
SEMI-PRIME MODULES 
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1. Introduction. Properties and characterizations for prime and semi-
prime rings have been provided by A. W. Goldie (2, 3). In a previous paper (1), 
the authors used the results of (2) to characterize prime and uniform prime 
modules. It is the aim of the present paper to generalize Goldie's work on 
semi-prime rings (3) to modules. In this setting certain new properties will 
appear. 

Notationally, in the work to follow, the symbol R always denotes a ring 
and all i^-modules will be right i^-modules. 

In the theory of rings an ideal C is said to be prime if and only if whenever 
AB Ç C for ideals A and B, then either A Ç C or B Ç C. A ring is prime if the 
zero ideal is prime. In order to avoid confusion in definitions for modules it was 
deemed necessary to introduce the term dosed prime submodule (see (2.1)) 
and call a module annihilator prime provided the zero submodule is closed 
prime (see (2.2)). 

In §2 the prime radical P(M) of an i?-module M is defined as the inter­
section of the closed prime submodules. It is shown that the prime radical of 
M/P(M) is zero. 

A module is termed semi-prime if the prime radical is zero. It is proved in 
§3 that if M is a faithful semi-prime i^-module, then R is a semi-prime ring. 
In addition, (3.3) states that if an i^-module M is semi-prime, then M is a 
subdirect sum of modules, each of which is a prime module over the difference 
ring R modulo the annihilator. This describes semi-prime modules in terms of 
prime modules as discussed by the authors in (1). 

In §4, torsion-free modules over Goldie semi-prime rings are investigated. 
Theorem (4.8) states that in this case M is a semi-prime module where the 
zero submodule is the intersection of maximal non-large submodules that are 
closed prime. Then M is a subdirect sum of uniform annihilator prime modules. 
If M is finite-dimensional, then a finite number of such submodules will suffice. 
This analysis enables one to express the zero ideal of a Goldie semi-prime ring 
as an intersection of an explicit set of prime ideals (see (4.13)). 

The last section also includes a characterization for faithful semi-prime 
modules that generalizes a result obtained in (1) for prime modules. 

2. The prime radical. If N is a submodule of an i^-module M, then 

cl (N) — {m G M\ml Ç N for some large right ideal I of R]. 
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If cl(iV) = N, then N is said to be closed. The singular submodule Z(M) is 
defined as cl(0). If N\ and N% are submodules of M, then (Ni : N2) is the ideal 
consisting of all a Ç i? such that iV2 a C iVi. 

(2.1) Definition. A submodule iV of an i?-module ilf is termed closed-prime 
provided the following two conditions are satisfied: 

(i) if N' is a submodule such that N C N' C Jkf, then (iV : TV') C (JV : M), 
(ii) cl(iV) = N. 

Here the symbol C means proper inclusion. 
Note that condition (i) is equivalent to the statement that for every non­

zero submodule N'/N of the right R/{N : M)-module M/N, one has 
(0 : N'/N) = 0, where 0 denotes the zero coset. 

The module M itself is closed-prime since condition (i) is (vacuously) true 
in the case N = M. It is also clear that maximal submodules that are not 
large are closed-prime. We shall see later that for torsion-free modules over 
semi-prime rings with chain conditions, the maximal elements in the set of 
non-large submodules are closed-prime. 

(2.2) Definition. An i^-module M is termed annihilator-prime provided (0) 
is a closed-prime submodule of M. 

Thus the module M is annihilator-prime if Z(M) = Oand (0 : N') ç= (0 : M) 
for all non-zero submodules N' of M. 

From the preceding definitions and remarks we obtain 

(2.3) PROPOSITION. A submodule N of an R-module M is closed prime if and 
only if the R-module M/N is annihilator-prime. 

If M is a faithful annihilator-prime module, then Z(M) = Oand (0 : N') = 0 
for all non-zero submodules N' of M. If, in addition, R is a ring with maximum 
condition, then M is a prime .R-module in the sense of (1). For modules over 
rings without chain conditions we have 

(2.4) Definition. A faithful annihilator-prime module is termed a prime module. 

(2.5) THEOREM. If M is an annihilator-prime R-module, then M is prime as a 
module over R/ (0 : M). 

Proof. Since Mis faithful over R/(0 : M) we need only show that cl(0) = 0. 
If x 6 cl(0), then xL = 0 where L is a large right ideal in R = R/(0 : _M). If 
L is the inverse image of L in the natural homomorphism of R onto R, then 
L is a large right ideal and xL = 0. Since M is annihilator-prime over R, we 
obtain x = 0 and the theorem is proved. 

(2.6) COROLLARY. If N is a closed-prime submodule of an R-module M, then 
M/N is a prime module over R/ (N : M). 

Proof. If N is closed-prime, then by (2.3.) M/N is an annihilator-prime 
i^-module. Now employ (2.5). 
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(2.7) PROPOSITION. If N is a closed-prime submodule of an R-module M, then 
(N : M) is a closed prime ideal in R. 

Remark. An ideal of R is closed if it is closed as a right i^-module. 

Proof. If N is closed-prime, then by (2.6) M/N is a prime module over 
R/ (N : M). We may employ the argument used to establish (1, (1.2)) to prove 
that R/(N : M) is a prime ring, and hence that (N : M) is a prime ideal. If 
a £ cl((iV : M)), then Mai Q N for some large right ideal I of R. This implies 
Ma C c\(N) = N or a £ (N : M). Therefore cl((iV : M)) = (N : M). 

We now define a radical for modules that is analogous to the prime radical 
of a ring as given in (7). 

(2.8) Definition. The prime radical P(M) of an i?-module M is the intersection 
of all the closed-prime submodules of M. 

It follows from this definition that Z(M) Ç P(M) and consequently when 
P{M) = 0, Z(M) = 0. 

One can obtain a correspondence between closed-prime submodules of an 
i^-module M and the closed-prime submodules of a homomorphic image. 

(2.9) PROPOSITION. Let 6 be an R-homomorphism of an R-module M onto an 
R-module W with kernel K. If {Nt} is the collection of closed-prime submodules 
of M that contain K, then the correspondence Nt —» 6Ni is a one-one mapping 
of {Ni} onto the set of all closed-prime submodules of W. 

Proof. As in (7, (2.45)), the mapping N—+6N is a one-to-one inclusion 
preserving correspondence between the set of submodules of M containing K 
onto the totality of submodules of W. Thus it suffices to show that under this 
mapping the closed-prime submodules correspond to one another. 

Suppose that N is closed-prime in M with N 2 K. Let a G (ON : ON') 
where Nr is a submodule of M such that ON C 6N' (and hence N C N'). 
Then N'a C d'^dN) = N, so a G (N : N'). Since N is closed-prime, this 
implies that a G (N : M) and we have (0M)a C 0iV. Therefore, 

(6W: 0iV') Ç (6W: tT). 

Now let dm G cl(0iV), where m £ M. Then m/ C 0~1(0iVr) = iV, where / 
is a large right ideal in R. Thus m G cl (TV) = iV, or 0w G 6N. We have proved 
that cl (0iV) C ON and hence ON is closed-prime in W. 

We complete the proof by showing that if F is a closed-prime submodule of 
W, then 6~lV is closed-prime in M. Let a G ( 0 - 1 F : 7Vr), where d~lV C N'. 
Then F = 0(0~1F) C 0̂ V' and since V is closed-prime, 

a Ç ( F : l f ) = ( F r : « ) = (0" 1F: i f ) , 

so (2.1), ( i) istruefor0~1F. 
To show that (2.1), (ii) holds, let m G cl(0~1F). Then (6m)I Q V for a 

large right ideal I of R and hence 0m G cl(F) = V, i.e. m G 0_1F. 
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(2.10) PROPOSITION. If N is a submodule of an R-module M and if L is a closed-
prime submodule of M, then N C\L is a closed-prime submodule of N. 

Proof. We may assume that N C\ L ^ N. Let Nf be a submodule such that 
N C\ L C N' Ç N. Then L C L + N' and we have 

(NniL:N')Q(L:L + N')Q(L: M), 

whence (N C\ L : N') C (N H L : M). It is evident that cl(N H L) = TV n L. 
Therefore TV Pi L is a closed-prime in iV. 

(2.11) THEOREM. If M is an R-module, then P(M/P(M)) = 0. 

Proo/. Let (9 be the natural homomorphism of M onto M/P(M). By (2.8), 
every closed-prime submodule of M contains the kernel of 6. Hence, from (2.9), 
the correspondence Ni—>dNi is a one-one mapping of the set {Ni\ of all 
closed-prime submodules of M onto the set of all closed-prime submodules of 
M/P(M). If dm G P(M/P(M)) for m e M, then m Ç O-^ONt) = Nt for all 
i and we have m Ç P(M). Thus ^m = 0. 

3. Semi-prime modules. As in (7, (4.25)), a ring R is semi-prime if and 
only if the prime radical of R is zero. We shall use this approach to define a 
semi-prime module. 

(3.1) Definition. An 7^-module M is semi-prime if and only if P(M) = 0. 

Notice that by (2.11), M/P(M) is semi-prime for all i?-modules M. 
One can characterize semi-prime modules in terms of subdirect sums. 

(3.2) THEOREM. An R-module M is semi-prime if and only if M is a subdirect 
sum of annihilator-prime R-modules. 

Proof. If M is semi-prime, then 0 = Pi Nt where {N^ is the collection of 
closed-prime submodules of M. Then M is isomorphic to a subdirect sum of the 
modules M/Nt where, by (2.3), each M/Nt is an annihilator-prime J?-module. 

Conversely, if M is isomorphic to a subdirect sum of annihilator-prime 
modules {Hi}, then there exist submodules Nt of M such that Hi = M/Nt and 
P\ Ni = 0. Since each Nt is closed-prime by (2.3), we have P(M) = 0 and 
(3.2) is proved. 

(3.3) COROLLARY. If M is a semi-prime R-module, then M is a subdirect sum 
of modules Mif where each Mt is a prime module over R/ (0 : Mt). 

Proof. Apply (2.5) to the "only if" part of (3.2). 

(3.4) PROPOSITION. Let M be a semi-prime R-module and let {Ni} be the collection 
of closed-prime submodules of M. Then M is faithful if and only if 

H (Nt : M) = 0. 
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Proof. ïî a £ P(Nt: M), then Ma Q Ni for all i and hence Ma = 0. 
Consequently, if M is faithful, then P(N{ : M) = 0. Conversely, if 
Pi (Ni : M) = 0 and Ma = 0, then a £ (iV, : Af) for all i and hence a = 0. 

(3.5) PROPOSITION. If M is a faithful semi-prime R-module, then R is a semi-
prime ring. 

Proof. By (3.4), we have P(Nt : M) = 0, where {Nt) is the collection of 
closed-prime submodules of M. From (2.7), each (N t : M) is a prime ideal in R. 
Hence the intersection of these prime ideals is zero, which implies that R is a 
semi-prime ring. 

(3.6) THEOREM. A complete direct product of semi-prime R-modules is a semi-
prime R-module. 

Proof. It is not difficult to show that given a direct sum M =: Mi © M2 

of i^-modules, if L\ is a closed-prime submodule of M\, then L\ © M2 is a 
closed-prime submodule of M. The methods used in (5, p. 416) may now be 
used to complete the proof. 

4. Modules over semi-prime rings. A ring that satisfies the right quotient 
conditions of (3) is called a (right) Goldie ring. According to (3, (3.9)), a 
right ideal of a semi-prime Goldie ring is large if and only if it contains a 
regular element. It follows directly that a module M over a Goldie semi-prime 
ring is torsion-free if and only if Z(M) = 0. (As in (6), an i^-module M is 
torsion-free if, whenever mc = 0, where m Ç M and c is regular in R, then 
m = 0.) The principal objective of the present section is to investigate the 
structure of such modules. Accordingly, in order to simplify our statements, 
we shall, throughout this section, let M denote a torsion-free module over a Goldie 
semi-prime ring R and let Q denote the (semi-simple) quotient ring of R. 

If N is an i?-submodule of Af, then as in (6, (1.5) ) N can be imbedded in the 
Q-module N ®RQ ~ NQ. The elements of NQ may be written in the form 
nc~l for n £ N, c regular in R, and we may assume that TV C NQ where 
n G N is identified with n\ Ç NQ. Moreover, every submodule of MQ can be 
written in this way. Specifically, if T is a submodule of MQ, we have 

T = (MP T)Q. 
If Ni and N2 are i?-submodules of M we write Ni ~ N2, and say that Ni 

is related to N2, if and only if Ni and N2 meet the same non-zero submodules 
of M. The following propositions are patterned after those given for rings by 
Goldie (3). 

(4.1) PROPOSITION. / / Ni and N2 are submodules of M, then the following 
conditions are equivalent: 

(i) N!~N*, 
(ii) N! Q = N2 <2, 

(iii) cl(iVi) = cl(iV2). 
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Proof. Suppose that iVi ~ N2. For each n G N\ let 

(N2: n) = {a Ç R \ na G 7V2}. 

As in (4, p. 63) (iV2 : n) is a large right ideal in R. Since R is semi-prime, 
(iV2 : n) contains a regular element c and hence iVi Ç 7V2 Ç- By symmetry, 
JV2 ÇI iVi Ç, which proves that (i) implies (ii). 

Conversely, suppose N\Q = N2Q and let n be a non-zero element of iVi. 
Then n = mc~l for some m Ç 7V2 and c regular in i?. Therefore nR H\ N2 ^ 0, 
which implies that iVi ~ N2. 

The equivalence of (i) and (iii) follows from the fact that if Ni ^^ A 2̂, then 
N1Qd(N2). 

(4.2) COROLLARY. A submodule N of M is large if and only if NQ = MQ. 

(4.3) PROPOSITION. If Ni and N2 are submodules of M, then 

NiQ + N2Q = (Ni + N2)Q and NXQ H N2Q = (Ni H N2)Q. 

Proof. Use the method given in (3, p. 214). 

(4.4) PROPOSITION. The minimal submodules of MQ are of the form NQ where N 
is a uniform submodule of M. 

Proof. If NQ is not minimal, there exist non-zero submodules iVi, iV2 of M 
such that NQ = Ni Q 0 N2 Q. Then 

Ni Q H N2 Q = (N! r\ N2)Q = 0 

or Ni H\ N2 = 0, so N is not uniform. 
Conversely, if NQ is minimal, then N is uniform, for otherwise N contains 

non-trivial submodules Ni and N2 with Ni H N2 = 0. Then Ni Q H N2 Q = 0, 
contrary to the minimality of NQ. 

One may easily prove 

(4.5) PROPOSITION. If N is a submodule of M, then 

c\(N) = NQC\M and cl (NQ C\ M) = NQ H M. 

In (3, p. 202), Goldie defined the notion of complement submodule of an 
J?-module M. If X denotes the set of non-large submodules of M, then a direct 
argument proves that the maximal complement submodules are precisely the 
maximal elements of X. We shall term the latter maximal non-large submodules. 

(4.6) THEOREM. / / iV* is a maximal submodule of MQ, then N* C\ M is a 
maximal non-large submodule of M. If N is a maximal non-large submodule of 
M, then NQ is a maximal submodule of MQ. The correspondence N* —> N* f\ M 
is a one-to-one mapping of the set {N*} of maximal submodules of MQ onto the 
set of maximal non-large submodules of M. 
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Proof. Suppose TV* is maximal in MQ and let TV be a submodule of M such 
that TV 2 N* P Tkf and TV£ 5* AfQ. Then TV* = (TV* H M)Ç Q NQ C MQ 
and we have TV* = NQ. Hence iV Ç F H M, which proves that TV* P Tlf 
is a maximal non-large submodule of M. 

Now suppose that TV is a maximal non-large submodule of M. If TV* is a 
Q-submodule of MQ such that TVÇ C TV* C MQ, then NQ C\ M C N* f~\ M 
and hence TV C TV* P Tkf. However, TV* Pi M is non-large since 

(TV* P Tkf)Q = TV* ^ MQ. 

This contradicts the maximality of TV, so NQ is maximal in MQ. 
The last statement follows from the fact that if TV is a maximal non-large 

submodule, then TV = NQ P M. 

(4.7) THEOREM. / / TV is a maximal non-large submodule of M, then TV is closed-
prime and intersection-irreducible. Consequently, M/N is a uniform annihilator-
prime R module. 

Remark. A submodule TV is intersection-irreducible if it cannot be written as 
an intersection of two submodules that properly contain TV. 

Proof. From (4.6) we may write TV = TV* Pi M where TV* is a maximal 
submodule of MQ. If TV' is a submodule such that TV C TV' C M, then by the 
maximal nature of TV and (4.2), NrQ = MQ. Hence 

TV'(TV: N')QQNQ = TV*. 

As in (3, (5.2)), (TV : N')Q is an ideal of Q so that 

TVr<2(TV : TV') Ç TV'(TV : N')Q Q TV*. 

Therefore M (TV : TV') C TV* P M = TV, or (TV : TV') Ç (TV : M). Thus con­
dition (2.1), (i) is satisfied by TV. The fact that TV = cl(TV) is clear since 
TV —cl(TV). 

If TV is maximal non-large, it follows readily that TV is intersection-irreducible ; 
see (4, p.60). It is evident that this implies uniformity for M/N. 

(4.8) THEOREM. The R-module M is semi-prime. Specifically, the zero submodule 
is the intersection of maximal non-large closed-prime submodules, and hence M 
is a subdirect sum of uniform annihilator-prime R-modules. 

Proof. Since Q is semi-simple, MQ can be expressed as a direct sum of simple 
submodules {Li}. For each i let TV/* = £ j y i Lj. (If there is only one Li} then 
MQ is simple and, by convention, we take TV/* = 0.) Then each N* is a 
maximal submodule of MQ and HN* = 0. By (4.6), TV, = TV,* P M is a 
maximal non-large submodule and is closed-prime by (4.7). Then 

r\Nt c PTV,* = 0, 

which implies P(M) = 0. The last statement follows from (2.3) and (4.7). 
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The next result characterizes faithful semi-prime modules over Goldie rings. 

(4.9) THEOREM. Let L be a faithful module over a Goldie ring R. Then L is semi-
prime if and only if L is contained in a unitary right Q-module where Q is a semi-
simple Artinian ring and a right quotient ring for R. 

Proof. If L is semi-prime, then by (3.5) R is a semi-prime ring. Moreover, 
since Z(L) C P(L) = 0, L is torsion-free over R. Then the module LQ fulfils 
the conditions cited in the statement of the theorem. 

Conversely, if an i^-module L is contained in a unitary right Ç-module L' 
and if Q is a right quotient ring for R which is semi-simple Artinian, then by 
(3), R is a Goldie semi-prime ring. Suppose xc = 0 where x £ L and c is regular 
in R. Then c~l exists in Q and, since V is unitary, x — xl = (xc)c~1 = 0. 
Hence L is torsion-free over R and, by (4.8), L is semi-prime. 

Goldie (3) has called a module finite-dimensional if every direct sum of 
non-zero submodules has only a finite number of terms. In our case notice that 
M is finite-dimensional if and only if MQ is finite-dimensional. This follows 
from the fact that given a direct sum of submodules Ti © . . . © Tk in MQ, 
the sum (Ti Pi M) © . . . © (Tk H M) is direct in M. Likewise a direct sum 
L\ © . . . © Lk in M induces a direct sum L\ Q © . . . © Lk Q in MQ; cf. the 
proof of (3, (4.3)). 

(4.10) PROPOSITION. If M is finitely generated, then M is finite-dimensional. 

Proof. If xi, X2, . . . , xn
 ai*e generators for M, then xi 1, x 2 1 , . . . , xn 1 are 

generators for MQ. Since Q is semi-simple, this implies that MQ is finite-
dimensional. Then, from the preceding paragraph, M is finite-dimensional. 

(4.11) PROPOSITION. Let M be finite-dimensional and let N be a non-large 
submodule of M. Then N is maximal non-large if and only if N is intersection-
irreducible. 

Proof. If N is intersection-irreducible, then by an argument similar to (1, 
(2.2)), N is closed. From (4, 3.9)), c\(N) is a finite intersection of maximal 
non-large submodules and, because of its intersection-irreducibility, N must 
equal one of these submodules. The converse follows from (4.7). 

(4.12) THEOREM. If M is finite-dimensional, then M is a finite subdirect sum of 
uniform annihilator-prime submodules. 

First proof. By our previous remarks, MQ is finite-dimensional. The proof 
of (4.8) now provides a finite number of maximal non-large closed-prime 
submodules {N^ with r\Nt = 0. Then M is a subdirect sum of the modules 
Mt = M/Nt. Applying (2.3) and (4.7), we have the theorem. 

Second proof. By (4, (3.7)) we may write 0 = C\Nt where the Nt are maxi­
mal non-large submodules. The remainder of the proof is the same as that 
given above. 
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Let M and Nt be as in the proof of (4.12). Then 

(0 : M) = (r\Nt : M) = r\(Nt : M) 

where, by (2.7), each (Nt : M) is a closed-prime ideal in R. If, in addition, M 
is faithful, then the zero ideal is a finite intersection of closed-prime ideals of 
the form (Nt : M). Applying these remarks to a Goldie semi-prime ring R, 
considered as a module over itself, we obtain the following 

(4.13) THEOREM. If R is a Goldie semi-prime ring, there exist a finite number 
of prime ideals {Pi} such that 0 = r\Pt. Moreover, each Pi is of the form (Jt : R) 
where Jt is a maximal non-large right ideal which is closed-prime as a right 
R-module. 

We shall conclude with a characterization for Noetherian semi-prime 
modules. 

(4.14) THEOREM. Let Rhea Goldie semi-prime ring. An R-module L is Noetherian 
semi-prime if and only if L is a finite subdirect sum of uniform Noetherian 
annihilator-prime R-modules. 

Proof. If L is Noetherian, it is finite-dimensional. In addition, if L is semi-
prime and R is a Goldie semi-prime ring, then L is torsion-free. Using (4.12) 
we see that L is a finite subdirect sum of uniform annihilator-prime modules 
of the form L/Nt. I t is evident that each such module is Noetherian. 

Conversely, if L is a subdirect sum of uniform Noetherian annihilator-prime 
modules L\, . . . , Lk, then there exist submodules Nu . . . , Nk in M such that 
Lt = L/Nt and r\Nt = 0. Since the Nt are closed-prime by (2.3), we have 
P(L) = 0. The fact that L is Noetherian follows as in (1, (3.3)). 
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