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1. Definitions and notations

Let £an be a given infinite series with the sequence of partial sums {sn}. Let
{pn} be a sequence of constants, real or complex, and let us write

Pn = PO+P1+--+ Pn, P-1=p.1=0.

The sequence to sequence transformation

(1.1) t9 = I Pn-ksJPn = S Pn-kakjPn; (Pn * 0)
k = O k=O

defines the sequence {(„} of Norlund means [11] of the sequence {sn}, generated
by the sequence of coefficients {pn}. The series Ean is said to be summable
(AT, pn) to the sum s if lim,,.^ tn exists and is equal to s, and is said to be absolutely
summable (N,pn) or summable | N,pn\, if the sequence {tn} is of bounded varia-
tion, that is, the infinite series E „ | tn - fn_ 11 < oo (symbolically, {<„} € BV) [10].
In the special case in which

s-i ) =WT
the Norlund mean reduces to the familiar (C,6) mean. Thus the summability
| N, pn | is the same as | C, S | if {pn} is defined by (1.2).

The (N,pn)(C, 1) mean of {sn} is defined as the (N,pn) mean of the sequence
of (C,l) means of {>„}. We write ^ for the (N,pn)(C,l) mean of {sn}. Thus

ln ~ p ^ Pn-k

The series Ia n is said to be summable (N, pn) (C, 1) to the sum t, if lim,,-,,,,*,,1

exists and is equal to t and is said to be absolutely summable (N,pn)(C,\) or
summable | (N, Pn) (C, 1) | , if {tj,} e BV.

The conditions
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(1.3)
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n

limpn/Pn = 0 and Z \pk\ = O(\Pn\), n^ co;
n-*u3 ft = 0

471

are necessary and sufficient for the regularity of the (N,pn) mean, while the
conditions:

(1.4) {PJPn+k} eBV.foranyfc ^ 1 and pn-JPn = o(l), n -> oo, for some fixed k;

are necessary and sufficient for its absolute regularity [9].
Let/(l) be a periodic function with period 2TT and integrable (L) over (—n,n).

We assume without any loss of generality that the constant term in the Fourier
series of f(t) is zero, so that

and

(1.5)
n = l n = l

The derived series of (1.5) is

(1.6) ~L n(bncosnt — ansinnt).
n = l

We write throughout:

<t>(t) = *{/(* + 0 +/(x-o}; ^(0 = i{/(x + 0 -

*«(0 = rTT f (t-u)'-i4>(M)du,a>0; Oo(0 =1 W Jo

^.(0 = F(a + l)t-**.(0, a ^ 0;

k=0

sn =
k=O n\ s*n = z

A/n = A n / n = / n - / n + 1 ;

lk(t) = Z si
r = 0

11 pk

[m] denotes the greatest integer not greater than m. In particular we write
T = [«/*]•

By \F(0e BV(a, by, we mean that F(t) is a function of bounded variation
in the interval (a,b) and by '{/„} eB' that {/„} is a bounded sequence.

K denotes a positive constant, not necessarily the same at each occurrence.
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2. Introduction

Concerning the |C | summability of the Fourier series (1.5), Bosanquet [2]
has proved the following.

THEOREM A. / / (j>x(t) e BV(0, n), then the Fourier series of f(t) at t = x,
is summable \ C, a + 5 for every S > 0.

A generalisation of Theorem A when a = 0 to \N,pn summability is the
following result of Pati [12].

THEOREM B. / / (j)(t)e BY(0,7t) and {pn} is a nonnegative monotonic non-
increasing sequence such that {Rn}eBV, {Sn}eBV, then the Fourier series
off(t), at t = x, is summable |N,pB|.

Theorem B for more general sequences {/>„} has been obtained by Pati [13]
Varshney [15], Dikshit [3], [5] and Si-Lei [14].

For the (N,pn)(C, 1) method Astrachan [1] has proved the following.

THEOREM C. The (N,pn)(C,l) method is Kx-effective (0 < a ^ 1), pro-
vided the sequence {pn} satisfies the conditions (i) {Rn}eB, (ii) {Vn}eB and
(iii) {S:}eB.

That the (N, pn) mean used in Theorem C satisfies the regularity conditions
(1.3), is apparent from the following.

n H - l •(•

P,?= S | P n + S A p J
k=O /i

^ (n + l)\Pn\
fc=O u=k

= \PnRn\ + V(Ai + l)|ApJ
« = o

= O(\Pn\),

by virtue of the hypotheses (i) and (ii) of Theorem C, the former of which implies
that Pn/Pn = o(l), n -> oo .

Thus, Astrachan's use of the regularity conditions in his proof of Theorem C
is justified. It may also be observed that the hypothesis '{/?„} is a regular sequence'
may as well be dropped from the statements of some earlier results due to Hille
and Tamarkin ([6], Theorem I) and Astrachan [1]. In [4] the present author
has indicated and supplied a deficiency in the proof of Theorem C.

Theorem C implies inter alia that the Fourier series of f(t) is summable

Throughout the present paper Ea will be taken as zero if a > b.
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(N,pn)(C,l) at every point t = x, at which l i m ^ o ^ f ) = /(x), provided the
sequence {/>„} satisfies the hypotheses of the theorem.

Since generally bounded variation is the property associated with absolute
summability in the same sense in which continuity is associated with ordinary
summability, it is natural to expect from Theorem C that the condition
^(OeBVCO.Tt), along with the bounded variation of sequences in (i), (ii) and
(iii) may be sufficient to ensure the | (N,pn)(C,l)\ summability of the Fourier
series off(t), at f = x. Further, since the \(N,pn)(C,l)\ with {pn} defined by
(1.2) is the same as | C, 1 + 81, Theorem A and Theorem B also suggest that the
condition ^(OeBVXO.rc) along with the hypotheses of Theorem B, concerning
{pn} may lead to the | (N, pn) (C, 1) | summability of the Fourier series of/(/),
at t = x. That, this is indeed true for a more general sequence {/?„} is established
by our Theorem 1, which contains as a special case Theorem A for a = 1, when
we observe that the (C, 8) mean is a special case of the (N, pn) mean and appeal
to a result of Kogbetliantz [8].

In Theorem 2 we obtain a result for the | (N, pn) (C, 1) | summability of the
derived series, which includes the following form of a result due to Hyslop [7].

THEOREM D. If g(t)eBV(0,n), then the derived series of the Fourier series
of f(t), at t = x, is summable | C, 1 + 8j for every 8 > 0.

3. Main results

We prove the following.

THEOREM 1. If^t(t) e BV(0,7t) and {pn} is any sequence such that P*= O (\Pn\),
{Rn}eBW and {Sn}eBV, then the Fourier series of f(t) at t — x, is summable
\(N,Pn)(C,l)\.

THEOREM 2. If g(t)eBV(0,n) and {/>„} satisfies the hypotheses of Theorem 1,
then the derived series (1.6), at t = x is summable | (N,pn)(C, 1)|.

4. Some preliminary results

We require the following lemmas for the proof of our theorems

LEMMA 1. If {pn} is any sequence such that P* = O(\Pn\), {RjeBVand
{SjeBV, then {Vn}eB.

Lemma 1 is the same as Theorem 2 of [5].

LEMMA 2. / / {/>„} satisfies the conditions P* = O(\Pn\), {Rn}eBV and

{ S j e B V , then uniformly in 0 < t ^ n

(4.1) £ ^ ^ "X (P,P> - pJV) S1"(n ~ , k + ? t ^ K.
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PROOF. The lemma follows from Lemma 1, when one observes that the proof
of (4.1) is similar to the proof of the following ([14], p. 284)

1 " ^ _ sin(n — k)t
n-k

< K.

LEMMA 3.1/0(0 e BV(0,n) and {/>„} is any sequence such that P* = O (| Pn\),
{RjeBV and {SjeBV, then the sequence {«„}, where

un = 0(0
sin(n

is summable | N,pn\.

PROOF. Following the proof of a theorem of Pati ([12], p.156), we observe
that if 0(t)eBV(O,ri), then in order to prove the \N,pn summability of {un}
it is sufficient to show that (4.1) holds, uniformly in 0 < t ^ it. Thus Lemma 3
follows from Lemma 2.

LEMMA 4. Uniformly in 0 < t ^ n and for any positive integer n

^ K.

PROOF. By a change of order of summation, we have

" 1 k " " / I 1 \
X 777 rr £ sinvf = X sinvf E I-; -r-—7

k = 1 k(k + 1 ) v = 1 v = i k = v \k k + 1/

sinvi 1
= I n + 1 v=1

sinvf.

The itrm&a follows ftom this when v*e observe that sinvi < K.

LEMMA 5. / / 0 ^ v < n, then uniformly in 0 < t <i n

I P^-i KP*.

PROOF. Applying Abel's transformation, we get

k =0

v - l k

r = 0
+

r = 0

by virtue of Lemma 4.

LEMMA 6. For an.v sequence {pn} such that P* = O(\P\), {Sn}eBV implies
that {S*}eB.
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Lemma 6 is the same as Lemma 2 of [5 ] .

LEMMA 7. / / {pn} is any sequence such that P* = 0(|Pn|), then {Sn} e BV
implies that

n=*+l « | ^n - l I

where k = 0 ,1 ,2 , •••.

PROOF. Since P* = O(\ Pn | ) , we have for an integer M > k

1
M

M

M - l

n=fc+l

P*_

(p*.,)2
P v - .

M - 1 r"P* -I- P * ">

S K\Pk\ L v |Pn|Sn-i + KSk3*) P*_!

1

= K\Pk

»=t+l P*P*-1

M-X , 1 j

p. I +K

P.*-!
^ K, as oo,

since by Lemma 6, {S*} e B. This completes the proof of the lemma.

LEMMA 8. For k ^ 1 and uniformly in 0 < t -^ K, we have

(4.2) rO{i),

(4.3) fcW

L T ) .

PROOF. Since |sj'nvf| t^vt, we have
k

which proves (4.2). (4.3) follows directly from the fact that L\ = 1 sinvf = O(T) .
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LEMMA 9. IfO(t) e BV(O, n) and {/>„} is any sequence such that P* = 0(\ Pn | ) ,
{Rn}eBV and {Sn}eBV, then the sequence {vn}, where

1 f"
vn = - — -

n + i j 0
is summable | N,pn\.

PROOF. We write

_ v /ft ft-A
ln~ln-\— •" I n 5 "n-k

t = O Vn "n-1/

(Pv_ _ Pv-l\
n - 1 Jc

= I AkOB_k S

Since

= S {sin(/c
4=0

k(k+l) Jo

2
~ k(k + 1)

we have by a well known identity due to Kogbetliantz [8]

^ rcosrf 1 df

Thus

r ( S sinrt
J o l r = l

Since by hypothesis /o
n | d6{t) j ^ K, in order to show that Zn fn — („ _ j | < oo,

it is sufficient to demonstrate that uniformly in 0 < t rg u

(4.4) X =

We write

<

- pn(n + l)Pk}XH.k(t)

+
n - 1

i + 2. 2 J

say.
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Now

(4.5)

= I
n = 1 (n

I
n = l

: 2
v = 0

Z (/?* - ^
fc = 0

"lARv ipkln-k(t)
v=0 4=0

n-1

J I PJ

I I A/?v| ^ X ,
v = 0

by virtue of the hypothesis {Rn} e BV and Lemma 7.
We next write

z2 = z
1

(by Lemma 5)

< z
(4.6) [n/2]

21 + 23

say.

(4.7)

Since by Lemma 8, Xk(t) = O(t), we have

2 T + 1 <

Kt Z \Pn-k\

by virtue of the hypothesis that P* = O (| Pn)) .
We next note that, by the boundedness of {Rn} and the assumption that

P* = 0( | PB |) , we have for 1 ̂  k ^ %n

(4.8) p^^JC-J-Jil

By (4.2) and (4.8), we have

P* p* p
^ K "~k < K < K r"-i

(4.9)
1

Z fc = KT <

https://doi.org/10.1017/S1446788700011113 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011113


478 H. P. Dikshit

Further, by (4.3) and (4.8), we have

oo < [rt/2] .

y < KT y y
• ^ 2 3 == -**-̂  ^ 7 — , * \ 2 ^ ~T~

n = 2 r + 2 ' " "•" 1) * = i + l *

[9]

00 * 00

2 4 - 2
1

(« + I)2

(4.10) <

Finally, since, for relevant values of the variables 1/fc ̂  2/(n + 1), it follows
from (4.3) that

2 M £
1

24 S

(4.11)

n = 2r+2 I " T i ; \rn-l\ *=[n/2]+l

i: _J -_ < .
» = 2r+2 (»•

by virtue of the assumption that Pn* = 0 (| PB | ) .

Combining (4.4)-(4.7) and (4.9)-(4.11), we demonstrate that I, ^ K, and
this completes the proof of the Lemma.

LEMMA 10. / / {/>„} is any sequence such that P* = O (| Pn | ) , {Rn} e BV
{Sn}eBV, f/ien t/ie (N,pn) mean is absolutely regular.

PROOF. In order to show that {Pn/Pn+V} eBV, for any v ̂  1, we write

E* = 2
n=0

= I
n = 0 ' "n+v-1

hi Pn+V

^ I
•• n + v - 1

n + v - 1

Writing /in = | P , / P , + y - , | and 8t = \A{Rj(k + l)}\, we have

oo n + v— 1

v— I iv— 1 n + v— 1 \ oo / n + v — 1 n—1

= 2 ft, 2 + 2 \Sk+ 2 ft, | 2 - 2 k,
k~v k=v

v —1 k oo w + v—1 oo n— 1

= 2 <St 2 / / „ + 2 /*„ 2 <5fc - 2 ^ 1
fc=0 n = 0 n = l Jc=v n = v + l fc=v

v - 1 k cc oo

2 ^ 2 j u n + E <5*+v 2
/t=0 n=0 * = 0 n=k+l

5» 2 //„
n=k+l
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v - 1

= Z
t=0
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P-
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(I£I)
k

z
n=0

+ I
k

E
* n + v - 1 '

(4.12) = Ef + I j ,
say.

Now by assumption P* = 0(|Pn|), we have

v - l

2? ^ K Z

pJ

(4.13)

P v - 1
v - l

p * fc=O
v — 1

t. ^* ,

by virtue of Lemma 6 and the assumption that {Rn} e BV.
Similarly,

(4-14) = Kv Kv Z
fc=v

H.k"+1 P*+v_,

since {/?n}eBV.
Combining (4.12)-(4.14), we prove that {Pn/Pn+V} eBV, for any v ^ 1.
Finally, since P* = 0(|Pn|) , we have as n -* oo,

pn-JPn = O[|Pn_v/{(n - v + 1)P.}|] =

by virtue of the assumption that {!?„} e BV .
Thus the conditions (1.4) are satisfied and the (N,pn) mean is absolutely

regular.

5. Proof of Theorem 1

Writing an(x) for the (C, 1) mean of I,An(x), we have

if""
^ ^ + l> J 0 r =

= ZhTZu f «/>(0{sin l n + l) Jo

Integrating by parts we get
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r • 1/ IN 12 1 f ^ I O ) sin(« + l)f _,{sini(n + l)7t}2 - —- . , — ^ — - — - dt
1 f* <&,(i

sin

say.
Since the (N, pn) (C, 1) mean ofLAn(x) is the (JV, pn) mean of {an(x)}, in order

to prove the theorem it is sufficient to demonstrate that the sequences
{«„}, {vn}, {wn} are summable |JV,pB| under the hypotheses of the theorem.

That {vn} and {«„} are summable | N, pn |, follows directly from our Lemma 3
and Lemma 9, respectively, when we appeal to the hypothesis:

Next, we observe that

w n - w n _ ! = «„ + /
where

( - l ) M 4sin(M
a- =

-A

p = , 2(n + i)(n + l)

- A

(n even);

2n(n + i)

and /I = O1(n)/jt.
That Ean is summable | JV, pB , follows as a special case of Lemma 2, while

the | N, pn | summability of S)Sn, follows from its absolute convergence, when
we appeal to Lemma 10.

This completes the proof of Theorem 1.

6. Proof of Theorem 2

If s*(x) denotes the nth partial sum of the derived series (1.6), then

n Jo

and therefore the (C, 1) mean of {s,J(x)} is

( )
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J.
Following the technique of proof of Theorem 1, we observe that the hypo-

thesis \ji(i)jt = g(()eBV(0,7t) is sufficient to ensure the \N,pn\ summability of
{al(x)}, by virtue of Lemma 3 and Lemma 9.

This completes the proof of Theorem 2.
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