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Abstract—Clay–organic interaction is an important natural process that underpins soil ecosystem services. This process can also be
tailored to produce clay–organic nanocomposites for industrial and environmental applications. The organic moiety of the nanocom-
posites, typically represented by a toxic surfactant, could be replaced by hydrochar formed from biomolecules (e.g. glucose) via
hydrothermal carbonization. The effect of montmorillonite (Mnt) and glucose dosage on hydrochar formation, however, has not been
clarified. In addition, the mechanisms by which Mnt-hydrochar nanocomposites (CMnt) can detoxify and remove carcinogenic Cr(VI)
from aqueous solution are not well understood. In the current study, research milestones in terms of clay–organic interactions are
summarized, following which the synthesis and characterization of CMnt for Cr(VI) adsorption are outlined. Briefly, 1 g of Mnt was
reacted with 75 mL of glucose solution (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mol L−1) by hydrothermal carbonization at 200°C for 16 h. The
resultant CMnt samples were analyzed for chemical composition, functional groups, morphological features, and Cr(VI) adsorptive
properties. Mnt promoted the conversion of glucose to hydrochars, the particle size of which (~80 nm) was appreciably smaller than that
formed in the absence of Mnt (control). Furthermore, the hydrochars in CMnt had an aromatic structure with low hydrogen substitution
and high stability (C/H atomic ratio 0.34–0.99). The weakened OH (from hydrochar) and Si–O–Si stretching peaks in the Fourier-
transform infrared (FTIR) spectra of CMnt are indicative of chemical bonding between Mnt and hydrochar. The CMnt samples were
effective at removing toxic Cr(VI) from acidic aqueous solutions. Several processes were involved, including direct reduction of Cr(VI)
to Cr(III), complexation of Cr(III) with carboxyl and phenolic groups of hydrochar, electrostatic attraction between Cr(VI) and positively
charged CMnt at pH 2 followed by indirect reduction of Cr(VI) to Cr(III), and Cr(III) precipitation.

Keywords—Adsorption . Chromium . FTIR . Hydrothermal carbonization .Montmorillonite-hydrochar nanocomposites . XPS

INTRODUCTION

Clay–organic interaction is arguably as vital to sustaining
life as is photosynthesis (Jacks, 1973). Photosynthesis pro-
duces biomass for human beings and animals, while the
clay–organic interaction (in soil) stabilizes organic matter
(OM) against rapid microbial decomposition as indicated by
a mean residence time of 4830 ± 1730 y for soil OM (Shi
et al., 2020). Clay–organic complex formation lies behind the
ability of soils to deliver ecosystem services that sustain life on
the Earth (FAO, 2015). These services include, but are not
limited to: (1) holding water in soil-aggregate pores and buff-
ering its distribution on the Earth’s surface; (2) adsorbing
nutrients and regulating their availability to plants; (3) filtering
out chemical and biological contaminants; (4) sequestering and
releasing carbon; and (5) holding and preserving genetic infor-
mation (e.g. microbes) (Yuan, 2004).

Research on clay–organic interactions dates back to the
1950s (Martin et al., 1955). The literature up to the early
1970s was reviewed by Greenland (1965a, 1965b), Mortland
(1970), and Theng (1974). In 1990 the International Society of

Soil Science established the Working Group MO, and in 2004
the International Union of Soil Sciences established Division
2.5 to promote research on clay–organic interactions. Since
then, eight International Symposia have been held on the
Interactions of Soil Minerals with Organic Components and
Microorganisms (ISMOM) in various countries. Several pro-
ceedings have been published, covering various topics from
environmental pollution and remediation to carbon sequestra-
tion and soil health. More recently, biochar has served as the
organic moiety in the formation of clay–organic complexes for
environmental applications (Wang et al., 2019; Ramola et al.,
2020).

In parallel with fundamental research on clay–organic in-
teractions in soils and sediments, organo-clays have found
applications in a variety of industries (Nahin, 1961; Theng,
1974, 2012, 2018; Guo et al., 2020). Organo-clays are pro-
duced typically by intercalating cationic surfactants, notably
quaternary ammonium compounds, through ion exchange
with the inorganic counterions of expanding phyllosilicates,
such as montmorillonite. As a result, the initially hydrophilic
clay mineral is converted to a hydrophobic organo-clay that
can be incorporated into a wide range and variety of industrial
and personal consumer products, such as paints, stains, spe-
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cialty coatings, adhesives, and sealants, as well as lubricating
greases, drilling fluids, and cosmetics (De Paiva et al., 2008).
The type and quantity of surfactants used, together with the
operational conditions for producing organo-clays, can be
tailored to enhance such properties as thermal stability
(Hedley et al., 2007) and sorption capacity (Zhu et al., 2015),
or lessen other properties, such as toxicity (Guégan, 2019) and
swellability (Yu et al., 2017).

Being good adsorbents of uncharged nonpolar organic
compounds (Theng, 1974; Zhao et al., 2017), organo-clays
have enjoyed applications in the remediation of air, water,
and soil (Yuan et al., 2013; Biswas et al., 2019) contaminated
by hydrocarbons (Jaynes & Vance, 1999), pesticides and her-
bicides (Brixie & Boyd, 1994; Park et al., 2011), and pharma-
ceuticals (De Oliveira et al., 2018). Organo-clays have also
been used in slow-release formulations of pesticides (Trigo
et al., 2009) and other agrochemicals (Yuan, 2014) as well as
in mitigating their environmental impacts.

A milestone in materials science was the synthesis in the
late 1980s of the nylon 6-clay hybrid by scientists at Toyota
Central R&D Laboratories, Japan (Kojima et al., 1993). Such
hybridmaterials, referred to as ‘polymer-clay nanocomposites’
(PCN), commonly contain <10 wt.% clay. However, because
the clay nanoparticles are dispersed throughout the polymer
matrix, PCN show superior thermo-mechanical, gas-barrier,
and fire-retardant properties as compared to the corresponding
pristine polymers. PCN have been incorporated successfully in
automotive parts, sports gear, and packaging materials. These
novel polymer-clay nanocomposites can also serve potentially
as carriers of controlled-release drugs, antibiotics, and energy.
For more details on the synthesis, properties, and applications
of PCN, the books written or edited by Theng (2012), Bergaya
et al. (2013), and Jlassi et al. (2017) may be consulted.

Hydrothermal carbonization is a chemical process of
converting wet biomass into hydrochar (and energy) using elevat-
ed temperatures and pressures (Wang et al., 2018; Liu et al.,
2019). In other words, it imitates in a short period (hours to days)
the natural coal-forming process that occurs over a geological
timescale. After surface modification and activation, the
hydrochar produced can serve potentially as an adsorbent of
environmental pollutants (Hammud et al., 2019; Zhang et al.,
2020). Being abundant, inexpensive, and non-hazardous, biomass
is an environmentally friendly substitute for synthetic surfactants
used in forming clay–organic complexes. However, limited infor-
mation is available about the effect of clay-mineral type on
hydrochar formation (Li et al., 2014). Furthermore, the processes
and mechanisms involved in the formation of clay–hydrochar
complexes are not well understood.

The above summary of the literature aims to: (1) help
students to appreciate the historical contributions of clay sci-
ence to advancing research in agriculture, environmental pro-
tection, and functional materials; and (2) encourage clay sci-
entists to collaborate in achieving such globally important
goals as sustainable development, the Paris Agreement, and
IPCC’s target of carbon neutrality by mid-21st century.

The technical part of the current paper tests the hypothesis

hydrochar particles from glucose obtained by hydrothermal
carbonization and that multiple mechanisms are involved in
the adsorption of Cr to Mnt-hydrochar nanocomposites
(CMnt). Unlike toxic synthetic surfactants, glucose is a benign,
eco-friendly, and natural compound.

MATERIALS AND METHODS

Materials
The raw montmorillonite (Mnt), provided by Zhejiang

Fenghong New Material Co., Ltd. (Anji, Zhengjiang, China),
was ground and passed through a 200-mesh sieve (75 μm)
before use. All reagents, including glucose and potassium
dichromate (K2Cr2O7), were of analytical grade, purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, Chi-
na). Ultrapure Milli-Q water was used throughout.

Preparation of Hydrochar-montmorillonite Nanocomposites
(CMnt)

In a typical procedure, 1 g of montmorillonite was dis-
persed in 75 mL of glucose solution with magnetic stirring
for 2 h at room temperature. Aliquots of the homogeneous
dispersion were transferred into Teflon-lined stainless-steel
autoclaves (100 mL), sealed, and placed in an oven. Previous
studies indicated that a hydrothermal time of 12 h was critical
for carbon-nanoparticle formation, while an increase in reac-
tion temperature to 200°C increased the rate of carbonization
(Wu et al., 2014; Liu et al., 2015). On that basis, a hydrother-
mal time of 16 h and a temperature of 200°C were selected.
The effect of montmorillonite on the formation of hydrochar
was assessed using the following weight ratios of glucose/
montmorillonite: 1.35, 2.70, 4.05, 5.40, 6.75, and 8.10, corre-
sponding to glucose concentrations of 0.1, 0.2, 0.3, 0.4, 0.5,
and 0.6 mol L−1, respectively. The resultant black composites
were named by adding the molar glucose concentration at the
front of the rest of the name; i.e. 0.1CMnt, 0.2CMnt, 0.3CMnt,
0.4CMnt, 0.5CMnt, and 0.6CMnt. For comparison, a
hydrochar (denoted as 0.5C) was prepared using a glucose
solution (0.5 mol L−1) under the same conditions but in the
absence of montmorillonite. The CMnt samples were separat-
ed by centrifugation, washed, and dried at 60°C for 12 h.

Materials Characterization
The point of zero charge (pHPZC), determined by the pH drift

method (Kosmulski, 2016), was used to assess the ionization of
functional groups in CMnt and their interaction withmetal species
in solution (Fiol & Villaescusa, 2009). Elemental analysis was
conducted using an Elementar VarioMicro cube analyzer (Hesse,
Germany). FTIR spectra (from 4000 to 600 cm−1) were obtained
using a Thermo Scientific Nicolet iS5 spectrometer (Waltham,
Massachusetts, USA) with a resolution of 4 cm−1. N2adsorption-
desorption isotherms at 77 K were obtained on a Micromeritics
ASAP2020M+C surface area analyzer (Norcross, Georgia, USA).
The specific surface area of the composites was obtained by
applying the BET equation, while the pore-size distribution was
evaluated using the DFT method. Thermogravimetric (TG) anal-
ysis was conducted in an N2 atmosphere from 25 to 850°C at a
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heating rate of 5°C min−1 using a Mettler 5MP/PF7548/MET/
400W thermal analyzer (Zurich, Switzerland). Scanning electron
microscopy (SEM) was performed with a Hitachi S-4800 instru-
ment (Tokyo, Japan) equipped with an HORIBA EX-350 energy
dispersive X-ray microanalyzer (EDX) (Kyoto, Japan).

Adsorption of Cr(VI)
The adsorption of Cr(VI) by CMnt was determined in

duplicate using a batch technique. Briefly, 25 mg of CMnt
was placed in a 50 mL polypropylene centrifuge tube contain-
ing 20 mL of K2Cr2O7 aqueous solutions with various initial
concentrations (10.4–468mgCr L−1), adjusted to pH 2 and pH
8. After shaking at 25°C for 48 h, the tubes were centrifuged
and the suspensions filtered. The Cr(VI) concentration in the
filtrate was determined by the diphenylcarbazide method using
a Thermo Scientific GENESYS 10S UV-Vis spectrophotom-
eter (Waltham, Massachusetts, USA) at 540 nm. The pellets
were then freeze dried for further analysis.

The Freundlich isotherm model (Eq. 1) and Langmuir
isotherm model (Eq. 2) were used to simulate Cr(VI) adsorp-
tion to CMnt.

Qeq ¼ kFCeq
n ð1Þ

where kF (mg1–n g–1 L–n) is the Freundlich constant related to
adsorption capacity and n is an empirical parameter signifying
the degree of heterogeneity of binding sites.

Qeq ¼
QmaxkLCeq

1þ kLCeq
ð2Þ

where Qmax (mg g−1) denotes the maximum adsorption capac-
ity,Qeq (mg g−1) is Cr adsorption at equilibrium,Ceq (mg L−1)
is Cr concentration at equilibrium, and the parameter kL
(L mg−1) is the Langmuir constant related to the binding
affinity and free energy of adsorption.

X-ray Photoelectron Spectroscopy (XPS) Analysis
The surface elemental composition and chemical oxidation

state of CMnt were measured by XPS (Thermo Fisher
ESCALAB 250 xi, Waltham, Massachusetts, USA), using a
monochromatic AlKα X-ray source (hν = 1486.6 eV). The
XPS spectra were recorded with a pass energy of 1350 eV
(step = 1 eV) for survey scans and 25.00 eV (step = 0.05 eV)
for individual high-resolution spectra of O (1s) and Cr (2p).

XPSPEAK software (Version 4.1) and XPS spectral fitting
were used to identify and quantify the retention of Cr(VI) and
Cr(III) by CMnt. The C(1s) peak (284.8 eV) was used as an
internal standard to calibrate the energy scale, while the peaks
were deconvoluted using Gaussian-Lorentzian peak shapes
(50%) and a Shirley background (Aronniemi et al., 2005).
Spectral fittings were performed using a full-width-at-half-
maximum(FWHM) of 1.5, with a chi-square value of <1
indicating a good fit.

RESULTS AND DISCUSSION

Montmorillonite Promotes Hydrochar Formation
The elemental compositions (C and H) of Mnt, hydrochar,

and CMnt are presented in Table 1. The Mnt sample
contained 1.12 wt.% carbon (probably from associated car-
bonates) and 1.71 wt.% hydrogen. The carbon content of
CMnt increased with an increase in initial glucose concentra-
tion, particularly from 0.1 to 0.5 mol L−1. At the same time,
the C/H atomic ratio increased, suggesting enhanced conden-
sation of the hydrochars. Thus, a glucose concentration of
0.5 mol L−1, giving a weight ratio of glucose to Mnt of
6.75:1, was apparently crucial. Above this concentration,
the carbonization reaction slowed down because the clay
surface was close to being fully covered by hydrochar. By

Table 1. C and H contents and their atomic ratios of parent Mnt,
0.5C, and CMnt prepared at various concentrations of glucose

Samples C (wt.%) H (wt.%) C/H

Mnt 1.12 1.71 0.05

0.5C 66.40 4.44 1.25

0.1CMnt 12.53 3.11 0.34

0.2CMnt 30.49 3.83 0.66

0.3CMnt 39.53 4.27 0.77

0.4CMnt 45.44 4.09 0.93

0.5CMnt 47.94 4.08 0.98

0.6CMnt 48.39 4.06 0.99
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Fig. 1. N2adsorption-desorption isotherms of montmorillonite (Mnt) and its complex with hydrochar (0.5CMnt)
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Fig. 3. FTIR spectra of the 0.5C, parent Mnt, and CMnt prepared at various concentrations of glucose

https://doi.org/10.1007/s42860-021-00151-8 Published online by Cambridge University Press

https://doi.org/10.1007/s42860-021-00151-8


Clays and Clay Minerals

comparison, a carbon content of 35.22 wt.% was reported by
Wang et al. (2017) for a glucose-illite composite formed by
hydrothermal carbonization, while carbon contents of 24.67
and 31.63 wt.% for a cellulose-sepiolite composite were
measured by Wu et al. (2017). The relatively large carbon
contents of CMnt, measured in the current study, implied that
Mnt is a superior template for hydrochar formation.

A weight ratio of glucose to montmorillonite of 6.75:1 was
chosen to assess the positive role of montmorillonite in
hydrochar formation. The N2adsorption-desorption isotherms
of both 0.5CMnt and Mnt (Fig. 1a) were of type IV with an
H3-type hysteresis loop. This observation indicates that the
samples consisted of superposed platy particles with slit-
shaped micropores and mesopores (Sarkar et al., 2015; Tong
et al., 2018). However, the adsorption and desorption values
for 0.5CMnt, at the same relative pressure, were greater than
those for pristine Mnt because the composite material was
more porous. Indeed, the pores of 0.5CMnt ranged from 0.5

to 30 nm, with a peak near 1.4 nm, whereas the average pore
size of Mnt was 4.0 nm (Fig. 1b).

Also noteworthy is that the specific surface area of 36.0m2 g−1

for 0.5CMnt was appreciably larger than that measured for Mnt
(28.0 m2 g−1). On the other hand, previous studies indicated that
the pore volume and specific surface area of carbon-clay nano-
composites were smaller than the values measured for the corre-
sponding pristine clay minerals (Liu et al., 2015; Wu et al., 2017;
Zhang et al., 2018). This observation was ascribed to the blocking
of micropores by amorphous carbon formed during hydrothermal
carbonization.

Scanning electron microscopy images of CMnt and its
components (Fig. 2) show that the nanocomposite has a more
open microporous structure than the original montmorillonite.
Carbon-rich particles with a diameter of ~80 nm cover much of
the Mnt surface (Fig. 2e, f).

As reported by Wei et al. (2019), Mnt particles tend to
exfoliate during the hydrothermal process. The resultant
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Fig. 4 a Freundlich and b Langmuir isotherms as models for Cr(VI) adsorption onto CMnt at pH 2
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increase in surface area is conducive to carbon deposition on
external clay-particle surfaces as well as within micropores.
Figure 2c, d shows that the 0.5C material consists of nanosize
(~250 nm) spherical particles that are appreciably larger than
their counterparts in CMnt. In accord with Wu et al. (2014,
2017), the presence of clay minerals is conducive to reducing
the size of carbon nanoparticles formed during the hydrother-
mal process.

Mechanisms Involved in the Formation
of Hydrochar-montmorillonite Nanocomposites

The FTIR spectra of Mnt, 0.5C, and CMnt, formed at six
different glucose concentrations (Fig. 3), revealed the structural
evolution of glucose-derived carbon on theMnt surface. The peak
at 3600 cm−1 in the spectrum of Mnt is assigned to Al–O–H
vibration, while the peaks at 1035–1010 and 980 cm−1 are due to

Si–O stretching vibrations (Tong et al., 2018). Following Yang
et al. (2017), the peaks at 3400 and 1640 cm−1 are attributed to
OH-bending of water coordinated to exchangeable cations, while
the shoulder at 910 cm−1 is due to hydroxyl vibration ofMnt. The
various peaks for Mnt are still discernible in the spectrum of
CMnt, but their intensities are significantly reduced. The FTIR
spectra of both 0.5C and CMnt show peaks due to CH3 and CH2

bending (2790 and 2860 cm−1), carbonyl C=O in quinone, ester,
or carboxyl (1700 cm−1), C–O stretching in hydroxyl, ester, or
ether (1460–1000 cm−1), and aromatic C–Hout-of-plane bending
(900–750 cm−1) (Wei et al., 2020). The intensity of these peaks
increases with the concentration of glucose added, reflecting the
enhanced formation of hydrochar-montmorillonite
nanocomposites.

CMnt may be regarded as a chemical composite rather than
a physical mixture of hydrochar and Mnt. Thus, the OH peaks
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Table 2. Freundlich and Langmuir isotherm parameters for Cr(VI) adsorption at pH 2

Absorbents Freundlich model Langmuir model

kF (mg
1–n g–1 L–n) n R2 Qmax (mg g–1) kL (L mg–1) R2

Mnt 0.078 0.137 0.614 0.093 33.2 0.775

0.1CMnt 13.0 0.141 0.951 23.3 1.14 0.839

0.2CMnt 29.3 0.104 0.944 51.9 0.183 0.717

0.3CMnt 25.9 0.202 0.872 75.5 0.103 0.871

0.4CMnt 29.4 0.209 0.901 84.0 1.03 0.913

0.5CMnt 44.0 0.153 0.982 100 0.158 0.761

0.6CMnt 49.1 0.115 0.916 87.7 0.115 0.887
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Fig. 5. SEM images and EDX data of 0.5CMnt after Cr(VI) adsorption at a, b pH 2 and c, d pH 8
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of Mnt near 3400 cm−1 weakened progressively following the
formation of CMnt in the increased presence of glucose.
Moreover, a new peak appeared near 1000 cm−1 due to Si–O
stretching, indicating that the glucose-derived char was chem-
ically bound to Mnt.

The presence of Mnt also induced changes in the chemical
properties of the hydrochar. First, the concentration of poorly
substituted aromatic structures increased. Thus, three out-of-
planeC–H deformation peaks (900–700 cm−1) appeared in the
FTIR spectrum of 0.5C. These peaks may be assigned to
aromatic structures with isolated hydrogen (1H, 860 cm−1),
two adjacent hydrogens per ring (2H, 800 cm−1), and four
adjacent aromatic hydrogens (4H, 750 cm−1) (Yen et al.,
1984). The peak at 750 cm−1 was absent from the spectra of
CMnt. On the other hand, the peak at 800 cm−1 in the spectra of
CMnt increased in intensity with an increase in initial glucose
concentration. Aromatic substitution decreases as the number
of adjacent hydrogens per aromatic ring increases (Wu et al.,
2014). Thus, the observed spectral changes indicate that Mnt
promoted the formation of hydrochar with aromatic structures
of low substitution. Results from the current investigation
further suggest that aromatic substitution in the hydrochar
structure decreases with an increase in initial glucose
concentration.

Removal of Cr(VI) by Hydrochar-montmorillonite
Nanocomposites

By influencing the speciation of metal ions in solution, and
the ionization of functional groups on a sorbent (Kosmulski,
2016), pH is a controlling factor in heavy-metal sorption.
Cr(VI) occurs as an anion over a wide range of pH, notably
as CrO4

2− at pH ≥ 6.0 and as HCrO4
− at pH < 6.0 (Li et al.,

2014). All the CMnt had low pHPZC values (3.0−5.5). Specif-
ically, the pHPZC value of 0.5CMnt was 3.07, indicating that at
pH 2 its surface is positively charged, capable of sorbing
chromate(VI) anions. On the other hand, at pH 8 its surface
is negatively charged, and hence would attract Cr(III) cations.
Preliminary experiments indicated that CMnt could sorb more
Cr(VI) at pH 2 than at pH 8 (Wei et al., 2019).

The Cr adsorption isotherm at pH 2 was fitted into the
Freundlich and Langmuir models (Fig. 4), giving the fitting
parameters as listed in Table 2. The Freundlich model (R2 =
0.872−0.982) gave a better fit than the Langmuir model (R2 =
0.717−0.913), suggesting that Cr was sorbed to heterogeneous
sites in CMnt. Among the CMnt prepared with various
glucose/Mnt ratios, the 0.5CMnt had the highest Cr(VI) sorp-
tion capacity (up to 100 mg g−1). The lower Cr(VI) sorption
capacity of the 0.6CMnt was probably related to the formation
of large carbon spheres at high glucose concentrations. In line

Table 3. Cr 2p peaks for 0.5CMnt before and after Cr(VI) adsorption at pH 2 and pH 8

Solution pH Species Cr 2p3/2 Cr 2p1/2 Content

Peak position (eV) Peak area Peak position (eV) Peak area (%)

pH 2 Cr(VI) 580.0 1783 590.0 1038 10.0

Cr(III) 577.5 16657 587.0 8646 90.0

pH 8 Cr(VI) 580.0 1199 590.0 355 8.9

Cr(III) 577.5 9711 587.0 6271 91.1
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Fig. 6.XPS spectra of 0.5CMnt before and after Cr(VI) adsorption at pH 2 and pH 8. a Survey spectra; b high resolution Cr 2p spectra; and c high
resolution O 1s spectra
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with the adsorption results, SEM-EDX showed that more Cr
was adsorbed by 0.5CMnt at pH 2 than at pH 8 (Fig. 5).
Similarly, the wide-scan XPS spectra of CMnt, before and
after loading with Cr (Fig. 6a), showed that the distinct peaks
of Cr (2p) for adsorbed Cr weremore prominent at pH 2 than at
pH 8. These results indicated that CMnt obtained at a high
glucose/Mnt weight ratio had a large capacity for sorbing
Cr(VI). At low pH conditions, especially at pH < pHPZC, CMnt
was very effective at removing Cr(VI).

The XPS spectra provided insight into the valency of Cr
species on the CMnt surface. Deconvolution of the Cr(III) and
Cr(VI) 2p3/2 and 2p1/2 peaks in the Cr (2p) spectra (Fig. 6b,
Table 3) showed the co-existence of Cr(III) and Cr(VI) on the
CMnt surface with trivalent chromium being predominant, due
to reduction of adsorbed Cr(VI) to Cr(III). The FTIR spectrum
of 0.5C showed that the peaks at 1210 cm−1 and 1700 cm−1

weakened after Cr adsorption, indicating that phenolic O−H
and –COOH groups were consumed during the reduction of
Cr(VI) (Fig. 7a). Under acidic conditions Cr(VI) anions ap-
peared to first adsorb to the positively charged CMnt surface,
and then were reduced by electron-donating constituents, no-
tably phenolic and carboxylic groups of the hydrochar com-
ponent in CMnt (Jiang et al., 2019; Wei et al., 2019). Fe2+

released from the Mnt framework could also take part in the

reduction process (Joe-Wong et al., 2017). Because the CMnt
surface was negatively charged under alkaline conditions, the
Cr(VI) anions might be reduced indirectly by the reductive
components (Wei et al., 2019).

Moreover, the O (1s) binding energies for Cr-loaded CMnt
were greater than the values measured for CMnt (Fig. 6c). This
observation was consistent with the formation of a coordina-
tion complex between Cr(III) and oxygen-containing function-
al groups (e.g. carboxyls) in CMnt (Chen et al., 2018; Wei
et al., 2019). Moreover, solution pH changed from 2.0 at the
start of the adsorption experiment to 3.4−3.7 at the end, and
from 8.0 to 6.1−6.8 as adsorption progressed. As a result, the
surface charge of CMnt became increasingly negative, and
hence capable of binding Cr(III) by electrostatic attraction.
Cr(III) could also precipitate out as Cr(OH)3 when pH condi-
tions changed from slightly acidic to alkaline. Following Wei
et al. (2019), the adsorption of Cr by CMnt may be ascribed to
the synergistic operation of a redox reaction, complexation,
electrostatic attraction, and precipitation.

CONCLUSIONS

Research on clay–organic nanocomposites is evolving to-
ward producing low-cost and environmentally benign
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materials with specific and desirable properties. The synthesis
of hydrochar-montmorillonite nanocomposites (CMnt) by hy-
drothermal carbonization of glucose in the presence of mont-
morillonite (Mnt) is an example of obtaining fit-for-purpose
materials using biomass from photosynthesis instead of syn-
thetic surfactants or humic substances. Mnt promotes the for-
mation of nanosize (~80 nm) hydrochars with aromatic struc-
tures with low hydrogen substitution and high stability. FTIR
spectroscopy indicates the formation of a chemical bond be-
tween Mnt and hydrochar. At pH 2, CMnt loaded with various
amounts of glucose have a high affinity for toxic Cr(VI),
showing a maximum adsorption capacity of 23.3–100 mg/g.
XPS spectroscopy shows the predominant presence (> 90%) of
less toxic Cr(III) species over highly toxic Cr(VI) on CMnt
surfaces. Multiple mechanisms are involved in the removal of
Cr by CMnt from aqueous solutions (Fig. 8), indicating the
versatility of CMnt as a sorbent of environmental
contaminants.
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