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A dual scaling of the turbulent longitudinal velocity structure function (δu)n, i.e. a scaling
based on the Kolmogorov scales (uK , η) and another based on (u′, L) representative
of the large scale motion, is examined in the context of both the Kármán–Howarth
equation and experimental grid turbulence data over a significant range of the Taylor
microscale Reynolds number Reλ. As Reλ increases, the scaling based on (u′, L) extends
to increasingly smaller values of r/L while the scaling based on (uK , η) extends to
increasingly larger values of r/η. The implication is that both scalings should eventually
overlap in the so-called inertial range as Reλ continues to increase, thus leading to a
power-law relation (δu)n ∼ rn/3 when the inertial range is rigorously established. The
latter is likely to occur only when Reλ → ∞. The use of an empirical model for (δu)n,
which complies with (δu)n ∼ rn/3 as Reλ → ∞, shows that the finite Reynolds number
effect may differ between even- and odd-orders of (δu)n. This suggests that different
values of Reλ may be required between even and odd values of n for compliance with
(δu)n ∼ rn/3. The model describes adequately the dependence on Reλ of the available
experimental data for (δu)n and supports indirectly the extrapolation of these data to
infinitely large Reλ.
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1. Introduction

For the second- and third-order velocity structure functions in the inertial range (IR), the
second similarity hypothesis of Kolmogorov (1941a,b) (or K41) predicts

(δu)2 = A2(ε̄r)2/3, (1.1)

where u is the longitudinal velocity fluctuation in the direction x, δu = u(x + r) − u(x), r
being the separation in the direction x; the overbar denotes time averaging; A2 is a universal
constant; and ε̄ is the mean dissipation rate of the turbulent kinetic energy. Also in the same
range, one has

(δu)3 = −4
5 ε̄r, (1.2)

a result known as the 4/5 law, derived rigorously by K41 from the Kármán–Howarth
(or KH) equation after assuming that viscosity and the influence of the large scales
can be neglected. These assumptions seem plausible when the Reynolds number is
infinitely large. The extent of the IR is described by η � r � L, where η = (ν3/ε̄)1/4

is the Kolmogorov length scale and L is the integral length scale, defined by L =
u′−2 ∫∞

0 u(x + r)u(x) dr, where u(x + r)u(x) is the longitudinal correlation function.
Within the framework of K41, a general expression for (δu)n in the IR is

(δu)n = An(ε̄r)n/3, (1.3)

(hereafter denoted n-thirds law), where An are universal constants. Kolmogorov (1962)
or K62 (see also Oboukhov 1962) made, in a response to Landau’s remark (Landau &
Lifshitz 1987), an important modification to (1.3), arguably to account for the effect of the
large-scale motion on the IR. This has since been widely attributed to the intermittency of
ε (Sreenivasan & Antonia 1997). Equation (1.3) was replaced by

(δu)n

u′n ∼
( r

L

)ζn
, (1.4)

where u′ ≡ u21/2
. Like (1.1) and (1.2), both (1.3) and (1.4) are expected to be valid

only when Reλ → ∞. Except when n = 3, the premultipliers in (1.4) should not depend
on the Reynolds number but may be affected by the macrostructure of the flow. As in
(1.3), the exponents ζn are universal. The value of ζ3 remains equal to 1, in compliance
with (1.2). For n /= 3, the magnitude of ζn can now depart from n/3. This departure
or anomalous scaling, which seems to be relatively well described by the relation ζn =
n/9 + 2

[
1 − (2/3)n/3] (She & Leveque 1994), has received fairly strong support from

both experimental and numerical data in a wide range of turbulent flows. In their review,
Sreenivasan & Antonia (1997) described the support as ‘overwhelming’ but underlined
that there are several uncertainties associated with the estimation of ζn, not the least of
which is the issue of ‘how one defines the scaling range and obtains scaling exponents from
power-laws of modest quality.’ For example, an extended self-similarity approach (Benzi
et al. 1993) was frequently used to extract the scaling exponents of (δu)n in the literature
and the resulting exponents appear to agree with the predictions of She & Leveque (1994).
However, as demonstrated by Tang et al. (2017), this approach masks the finite Reynolds
number effect on the scaling exponents of (δu)n (see the discussion in the text of figure 17
of Tang et al. 2017). A major consideration is whether an IR is actually realizable for all
available experimental and numerical data, for which the Reynolds number is finite.
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The studies of Qian (1997), Qian (1999), Lundgren (2002), Lundgren (2003), Antonia
& Burattini (2006), Tchoufag, Sagaut & Cambon (2012), Antonia et al. (2019) and Meldi,
Djenidi & Antonia (2021) have indicated that (1.2) is in fact approached very slowly, so
that a very large value of Reλ (= u′λ/ν, where λ = u′/(∂u/∂x)′ and ν is the fluid kinematic
viscosity) may be required before the IR is unambiguously established (see figure 4.6 of
Sagaut & Cambon (2018) which summarizes different predictions for (δu)3). In particular,
the eddy damped quasinormal Markovian numerical simulations in both decaying and
forced homogeneous isotropic turbulence (Meldi et al. 2021) support Antonia & Burattini
(2006) and Antonia et al. (2019). This seriously calls into question the validity of the
published estimates of ζn. There is compelling evidence (Tang et al. 2017) to suggest
that the finite Reynolds number (FRN) effect needs to be taken into account, since (δu)n,
regardless of how it is normalized, continues to evolve with Reλ in the scaling range.

One expects that, as described by Kolmogorov’s first similarity hypothesis, the
behaviour of the small scales is characterized by ε̄ and ν. The relevant scales are η and uK
(= (νε̄)1/4). In the energy containing range of separations, the relevant scales are expected
to be u′ and L. This dual scaling is expected to apply, albeit in an approximate fashion, at
finite values of Reλ. As Reλ continues to increase, there should be a region of overlap
between the two different normalizations. When Reλ → ∞, the IR should be established
rigorously and the two sets of scales should become interchangeable in this range.

Gamard & George (2000) used this dual scaling approach to describe how the
longitudinal velocity spectrum, as measured by Mydlarski & Warhaft (1996) in decaying
turbulence downstream of an active grid, evolves with Reλ in the overlap region. In this
region, the spectrum was assumed to vary, albeit approximately, as αk−5/3+β

1 , where α and
β depend on Reλ. In the limit Reλ → ∞, β → 0 and α → constant, a result (Obukhov
1941) which corresponds to (1.1). The latter equation was derived, starting with the
Kármán–Howarth equation, by Lundgren (2002) using matched asymptotic expansions.
In essence, this approach is not dissimilar to using dual scaling, since outer and inner
expansions satisfy similarity based on (u′, L) and (uK , η), respectively. Lundgren (2002)
noted that this derivation of the 2/3 law is similar to Millikan’s derivation of the log law
in turbulent wall flows (Millikan 1939). This analogy was also noted by Barenblatt &
Goldenfeld (1995), Barenblatt & Chorin (1998) and McKeon & Morrison (2007). Djenidi,
Antonia & Tang (2019) showed that scale invariance leads to the ‘n-thirds’ law when
Reλ → ∞. More recently, Djenidi, Antonia & Tang (2022) and Djenidi, Antonia & Tang
(2023) found that constraints imposed by the Cauchy–Schwarz inequality require ζn to be
equal to n/3 when Reλ → ∞. Equation (1.3) conforms with this requirement but (1.4)
violates it if ζn /= n/3.

Grid turbulence, which represents a close, though imperfect, approximation to
homogeneous isotropic turbulence is expected to satisfy dual scaling. This has already
been verified by Mydlarski & Warhaft (1996) and Gamard & George (2000) in the
context of the u spectrum, which corresponds to (δu)2, for values of Reλ extending to
approximately 470. These authors found, by extrapolation of Reλ to infinity, that the data
comply with (1.1). The appropriateness of this result is all the more compelling, in the
context of the dual scaling, when it is recognized that the KH equation satisfies similarity
at all scales as Reλ → ∞ (e.g. Speziale & Bernard 1992). It is clearly important to test
the dual scaling approach to larger values of both Reλ and n. This is the main objective of
this paper. For this purpose, we make use of the published data for (δu)n obtained in the
variable density turbulent tunnel (VDTT) facility at the Max Planck Institute in Göttingen
(Bodenschatz et al. 2014). The distributions of (δu)n as a function of r have appeared in
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several publications (e.g. Bodenschatz et al. 2014; Sinhuber, Bodenschatz & Bewley 2015;
Sinhuber, Bewley & Bodenschatz 2017; Birnir 2019; Kaminsky et al. 2020) for 2 ≤ n ≤ 8
and values of Reλ as large as approximately 1500.

In § 2, we first examine the appropriateness of the dual scaling approach in the context
of the Kármán–Howarth equation (i.e. the transport equation of (δu)2) for two cases:
first, when the contribution of the large-scale term is neglected, and second, when
the contribution from the viscous term is neglected. In § 3, we briefly recall the basic
parameters for the VDTT grid turbulence data. In § 4, we test the VDTT data in the
context of the dual scaling. We next present a model for (δu)n which complies with the dual
scaling. In particular, the model is constrained to yield a power-law behaviour (∼ rζn , with
ζn = n/3) when Reλ → ∞. The adequate agreement between the model and the data (§ 5)
allows extrapolation via the model to values of Reλ that are several orders of magnitude
larger than in the experiment. Conclusions are given in § 6.

2. Dual scaling in the context of the Kármán–Howarth equation

We consider first the applicability of the inner (Kolmogorov scales, η and uK) and outer (u′
and L) scaling in the context of the Kármán–Howarth equation which governs the transport
of (δu)2:

4
5
ε̄r = −(δu)3 + 6ν

∂

∂r
(δu)2 + Iu(r), (2.1)

where Iu(r) is the term which reflects the contribution from the large scales to the transport
of (δu)2 in homogeneous and isotropic turbulence (e.g. Danaila et al. 1999; Hill 2001). We
will focus on decaying grid turbulence, partly because this flow can satisfy isotropy, at least
for small scales, to a reasonable approximation and also because moderately large values
of Reλ can be achieved, e.g. by using an active grid (e.g. Mydlarski & Warhaft 1996, 1998;
Gylfason, Ayyalasomayajula & Warhaft 2004) or by varying the density of the fluid (e.g.
Bodenschatz et al. 2014; Sinhuber et al. 2015, 2017; Kaminsky et al. 2020). The departure
from local isotropy at all scales can be quantified by the ratio between calculated and
measured second-order spanwise velocity structure functions, i.e. (δw)2

iso/(δw)2, where

(δw)2
iso is given by (Monin & Yaglom 2007)

(δw)2
iso =

(
1 + r

2
d
dr

)
(δu)2. (2.2)

At r = λ, a separation which resides near the lower end of the scaling range (Tang et al.
2017), the departure from local isotropy is relatively small (� 10 %, see figure 10 of Lavoie,
Djenidi & Antonia (2007) at Reλ = 36–43 in grid turbulence with and without a secondary

contraction). Further, it was shown that the ratio (δw)2
iso/(δw)2 satisfies isotropy within

approximately 10 % at all separations when a secondary contraction is introduced. This
result is consistent with that of Comte-Bellot & Corrsin (1966) and Comte-Bellot &
Corrsin (1971) who used a contraction to improve the isotropy of grid turbulence, with
u′ being nearly equal to v′. It is worth mentioning that since the magnitude of Reλ in
the present paper is much larger than that of Lavoie et al. (2007), we thus expect a
further improved local isotropy, compared with that of Lavoie et al. (2007). Also, since
isotropy requires homogeneity, and isotropy at all scales is approximately satisfied in grid
turbulence, the weak spatial decay along x, the mean flow direction, should not affect the
behaviour of (δu)n. In other words, the influence of any small inhomogeneity in the x
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direction on the behaviour of (δu)n should be negligible. Further, it is well established,
based on the KH equation, that the effect of the spatial decay along the x direction in
the scaling range weakens as Reλ increases (Antonia & Burattini 2006; Tang et al. 2017;
Antonia et al. 2019). A further attractive feature of grid turbulence is that the energy budget
is relatively simple and can hence be measured fairly accurately thus yielding a reliable
estimation of ε̄ (e.g. Antonia, Zhou & Zhu 1998).

The two main items of interest here are the conditions for which inner (or Kolmogorov)
scaling (uK , η) and outer scaling (u′, L) satisfy the similarity of (2.1).

(i) When the effect of the large scale term Iu(r) is neglected, the similarity of (2.1) is
readily satisfied by

(δu)2

u2
0

= f
(

r
l0

)
, (2.3)

(δu)3

u3
0

= g
(

r
l0

)
, (2.4)

when u0 ≡ uK and l0 ≡ η, viz. the (uK , η) scaling applies. This was discussed in some
detail by Antonia, Djenidi & Danaila (2014). Equation (2.1) can be rewritten as

4
5

r
l0

= 6νu2
0

ε̄l20
f ′ − u3

0
ε̄l0

g
(

r
l0

)
(2.5)

(here, the prime signifies a derivative with respect to r/l0), so that ε̄l0/u3
0 and ε̄l20/νu2

0 (or
ε̄l0/u3

0, u0l0/ν) are constants. Clearly, (uK , η) is a possible solution since

ε̄η

u3
K

= 1 and
uKη

ν
= 1. (2.6a,b)

Scaling based on (u′, L) is also possible provided

ε̄L
u′3 = Cε = constant and

u′L
ν

= constant. (2.7a,b)

The first requirement in (2.7a,b) has been validated in several different flows (e.g.
Sreenivasan 1984; Burattini, Lavoie & Antonia 2005b; Ishihara, Gotoh & Kaneda 2009;
Mi, Xu & Zhou 2013; Vassilicos 2015; McComb et al. 2015), at least when Reλ is
sufficiently large. The second can, to our knowledge, hold only in the far field of a circular
jet (Antonia, Satyaprakash & Hussain 1980; Burattini, Antonia & Danaila 2005a) when
Reλ is finite. It should however be satisfied in decaying grid turbulence when Reλ → ∞
(e.g. George 1992; Speziale & Bernard 1992; Antonia et al. 2003). The above observations
lead to the conclusion that the scaling (uK , η) should be effective regardless of the flow
since the two dimensionless parameters in (2.6a,b) are indeed universal (with a value of 1).
Nevertheless, the neglect of the large-scale term (2.5) for values of r/η that extend into the
IR is unlikely to be fully justifiable unless Reλ → ∞. Neither of the parameters in (2.7a,b)
is likely to be flow independent; indeed, there is adequate evidence (e.g. Sreenivasan 1984;
Burattini et al. 2005b; Mi et al. 2013; Vassilicos 2015) that the magnitude of Cε depends
on the flow.
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(ii) Iu(r) is now retained and the viscous term in (2.1) is neglected. The focus now is on
the larger scales of motion. Equation (2.1) can be rewritten as

4
5

r
l0

= − u3
0

ε̄l0
g
(

r
l0

)
+ Iu(r)

ε̄l0
. (2.8)

We concentrate on grid turbulence, for which

Iu(r) = − 3
r4

∫ r

0
s4

[
U

∂(δu)2

∂x

]
ds, (2.9)

where s is a dummy variable, identifiable with the separation along x, and U is the
(constant) mean velocity in the x direction (e.g. Danaila et al. 1999; Antonia et al. 2000;
Danaila, Anselmet & Antonia 2002). Using (2.9), Iu/ε̄l0 becomes

3

(r/l0)4

(∫ r/l0

0

(
s
l0

)4

f
(

r
l0

)
ds
l0

)[
U
ε̄

∂u2
0

∂x
− Uu2

0
ε̄

(
r
l0

)2 f ′

l0

dl0
dx

]
. (2.10)

The expression within square brackets must be constant for similarity to be satisfied. The
first term of this expression is indeed constant since ε̄ = −3

2 U(∂u2
0/∂x) is the turbulent

energy budget (when u0 ≡ u′). The second term is also constant with the (u′, L) scaling
since ε̄L/u′3 is constant and (1/u′)(dL/dx) is also constant as both u′ and dL/dx vary
as xn/2 when the energy decays according to a power-law, viz. u2 ∼ xn and ε̄ ∼ xn−1; the
latter two relations, together with Cε = ε̄L/u′3 = const, lead to L ∼ xn/2+1. It is worth
mentioning that U in the second term within the square brackets does not affect the
above analysis and the corresponding results since we can replace U/dx with 1/dt in grid
turbulence. The previous similarity requirements were previously outlined by Kármán &
Von Howarth (1938) and Townsend (1976). We conclude that the similarity of (2.8), i.e.
the transport equation of (δu)2 when r is sufficiently large to allow the viscous term to
be neglected, is satisfied by the (u′, L) scaling. We should note however that the (uK , η)
scaling can also satisfy similarity of (2.8) when n = −1 (in this case, both (1/ε̄)(∂u2

K/∂x)
and (1/uK)(∂η/∂x) are constant). This rate of decay was shown by Speziale & Bernard
(1992) to be the asymptotically consistent high-Reynolds-number solution. The condition
u′L/ν = constant in (2.7a,b) is immediately satisfied in this case so that the scales (u′, L),
just like (uK , η), would satisfy complete similarity (or self-preservation), i.e. similarity for
all scales of motion. The Taylor microscale λ should then be a valid replacement for L
since Reλ should no longer depend on x and λ should be proportional to L. The general
self-preservation analysis of Djenidi & Antonia (2015) confirmed the dependence of n on
the initial conditions and showed how this dependence is related to the initial length and
velocity scales. These authors suggested that it may be possible to have initial conditions
that lead to n = −1 with a finite Reλ. However, Reλ must remain constant throughout the
decay.

The available grid turbulence data in the literature indicate that n is typically smaller
than −1, usually with a value ranging between −1.1 and −1.5 (e.g. George 1992; Lavoie
et al. 2007; Lee et al. 2013; Sinhuber et al. 2015). In particular, Sinhuber et al. (2015)
showed that n is independent of the Reynolds number, with a value of n = −1.18 ± 0.02,
over a wide range of Reynolds numbers; this value is close to the prediction of Saffman
(1967) (n = −1.2). Lavoie et al. (2007) showed experimentally that even when the
turbulence is nearly perfectly isotropic, n is not equal to −1. Our interest is to assess the
validity of the dual scaling and the range of r/l0 over which it applies. The scaling based
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on (uK , η) is expected to extend to increasingly larger values of r/η as Reλ increases.
Correspondingly, the scaling based on (u′, L) is expected to extend to increasingly smaller
values of r/L as Reλ increases. Since both scalings must eventually overlap as Reλ → ∞,
the overlap region should include the inertial range. Regardless of the scaling used, this
overlap region should satisfy similarity and hence be independent of Reλ. All of the
above analysis is focused on the grid turbulence where the influence of large scales on
−(δu)3 can be quantified by the Iu(r) term in (2.9). If one considers different flows
with different large-scale forcing, the influence of the large-scale motion is likely to
differ from that in grid turbulence. Accordingly, in those situations, the flow may locally
reflect the large-scale anisotropy at finite Reλ imposed by the forcing. For example,
when anisotropic forcing is used in direct numerical simulations of box turbulence at
Reqλ = 20–32 (= uiui

1/2λ/ν), it induces small-scale anisotropy which is traced to the
dynamics of non-local triads with one low wavenumber in the directly forced wavenumber
band (Yeung & Brasseur 1991). Also, Kurien & Sreenivasan (2000) observed that the
structure functions of order two to six exhibit a strong anisotropy at moderate scales in the
atmospheric surface layer at Reλ = 870–2100.

3. Basic flow parameters in grid turbulence

The grid turbulence data we used for our study were digitized from figures presented by
Bodenschatz et al. (2014) and Kaminsky et al. (2020) (Reλ = 110–1620). Since all the
experimental data reported here have already been published, the reader can find detailed
descriptions of the experimental conditions and measurement techniques in the original
papers. Here we only describe and discuss the basic flow parameters associated with those
two datasets and explain the treatment we have had to apply to these data.

Bodenschatz et al. (2014) estimated ε̄ from (δu)3 by assuming ε̄ = max(−5/4(δu)3/r),
i.e. assuming that (1.2) is tenable. This would result in ε̄ being underestimated since the
maximum value of (δu)3/ε̄r has not yet reached the value of 4/5 for the available data
in grid turbulence (see for example figure 1a of Antonia et al. (2019)). Indeed, their
magnitudes of Cε (≡ ε̄L/u′3 = 0.58, 0.71, 0.83, 0.77, 0.77 and 0.75 at Reλ = 150, 400,
549, 730, 1370 and 1620, respectively, Bodenschatz et al. 2014) are smaller than those
of Kaminsky et al. (2020) (Cε = 1.06, 1.12, 0.91, 0.91 and 0.81 at Reλ = 110, 264, 508,
1000 and 1450, respectively), in which ε̄ was estimated from the turbulent energy budget
ε̄ = −3

2 U(∂u′2/∂x). Also, the spectra of Bodenschatz et al. (2014) in the dissipative range
do not collapse, see figure 1(b), which is reproduced from their figure 30. To obtain a
more accurate estimation of ε̄, the spectral chart method of Djenidi & Antonia (2012) has
been applied to the spectra of Bodenschatz et al. (2014) (their figure 30, or figure 1(b)
in the present paper). The ‘new’ estimates of ε̄ are denoted by ε̄spec. This method is
based on the observation that there is collapse in the upper part of the dissipative range
not only for grid turbulence, but also for many other turbulent flows; see for example
figure 9 of Saddoughi & Veeravalli (1994), figure 6.14 of Pope (2000), figure 3 of Gotoh,
Fukayama & Nakano (2002), figure 5 of Larssen & Devenport (2011), figures 1–2 of
Antonia et al. (2014) and figure 1(a) of Tang et al. (2020). Therefore, the values of ε̄spec
ensure that there is collapse in the upper part of the dissipative range, as illustrated in
figure 1(a) where the distributions are normalized by ε̄spec and ν. For comparison, we
have included the grid turbulence data of Larssen & Devenport (2011) at Reλ = 124
and 1360. It is worth mentioning that all the data of Bodenschatz et al. (2014) were
obtained in passive grid turbulence. However, the data of Larssen & Devenport (2011)
at Reλ = 124 and 1362 were measured in passive and active grid turbulence, respectively.
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Figure 1. (a) Kolmogorov normalized compensated spectra of u in grid turbulence (Bodenschatz et al. 2014)
(Reλ = 110–1450), normalized by ε̄spec and ν (the spectral chart method). For comparison, we have included the
grid turbulence data of Larssen & Devenport (2011) (dashed curves) at Reλ = 124 and 1360. (b) Corresponding
grid turbulence data of Bodenschatz et al. (2014) (Reλ = 110–1450), normalized by ε̄, estimated from (δu)3 (see
text), and ν; note that to see the dissipative range more clearly, a smaller range k1η = 0.01–1 is used for the
vertical axis.

The distribution of Bodenschatz et al. (2014) is in almost perfect agreement with that of
Larssen & Devenport (2011) at Reλ = 124 at all scales. This is not too surprising since
both distributions were measured in passive grid turbulence at the same Reλ. We can
observe that there is a large spike at low wavenumbers (around k1η ≈ 0.0002) for the
data of Larssen & Devenport (2011) at Reλ = 1362. This is due to the rotation of the
active grid which ‘introduces additional energy into the spectra’ (Larssen & Devenport
2011). It is plausible that this spike, which reflects the presence of a strong coherent
motion, may affect the medium wavenumber range, i.e. 0.002 � k1η � 0.04, over which
the magnitude of the energy spectrum at Reλ = 1362 is larger than all others. We recall
that Larssen & Devenport (2011) calculated ε̄ by integrating the longitudinal dissipation
spectrum, i.e. ε̄ = 15ν

∫
k2

1φu(k1)dk1. Local isotropy requires that the integration of the
Kolmogorov-normalized longitudinal dissipation spectrum is equal to 1/15 (≡ 0.0667).
Although not shown here, we should stress that the dissipation spectrum at Reλ = 1362
is in good agreement with all other distributions at all scales for Reλ ≤ 701, confirming
the accuracy of the dissipation spectrum at Reλ = 1362. More importantly, the integration
across all scales at Reλ = 1362 leads to 0.069, which is only 3.5 % larger than the isotropic
value of 1/15. This further indicates that the magnitude of ε̄ at Reλ = 1362 should
be reasonably accurate. More importantly, there is reasonable agreement between the
‘ε̄spec’-normalized spectra and the spectra of Larssen & Devenport (2011) for k1η � 0.3
at all Reλ. In contrast, as seen in figure 1(b), there is no collapse in the upper part of the
dissipative range since ε̄ was underestimated by using the maximum value of −(δu)3/ε̄r at
finite Reλ. In particular, as Reλ increases, the approach to a −5/3 scaling of the spectra, as
reflected by the nearly horizontal distributions, is similar to that of Mydlarski & Warhaft
(1996). The magnitudes of Cε, based on ε̄spec, are close to those of Kaminsky et al. (2020)
(figure 2), confirming that ε̄spec should be very close to the true value ε̄. To further confirm
the magnitudes of ε̄spec, we have also included the grid turbulence data of Comte-Bellot &
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Dual scaling in grid turbulence
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0.5

1.0

1.5

2.0

2.5

3.0

Reλ

Cε

Figure 2. Distributions of Cε = ε̄L/u′3 versus Reλ in grid turbulence. ( red), (Kaminsky et al. 2020); (�
blue), re-estimated Cε , based on ε̄spec (the spectral chart method), versus Reλ for the data of Bodenschatz et al.
(2014) (see text). For comparison, we have included the grid turbulence data of Comte-Bellot & Corrsin (1971)
( ) and Larssen & Devenport (2011) ( ). Black curve, (3.1) with A = 0.4 and B = 60. Also included are the
data in stationary forced periodic box turbulence ((© black), Wang et al. (1996); (© blue), Ishihara & Kaneda
(2002); (∗ black), Jimenez et al. (1993); ( green), Ishihara et al. (2009); (+ black), Cao, Chen & Doolen
(1999); ( blue), Yeung & Zhou (1997); ( blue), Gotoh et al. 2002). Green curve, (3.1) with A = 0.2 and
B = 92.

Corrsin (1971) (Reλ = 61–72, ) and Larssen & Devenport (2011) (Reλ = 101–1362, ))
(see figure 2). We can observe that the magnitudes of Cε, based on ε̄spec, are also close to
those of Comte-Bellot & Corrsin (1971) and Larssen & Devenport (2011), especially for
Reλ � 300 and Reλ � 900; the scatter for the data of Larssen & Devenport (2011) in the
range 300 � Reλ � 900 is relatively large. We recall that Cε in stationary forced periodic
box turbulence follows a functional form (Donzis, Sreenivasan & Yeung 2005):

Cε = A(1 +
√

1 + (B/Reλ)2), (3.1)

where A = 0.2 and B = 92 (see green curve in figure 2). When using (3.1) to fit the grid
turbulence data in figure 2, we observe that the asymptotic value of Cε in grid turbulence
is approximately 0.8, which corresponds to A = 0.4. Here, B is essentially constant which
reflects the finite Reynolds number effect on Cε in this flow. We take B = 60 which
appears to fit all the grid turbulence data reasonably well. We finally compare the (δu)2/u2

K
distributions, calculated from the Kolmogorov-normalized energy spectra (figure 1a) using
the following relation (e.g. Dickey & Mellor 1979; Monin & Yaglom 2007):

(δu)2/u2
K = 2

∫ ∞

0
φu(k1η)(1 − cos(k1r)) d(k1η), (3.2)

with the other grid turbulence data (Comte-Bellot & Corrsin 1971; Malecot 1998; Zhou
& Antonia 2000; Larssen & Devenport 2011) (see figure 3). Evidently, the distributions of
Kaminsky et al. (2020) are quite close to the other grid turbulence data at all scales when
Reλ is comparable and in the dissipative range, regardless of Reλ. Based on the above
analysis, we can conclude that the magnitudes of ε̄spec, obtained from the spectral chart

975 A32-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

88
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.888


S.L. Tang, R.A. Antonia and L. Djenidi
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Figure 3. Distributions of (δu)2/u2
K versus r/η in grid turbulence for the data of Bodenschatz et al. (2014) at

Reλ = 124, 379, 495, 701, 1310 and 1558 (green curves). For comparison, other grid turbulence data are also
shown; red curves, Zhou & Antonia (2000) (Reλ = 27, 51, 62, 75, 83, 89 and 100); cyan curves, Comte-Bellot
& Corrsin (1971) (Reλ = 61 and 65); black curves, Larssen & Devenport (2011) (Reλ = 124 and 1360); blue
curve, Malecot (1998) (Reλ = 144); pink curve, (r/η)2/15. The arrow indicates the direction of increasing
Reλ. Note that the data of Comte-Bellot & Corrsin (1971), Larssen & Devenport (2011) and Bodenschatz et al.
(2014) are calculated from their spectra, based on (3.2).

method, are reasonably accurate and reliable. The values of Reλ are then re-estimated from
the isotropic relation u2/u2

K = Reλ/151/2. The final values are 124, 379, 495, 701, 1310 and
1558, which are slightly smaller than the values of Bodenschatz et al. (2014), i.e. Reλ =
150, 400, 549, 730, 1370 and 1620, respectively. For reference, we have also included the
data for stationary forced periodic box turbulence. We can observe from figure 2 that Cε is
close to 0.8 at large Reλ for the grid turbulence and to 0.4 for the stationary forced periodic
box turbulence. This difference is consistent with the difference observed in L/η since Cε

can be written as

Cε = ε̄L
u′3 = L/η

u′3/u3
K

= L/η

Re3/2
λ /153/4

, (3.3)

where the isotropic relation u′2/u2
K = Reλ/151/2 has been used. A plausible reason for the

difference in the magnitude of Cε between grid and box turbulence is the difference in L/η

at any given Reλ, which reflects, at least partially, the different types of large-scale forcing
between these two flows. For example, L/η = 2522 at Reλ = 1300 in box turbulence
(Iyer, Sreenivasan & Yeung 2020), whereas L/η = 5516 at Reλ = 1360 in grid turbulence
(Larssen & Devenport 2011). Tsuji (2009) observed a difference of a factor of two in L/η

between the DNS data and experimental data in most other flows (see their figure 1b).
This difference in L/η is equivalent to the factor of two difference in Cε between grid
turbulence and box turbulence.

Kaminsky et al. (2020) have shown distributions of (δu)2, |δu|3, (δu)4, (δu)6 and (δu)8

in grid turbulence at Reλ = 110, 264, 508, 1000 and 1450, respectively; the (δu)2/u2
K

distributions are shown in figure 4(a) (green curves). Figures 1–5 of Kaminsky et al.
(2020) were digitized to obtain (δu)2 distributions. We then divided (δu)2 by u2

K (uK was
calculated from η and ν shown in their table 1). For comparison, also included are the
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Dual scaling in grid turbulence
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Figure 4. (a) Distributions of (δu)2/u2
K versus r/η in grid turbulence for the data of Kaminsky et al. (2020) at

Reλ = 110, 264, 508, 1000 and 1450 (green curves). Panel (b) corresponds to the same data, after applying a
numerical factor M to their data (see text). For comparison, other grid turbulence data, same as in figure 3, are
also shown in (a,b). Pink curve, (r/η)2/15. The arrow indicates the direction of increasing Reλ.

Reλ 110 264 508 1000 1450

M 29 6.9 2.96 1 0.54

Table 1. Values of M used to plot (δu)2/u2
K , (δu)4/u4

K and (δu)6/u6
K versus r/η at each Reλ for the data of

Kaminsky et al. (2020) (see text). Note that a value of 10, instead of 6.9, is used to plot (δu)4/u4
K at Reλ = 264

since its distribution should lie between the distributions of Reλ = 110 and 508 in the dissipative range (see
figure 5).

other grid turbulence data, same as in figure 3. It can be observed that the distributions
of Kaminsky et al. (2020) strongly depart from the other distributions. This is because
they actually plotted (δu)n/un

K versus r/(ηM), instead of (δu)n/un
K versus r/η. We recall

that there is an overwhelming amount of data confirming that the (δu)2/u2
K distributions

collapse in the dissipative range over a large range of Reλ in various flows (e.g. Pearson
& Antonia 2001; Gotoh et al. 2002; Ishihara et al. 2009; McComb et al. 2014). The
same is observed in grid turbulence (figure 3). It is then expected that the distributions
of Kaminsky et al. (2020) should collapse with those reported in the literature, at least
in the small-scale range, if one removes the factor M from the ratio r/(ηM). Since the
value of M was not provided by Kaminsky et al. (2020), we replotted their data with
r/(ηM) multiplied by different values of M so the distributions align with with other grid
turbulence data (figure 4b). The values of M are 29, 6.9, 2.96, 1 and 0.54 at Reλ = 110,
264, 508, 1000 and 1450, respectively; see also table 1. These values will be used to plot
(δu)4/u4

K and (δu)6/u6
K versus r/η, which will be presented and discussed later. In other

words, we do not use ‘M’ to correct η (or equivalently uK); instead, it is simply a means of
forcing agreement with the other grid turbulence data in the dissipative range. As discussed
above, the universality of this range is supported by an overwhelming amount of data
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Figure 5. (a) Distributions of (δu)4/u4
K versus r/η in grid turbulence (Kaminsky et al. 2020) after applying

a numerical factor M(= 29 and 2.96 for Reλ = 110 and 508) to their data (see text). For comparison, the grid
turbulence data of Gylfason et al. (2004) (without shear) at Reλ = 168 (pink curve) and 656 (cyan curve) are
shown; they are reproduced from figure 5(c,d) of Gylfason et al. (2004). (b) Distributions of (δu)4/u4

K versus
r/η in grid turbulence (Kaminsky et al. 2020) at Reλ = 264 after applying a numerical factor M(= 6.9 and 10)
to their data (see text). The dotted curve, 15−2F4(r/η)4 with F4 = 9.6. Other curves are the same as (a).

over a large range of Reλ in various flows, as expected on the basis of the first similarity
hypothesis of K41. Finally, we compare the distributions of (δu)4/u4

K at Reλ = 110 and 508
with those of Gylfason et al. (2004) at comparable Reλ (168 and 656) in grid turbulence
(figure 5a). It is worth mentioning that (δu)4/u4

K leads to 15−2F4(r/η)4 as r/η → 1.
Also, we can observe (later from figure 16) that F4 at Reλ = 550 and 656 are close
to each other; the same can be observed for Reλ = 110 and 168. This implies that the
distributions at Reλ = 550 and 656 (and also those at Reλ = 110 and 168) should be close
to each other at small r/η. These two expectations are indeed observed in figure 5(a) in
the separation range r/η � 20–30. Figure 5(a) further justifies our use of the numerical
factor M on the data of Kaminsky et al. (2020). As mentioned above, (δu)4/u4

K approaches
15−2F4(r/η)4 as r/η → 1. Also, since F4 increases systematically with increasing Reλ for
Reλ � 500 (see figure 16 later), the (δu)4/u4

K distribution at Reλ = 264 at small r/η must
lie between the distributions of Reλ = 110 and 508. Yet, we can observe from figure 5(b)
that, when M = 6.9, the distribution at Reλ = 264 is smaller than that at Reλ = 110; this is
incorrect and should be rectified. The value M = 10, which ensures that the distribution at
Reλ = 264 at small r/η lies between the distributions of Reλ = 110 and 508, as illustrated
in figure 5(b), is a reasonable value for plotting (δu)4/u4

K at Reλ = 264 (see figure 5b).
Also, the data for (δu)8 are not presented in the present paper since their behaviour is
similar to that of (δu)6. As mentioned above, Kaminsky et al. (2020) have also shown the
|δu|3 distributions. In the present paper, we will only discuss the behaviour of (δu)3 using
the data of Bodenschatz et al. (2014) in the same flow, instead of |δu|3, since there is an
exact equation for the former quantity, as discussed in § 1. It is worth noting that the data
mentioned above were measured by a hot-wire anemometry and Taylor’s hypothesis was
used to calculate (δu)n. It is generally accepted that this hypothesis is reliable when the
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Dual scaling in grid turbulence
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Figure 6. Effect of Reλ on the distributions of (δu)2 in grid turbulence. Panels (a,b) are normalized by
(uK , η) and (u′, L), respectively. These data are reproduced from Kaminsky et al. (2020).

mean rate of shear and turbulence intensity are small. Indeed, according to He, Jin & Yang
(2017), in a flow such as grid turbulence where the mean shear rate is zero, the conversion
from time to space can be written as

r =
√

1 + (u′/U)2Ut. (3.4)

For the VDTT grid turbulence data, the turbulence intensity u′/U is only in the range
2.35 % ∼ 3.7 % (see table II of Bodenschatz et al. 2014), and thus justifies the use of
Taylor’s hypothesis. Pope (2000) pointed out that ‘in grid turbulence with u′/U � 1, it
[Taylor’s hypothesis] is quite accurate.’

4. Dual scaling and its consequences

We show in figures 6–9 the distributions of (δu)n (n = 2, 3, 4, 6) normalized by (uK , η) and
(u′, L) in grid turbulence at Reλ = 110–1558, using the data of Bodenschatz et al. (2014)
(after reevaluating ε̄, as discussed in § 3) and Kaminsky et al. (2020). We can observe from
figures 6–9 that the scaling based on (u′, L) extends to increasingly smaller values of r/L as
Reλ increases. Further, the scaling based on (uK , η) extends to increasingly larger values of
r/η as Reλ increases. These results indicate that both scalings should eventually overlap at
larger values of Reλ. Another feature of figures 6–9 is that the range over which the scaling
based on (u′, L) is tenable appears to be larger than that over which the scaling based on
(uK , η) holds over the present Reλ range, especially for n > 3. One possible reason for
this behaviour is that (δu)n/u′n as r → L approaches the appropriate Gaussian values,
which are Reλ-independent, while (δu)n/un

K as r → η leads to the normalized moments
of the velocity derivative (Fn), which are likely to be constant only at large Reλ for n > 3
(note that F2 = 1 by definition and |F3| ≈ 0.53 for Reλ � 300 (Antonia et al. 2017)); the
behaviour of Fn will be discussed briefly later in the context of figure 16. However, as
r → ∞, we can estimate that, for n = 2, 4 and 6, (δu)n/u′n approach the values of 2, 12
and 120, respectively, when (3.1), (3.7) and (3.10) of Pearson & Antonia (2001) are used.
The Reλ dependence of the limiting values of (δu)n/un

K (n = 2, 3, 4, 6) as r → ∞ has
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Figure 7. Effect of Reλ on the distributions of −(δu)3 in grid turbulence. Panels (a,b) are normalized by
(uK , η) and (u′, L), respectively. These data are reproduced from Bodenschatz et al. (2014); note that for (a),
uK and η were re-evaluated as explained in the text.
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Figure 8. Effect of Reλ on the distributions of (δu)4 in grid turbulence. Panels (a,b) are normalized by
(uK , η) and (u′, L), respectively. These data are reproduced from Kaminsky et al. (2020).

been discussed by Pearson & Antonia (2001) (see their figure 6). They concluded that the
assumption that δu is ‘Gaussian when r is large is, experimentally, almost impossible to
disprove’.

The considerations in § 2 indicate that similarity based on (uK , η) can satisfy the
Kármán–Howarth equation even when Reλ is finite provided r is sufficiently small.
Equally, the Kármán–Howarth equation admits a similarity solution based on (u′, L) when
r is sufficiently large. It is therefore reasonable to assume that there are similarity solutions
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Figure 9. Effect of Reλ on the distributions of (δu)6 in grid turbulence. Panels (a,b) are normalized by
(uK , η) and (u′, L), respectively. These data are reproduced from Kaminsky et al. (2020).

of the form

(δu)2

u2
K

= f1

(
r
η

)
, (4.1)

(δu)2

u2
= f2

( r
L

)
, (4.2)

for sufficiently small and large r, respectively. As Reλ increases, the range of r/η and r/L
over which (4.1) and (4.2) are valid also increases (figure 6). The expectation that these
ranges must eventually overlap over the inertial range is highly plausible (see Gamard and
George’s discussion of the overlap in the spectra of u, when normalized by (uK , η) and
(u′, L) Gamard & George 2000), especially as Reλ → ∞. Note that we are dealing with

the same distributions of (δu)2, after subjecting it to two different types of normalization.
Matching (4.1) with (4.2) requires that

u2
Kf1

(
r
η

)
= u2f2

( r
L

)
. (4.3)

If it is further assumed that, in the inertial range, f1(r/η) exhibits a power-law form, viz.

f1

(
r
η

)
∼
(

r
η

)α

, (4.4)

then

f2
( r

L

)
∼ u2

K

u2

(
L
η

)α( r
L

)α

. (4.5)

For isotropic turbulence, u2
K/u2 = 151/2/Reλ and L/η = Re3/2

λ /153/4 if Cε = 1. The plots
in figure 6 show that (4.1) and (4.2) are closely satisfied for significant ranges of r/η
and r/L. In particular, at the two largest values of Reλ, the upper value of r/η exceeds
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50 whilst the lower value of r/L lies below 0.01. This implies that an overlap region is
starting to conform with the expected limits of the inertial range, i.e. η � r � L. The
Reynolds number independence displayed by figure 6 for r/η � 50 and r/L � 0.01 is
expected to be approached in the overlap region. As discussed in §§ 1 and 2, the two
scalings should become interchangeable as Reλ → ∞ so that the inertial range should
also be independent of Reλ. The formulation (4.5) or f2 ∼ Re3/2α−1

λ (r/L)α is independent
of Reλ when 3/2α − 1 = 0, i.e. when α = 2/3, which corresponds to the K41 prediction.
This result was also derived by Lundgren (2002) from the Kármán–Howarth equation
using matched asymptotic expansions when Reλ → ∞. A similar result was derived earlier
by Gamard & George (2000) in the context of the u spectrum; the approach adopted in
this paper is consistent with the asymptotic invariance principle and the methodology of
near-asymptotics, introduced by George (1989, 1994). The previous approach for (δu)2 can
be extended to (δu)n (see for example Djenidi et al. 2019).

Figures 7–9 indicate that the dual scaling applies to (δu)3, (δu)4 and (δu)6. One
would expect that, in general, the dual scaling will also apply to (δu)n, if the probability
distribution function (p.d.f.) of δu complies with the two types of normalization. For
simplicity, we next focus on a parametrized form of (δu)n (Dhruva 2000; Kurien &
Sreenivasan 2000), viz.

(δu)n

un
K

= 1

15n/2 Fn

( r
η

)n(
1 + Dn

( r
L

))2Cn−n

(
1 + Bn

( r
η

)2)Cn
, (4.6)

where Bn, Cn, Dn and Fn (≡ (∂u/∂x)n/(∂u/∂x)2n/2
) are constants. Note that, for n >

2, Fn is only expected to approach a constant value at increasingly larger values of
Reλ as n increases. An earlier version of (4.6), without the large-scale term, viz.
(1 + Dn(r/L))2Cn−n, was proposed by Stolovitzky, Sreenivasan & Juneja (1993) who
tested it against laboratory boundary layer data for a moderate Reynolds number (Reλ ≈
200). The stated objective was to obtain reliable estimates of the scaling exponents (i.e.
Cn). One can however query this objective given that the power-law behaviour of (δu)n

is rigorous only when the inertial range is established, i.e. Reλ → ∞. As will be shown
later, ‘ζn’ for (δu)n cannot be defined even at the largest Reλ (≈ 1500) for the present
grid turbulence data; this is not surprising since the 4/5 law has yet to be established
(see figure 12a later). Dhruva (2000) found that (4.6) provided a good fit to atmospheric
surface layer data for (δu)2, (δu)4 and (δu)6 over the complete range of r. Our main interest
is that (4.6) should represent as adequate a fit as possible to the experimental data for
(δu)n irrespectively of n and Reλ. In particular, the constants in (4.6) should satisfy the
asymptotic case (Reλ → ∞). This is really the context in which (4.6) was used by Antonia
& Burattini (2006) and Antonia et al. (2019) with n = 2. In other words, we shall not use
(4.6) to estimate Cn for different values of Reλ, as was done, for example, by Stolovitzky
et al. (1993). When Reλ is finite, at least at Reλ ∼ 103, (4.6) does not reduce to a simple
power-law form (∼ rα) in the scaling range in various turbulent flows such as the stationary
forced periodic box turbulence and along the axes of axisymmetric and plane jets (Tang
et al. 2017).

Equation (4.6) should be interpreted as a composite model for (δu)n, which satisfies the
dual scaling at small and large r. In particular, in the inertial range (η � r � L), (4.6)

975 A32-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

88
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.888


Dual scaling in grid turbulence

reduces to
(δu)n

un
K

= 1

15n/2 FnB−Cn
n

( r
η

)n−2Cn
. (4.7)

Using the isotropic relations L/η = Cε15−3/4Re3/2
λ and u2/u2

K = Reλ/151/2, we have

(δu)n

u2n/2 = 15n/4Re3/2(n−2Cn)
λ

15n/2Ren/2
λ

FnB−Cn
n

( r
L

)n−2Cn
C

n−2Cn
ε 15−3/4(n−2Cn). (4.8)

Note that (4.8) is the generalization of (4.5) to (δu)n. It is also the starting point of nearly
all intermittency models, viz. (δu)n/u′n ∼ (r/L)ζn , with a prefactor that is independent of
Reλ but possibly dependent on the macrostructure of the flow. We underline that (4.8) is
equivalent to (4.7) since only a transformation of variables has been applied. If (4.8) is
Reλ-independent, we immediately obtain

3
2 (n − 2Cn) − n/2 = 0, (4.9)

which leads to
Cn = n/3. (4.10)

We will use this value of Cn in (4.6) in the next section. Substituting Cn = n/3 into (4.8),
we can obtain

(δu)n

u2n/2 = 1

15n/2 FnB−Cn
n

( r
L

)n−2Cn
Cn−2Cn

ε . (4.11)

Note that (4.7) and (4.11) are identical if Cε = 1. The use of Cn = n/3 in (4.6) is fully
justifiable since (4.6) should comply with complete similarity, i.e. similarity at all values
of r/η (or r/L) as Reλ → ∞. For finite values of Reλ, (4.6) should describe the incomplete
similarity inherent in the dual scaling scheme (this will be illustrated in figures 18–21). For
n = 2, (4.6) was, as noted earlier, used previously and shown to describe adequately the
dependence of (δu)2 on Reλ in various flows.

It is worth mentioning that, as r → ∞, (4.6) is proportional to Ren/2
λ after taking

Cn = n/3 and using the relation L/η = Cε15−3/4Re3/2
λ . This is consistent with the limiting

values as r → ∞ for n = 2, 4 and 6 (see (3.1), (3.7) and (3.10) of Pearson & Antonia 2001).

5. Comparison between (4.6) and experimental data

Figures 10, 11(a)–14(a) show a comparison between the experimental data in figures 3,
6(a)–9(a) and (4.6). Note that we have used Cn = n/3; the values for Bn, Cε , Dn and Fn
are listed in tables 2 and 3. It is worth mentioning that B2 = 0.0056 and F2 = 1 lead
to a Kolmogorov constant for (δu)2 of A2 = 2.11. Also, B3 = 0.0114 and −F3 = 0.53
lead to a Kolmogorov constant for (δu)3 of A3 = 4/5. The magnitudes of F3, F4 and
F6 used in (4.6) are consistent with the available data in grid turbulence and along the
axis of the plane jet (see figure 16 later). The magnitude of Cε (= 0.8) is consistent
with the VDTT data at large Reλ (figure 2). Here, D2 and D3 are selected so that (4.6)
fits the data for (δu)2/u2

K and (δu)3/u3
K reasonably well at all Reλ. The magnitudes of

D4 and B4 are determined by trial and error until (4.6) fits the data for (δu)4/u4
K at all

Reλ; the magnitudes of D6 and B6 are determined in the same way. It should be pointed
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Figure 10. Distributions of (δu)2/(ε̄r)2/3 based on (4.6) at Reλ = 124, 379, 495, 701, 1310 and 1558.
Symbols with the same colour correspond to the data of Bodenschatz et al. (2014) shown in figure 3.
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Figure 11. (a) Distributions of (δu)2/(ε̄r)2/3 based on (4.6) at Reλ = 110, 264, 508, 1000, 1450, 104 and
105. Symbols with the same colour are the corresponding grid turbulence data, reproduced from figure 6(a).

(b) Local slope (LS2 = d log((δu)2)/d log r). Dashed horizontal line, 2/3.

out that all the constants Bn, Cn, Dn and Fn are Reλ-independent except for F4 in the
range Reλ < 1000 and for F6 in the range Reλ < 1450. Here, F4 = 10 for Reλ ≥ 1000 and

B4 = 0.011 lead to a Kolmogorov constant for (δu)4 of A4 = 18.18. Also, F6 = 440 for
Reλ ≥ 1450 and B6 = 0.0178 lead to a Kolmogorov constant for (δu)6 of A6 = 413.33. In
particular, we can obtain two ratios: A4/A2

2 = 4.1 and A6/A3
2 = 43.7. Their magnitudes

are consistent with the predictions of Qian (2000) who used a non-Gaussian p.d.f. of δu
to obtain A4/A2

2 = 4.1–5.4 and A6/A3
2 = 37.4–69.0. Here, the main objective of using

(4.6), with the above magnitudes for Bn, Cn, Dn and Fn in grid turbulence, is to describe
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Figure 12. (a) Distributions of −(δu)3/ε̄r based on (4.6) at Reλ = 117, 352, 535, 679, 1323, 1548, 104 and
105. Symbols with the same colour are the corresponding grid turbulence data, reproduced from figure 7(a).

(b) Local slope (LS3 = d log(−(δu)3)/d log r). Dashed horizontal line, 1.
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Figure 13. (a) Distributions of (δu)4/(ε̄r)4/3 based on (4.6) at Reλ = 110, 264, 508, 1000, 1450, 104 and
105. Symbols with the same colour are the corresponding grid turbulence data, reproduced from figure 8(a).

(b) Local slope (LS4 = d log((δu)4)/d log r) corresponding to the distributions in (a). Dashed horizontal line,
4/3.

the dependence on Reλ of the available experimental data for (δu)n/un
K which allows

us to extrapolate the (δu)n/un
K distributions to infinitely large Reλ. The local slope LSn

(= d log |(δu)n|/d log r), based on (4.6), is shown in figures 11(b)–14(b). Note that the
local slope LS2 of the distributions in figure 10 is similar to that in figure 11(b) and
thus not shown. We can observe from these figures that the agreement between curves
and symbols is satisfied approximately at almost all scales over a significant range of
Reλ, confirming the adequacy of the fit used to emulate the available data for (δu)2,
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Figure 14. (a) Distributions of (δu)6/(ε̄r)6/3 based on (4.6) at Reλ = 110, 264, 508, 1000, 1450, 104 and
105. Symbols with the same colour are the corresponding grid turbulence data, reproduced from figure 9(a).

(b) Local slope (LS6 = d log((δu)6)/d log r). Dashed horizontal line, 6/3.

Cε D2 B2 F2 D4 B4 D6 B6 D3 B3 −F3

0.8 0.67 0.0056 1 0.88 0.011 1.33 0.0178 2.58 0.0114 0.53

Table 2. Values of Bn, Cε , Dn, F2 and F3 used in figures 10–21. Note that the magnitudes of F3 are compared
with data in grid turbulence and along the axis of the plane jet in figure 16.

Reλ 110 264 508 1000 ≥1450

F4 8.1 9.3 9.6 10 10
F6 124 270 360 360 440

Table 3. Values of F4 and F6 used in figures 13–17 and 20–21. Note that the magnitudes of F4 and F6 are
compared with data in grid turbulence and along the axis of the plane jet in figure 16.

(δu)3, (δu)4 and (δu)6. It should be pointed out that the agreement between the model
and the data for some of the distributions at large Reλ and at moderate scales is not
so good, as seen for example for the distributions of (δu)2/(ε̄r)2/3 at Reλ = 1310 and
1558 in the range r/η ≈ 20–100, which correspond to the range k1η ≈ 0.06–0.31 in
the energy spectra. We can indeed observe from figure 1(a) that the magnitude of the
Kolmogorov-normalized energy spectra in the range k1η ≈ 0.06–0.31 at Reλ = 1310 and
1558 is smaller than that for all the other distributions, including those of Bodenschatz
et al. (2014) at Reλ = 124, 379, 495 and 701 and Larssen & Devenport (2011) at Reλ = 124

and 1360. This corresponds to (δu)2/(ε̄r)2/3 being underestimated at Reλ = 1310 and 1558
in the range r/η ≈ 20–100 which is most likely due to the measurement uncertainty. We
next use the Kármán–Howarth equation (2.1) to further examine the data of Bodenschatz
et al. (2014). The distributions of −(δu)3/ε̄r in figure 15 are calculated using (2.1) and
(4.6) with n = 2 at Reλ = 117, 352, 535, 679, 1323 and 1548. We emphasize that using
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Dual scaling in grid turbulence
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Figure 15. Analytical predictions of −(δu)3/ε̄r (curves) based on (2.1) and (4.6) with n = 2 at Reλ = 117,
352, 535, 679, 1323 and 1548. The details of how the integral term in (2.1), i.e. Iu(r) term, was calculated
are discussed elsewhere (see for example (4.9) of Tang et al. (2017) where the power-law decay rate for u2,
viz. u2 ∼ xn with n ≈ −1.2 (Sinhuber et al. 2015), was used here). Symbols with the same colour are the
corresponding grid turbulence data, reproduced from figure 12(a). The dashed horizontal line in each plot
corresponds to the value of 4/5.

(4.6) with n = 2 is equivalent to using of the experimental data for (δu)2/(ε̄r)2/3 in
figure 10; here we used the former since the calculation of the integral term in (2.1), i.e.
Iu(r) term, based on (4.6) with n = 2 should be more accurate than that based on the
discrete experimental data. Also shown in figure 15 are the grid turbulence data (symbols)
at the same Reλ, reproduced from figure 12(a). The agreement between curves and symbols
in figure 15 is satisfactory. This agreement not only confirms the fit (i.e. (4.6) with
n = 2) used to emulate the available data for (δu)2/(ε̄r)2/3 (figure 10), but also vindicates
the choice of M for (δu)2/u2

K in figure 4. Finally, figure 15 further indicates that the
magnitude of the model at Reλ = 1310 and 1558 in the range r/η ≈ 20–100 being larger
than that of the data most likely reflects a measurement uncertainty in the experimental
data (figure 10). Correspondingly, the magnitude of the energy spectrum distributions
in the range k1η ≈ 0.06–0.31 at Reλ = 1310 and 1558 in figure 1(a) being smaller than
that of all other distributions also most likely reflects a measurement uncertainty. Further,
there is no well-defined plateau for all the experimental data (figures 10, 11a–14a), even at
Reλ ∼ 1500, underlining the importance of the FRN effect in the context of establishing
the inertial range. This effect can be also observed in the LSn distributions for all the
experimental data; as an example, we have included in figure 13(b) the local slope LS4 for
the corresponding VDTT grid turbulence data of Kaminsky et al. (2020). In particular,
LS3 for Reλ = 1558 is far from exhibiting a plateau (figure 12b), implying that (1.2) is
actually far from being satisfied by the VDTT grid turbulence data, which underlines the
absence of an IR. Note that the calculated distributions indicate that a plateau is likely to
emerge as Reλ increases to an infinitely large value. Both the VDTT grid turbulence data
and LSn distributions based on (4.6) in figures 10, 11–14 show an evolution of (δu)n and
the corresponding local slopes with Reλ with a slow approach to n/3. Such a trend is not
only consistent with all the analysis in the present paper, but also consistent with the plane
jet data of Tang et al. (2017). Finally, we should also stress that the local slopes LSn are
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0 200 400 600 800 1000 1200 1400 1600

F6

F4

|F3|

10–1

100

101

102

103

104

Reλ
Figure 16. The magnitudes (diamonds) of |F3|, F4 and F6 used to plot figures 12–14. For reference, the data
along the axis of the plane jet, reproduced from Antonia et al. (2017) (triangles), and in grid turbulence,
reproduced from Gylfason et al. (2004) (squares), are also shown; for the latter, only the laboratory shearless
grid turbulence data are shown. The horizontal dashed lines indicate the mean values of each of the plotted
quantities for the plane jet data.

not affected by the values of ε̄. Obviously, they are not affected by the choice of the value
of M used in replotting the (δu)n/un

K distributions.
Figures 11–14 indicate that Reλ may need to be of order 105 before an inertial range is

established unequivocally. To our knowledge, this should be the first time that plausible
evidence has been presented for the approach to the IR based on values of n extending
to six. We next quantify, albeit approximately, the values of Reλ required for an inertial
range to be established for (δu)n. Figure 17 shows the range of r/λ over which the
distributions, based on (4.6), of (δu)2/(ε̄r)2/3, −(δu)3/ε̄r, (δu)4/(ε̄r)4/3 and (δu)6/(ε̄r)6/3

depart from 2.11, 4/5, 18.16 and 413 (these values correspond to the plateaus at Reλ = 105

in figures 11(a)–14a), respectively, by no more than 2.5 %. It should be pointed out that
another possibility would be to use r = λ as the ‘base’ line for IR. This is consistent with
Obligado & Vassilicos (2019) and Meldi & Vassilicos (2021) who showed, using the eddy
damped quasinormal Markovian, that the interscale energy flux is closest to ε̄ when r is
close to λ while the larger r, compared to λ, the larger the departure from equilibrium in
which the interscale energy flux is equal to ε̄. This would result in slightly larger values
of Reλ being required to establish the IR. We can observe from figure 17 that, when n is
even, the larger n is being required, the slower is the rate at which Cn = n/3 is established
convincingly. Interestingly, the r/λ range for (δu)6/(ε̄r)6/3 is close to that for −(δu)3/ε̄r.
Finally, we can observe that C2 = 2/3 is attained at a smaller Reλ than C3 = 1. This is
consistent with the observation of Antonia et al. (2019) where a similar model for (δu)2

with a slightly different constant (B2 = 0.0061) was used and (δu)3/(ε̄r) was calculated
from the Kármán–Howarth equation.

It is of interest to examine the dual scaling using (4.6) at large Reλ. Figures 18–21
show the distributions of (δu)n (n = 2, 3, 4, 6) normalized by (uK , η) and (u′, L) in grid
turbulence at Reλ = 1600–105. In conformity with the observation based on figures 6–9,
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Figure 17. The range of r/λ over which (δu)2/(ε̄r)2/3 (blue line), (δu)3/(ε̄r) (red line), (δu)4/(ε̄r)4/3 (green
line) and (δu)6/(ε̄r)6/3 (pink line) depart from 2.11, 4/5, 18.16 and 413 (these values correspond to the plateaus
at Reλ = 105 in figures 11a–14a), respectively, by no more than 2.5 %; they are calculated based on (4.6),
using Cn = n/3 and the constants for Bn, Cε/Dn and Fn in table 2. The locations of the vertical arrows give an
approximate indication of the values of Reλ needed to attain an IR, of two decades in extent, for (δu)2/(ε̄r)2/3

(blue arrow), (δu)3/(ε̄r) (red arrow), (δu)4/(ε̄r)4/3 (green arrow) and (δu)6/(ε̄r)6/3 (pink arrow).
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Figure 18. Distributions of (δu)2 at large Reλ in grid turbulence. Panels (a,b) are normalized by (uK , η) and
(u′, L), respectively.

the scaling based on (u′, L) extends to increasingly smaller values of r/L while the scaling
based on (uK , η) extends to increasingly larger values of r/η as Reλ increases. In particular,
at the two largest values of Reλ, the upper value of r/η exceeds 104 for all (δu)n whilst the
lower value of r/L lies below 5 × 10−4. Taking Reλ = 2 × 104 and using the isotropic
relation L/η = Cε(Re3/2

λ /153/4) with Cε = 0.8, we can estimate that the overlap region
is given by 102 � r/η � 104. Namely, a distinct range of overlap between the (u′, L) and
(uK , η) scalings can be observed at Reλ = 2 × 104, suggesting the onset of an inertial
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Figure 19. Distributions of −(δu)3 at large Reλ in grid turbulence. Panels (a,b) are normalized by (uK , η) and
(u′, L), respectively.
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Figure 20. Distributions of (δu)4 at large Reλ in grid turbulence. Panels (a,b) are normalized by (uK , η) and
(u′, L), respectively.

range for (δu)n (n = 2, 3, 4, 6) (see also figure 17). These results further confirm that the
dual scaling applies to (δu)n and an overlap range begins to emerge when Reλ > 104.

6. Conclusions

A dual scaling analysis has been carried out in the context of the Kármán–Howarth
equation, or transport equation for (δu)2, for grid turbulence. When the effect of the
large-scale term is neglected, the scaling (uK , η) should be effective, even at moderate
Reλ, since the two dimensionless parameters in (2.6a,b) are universal. Also, when the
viscous term is neglected, the scaling (u′, L) should be also tenable since both ε̄L/u′3
and (1/u′)(dL/dx) should approach constant values as Reλ increases. At finite Reλ, the
dual scaling approach is consistent with incomplete similarity. As Reλ → ∞, it becomes
compatible with complete similarity. The dual scaling approach is subsequently tested in
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Figure 21. Distributions of (δu)6 at large Reλ in grid turbulence. Panels (a,b) are normalized by (uK , η) and
(u′, L), respectively.

the context of (δu)n (n ≥ 2) using the VDTT grid turbulence data at Reλ = 110–1558
(figures 6–9). It is found that the scaling based on (u′, L) extends to increasingly smaller
values of r/L as Reλ increases. Further, the scaling based on (uK , η) extends to increasingly
larger values of r/η as Reλ increases. These observations are consistent with the dual
scaling analysis in the context of the Kármán–Howarth equation. More importantly, the
inference from these observations is that both scalings should eventually overlap, as Reλ
increases further, and conform with the power-law relation (δu)n ∼ rn/3 as Reλ → ∞. The
extent of the overlap should become significant as Reλ → ∞ since the KH equation has
been shown (George 1992; Speziale & Bernard 1992; Djenidi & Antonia 2015; Djenidi
et al. 2019) to admit a similarity solution based on a single set of scales; in this case,
(u′, L) can be interchanged with (uK , η).

An empirical model for (δu)n (n = 2, 3, 4, 6), i.e. (4.6), has been compared with the
VDTT grid turbulence data (figures 10, 11a–14a). The model, which is consistent with
(δu)n ∼ rn/3 as Reλ → ∞, is in reasonable accord with the data for values of Reλ up
to approximately 1500, thus allowing extrapolation of the model-based results to larger
values of Reλ. The major conclusions with respect to the comparison and extrapolation
can be summarized as follows.

(i) There is strictly no power-law range for the experimental data of (δu)n, even at Reλ ∼
1500. It is evident that for all the values of n considered here, the local slope LSn
continues to evolve with Reλ (figures 11b–14b) and begins to exhibit a small plateau
only when Reλ exceeds 104. An important inference from this trend is that the VDTT
data, like the spectral data of Mydlarski & Warhaft (1996) and subsequent analysis
by Gamard & George (2000), are consistent with (1.3) and do not support (1.4) when
ζn /= n/3.

(ii) The FRN effect may differ between even- and odd-order moments of δu. Different
values of Reλ may therefore be required, between even- and odd-order moments
of δu, for compliance with ζn = n/3. This effect, which, as noted in item (i), is
evident in the VDTT data, has, by and large, been either ignored or underestimated
in the literature. The approach to ζn = n/3 is consistent with the inequality constraint
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discussed by Djenidi et al. (2023) and with the dual scaling approach outlined in this
paper.

(iii) The dual scaling can be used to adequately describe (δu)n. A larger Reλ results in
wider r/η and r/L ranges over which the scalings (uK , η) and (u′, L) are tenable.
We should stress that the empirical model for (δu)n, i.e. (4.6), does not provide a
perfect description of the data. However, it adequately describes the dependence,
irrespectively of n, on Reλ. Furthermore, it fully complies with the dual scaling
methodology and satisfies the limiting behaviour of (δu)n as r → η and r → L.
We should also point out that (4.6) reflects the strongly non-Gaussian character
of the small scale turbulence when r → 0 and they transition to quasi Gaussian
properties when r exceeds L. The compliance of (4.6) with (δu)n ∼ rn/3 when
Reλ → ∞ is consistent with the observation by Qian (2000) and Qian (2001) who
used a non-Gaussian p.d.f. of δu with stretched exponential tails together with a
‘quasi-closure’ scheme to show that (δu)n ∼ rn/3 as Reλ → ∞.
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