
JFP 15 (3): 351–352, 2005. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005496 Printed in the United Kingdom

351

Special Issue
High Performance Parallel Functional

Programming

P. W. TRINDER

School of Mathematics and Computer Science, Heriot-Watt University,

Riccarton, Edinburgh EH14 4AS, Scotland

(e-mail: trinder@macs.hw.ac.uk)

Engineering high-performance parallel programs is hard: not only must a correct,

efficient and inherently-parallel algorithm be developed, but the computations must

be effectively and efficiently coordinated across multiple processors. It has long been

recognised that ideas and approaches drawn from functional programming may be

particularly applicable to parallel and distributed computing (e.g. Wegner 1971).

There are several reasons for this suitability. Concurrent stateless computations are

much easier to coordinate, high-level coordination abstractions reduce programming

effort, and declarative notations are amenable to reasoning, i.e. to optimising

transformations, derivation and performance analysis.

After a long gestation the potential of functional techniques for parallel and

distributed computing is now being realised in practice, and this special issue outlines

contributions in several areas. Declarative techniques are being used to construct

significant parallel and high-throughput systems, e.g. real-time image analysis and

high-end telecoms systems. Indeed, it can be argued that high-performance systems

now rival prototyping, formal reasoning and education as areas where functional

technology has the greatest impact. A comprehensive survey of parallel functional

technologies can be found in Hammond & Michaelson (1999), and a survey of

parallel and distributed Haskells in Trinder et al. (2002).

Erlang is the most widely used functional language for engineering high-through-

put fault-tolerant systems. Erlang was designed for, and has had most impact in,

the telecoms sector, but is now spreading to other sectors like banking. The Erlang

AXD301 switch, or telephone exchange, is arguably the largest and most significant

functional program ever constructed. An early version comprised approximately

500K lines of new Erlang code, 300K lines of mostly-reused C and 8K lines of Java.

The system executes on up to 32 processors and was written by a team peaking

at 50 software engineers (Blau et al., 1999). Symptomatic of Erlang’s commercial

success, it has proved very hard to find commercial engineers with time to contribute

to an academic journal. However the paper by Gulias et al. describes the design,

engineering and performance of VoDKA, an Erlang system capable of meeting the

substantial real-time performance requirements of delivering video on demand using

a cheap commodity cluster.

Engineering any sizable software requires amethodology. Systematic development is

especially important for high throughput systems, where performance objectives are

https://doi.org/10.1017/S0956796805005496 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005496


352 P. W. Trinder

often at odds with simplicity and elegance. In systematic development, performance

prediction enables optimisation. The paper by Luke and George describes a rule-

based methodology giving predictable performance, illustrated with case studies.

For decades there has been sustained interest in the design, implementation and

evaluation of parallel functional languages. The research has been greatly facilitated

in the last decade when their sophisticated implementations became architecture

independent, i.e. no longer tied to a specific parallel machine. Two such languages

are represented here. The paper by Loogen et al. describes Eden, an extension

of Haskell with processes, together with its formal semantics, skeleton-oriented

programming methodology, implementation, and some case studies. The paper by

Grelck describes SAC, a functional subset of C designed for efficient parallel array

manipulation, and covers both optimisation and performance evaluation.

Parallel and distributed functional programming is likely to remain a vibrant

research area as our increasingly networked hardware and middleware environments

raise new challenges, many of which the functional paradigm is well-placed to

address. For example Computational Grids offer enormous amounts of computing

power on heterogeneous platforms distributed over wide area networks, hence

requiring sophisticated and dynamic management that is hard to provide in a

low-level paradigm. Functional languages have enabled high level abstractions over

parallel coordination that have become accepted in the parallelism community,

e.g. algorithmic skeletons (Cole, 1988). Analogous abstractions are now required

for distributed and mobile coordination, and some distributed abstractions are

already under development, e.g. Erlang behaviours (Armstrong, 2003). Being able to

reason readily about an aspect like coordination enables interaction to be optimised,

increases reliability and facilitates refactoring. The strong tradition of reasoning

about parallel coordination (Skillicorn, 1992) is a good basis for addressing the new

challenges of reasoning about distributed and mobile coordination.

References

Armstrong, J. (2003) Making Reliable Distributed Systems in the Presence of Software Errors.

PhD thesis, Department of Microelectronics and Information Technology, Royal Institute

of Technology, Stockholm, Sweden.

Blau, S., Rooth, J., Axell, J., Hellstrand, F., Buhrgard, M., Westin, T. and Wicklund, G. (1999)

AXD 301: A new generation ATM switching system. Computer Networks, 31(6), 559–582.

Cole, M. C. (1988) Algorithmic Skeletons: Structured Management of Parallel Computation.

PhD thesis, University of Edinburgh. (Also published in book form by Pittman/MIT,

1989.)

Hammond, K. and Michaelson, G. (1999) Research Directions in Parallel Functional Pro-

gramming. Springer-Verlag.

Skillicorn, D. B. (1992) Parallelism and the Bird-Meertens Formalism. Kingston, Ontario:

Department of Computing and Information Science, Queen’s University.

Trinder, P. W., Loidl, H.-W. and Pointon, R. F. (2002) Parallel and Distributed Haskells.

J. Funct. Program. 12(4&5), 469–510.

Wegner, P. (1971) Programming Languages, Information Structures and Machine Organisation.

McGraw-Hill.

https://doi.org/10.1017/S0956796805005496 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005496

