities:

(x+(a niigiiiiﬂn)”:[a_x’l_a_ﬂn’
(

(z+a-n)(l+r—a-n), 1 [a—x,l—a—x}
(x=n)g1(14+z—n)g x .

-r, —T
X 1 .
a—zl-a—x]

Then the resulting identity under the replacement k — n — k becomes (b). This completes
the proof of Proposition 4. U

Observing further that
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we can unify, for m € Z, the two formulae in Proposition 4 to a single one

1
Fla,1—a,z+m) = [m—l—z’l——:;—a} {]—"(a,l—a,az)
sin(ma) r+a,l+zr—a )

keo(m)

where sgn(k) and o(m) are given, respectively, by

Now, we are ready to prove the following general theorem.
THEOREM 5. (m,n € Z with m <n)

a,l—a,z+m _ " (—x—m\ [z+n z, 1+x
o =2 G G e,

k=m

sin(mo r+a,ltr—a
x{f(a,l—a,a?)—l-sgn(k) 71('x ) Z [ 1+x, 1+x } }
’ J

j€a(k)

The importance of the above theorem lies in the fact that for any pair m,n € Z with
m < n, the gFh-series on the left results always in a linear function of F(a,1— a,z) with
the coefficients being two sums of finite terms. Therefore, for any specific integers m,n and
an irreducible rational number z considered in the last section, we can explicitly compute,
by means of this theorem, the corresponding 3Fb-series in closed forms.

Proof. Recall the Chu—Vandermonde convolution formula

n

—r—m-—1\[{x+n+1i
1= .
];rZ( k—m >( n—~k >

By putting the above relation inside the g F5-series and then applying the equations
—r—m—1i\ [(—x—m)\ (z+k);
k—m \k-m ) (z+m);
r4+n+i\  [(z+n\(1+z+n);
n—k ) \n—-k)(Q4+z+k);’
we can manipulate the double sum as follows:

2 a,l—a,x+m1 _i a,l—a,z+m " —x—m—i\ [z+n+i
T Litadn D] T & Llldadn | k—m n—k

=0 =m

B " (—z—m\ [z+n i a,l—a,z+k
N k—m n—=k) 4 1,1,1+z+k Z,'

k=m =0
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The resulting equality can be stated as

a,l—a,z+m _ " (—x—m\ (z+n B
3F2{ I 14stn 1]—£<k_m)<n_k>F(a,l o,z + k). (5)

Now, replacing the rightmost series F(«,1 —a,x+ k) by (4), we arrive at the formula
displayed in Theorem 5. O

By specifying = = % and o € {%, %, %7 %} in Theorem 5, we exhibit below several concrete

infinite series identities in conjunction with Proposition 2.

n

11
COROLLARY 6. Twenty formulae for 3Fy = 3F2[ 22

)

+m . __ 4G,
N } with A= =2

[N T

Ilm[n] P [m[n]| sF |
00 A -3| -3 18
01 94 _ 3 -3 -2 12
02| S¥-F5 ||-3[-1] &
0|3 | *oos —tomer | 2| 2| 3
1|1 44 3 -2 -1 —
112 1?§§4+64ﬂ —2] 0 %"‘%
1|3 | S0 taome || =2 1| % o
2|2 B4y 55 —1] -1 2
23| B+ IEE || -1] 0] $+2
313 1275564"‘1212221 -1 1 %"’_16%

2 1lim . _ 3V3 .
§+ } with B = =21n2:

Lmn] 3P [lm[n] sF |
o[o] B =3 | -3 | B+ 2
01 %_% 3] 2 38178!?—"830%;%
0 2] LRE-rEEE g1 | s ane
013 56,9938 _ 128,853V3 || _o | _o 358 44
46,189 184,756m 243 " 9/3x
HE %+2Z’»757\7/r§ -2 -1 %"’18?/7%
o] EEeEer [olo| ek
1|3 ] e+ tsimte | 1|1 54
2 2| IBELLOMYS 1] BB 3
2|3 Mo+ e || -1 1| TEAER
3 13| e + e || -1] 2 | So t+ioon
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COROLLARY 8. Twenty formulae for 3Fy = 3F5 [ %%é+m] with C = %ln(l +2):
2

y5 N

Ilm[n] B [m[n] s F |

010 c =3 | =3 | Wt

0 ]2 %_212\/5% 31 1§f§+9é61\j%w

0|3 | %80 —mmever | 2| 2| Tt

L1 %"‘% —2] -1 35 12%71’

1]2] %+852 |-2)0 | $E4+ 52

13 2;gg+21g —2| 1 | B4 9T

2 (2| LCy8v2 || q|-1] S+

2 (3| 2peqby2 1] 0 | ¥+L

313 %""%ﬁﬁ —1| 1 % 201/1%

COROLLARY 9. Twenty formulae for 3F5 :3F2[%§§j:;n] with D = In(2++/3):
Lm[n] 3 Py [m[n] sF H

010 D =3 | =8| 5T+ st
01 %_% 3|2 12018887,D+112317587r
o (2] B s 1] dmre i
0 |3 | BLuwD iy | by
1|1 22 4+ 2T —2 | —-1 Lo+ 2
L2 115$§2D + 17729927r 2|0 112324? + 2112617r
13| &5 tesaer || 2| ! | Tiaic T mois
2|2| BR+sme | 1[0 Tz
2 |3| Tomsr Tt | 1] 0| s
313 68516;2D+45()398(32()%r -1 1 6?252§)+256n
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