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ABSTRACT  

Somatic cells (SC) in milk are a heterogeneous population composed of several subsets 

of cells. However, a complete understanding of this heterogeneity in cow’s milk remains elusive. 

This study aimed to characterize heterogeneity within mammary epithelial and immune cell 

subpopulations from healthy Holstein cows. An initial cell characterization of somatic cell 

populations was completed using a single milk collection (3.8 L) from a base population of 25 

multiparous Holstein cows to identify mammary epithelial and immune cells using flow 

cytometry with Butyrophilin 1A1 (BTN) and CD45 as cell surface markers. From the base 

population, 5 multiparous cows (≥300 days in milk (DIM), ≤162×10
3
 SC/mL, and milk yield 

(MY) ≥25 kg/d) were selected for fluorescence activated cell sorting and single cell RNA seq 

analysis. A single cell-suspension of approximately 1,000 sorted cells was prepared from each 

cow for characterization using single cell RNA sequencing. Gel beads and barcodes were 

generated, cDNA amplified, cDNA sequencing libraries constructed and sequenced. After data 

normalization, scaling, and filtering control, two CD45
+
 databases were generated. The CD45

+
 

databases contained 923 and 851 single cells, each comprising 17,771 and 12,156 features, 

respectively. Principal component analysis revealed seven and eight distinguishing clusters. 

Based on marker expression, most immune cells present in the samples were T cells (CD3E and 

PTPRC). Three different T cell subpopulations were revealed: helpers (CD4), cytotoxic (CD8A 

and CD8B) and regulatory T cells (IL2RA). The remaining four clusters were composed of 

granulocytes (neutrophils, eosinophils, and basophils; TLR4 and CXCL8), macrophages (PTPRC, 

CD14, CD68, TL2, IL1B), and a small population of B cells (CD19, CD22 and MS4A1). The 

study and characterization of immune cell subpopulations present in milk provide a basis for 
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developing greater insights into mammary gland immune function, offering potential avenues for 

enhancing animal health and milk production in the future. 

Keywords: Single cell RNA sequencing, bovine milk, immune cells 

 

INTRODUCTION 

Bovine lactation is characterized by substantial milk production over a prolonged period 

and has been extensively researched, leading to a broad understanding of milk synthesis 

regulation in the bovine mammary gland. Milk production is an integrative response to the 

functional interaction of many cell types in the bovine mammary gland supporting milk synthesis 

including secretory mammary epithelial cells (MEC), myoepithelial cells, adipocytes, 

fibroblasts, endothelial cells, and immune cells. Milk also contains cells that originate from the 

mammary gland and together with immune cells are referred to as milk somatic cells. The 

somatic cells found in milk primarily consist of immune cells (Sharma et al. 2011) and secretory 

mammary epithelial cells (Boutinaud & Jammes 2002b).  

The characterization of specific molecular mechanisms within cell subpopulations has 

been challenging due to technology limitations. Moreover, the difficulty of cell identification is 

further exacerbated when dealing with uncommon cell subpopulations. However, in recent years, 

advances in molecular technologies have facilitated the identification of numerous cell types 

within immune and epithelial cells present in human and bovine milk (Becker et al. 2021, 

Gleeson et al. 2022). The diverse range of cell subtypes present within these two primary 

subpopulations in milk makes milk a valuable and easily accessible sample source for gaining 

insight into fundamental aspects of lactation. This non-invasive approach allows for the 

examination of molecular and cellular features, providing a deeper understanding of the intricate 
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processes occurring in the mammary gland (Martin Carli et al. 2020). As a result, the utilization 

of milk samples for investigating and elucidating the mechanisms occurring in the mammary 

gland has gained significant relevance. Still, somatic cells found in bovine milk exhibit complex 

heterogeneity which hinders the precise delineation of individual cell type functionality and their 

roles within a heterogeneous group.  

Technologies such as fluorescence-activated cell sorting (FACS) and RNA sequencing 

help address the challenges posed by cell heterogeneity (Chattopadhyay et al. 2014). However, 

these technologies have limitations including limits on the number of subpopulations that can be 

identified and the dilution of rare cell types in a bulk gene expression pattern reducing the 

complexity and diversity of cell heterogeneity. Recently, the development of new research 

technologies such as single-cell RNA sequencing (scRNA-seq) with the capacity to identify low 

abundance cell types and compare the transcriptome profile of individual cells within a 

heterogeneous sample has facilitated tracing molecular identities at the individual cell level 

(Villani et al. 2017, Papalexi & Satija 2018). The objective of this preliminary study was to 

identify and recognize the functional diversity of mammary epithelial and immune cell 

populations in milk from healthy Holstein cows using scRNA-seq technologies. 

 

MATERIALS AND METHODS 

Experimental design  

The use of animals and all procedures for this investigation were approved by the 

Virginia Tech Institutional Animal Care and Use Committee (21-220). Twenty-five healthy 

Holstein cows across different parities, lactation stages, milk yields, and pregnancy statuses were 

used in the experiment. These cows were used to identify a subset of cows to select for cell 
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isolation. Specific details regarding characteristics of these animals are presented in Table 1. 

Throughout the experiment, cows remained in the main milking dairy herd and were housed in a 

sand-bedded free-stall barn at the Virginia Tech Dairy Science Complex - Kentland Farm 

(Blacksburg, VA). Cows were milked twice daily at 0100 and 1300 h and milk yields were 

recorded at the morning milking. Cows had ad libitum access to a total mixed ration balanced for 

milk production and composition. Cows were fed once daily (0800 to 1000h) and had free access 

to clean water at all times. Milk samples were collected between February and July of 2022. 

Flow cytometry and fluorescence activated cell sorting 

On the day prior to milk sample collection, we assessed each cow's health status using 

farm records (PCDART Software; available from Dairy Records Management Systems, Raleigh, 

NC). Criteria included no reported health issues, no presence of mastitis, somatic cell counts 

(SCC) below 200,000 cells/mL on the most recent DHIA test day, and consistent daily milk 

production over the past week. On a collection day, individual representative samples (3.8 L) 

from 2 to 4 eligible cows were collected at the morning milking. A milk subsample from each 

cow (35 mL) was sent to Lancaster Dairy Herd Improvement Association (Mannheim, PA) and 

analyzed for somatic cell count, fat, protein, and solids (CombiFoss™ 7, Foss North America). 

Milk samples (n = 25) were processed in the laboratory for milk cell isolation following a 

previously established protocol (Lengi et al. 2021). Briefly, milk samples (3.8 L) containing a 

final concentration of 0.5 mM ethylenediaminetetraacetic acid (EDTA) were placed into conical 

containers (500 mL) and centrifuged (850 x g for 10 minutes) to pellet total cells present in milk. 

During each centrifugation step, the supernatant milk was discarded, and another 500 mL portion 

was added to the existing pellet. This process was repeated until the complete 3.8 L of milk were 
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processed. This method ensured that the entire volume of milk was utilized to concentrate all 

cells into a single pellet for subsequent analysis. 

The pellet was washed once with Dulbecco’s phosphate-buffered saline (DPBS) and 

EDTA (0.5 mM final concentration), centrifuged, re-suspended in red blood cell lysis buffer (154 

mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA) for 15 min, and filtered through 100- and 40-µm 

sterile cell strainers (Genesee Scientific) to remove noncellular debris. Total cell number was 

evaluated in each sample using a hemocytometer and samples were standardized to contain 

2×10
6
 and 2×10

7
 cells for flow cytometry and fluorescence activated cell sorting analysis, 

respectively. To label individual cells, we simultaneously incubated primary antibodies for 

hematopoietic cell surface protein (CD45 mouse IgG2a clone CACTB51A, Kingfisher Biotech, 

3.1 ng/µL), macrophages (CD14 mouse IgG1 clone CAM 36A, Kingfisher Biotech, 1.25 ng/µL), 

and mammary epithelial cells (Butyrophilin 1A1 (BTN), rabbit clone 2151C conjugated to APC, 

NOVUS Biologicals, 7 ng/µL) for 1 hour at room temperature and protected from light. 

Sequentially, secondary antibodies used were rat anti-mouse IgG2a-phycoerythrin ((PE) clone 

SB84a, Southern Biotech Associates, 1.0 ng/µL) and goat anti-mouse IgG1-AlexaFluor 488 

((AF488), polyclonal, Southern Biotech Associates, 1.25 ng/µL). Secondary antibodies were 

incubated for 1 hour at room temperature. Lastly, cell viability was determined using propidium 

iodide (PI; BD Biosciences, 5 µg/mL) dye, and Hoechst 33342 (Invitrogen, 10 µg/mL) was used 

as a nucleic acid stain (Figure 1). Cells were washed between antibody incubations, centrifuged 

at 850 x g for 10 min, and re-suspended in Hoechst and PI for 60 min. After a final wash, cells 

were re-suspended in 100 or 1000 µL of Cell Staining Buffer (BD Bioscience) and examined by 

flow cytometry or sorted by FACS, respectively. Flow cytometry analyses and FACS were 

performed on a BD FACSAria Fusion (BD Biosciences) using FACSDiva software (BD 
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Biosciences). Side scatter (SSC) and forward scatter (FSC) thresholds were carefully established 

to exclude cellular debris and aggregates from analysis. Gating parameters were maintained 

across all samples to ensure consistency, allowing for minor adjustments for SSC variability. 

After initial gating based on morphology, nucleated cells were selected and further refined to 

identify PI-positive populations. Subpopulations were then identified by gating on cells labeled 

with CD45-PE, CD14-AF488, and BTN-APC (Figure 1).  

Using preliminary data, we estimated that >65% of somatic cells have a hematopoietic 

origin (CD45
+
) and 1.5% are secretory mammary epithelial cells (BTN

+
). Based on this 

information, we selected five cows from the base population of 25 that consistently exhibited 

higher proportions of BTN
+ 

cells for cell isolation using FACS. This selection was intended to 

reduce the time and cell stress resulting from cell sorting of BTN
+
 cells. Sorted samples were 

used for single-cell RNA sequencing analysis. Sample inclusion for scRNA-seq analysis was 

based on cell composition consistency and the prevalence of BTN
+
 cells.  

Statistical Analysis  

Descriptive statistics were calculated using the dplyr (Version 1.1.4) and psych (Version 

2.4.6.26) packages in R software (Version 2024.09.0+375). Results are presented as mean  

standard deviation (SD). 

Single-cell RNA library construction  

A total of 6,399, 15,529, and 11,592 live (PI
-
) MEC cells (BTN

+
CD14

-
CD45

-
, 

BTN
+
CD14

+
CD45

-
, BTN

-
CD14

+
CD45

-
) and 303,813 and 600,000 live (PI

-
) immune cells (BTN

-

CD14
-
CD45

+
) were obtained after sorting. Sorted cells, obtained approximately 12 h after 

sampling, were prepared for further scRNA-seq library preparation following the manufacturer’s 

https://doi.org/10.1017/anr.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/anr.2024.23


 

 

instructions (Chromium Next GEM Single Cell 3’ Low Throughput, 10X Genomics, Pleasanton, 

CA, United States). Briefly, immune and MEC live sorted cells from individual samples were 

diluted in resuspension buffer to achieve a concentration of 100-600 cells/µl for downstream 

analysis. Cell suspension was loaded into a master mix containing reverse transcription reagent 

B, template switch oligo, reducing agent B, and reverse transcription enzyme C plus nuclease-

free water with a targeted cell recovery after sequencing for all samples from 500 to 1000 cells 

(1000 cells being the maximum cell number allowed per library). For library preparation, cell 

suspension, barcoded gel beads with oligonucleotides, and partitioning oil were loaded into a 

10X Chromium Next GEM Chip L (10X Genomics) and combined in the Chromium Controller 

(10X Genomics; https://www.10xgenomics.com/instruments/chromium-controller). Using a 

microfluidics-based method, single-cell gel beads-in-emulsions (GEM) were generated. After 

GEM generation, the gel bead was dissolved, releasing primers and lysing the cells that were 

partitioned together within each GEM. Within each GEM and for each sample, polyadenylated 

mRNA was reverse transcribed into cDNA. The resulting cDNA was amplified for a total of 12 

cycles (98°C for 3 min, 98°C for 3 secs, 63°C for 20 secs and 72°C for 1 min). Post cDNA 

amplification, cDNA concentration and sample quality were assessed using an Agilent 

TapeStation (High Sensitivity D5000). A fraction (10 µl) of the amplified and cleaned cDNA 

was fragmented using fragmentation buffer, fragmentation enzyme, and buffer EB, and 

incubated at 32°C for 5 min, at 65°C for 30 min, and kept at 4°C until further analysis. Adaptor 

ligation used ligation buffer, DNA ligase, and adaptor oligos, followed by a 30°C incubation for 

30 min. After post-ligation clean up (SPRIselect, Beckman Coulter, IN, USA), individual sample 

index sets (Dual Index Plate TT Set A, 10X Genomics) were added and incubated for 10 to 12 

cycles depending on cDNA input (150 to 1000 ng) for 45 secs at 98°C, 20 secs at 98°C, 30 secs 
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at 54°C, and 20 secs at 72°C. The resulting cDNA sequencing libraries were evaluated for DNA 

concentration and fragment size using high sensitivity Agilent TapeStation (D5000) analysis, 

ensuring that DNA fragment peaks were between 240 and 460 bp. 

Single-cell RNA sequencing and bioinformatics analysis  

Individual sequencing libraries were sent to Novogene Sequencing Center for paired-end 

sequencing on an Ilumina HiSeq 6000 platform system (Novogene, Sacramento, CA, United 

States) using one lane per sample. The sequenced reads were processed and analyzed using the 

Cell Ranger pipeline v7.0.0 by 10X Genomics, as described in Zheng et al. (2017). In summary, 

sequenced reads were de-multiplexed, cell-barcode sequences corrected, and the FASTQ files 

were aligned to the Bos Taurus ARS-UCD1.2 genome using the default parameters and the 

Spliced Transcripts Alignment to a Reference (STAR; Du et al., 2020) aligner, as implemented 

in the Cell Ranger count pipeline. Subsequently, UMI sequences were corrected to ensure unique 

read mapping, and cell barcodes were filtered to ensure data quality and reliability. Mapped 

sequences from each library were used for unique molecular identifiers (UMI) counting. Reads 

generated by barcode-associated cells were quantified and used to establish a UMI count matrix. 

Due to the limited quantity of live MEC obtained from milk by FACS, we employed the 

aggregated pipeline from Cell Ranger by 10X Genomics to merge the data from three MEC 

libraries.  

Data obtained from MEC (n = 3) and immune cell libraries (n = 2), were analyzed 

individually. To identify cell populations present in the datasets, we followed the scRNA-seq 

integration pipeline described by Stuart et al. (2019) using the Seurat package (v. 4.3) from R (v. 

4.2.2 ). The count matrix was converted to an object using the Seurat package for individual 

downstream dataset analysis following the recommended pipeline (Butler et al. 2018, Slovin et 
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al. 2021). Briefly, the data were normalized and scaled according to quality control metrics to 

ensure robust dataset integrity. Cells with fewer than 100 detected genes and high mitochondrial 

gene expression (>5%) were filtered out to exclude low-quality cells.  

Despite these efforts, the merged MEC libraries contained insufficient data quality due to the 

predominance of cells with low gene counts and elevated mitochondrial content, limiting the 

viability of scRNA-seq analysis using the Seurat package. Immune cell libraries retained 

sufficient data quality, allowing for successful downstream analysis. Following quality filtering, 

dimensionality reduction, clustering, and visualization were performed on immune cell libraries 

to elucidate immune cell subpopulations. 
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RESULTS AND DISCUSSION 

Heterogeneity of cells in bovine milk samples identified by flow cytometry 

The standard technique to study the bovine mammary gland, a heterogeneous organ, at 

the cell level is through mammary gland biopsies. Nevertheless, bovine mammary biopsies can 

introduce a variety of risks and pitfalls (i.e., pain and discomfort in the animal, post-biopsy 

infection, and tissue fibrosis in biopsy site, non-representative sample of the gland). Recently, 

the use of non-invasive ‘milk liquid biopsies’ that can be regularly obtained easily eliminate 

related surgical biopsy pitfalls and mimic the results obtained from mammary gland biopsies 

(Martin Carli et al., 2020). The collection of somatic cells present in milk is composed of 

secretory and non-secretory mammary epithelial cells and immune cells. It is known that 

secretory mammary epithelial cells in milk result from the desquamation of the epithelium of 

alveoli and ducts (Alhussien & Dang 2018). In contrast, immune cells of a hematopoietic origin 

are white blood cells that surveil the mammary gland and enter in response to injury or infection 

(Boutinaud & Jammes 2002a, Sharma et al. 2011). Immune cells play a pivotal role in supporting 

milk production by maintaining gland health, whereas MEC are solely responsible for milk 

synthesis. These cells are extensively studied due to their significant impact on offspring 

nutrition and food production. The definition of the extended cell profile and transcript 

expression of the bovine mammary gland during lactation is essential for a better understanding 

of the factors determining milk production. 

Fresh milk samples from twenty-five multiparous Holstein cows were sampled across 6 

months. Descriptive statistics for the cows used for milk collection and milk sample 

characteristics are presented in Table 1. To evaluate heterogeneity of the somatic cells present in 

milk by flow cytometry, we used cell surface markers for secretory MEC (BTN), cells of 
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hematopoietic origin (CD45), and macrophages (CD45 and CD14) that resulted in eight 

subpopulations (Table 2). Nucleated cells identified by Hoechst nucleic acid staining averaged 

58.224.4%. According to flow cytometry analysis, the overall average including both live and 

dead MEC, total immune cells, and macrophages observed in this study was 2.54.4%, 

56.622.2%, and 8.66.1%, respectively. As expected, the main cell type present in milk was 

live immune cells (CD45
+
) with 34.520% of the total cells, while live MEC (BTN

+
CD45

-
CD14

-

) were 0.83.5% of the total cells. The utilization of BTN, a protein involved in fat droplet 

secretion, ensured the isolation of only secretory MEC, excluding ductal epithelial cells, which 

are traditionally considered non-secretory epithelial cells and therefore not expressing BTN due 

to lack of milk fat secretion. Additionally, we identified a cell population marked as BTN
-

CD14
+
CD45

-
, which was not classified by the available markers in this study. The CD14 

transcript is recognized as a progenitor cell marker in mammary epithelial cells, supported by 

several studies in rodents and humans (Bach et al. 2017, García Solá et al. 2021, Martin Carli et 

al. 2021). The average cell yield was 152×10
6
 cells/milking and the concentration was 8,389 

cells/mL independent of cell type.  

The immune cell proportion within somatic cells observed in this study (64.4% live and 

dead CD45
+
) is notably lower compared to previous findings. Earlier reports indicated that 87% 

of somatic cells in milk samples from healthy Holstein cows ( 100×10
3
 SCC/mL) are immune 

cells. Of the total cells from hematopoietic origin, 42%, 11%, and 34% were granulocytes, 

lymphocytes, and monocytes (Koess & Hamann 2008). Similarly, macrophage percentages 

present in milk samples in this study were less than observed by De Matteis et al. (2020) where 

milk samples from multiparous Holstein cows at 2 weeks postpartum contained 14.3% 

macrophages identified by flow cytometry ranging from 2.3% to 36%. On the other hand, the 
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average of MEC observed in this study aligns with previous reports where live MEC in milk 

from healthy Holstein cows averaged 1.2% and were the least abundant of the somatic cell types 

(Lengi et al. 2021).  

Excluding the three main subpopulations identified in this study, 32.4% of remaining 

cells had an unidentified identity that expressed a combination of the cell surface markers 

suggesting potential heterogeneity within each subpopulation. However, due to technical 

capabilities such as wavelength overlap between available fluorescent dyes for flow cytometry, 

there is limited use of markers for subpopulation identification. To further explore cell identities 

within the main subpopulations identified by flow cytometry, milk samples from five cows were 

used for scRNA-seq analysis. Milk samples from three Holstein cows were used to assess the 

heterogeneity within the MEC (BTN
+
) sorted subpopulation. Additionally, samples from two 

Holstein cows were utilized to evaluate the heterogeneity within the sorted immune cell 

population expressing the CD45 marker. 

Heterogeneity within mammary epithelial cells – BTN positive cells 

To complete single cell analysis of MEC, fresh milk samples were obtained from three 

multiparous Holstein cows (2.7±0.6 lactations), averaging 361±46 days in milk (DIM), milk 

yield (MY) of 14.2±4.7 kg/milking, and averaging a somatic cell count of 115±39×10
3
 cells/mL 

(Table 3). Milk samples were processed and sorted by FACS using BTN as the cell surface 

marker for secretory MEC.  

Sorted MEC (BTN
+
) were used to construct three individual sequencing libraries. Due to 

the use of a Low Throughput chip, which has a maximum target cell recovery of 1000 cells, we 

encountered challenges in obtaining high-quality data from the limited amount of MEC in bovine 

milk. Therefore, sequencing data from each library were combined and processed as a single 
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dataset (n = 839 cells; data not shown). Following data quality assessment, cells with fewer 

genes and high mitochondrial gene expression were removed.  

Analysis of the remaining cell population revealed minimal variability, with only one 

single cell cluster and a low number of expressed transcripts (data not shown), which prevented 

further exploration. This lack of expression diversity and low transcript count limited clustering 

analysis, a critical step for identifying distinct cell states and functions within the MEC 

population. The MEC data lacked the resolution necessary to provide biologically meaningful 

insights into MEC heterogeneity, and the dataset was therefore excluded from downstream 

analyses. 

The limited cell yields of sorted live MEC, attributable to the inherently low abundance 

of this cell type within milk samples, limited the comprehensive characterization of this 

population. Moreover, the quality of the sorted MEC in milk further complicates the analysis, 

requiring careful consideration for future studies that consider using this approach.  

It is plausible, and possibly likely, that MEC shed in milk are no longer functional and 

may be undergoing cell death and detachment or cell death because of detachment. This would 

lead to cessation of new transcription and the onset of RNA degradation. The mammary 

epithelium is characterized by a bilayer hollow cavity enclosed by a basal membrane. The inner 

monolayer is formed by luminal cuboidal cells facing the central apical cavity and surrounded by 

an external basal monolayer of myoepithelial cells. If a cell is damaged, loses functionality, or is 

dying, it can be a threat to the tight barrier that epithelia form. To preserve the integrity of the 

MEC barrier, live or dying cells are apically or basally extruded in response to apoptotic stimuli 

or homeostasis regulation (Slattum & Rosenblatt 2014, Mleynek et al. 2018). When cells are 

detached from the basement membrane and no longer have communication with the extracellular 
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matrix and neighboring MEC, this produces an impairment of cell–matrix interaction and the 

loss of essential signals for survival leading the cells to a programmed cell death known as 

anoikis (Frisch & Francis 1994). Anoikis would result from detachment of viable epithelial cells 

from the basement membrane (Bretland et al. 2001) and has been implicated in luminal clearance 

during mammary gland development in mice (Humphreys et al. 1996). Nevertheless, the 

occurrence of this cell death type in the bovine mammary gland during lactation remains 

unexplored. Further investigation is needed to shed light on this aspect. 

Although only live and viable MEC were used for library construction, the foundation of 

MEC sorting selection using FACS is based on membrane permeability and dye exclusion of 

propidium iodide. Propidium iodide penetrates the cell membrane with loss of integrity, entering 

the cell nucleus and binding double-stranded nucleic acid, while intact membranes from viable 

cells prevent PI dye penetration and staining. While it has been reported that certain dyes may 

not effectively label early apoptotic cells (De Schutter et al. 2021), there is no specific evidence 

of such limitations with propidium iodine. Additionally, it is important to note that not all cell 

death types described in the literature display membrane rupture as a characteristic feature, as 

there are over 20 different mechanisms of cell death documented (Galluzzi et al. 2018). In fact, 

during apoptosis – the major form of programmed cell death described and studied – cell 

membrane integrity is retained, while non-apoptotic cell death like pyroptosis is mostly 

characterized by membrane rupture (Zhang et al. 2018, Yan et al. 2020).  

In this study we encountered challenges in obtaining a substantial number of MEC from 

milk samples. To overcome these challenges and enhance the study of this specific cell type, 

future investigations could consider utilizing biopsy samples. Biopsy samples could be a better 

approach to increase availability of viable cells and possibly reduce the variability observed 
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between animals and cell states. Furthermore, the use of functional secretory and viable MEC 

obtained through biopsies will enable the collection of a greater number of MEC for analysis. 

This approach will contribute to a deeper understanding of the heterogeneity of MEC in the 

bovine mammary gland and enhance our comprehension of milk synthesis capacity. 

Heterogeneity within cells of hematopoietic origin – CD45 positive cells  

To address the molecular diversity within cells from hematopoietic origin, fresh milk 

samples were obtained from two Holstein multiparous cows averaging 2.5±0.7 lactations, 

320±72 DIM, 14.5±5.8 kg/milking at collection, and 139±33x10
3
 cells/mL (Table 3). Cells were 

sorted by FACS using the CD45
+
 cell surface marker. After sorting, individual libraries were 

sequenced, and individual data were integrated and analyzed as one dataset to explore the 

general heterogeneity within CD45
+
 cells following the integration method pipeline. The cluster 

analysis for the integrated data presented in Figure 2A exhibited 11 distinct cell communities 

across both libraries. T cells were the most abundant cell type and depicted 7 distinct types 

within the T cell subpopulation. The remaining 4 clusters were composed of granulocytes, 

including neutrophils, as well as macrophages and B cells. Integration analysis identified shared 

cell populations across sample sets, therefore both animals showed the same cell types, however, 

cell population proportion was different between them (Figure 2B). As presented in the cluster 

graph per sample in Figure 2C, cow one revealed a higher number of macrophages, neutrophils, 

CD4 helper T cells, and CD4 Cytotoxic T cells, while cow two had a higher amount of T cells 

with low expression of CD96 and high expression of CD3E (Figure 2C). To gain a deeper 

understanding of the heterogeneity observed between the two cows, we conducted a more 

detailed exploration of the immune cell heterogeneity within each milk sample. 
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The dataset for Cow 1 included 851 cells with 12,156 features where seven clusters were 

identified. Initially, we conducted verification of the expression of the CD45
+
 marker, also 

known by its gene name PTPRC. This verification was completed using a violin plot and a 

feature plot (Figure 3), which supported the accurate sorting of cells. After clustering analysis, 

seven distinct clusters were identified and are presented in Figure 4. According to identified 

differentially expressed genes after heatmap analysis (Figure 5) and the individual analysis of the 

main expression of canonical immune subpopulation markers (Figure 6) reported in the literature 

(Azizi et al. 2018, Becker et al. 2021), the putative cell subpopulations identified were 

granulocytes expressing TLR4 and CD68 (22.8%), macrophages expressing CD14 (6.9%), B 

cells expressing CD19 and CD22 (2.1%), and T cells expressing CD96, CD3E, and CD3D with 

four different identities: regulatory T cells expressing CD4 and IL2RA (26.9%), cytotoxic T cells 

expressing CD8A and CD8B (21.7%), helper T cells expressing CD4 (10.2%), and a group of T 

cells expressing CD8A, CD8B and the ZBTB16 (9.4%).  

The dataset for Cow 2 included 923 cells with 17,771 features and eight differentiated 

clusters. Despite initial sorting based on CD45, it is noteworthy that only seven of the eight 

clusters express the PTPRC transcript (encoding CD45) as shown in Figure 7. Interestingly, in 

our study, dendritic cells (group 6) were an exception, displaying no detectable RNA expression 

of CD45 despite their well-established characterization as CD45-positive immune cells, the 

marker used for sorting in our study. We have not determined an explanation for the difference 

between protein-level CD45 expression and the transcriptomic data.  

The putative identity for each population depicted by cluster analysis is macrophages 

expressing CD68, TLR4, and IL1B (8.3%), dendritic cells expressing ICAM1 and RF4 (4.7%), B 

cells expressing CD19, CD22, and CD79A (4.3%), and five populations expressing T cells 
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features classified as, helper T cells expressing CD4 and IL2RA (10.9%), cytotoxic T cells 

expressing TNF and CD8B (16.6%), a subgroup of T cells expressing TNF, CD28, and CD69 

(23.9%), T cells expressing KIT, CD69, and CD2 (7.2%), and T cells expressing CAMK4 and 

CD69 (24.1%) (Figure 8). Population and cell identity were based on the top 10 up- and down- 

regulated transcripts shown by heatmap analysis (Figure 9) and analysis of individual recognized 

markers of immune cells identities (Figure 10).  

As demonstrated in review papers, the presence of immune cells such as neutrophils, 

macrophages, and lymphocytes in milk has been widely reported in multiple species such as 

cows, buffalo, ewe, goat, and camels (Alhussien & Dang 2018).  In human breast milk, the 

reported immune cells include monocytes, T cells, natural killer cells, B cells, neutrophils, 

eosinophils, and immature granulocytes (Witkowska-Zimny & Kaminska-El-Hassan 2017). 

However, the exploration of cellular heterogeneity within these cell subpopulations has been 

mainly characterized in human milk, with only a few studies addressing cells present in bovine 

milk.  

Consistent with our findings, immune cells in human milk comprise major immune cell 

types,  including a high proportion of T cells, monocytes, macrophages and B cells (Twigger et 

al. 2022). Additionally, immune cell identities, including T cells, B cells, macrophages, and 

dendritic cells have been reported in milk samples from 15 different human donors from 3 to 630 

days of lactation. Nevertheless, the immune cell subpopulations described in that study showed a 

wider range of cell types including CSN1S1 macrophages, fibroblast, eosinophils, and 

Langerhans cells (Nyquist et al. 2022).  

Expecting possible differences between species, immune cells present in bovine milk 

from scRNA-seq analysis reported in the literature showed a similar profile to that observed in 

https://doi.org/10.1017/anr.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/anr.2024.23


 

 

this study and in immune cells from human milk depicting immune cell communities of 

macrophages, monocytes, T cells, B cells, dendritic cells, and natural killer cells which have not 

been reported before in milk (Becker et al. 2021, Zorc et al. 2024). Clustering analysis from 

Becker et al. (2021) showed five, two, and three different subpopulations of monocytes, 

macrophages, and T cells, respectively. Within this immune population, most cells in the dataset 

were monocytes and macrophage, contrasting with the results observed in our study where the 

major immune cell type identified was T cells, and only a main community of macrophages was 

identified, while no monocytes were observed. In a more recent study conducted by Zorc et al. 

(2024), the group exhibiting the highest cellular diversity consisted primarily of T cells, 

including four subpopulations, followed by three subpopulations of neutrophils and monocytes. 

These findings align with prior literature and are consistent with our study results. Notably, 

researchers in this study also identified a significant presence of mast cells, which have not been 

previously reported in bovine milk.  It is important to note that the studies by Becker et al. (2021) 

and Zorc et al. (2024) used  residual milk samples (120 - 200 mL), which might account for the 

variation observed in their results compared to our investigation, which utilized a significantly 

larger sample volume collected throughout the complete milking session (3.8 L).  

Neutrophils, the primary type of granulocyte found in milk (Alhussien et al. 2021), play a 

vital role in the innate immune response by primarily targeting and combatting bacterial 

infections (Kobayashi & DeLeo 2009). Given their known abundance in milk, it was anticipated 

that a greater number of these cells would be observed in the study. However, neutrophils are 

terminally differentiated cells with a remarkably short lifespan, serving as the frontline defenders 

against invading pathogens (Paape et al. 2003).  
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The limited lifespan of neutrophils relative to T cells, could produce a difference in the 

proportions of live cells after cell sorting leading to an enriched profile of T cells in this study. 

Furthermore, the increased infiltration of neutrophils to infection sites as opposed to these 

samples obtained from clinically healthy animals could have influenced the relative contribution 

of other immune cells, such as T cells, to the overall sample composition. Consequently, the 

viability and presence of neutrophils could have played a significant role in shaping the observed 

immune cell profile. Further investigation and analysis are warranted to explore this intriguing 

relationship fully. 

The observed differences in the broader heterogeneity of immune cells in milk between 

humans and cattle may be attributed to inherent species-specific variances, as well as the number 

of cells analyzed. In this study we had the capacity to analyze only 1000 cells from a 

representative sample, while other studies in the literature include more than 8,000 cells which 

might have increased the diversity and the amount of rare immune cells. Also, a greater amount 

of cell types and cell number would add diversity to the dataset allowing for a more delineated 

identification of more subtle immune cell communities within a cell subpopulation and a greater 

ability to detect minor populations. 
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CONCLUSION 

In summary, milk-derived somatic cells are a diverse, enriched sample containing multiple 

cell types, as shown in this study. While cells of hematopoietic origin predominate in bovine 

milk from healthy Holstein cows, the presence of live MEC raises intriguing questions related to 

their abundance in healthy mammary glands under normal conditions. Based on our findings, the 

conduction of further investigations into the heterogeneity of MEC derived from milk using low 

throughput technologies is not recommended. However, technologies like scRNA-seq have 

facilitated the exploration of molecular identities within bovine milk, particularly within immune 

cells, where T cells and granulocytes were present as the main cell types in healthy Holstein 

cows. Future studies leveraging these advancements to explore factors influencing the immune 

system in animals hold promise for unraveling interconnections within specific cell 

subpopulations, crucial for comprehending the roles of immune cells. This research clears the 

way for deeper insights into mammary gland function, offering potential avenues for enhancing 

animal health and milk production in the future. 
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TABLES AND FIGURES 

Table 1. Descriptive statistics of parity, days in milk, milk yield and milk components of 

lactating Holstein cows (n = 25) sampled for milk analysis and cell characterization using flow 

cytometry. Results are presented as mean  standard deviation (SD). 

Item Mean ± SD Minimum Maximum 

Parity 3.4 ± 1.1 2 6 

DIM 278 ± 70 109 414 

Milk yield per milking, kg 19.1 ± 4.9 9.1 30.2 

SCCx10
3
 cells/mL 134 ± 90 13 460 

Fat, % 3.3 ± 0.7 2.3 5.6 

Protein, % 3.7 ± 0.3 2.8 3.9 
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Table 2. Descriptive statistics for cell subpopulations, expressed in percentage, yield and 

concentration of single nucleated live and dead cells present in milk from Holstein multiparous 

cows identified by flow cytometry. Primary antibodies for immune cell surface protein (CD45), 

macrophages (CD14 and CD45), and mammary epithelial cells (Butyrophilin 1A1 (BTN) were 

used for cell labeling. Results are presented as mean  standard deviation (SD). 

Viabilit

y 

Cell labeling Subpopulation  SD, 

% 

Yield  SD, cells 

×10
6
 

Concentration  SD, 

cells/mL 

Live 

BTN
+
CD45

+
CD

14
-
 

0.4  0.3 7.0  4.9 379  252 

BTN
+
CD45

+
CD

14
+
 

0.4  0.7 7.6  15.8 414  814 

BTN
+
CD45

-

CD14
-
 

0.8  3.5 18.8  80.6 947  3520 

BTN
+
CD45

-

CD14
+
 

0.9  2.0 20.4  55.7 1211  3573 

BTN
-

CD45
+
CD14

-
 

34.5  20 945.4  1271.7 49590  54417 

BTN
-

CD45
+
CD14

+
 

5.3  5.8 140.2  231.7 7040  8641 

BTN
-
CD45

-

CD14
-
 

5.5  5.7 127.4  161.3 6842  9111 

BTN
-
CD45

-

CD14
+
 

3.4  5.1 72.9  104.3 3901  6191 

 Live Total 51.22  22 1,340  1310 70,324  56,418 
     

Dead 

BTN
+
CD45

+
CD

14
-
 

0.5  0.5 10.5  9.4 581  532  

BTN
+
CD45

+
CD

14
+
 

1.1  1.9 21.9  42.9 1137  1969 

BTN
+
CD45

-

CD14
-
 

1.7  2.7 33.9  56.0 1768  2876 

BTN
+
CD45

-

CD14
+
 

2.4  4.0 48.9  91.7 2535  4943 

BTN
-

CD45
+
CD14

-
 

22.1  9.9 669.1  897.6 32743  34951 

BTN
-

CD45
+
CD14

+
 

3.3  1.9 90.1  89.7 4589  4571 

BTN
-
CD45

-

CD14
-
 

11.0  5.0 270.7  214.1 13934  10311 

BTN
-
CD45

-

CD14
+
 

6.1  6.4 125.8  124.8 6615  7129 
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 Dead Total 48.2  14 1,271  942 63,902  37,900 
 Total 99.5 2,610 134,226 

 

 

Table 3. Descriptive statistics of parity, days in milk, milk yield and somatic cell count of 

Holstein cows sampled for milk analysis of mammary epithelial cells (MEC; n = 3) and immune 

cells (n = 2) using scRNA-seq. Results are presented as mean  standard deviation (SD). 

Item MEC libraries  Immune Cells libraries 

Mean±SD Mean±SD 

Parity 2.7±0.6 2.5±0.7 

DIM 361±46 320±72 

MY per milking, kg 14.2±4.7 14.5±5.8 

SCCx10
3
 cells/mL 115±39 139±33 
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Figure 1. Representative flow cytometry dot plots showing sequential gating and staining of 

nucleated cells: Hoechst 33342 for nucleated cell selection (A), propidium iodide (PI) for 

viability assessment (B), BTN staining with APC (C), and dual staining for immune markers 

CD45 (PE) and CD14 (Alexa 488; D). 
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Figure 2. Clustering of integrated immune cells in milk (A) from two Holstein cows (B) carried 

out using the uniform manifold approximation and projection (UMAP) dimension reduction 

technique. The total 1,774 immune divided into 11 clusters and differential clustering expression 

per cow (C). Cell proximity represents gene expression similarity and identification of cell types 

was completed by analyzing significantly enriched expression of established cell markers. 

.
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Figure 3. Expression of immune marker PTPRC (CD45) across all clusters from dataset 1, 

including 851 cells, shown by violin plots (A) and feature plots (B) using the using the uniform 

manifold approximation and projection (UMAP). 

              
  

A 
B
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Figure 4. Clustering immune cells in milk from one Holstein cow (dataset 1) using the uniform 

manifold approximation and projection (UMAP) dimension reduction technique. The total 851 

cells were divided into seven clusters. Cell proximity represents gene expression similarity and 

identification of cell types was accomplished by analyzing significantly enriched expression of 

established cell markers. 
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Figure 5. Heatmap of transcriptome similarities between cell clusters for dataset 1. Rows 

represent representative genes and columns represent cell clusters. Numbers and colors on the 

right represent log2 fold changes relative to the median gene expression level across all clusters. 

Color scheme is based on z-score distribution from –2 (purple) to 2 (yellow). Right margin color 

bars highlight gene sets specific to the respective cluster. 
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Figure 6. Violin plots for representative genes of clusters identified from immune cells (CD45
+
) 

sorted using FACS present in milk from a healthy Holstein cow (dataset 1).  
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Figure 7. Expression of immune marker PTPRC (CD45) across all clusters from dataset 2, 

including 923 cells, shown by violin plots (A) and feature plots (B) using the using the uniform 

manifold approximation and projection (UMAP). 

 

  

  

A B 
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Figure 8. Clustering immune cells in milk from one Holstein cow (dataset 2) using the uniform 

manifold approximation and projection (UMAP) dimension reduction technique. The total 923 

cells were divided into eight clusters. Cell proximity represents gene expression similarity, and 

identification of cell types was accomplished by analyzing significantly enriched expression of 

established cell markers. 
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Figure 9. Heatmap of transcriptome similarities between cell clusters for dataset 2. Rows 

represent representative genes and columns represent cell clusters. Numbers and colors on the 

right represent log2 fold changes relative to the median gene expression level across all clusters. 

Color scheme is based on z-score distribution from –2 (purple) to 2 (yellow). Right margin color 

bars highlight gene sets specific to the respective cluster.  
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Figure 10. Violin plots for representative genes of clusters identified from immune cells 

(CD45
+
) sorted using FACS present in milk from a healthy Holstein cow (dataset 2). 
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