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Introduction

The goal of mathematical analysis of machine learning algorithms is to study
the statistical and computational behaviors of methods that are commonly used
in machine learning, and to understand their theoretical properties, such as the
statistical rate of convergence (usually deriving upper bounds for specific algo-
rithms), the optimality of a statistical method (whether the derived statistical
upper bound matches the information theoretical lower bound), and the compu-
tational efficiency for various learning models under different assumptions.

This book mainly focuses on the analysis of two common learning models:
supervised learning and sequential decision-making problems.

In supervised learning, we train a machine learning model using training data,
and then evaluate the model’s prediction performance on unseen test data. In
this case, we want to investigate the performance of this model on test data.

A mathematical theory for supervised learning answers the following basic
questions, where we take the linear model as an example.

• Suppose that we learn a d-dimensional linear classifier with n training data by
minimizing the training error. Assume that the training error is 10%. What
is the classifier’s test error on the (unseen) test data? The test error in this
setting is also referred to as the generalization error, because it is not observed.
• Can we find a linear classifier that has a test error nearly as small as the optimal

linear classifier?
• Can we find a computationally efficient procedure to find a linear classifier with

a small test error?

The online learning model is an example of sequential decision-making prob-
lems. In online learning, we are interested in the sequential prediction problem,
where we train a statistical model using historic data, and then test it on the
data in the next time step. We then observe the true outcome after prediction.
This process is repeated in a sequential manner. The problem itself is motivated
from time series analysis and forecasting problems. We want to know the ability
of a learning algorithm to predict future events based on historic observations.

A mathematical theory for online learning needs to answer the following basic
questions, where we, again, take the linear model as an example.

1

https://doi.org/10.1017/9781009093057.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093057.002


CHAPTER 1 INTRODUCTION 2

• In the online sequential prediction setting. Given a time step t, can we construct
an online learning algorithm that predicts nearly as well as the optimal linear
classifier up to time step t?

This course develops the mathematical tools to answer these questions.

1.1 Standard Model for Supervised Learning

In supervised learning, we observe an input random variable (feature vector)
X ∈ Rd that represents the known information, and an output variable (label)
Y that represents the unknown information we want to predict. The goal is to
predict Y based on X.

As an example, we may want to predict whether an image (represented as input
vector X) contains a cat or a dog (label Y ).

In practice, the set of prediction rules are derived by parametrized functions
f(w, ·) : Rd → Rk, where w ∈ Ω is the model parameter that can be learned on
the training data. As an example, for the k-class classification problem, where
Y ∈ {1, . . . , k}, we predict Y using the following prediction rule given function
f(w, x) = [f1(w, x), . . . , fk(w, x)] ∈ Rk:

q(x) = arg max
`∈{1,...,k}

f`(w, x).

The prediction quality is measured by a loss function L(f(x), y): the smaller
the loss, the better the prediction accuracy.

The supervised learning approach is to estimate ŵ ∈ Ω based on observed
(labeled) historical data Sn = [(X1, Y1), . . . , (Xn, Yn)].

A supervised learning algorithm A takes a set of training data Sn as input, and
outputs a function f(ŵ, ·), where ŵ = A(Sn) ∈ Ω. The most common algorithm,
which we will focus on in this course, is empirical risk minimization (ERM):

ŵ = arg min
w∈Ω

n∑
i=1

L(f(w,Xi), Yi). (1.1)

In the standard theoretical model for analyzing supervised learning problems,
we assume that the training data {(Xi, Yi) : i = 1, . . . , n} are iid (independent
and identically distributed), according to an unknown underlying distribution

D. The loss of a classifier f̂(x) = f(ŵ, x) on the training data is the training
error:

training-loss(ŵ) =
1

n

n∑
i=1

L(f(ŵ,Xi), Yi).

Moreover, we assume that the test data (X,Y ) (future unseen data) are also
taken from the same distribution D, and we are interested in knowing the gener-
alization error of f̂ on the test data, defined as:

test-loss(ŵ) = E(X,Y )∼DL(f(ŵ,X), Y ).
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Since we only observe the training error of f̂ = f(ŵ, ·), a major goal is to

estimate the test error (i.e. generalization error) of f̂ based on its training error,
referred to as generalization bound, which is of the following form. Given ε ≥ 0,
we want to determine δn(ε) so that

Pr

(
E(X,Y )∼DL(f(ŵ,X), Y ) ≥ 1

n

n∑
i=1

L(f(ŵ,Xi), Yi) + ε

)
≤ δn(ε),

where the probability is with respect to the randomness over the training data
Sn. In general, δn(ε)→ 0 as n→∞.

In the literature, this result is often stated in the following alternative form,
where we want to determine a function εn(δ) of δ, so that with probability at
least 1− δ (over the random sampling of the training data Sn):

E(X,Y )∼DL(f(ŵ,X), Y ) ≤ 1

n

n∑
i=1

L(f(ŵ,Xi), Yi) + εn(δ). (1.2)

We want to show that εn(δ)→ 0 as n→∞.
Another style of theoretical result, often referred to as oracle inequalities, is to

show that with probability at least 1− δ (over the random sampling of training
data Sn):

E(X,Y )∼DL(f(ŵ,X), Y ) ≤ inf
w∈Ω

E(X,Y )∼DL(f(w,X), Y ) + εn(δ). (1.3)

This shows that the test error achieved by the learning algorithm is nearly as
small as that of the optimal test error achieved by f(w, x) with w ∈ Ω. We say
the learning algorithm is consistent if εn(δ)→ 0 as n→ 0. Moreover, the rate of
convergence refers to the rate of εn(δ) converging to zero when n→∞.

Chapter 2 and Chapter 3 establish the basic mathematical tools in empirical
processes for analyzing supervised learning. Chapter 4, Chapter 5, and Chap-
ter 6 further develop the techniques. Chapter 7 considers a different analysis
that directly controls the complexity of a learning algorithm using stability. This
analysis is gaining popularity due to its ability to work directly with algorith-
mic procedures such as SGD. Chapter 8 introduces some standard techniques for
model selection in the supervised learning setting. Chapter 9 analyzes the ker-
nel methods. Chapter 10 analyzes additive models with a focus on sparsity and
boosting. Chapter 11 investigates the analysis of neural networks. Chapter 12
discusses some common techniques and results for establishing statistical lower
bounds.

1.2 Online Learning and Sequential Decision-Making

In online learning, we consider observing (Xt, Yt) one by one in a time sequence
from t = 1, 2, . . .. An online algorithm A learns a model parameter ŵt at time t
based on previously observed data (X1, Y1), . . . , (Xt, Yt):

ŵt = A({(X1, Y1), . . . , (Xt, Yt)}).
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We then observe the next input vector Xt+1, and make prediction f(ŵt, Xt+1). Af-
ter the prediction, we observe Yt+1, and then compute the loss L(f(ŵt, Xt+1), Yt+1).
The goal of online learning is to minimize the aggregated loss:

T−1∑
t=0

L(f(ŵt, Xt+1), Yt+1).

In the mathematical analysis of online learning algorithms, we are interested
in the following inequality, referred to as regret bound, where the aggregated loss
of an online algorithm is compared to the optimal aggregated loss:

T−1∑
t=0

L(f(ŵt, Xt+1), Yt+1) ≤ inf
w∈Ω

T−1∑
t=0

L(f(w,Xt+1), Yt+1) + εT . (1.4)

The regret εT , is the extra loss suffered by the learning algorithm, compared to
that of the optimal model at time T in retrospect.

As an example, we consider the stock price prediction problem, where the
opening price of a certain stock at each trading day is p1, p2, . . . . At the beginning
of each day t, we observe p1, . . . , pt, and want to predict pt+1 on day t+ 1, so we
use this prediction to trade the stock.

The input Xt+1 is a d-dimensional real-valued vector in Rd that represents
the observed historical information of the stock on day t. The output Yt+1 =
ln(pt+1/pt) will be observed on day t + 1. We consider a linear model with
f(w, x) = w>x, with Ω = Rd. The quality is measured by the least squares
error:

L(f(w,Xt+1), Yt+1) = (f(w,Xt+1)− Yt+1)2.

The learning algorithm can be empirical risk minimization, where

ŵt = arg min
w∈Rd

1

t

t∑
i=1

(w>Xi − Yi)2.

In regret analysis, we compare the prediction error

T−1∑
t=0

(ŵ>t Xt+1 − Yt+1)2

to the optimal prediction

inf
w∈Rd

T−1∑
t=0

(w>Xt+1 − Yt+1)2.

Martingale inequalities used in the analysis of sequential decision problems will
be introduced in Chapter 13. The online learning model will be studied in Chap-
ter 14 and Chapter 15. The related bandit problem will be investigated in Chap-
ter 16 and Chapter 17. In the bandit problem, we investigate online problems with
incomplete information, where Yt is only partially revealed based on actions of
the learning algorithm. The goal is to take an optimal sequence of actions to max-
imize rewards (or minimize loss). Finally, in Chapter 18, we will introduce some
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basic techniques to analyze reinforcement learning. The reinforcement learning
model can be considered as a generalization of the bandit model, where, at each
time step (epoch), multiple actions are taken to interact with the environment.
This is still an actively developing field, with major theoretical advances appear-
ing in recent years. We will only cover some basic results that are most closely
related to the analysis of bandit problems.

1.3 Computational Consideration

In the ERM method, the model parameter ŵ is the solution of an optimization
problem. If the optimization problem is convex, then the solution can be efficiently
computed. If the optimization problem is nonconvex, then its solution may not
be obtained easily.

Theoretically, we separately consider two different types of complexity. One is
statistical complexity, where we may ignore the complexity of computation, and
try to derive bounds (1.3) and (1.4) even though the computational complexity
of the underlying learning algorithm (such as ERM) may be high.

However, in practice, an important consideration is computational complex-
ity, where we are interested in computationally efficient algorithms with good
generalization performance or regret bounds. For nonconvex models, this kind of
analysis can be rather complex, and usually requires problem specific analyses
that are not generally applicable.

A generally studied approach to a nonconvex problem is to use convex ap-
proximation (also referred to convex relaxation) to solve the nonconvex problem
approximately. The related theoretical question is under what circumstances the
solution has statistical generalization performance comparable to that of the non-
convex methods. An example is the sparse learning problem, where the convex
formulation with L1 regularization is used as a proxy to the nonconvex L0 reg-
ularization. In this case, we are interested in establishing the condition under
which one can obtain a solution from L1 regularization that is close to the true
sparse model.

The combined analysis of computational and statistical complexity is a major
research direction in theoretical machine learning. This book mainly covers the
statistical analysis aspect. Nevertheless, the computational complexity will also
be considered when practical algorithms are investigated.

1.4 Basic Concepts in Generalization Analysis

The goal of machine learning is to find a function f(ŵ, x) that predicts well on
unseen data (test data). However, we only observe the prediction accuracy of
f(ŵ, x) on the training data. In order to achieve high prediction accuracy, we
need to balance the following two aspects of learning:

• The prediction function should fit the training data well; that is, achieve a small
training error. This requires a more expressive model, with a larger parameter
space Ω.
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Figure 1.1 Training and test errors versus model complexity

• Performance of prediction function on the test data should match that on
the training data. The difference is smaller for a less expressive model with a
smaller parameter space Ω.

The gap between training error and test error depends on model complexity,
which characterizes how large the model parameter space Ω is. When Ω is too
large, the training error becomes smaller, but the difference between training error
and test error increases. Therefore, in practice, there is a trade-off in machine
learning, and the best prediction performance is achieved with the right balance,
often via a tuning parameter in the learning algorithm that characterizes model
complexity. The phenomenon is described in Figure 1.1. Such a tuning process is
often referred to as hyperparameter optimization.

When the class of prediction functions is too large (or complex), then the
difference between training error and test error increases. This leads to the so-
called overfitting phenomenon. A simple example of overfitting can be described
as follows. Let X be a one-dimensional feature uniformly distributed in [−1, 1],
with class label Y = 1 when X ≥ 0 and Y = −1 when X < 0. The optimal
classifier can achieve a test error of 0.

Given training data (Xi, Yi) (i = 1, . . . , n), and assuming Xi are all different, if
we consider a prediction function class that contains all possible functions, then
the empirical risk minimization method with the following solution can fit the
data perfectly:

f̂(X) =

{
Yi if X = Xi for some i,

1 otherwise.

This model class has high model complexity measured by its covering number,
which we will study in the book. However, the resulting ERM prediction rule does
not make any meaningful prediction when X is not in the training data. This is
because, although the training error of 0 is small, it is significantly different from
the test error of 0.5.
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In contrast, if we let the prediction model contain only one function
{f(x) : f(x) ≡ 0}, then, using the tail inequality of independent random vari-
ables of Chapter 2, we know that the difference between the training error and
the test error will be small when n is large. However, since the training error of
≈ 0.5 is large, the test error is also large.

Let 1(x ∈ A) be the set indicator function that takes value 1 if x ∈ A, and 0 if
x /∈ A. Assume that we pick the model function class {f(w, x) : f(w, x) = 21(x ≥
w)−1} parametrized by a parameter w ∈ R. Assume also that we find a classifier
f(ŵ, x) that minimizes the training error. Using techniques in Chapter 3, it can
be shown that both training error and test error of this classifier converge to zero
when n → ∞. This model class balances the training error and generalization
performance. In summary, a key technique of the mathematical theory for ma-
chine learning is to estimate the generalization performance (prediction accuracy
on unseen data) of learning algorithms, and quantify the degree of overfitting.

Finally it is worth pointing out that the mathematical theory developed for
limiting model size and preventing overfitting is the key classical technique to
obtain good generalization results in machine learning. However, in recent years,
this classical view point has evolved due to the empirical observation in modern
neural network models that large models nearly always perform better. For such
models, one observes the so-called benign overfitting phenomenon, where learning
algorithms with appropriate implicit bias can still achieve good test performance
even if the resulting model completely overfits the noise. This is an active research
area that is still developing rapidly. Consequently, the related theoretical results
are less mature. We will thus only discuss some theoretical intuitions behind this
phenomenon in Section 11.7, but dedicate the main parts of the book to the
classical learning theory.

1.5 Historical and Bibliographical Remarks

Machine learning is now considered the key technology for artificial intelligence
(AI), which aims to create computing machines that can mimic the problem-
solving skills of a human (McCarthy et al., 2006). In recent years, machine learn-
ing has become an important scientific research field on its own, and has many
applications that have made significant impact in our modern society. The term
“machine learning” has often been attributed to Samuel (1959), who defined it
as the “field of study that gives computers the ability to learn without being
explicitly programmed.”

There are two approaches to machine learning (AI): one is to use statistical
methods to learn functions from data and past experience, in order to predict fu-
ture events. This is the approach considered in this book. An alternative approach
to AI is symbolic reasoning, which creates a knowledge base, and then uses logic
to create rules that can perform inference (Haugeland, 1989). The latter approach
explicitly incorporates human knowledge into computer programs, without the
need for direct learning from past experiences. Although the symbolic approach
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showed some promise in the early decades of AI research (Studer et al., 1998),
it has major limitations in dealing with uncertainty in real-world applications.
For complex problems, the symbolic rules needed to handle difficult situations
are often too complex to build and maintain. For this reason, the modern appli-
cations of machine learning heavily relied on the statistical approach, although
the hybrid of statistic-based machine learning and symbolic AI is still an active
research direction.

The mathematical foundation of machine learning has its origin in probability
and theoretical statistics. In particular, the theory of empirical processes has been
used to analyze the generalization performance of machine learning algorithms.
The first part of the book will describe the basic tools of empirical processes
that are commonly used in machine learning. Learning in the sequential decision
setting is a different paradigm for theoretical analysis, and the key quantity of
interests, regret bound, has its origin in theoretical computer science. The tech-
niques used in the analysis are also closely related to stochastic optimization and
stochastic processes. Both computational and statistical aspects are considered in
some of the procedures while only the statistical aspects are considered for others.
The second part of the book will describe the mathematical tools for analyzing
learning problems in the sequential decision setting.
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