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ABSTRACT. Multi-dimensional radiative energy transport is coupled self-consistently to magne-
tohydrostatic solutions for fluxtubes with rotational symmetry. It is shown that the photospheric 
layers of plage and network fluxtubes are heated by radiation by as much as 300 Κ at equal geomet-
rical height. The amount of heating depends on the density reduction within the tube. The results 
are compared with observational data and the most recent semi-empirical model. 

1. Magnetohydrostat ics and Radiat ive Transport 

Magnetohydrostatic solutions of rotationally symmetric, vertically oriented magnetic fluxtubes in 
the solar photosphere are considered. The models should account for the basic physical processes 
of the tiny photospheric structures, which appear as bright points in the continuous spectrum of 
plages and network regions, and which are observed to have strong magnetic fields in the 1-2 kG 
range (Stenflo, 1973, 1989). 

The magnetohydrostatic equation, 

- V p + / ) g + ^ ( V x B ) x B = 0 , (1) 

is solved using a finite difference scheme, allowing for fluxtubes having a sharp boundary (current 
sheet) where the magnetic field strength jumps from a finite value to zero. The method for solving 
(1) has been described in great detail in Steiner et al. (1986), who also provide an accuracy test. 

As a next step, to obtain more realistic models for plage and network magnetic fluxtubes and to 
reduce the number of free parameters, we include an energy equation, which allows us to derive the 
temperature structures of such regions. We concentrate on the photospheric layers, since this is the 
height region most accessible to Stokes polarimetry. In this region radiative transfer is the dominant 
mode of energy transport. The radiative transfer equation is solved using cylinder coordinates under 
the constraint of radiative equilibrium: 
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(2) 

(3) 

LTE is assumed with allowance for continuum scattering. The continuum opacities, scattering 
coefficients, and the mean molecular weight are computed using the statistical equilibrium and 
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opacity code of Gustafsson (1973). Line blanketing is taken into account using opacity distribution 
functions (ODF) of Kurucz (1979). Couples of ODF's have been merged into one to save computer 
CPU-time. To avoid the inversion of the complete Α-matrix the formal solution of the transfer 
equation 

J„(r) = A„(r , r ' )B„(r ' ) (4) 

is only computed, using an accelerated λ-iteration to obtain iterative temperature corrections. This 
procedure is based on an operator perturbation technique as will be described in Steiner (1989). 
The method provides fast convergence also in high opacity atmospheres. This is greatly needed 
since radiative transfer within the tube may still be important even far below the τ = 1 level, due 
to the inhibition of convective energy transport by the magnetic field. 

The formal solution of the radiative transfer equation in cylinder coordinates has been computed 
using a modified version of the program CYL2D written by P. Kunasz, which is based on the short 
characteristic method of Kunasz and Auer (1988). This code reduces the 3D-transfer problem to an 
integration in several 2D-planes by exploiting the rotational symmetry. 

F i g u r e 1. Model magnetic fluxtube representative of examples considered in the text, a) Field 
lines delineating the fluxtube which is separated from the surrounding field free plasma by a thin 
current sheet. Superimposed on the figure are horizontal curves showing the radial variation of B2 

(solid lines) and Br (dashed lines), each normalized to Bz at the axis, the value of which in Gauss 
is indicated to the left of each curve, b) Same fluxtube as in a) with contour lines of constant 
temperature (solid lines) and constant optical depth (dashed lines), log rsooo is indicated to the 
left and right of the figure. The region below the heavy solid line is convectively unstable and its 
temperature has been prescribed (see text). 
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2. Magnet i c Field and Temperature Structure 

Fig. la shows representative magnetic field lines of a fluxtube with a radius of 100 km and a field 
strength of about 1600 G, at ζ — 0 (which refers to the height ζ at which T 5 0 0 0 = 1 in the undisturbed 
atmosphere l ) . Included in the figure are curves giving the field strength as a function of radius 
at several height levels. The field of the ζ component decreases from the fluxtube axis to the 
fluxtube boundary as a consequence of magnetic tension forces (Steiner and Pizzo, 1989). Because 
of the decreasing gas pressure the fluxtubes expand strongly with height and finally merge with 
neighbouring tubes into a uniform vertical weak field. The effect of the neighbouring fluxtubes is 
accounted for in the model by the choice of the boundary conditions for Equation (1). 

Fig. lb shows the temperature structure of the fluxtube of Fig. la together with iso-r5ooo lines. For 
the radiative transfer, Eq. (4), periodic boundary conditions have been used to take the influence of 
neighbouring fluxtubes into account. Since convective energy transport is not treated in the present 
model the temperature structure in the corresponding region (area below the heavy solid line in 
Fig. lb) is prescribed, using the values of Grossmann-Doerth et al. (1988). The fluxtube interior is 
much less opaque than its surroundings because of its reduced density. It can be imagined as a hole 
in the solar surface through which radiation escapes more easily, causing an elevated temperature 
in the overlying photospheric layers. 

Fig. 2a shows the variation of temperature with optical depth along the axis of fluxtubes having 
field strengths of 1600 (dot-dashed line) and 1500 Gauss (dashed line), as well as along the symmetry 
axis between the fluxtubes (solid line), which is very close to the temperature of the undisturbed 
atmosphere. The dotted line represents the semi-empirical model of Keller (1989). Note that the 
characteristic temperature depression around log r 5 0oo = —2 present in the semi-empirical model 
can not be explained by radiative effects. Fig. 2b shows for the same models the temperature as a 
function of geometrical height z. 
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Figure 2. a) Temperature with optical depth along the symmetry axis between two neighbouring 
fluxtubes (solid line) and along the fluxtube axis for a tube with Bz(z = 0) = 1600 G (dot-dashed) 
and 1500 G (dashed line). The dotted line refers to the semi-empirical model of Keller (1989). b) 
Temperature curves as functions of geometrical height z. 

1 With 'undisturbed atmosphere' we mean the model atmosphere obtained with the same code as 
used for the fluxtube calculations but without magnetic fields. The resulting undisturbed or quiet 
atmosphere is very close to the solar model of Kurucz (1979). 
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3. Center t o Limb Cont inuum Contrast 

The solid line in Fig. 3 shows the calculated continuum contrast 7 (λ = 5000 Ä) for values of 
μ = cos0 close to the solar limb and for a model with B(z = 0) = 1500G, R(z = 0) = 100 km, 
and a filling factor / = 0.175. The calculated contrast is an average over a region of about l x l 
arcseconds, simulating moderate resolution. The dot-dashed and the dashed lines are moderate 
resolution observations taken from Badaljan (1968) and Akimov et al. (1987), respectively. Three 
characteristics should be noted. Firstly, the maximum continuum contrast of the model occurs 
around μ = 0.2 in agreement with observations. Secondly, the actual value of 7 depends strongly 
on the filling factor. This can be readily understood if we imagine that with increasing / more 
and more fluxtubes appear in a given resolution element making it more or less uniformly bright. 
It is clear that the particular density and temperature structure of the fluxtube also plays a role. 
Thirdly, we draw attention to the sharp increase of 7 very close to the limb, which is exclusively 
due to the radiative heating of the tube interior above ζ « 0. Increasing continuum contrasts at the 
extreme limb (μ ^ 0.1) have been reported by several authors, for example by Akimov et al. (1987). 

Figure 3. Center to limb variation of the con-
tinuum contrast (λ = 5000 Â) derived from a 
model similar to that shown in Fig. 1 along 
with observed (dashed and dot-dashed lines) 
CLV contrasts. 
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