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Abstract

Let D be a positive nonsquare integer, p a prime number with p - D and 0 < σ < 0.847. We show that
there exist effectively computable constants C1 and C2 such that if there is a solution to x2 + D = pn with
pn > C1, then for every x > C2 with x2 + D = pnm we have m > xσ. As an application, we show that for
x , {5, 1015}, if the equation x2 + 76 = 101nm holds, then m > x0.14.
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1. Introduction

Let f (x) be a polynomial with integer coefficients and at least two distinct complex
roots. We wish to bound the p-adic norm of f (n) at least for large integer values
of n. To be more precise, let [ f (n)]p = | f (n)|−1

p , where |a|p denotes the usual p-adic
norm of a. Is it possible to find a good upper bound for [ f (n)]p in terms of n and
f (n)? Mahler [9] answered this question affirmatively by finding sharp bounds. He
proved that for the equation f (n) = pα1

1 pα2
2 · · · p

αs
s m, where (m,

∏
pi) = 1 and for any

ε > 0, there exists a constant C such that for any n > C, we have m > n1−ε . This
gives a bound of the shape [ f (n)]p � f (n)/n1−ε . Mahler’s proof depends on the
p-adic version of Roth’s theorem, so one cannot effectively compute the value C
using Mahler’s argument. While quantifying this result in general is a difficult task,
there are some effective results with much weaker bounds. Stewart [10], by means of
Baker’s theory of linear forms in logarithms, proved effective results for products of
consecutive integers. He showed that if n(n + 1) · · · (n + k) = pα1

1 pα2
2 · · · p

αs
s m, where

(m,
∏

pi) = 1, then m � nσ(p1,p2,...,ps) for some small number σ(p1, p2, . . . , ps) > 0.
Gross and Vincent [8] extended Stewart’s approach to polynomials with at least two
distinct roots.

The effective result in this note is not as general as those of Stewart, Vincent and
Gross, but it gives much better bounds for [ f (n)]p for polynomials of the form x2 + D
under some restrictions. These restrictions enable us to use a method based upon Padé
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approximation. Such an approach has been used before to prove effective versions
of Mahler’s result. Bennett et al. [4] proved that if n2 + n = 2α3βm and n > 8, then
m > n0.285. They also showed that if n2 + 7 = 2αm, then either n ∈ {1, 3, 5, 11, 181} or
m > n1/2 [3]. This hypergeometric method has also been used to find upper bounds on
the number of solutions to equations of the form x2 + D = pn (see [1, 5, 6]). We use
this approach to find an effective upper bound for [ f (n)]p when f (x) = x2 + D and p
is a prime number with p - D. Our result relies on the existence of a relatively large
solution to the equation x2 + D = pn, which we will term ‘huge’. In order to obtain
explicit results, we need to define what we mean by a huge solution. Obviously, the
bigger this solution is, the easier it is to obtain an explicit result.

Let 0 < σ < 0.847 be a real number. We set a condition for a huge solution that
depends on σ. Assume that (x0, n0) is a positive solution to the equation X2 + D = pN

with p - D. If p is an odd prime, the condition for (x0, n0) to be a σ-huge solution is∣∣∣x0 +
√
−D

∣∣∣ = pn0/2 > Cσ,pDη, (1.1)

where
η =

7.84 − 4σ
7.64 − 9σ

and Cσ,p = (2008.832)(1.96−σ)/(7.64−9σ).

If p = 2, the condition for (x0, n0) to be a σ-huge solution is

1
2

∣∣∣x0 +
√
−D

∣∣∣ = 2n0/2−1 > Cσ,2Dη, (1.2)

where
Cσ,2 = (7.847)(1.96−σ)/(7.64−9σ).

For such solutions, we define β = x0 +
√
−D when p is an odd prime and we define

β = 1
2 (x0 +

√
−D) when p = 2.

Theorem 1.1. Let 0 < σ < 0.847. Assume that D is a positive integer, p is a prime with
p - D and the equation X2 + D = pN has a σ-huge solution (x0, n0) with |β| ≥ 90.93.
Let M = 250n0. If x2 + D = pnm with n > M, then m > xσ.

Since σ < 1, as an immediate corollary we have the following result.

Corollary 1.2. Assume that the equation X2 + D = pN has a σ-huge solution which
satisfies the conditions of Theorem 1.1. If x > p250n0 and x2 + D = pnm, then m > xσ.

Note that for D ≤ 12 based on the table at the end of the paper [7], the only equation
with a huge solution corresponds to D = 7, where 1812 + 7 = 215 is a huge solution for
any σ with σ < 0.49268. But, as mentioned before, Bennett et al. [3] proved that if
n2 + 7 = 2αm, then either n ∈ {1,3,5,11,181} or m > n0.5. Therefore, the theorem holds
for D ≤ 12. From now on, let D be a nonsquare positive integer bigger than 12. The
idea of the proof is to approximate ( β̄/β)k with rational and algebraic numbers. From
the equation x2 + D = pnm, whenever m is small compared to |β|, we obtain a good
approximation for ( β̄/β)k. If the equation X2 + D = pN has a huge solution, then there
exists a good approximation for k = 1. We use a method based on Padé approximation
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to show that if there exists a huge solution, we have a good approximation for k = 1.
However, it is not possible to get such a good approximation (with m small) for larger
values of k.

We proceed as follows. In Section 2, we use Padé approximations to the function
(1 − x)k to generate approximations for ( β̄/β)k. In Section 3, using a huge solution
of X2 + D = pN , we get an approximation for ( β̄/β)k. In Section 4, by combining
the approximations of Sections 2 and 3, we prove Theorem 1.1. In Section 5, we
consider the equation x2 + 78 = 101nm to show that the value M in Theorem 1.1 is not
unattainably large and that the equation x2 + D = pnm can be solved relatively quickly
for any x less than pM .

2. Padé approximation

In this section, we use Padé approximations to the function (1 − x)k to get
approximations of ( β̄/β)k. We follow Bennett [2] to produce these approximations.
Let A, B and C be positive integers. Define

PA(z) =
(A + B + C + 1)!

A!B!C!

∫ 1

0
tA(1 − t)B(z − t)C dt,

QA(z) =
(−1)C(A + B + C + 1)!

A!B!C!

∫ 1

0
tB(1 − t)C(1 − t + zt)A dt,

EA(z) =
(A + B + C + 1)!

A!B!C!

∫ 1

0
tA(1 − t)C(1 − zt)B dt.

(2.1)

From these definitions,

PA(z) − (1 − z)B+C+1QA(z) = zA+C+1EA(z). (2.2)

So, these equations provide a set of approximations to (1 − z)B+C+1, valid close to z = 0.
Expanding the formulas above leads to the following lemma.

Lemma 2.1 [2, Lemma 1]. With the notation as above, the functions PA, QA and EA

satisfy

PA(z) =

C∑
i=0

(
A + B + C + 1

i

)(
A + C − i

A

)
(−z)i,

QA(z) = (−1)C
A∑

i=0

(
A + C − i

C

)(
B + i

i

)
(z)i, (2.3)

EA(z) =

B∑
i=0

(
A + i

i

)(
A + B + C + 1
A + C + i + 1

)
(−z)i.

Moreover, PA(z)QA+1(z) − QA(z)PA+1(z) = czA+C+1 [2], which means that we have
distinct approximations for (1 − z)B+C+1. For our purpose, namely for finding
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approximations to ( β̄/β)k, we take A = C = r and B = k − r − 1. Taking A = C gives a
diagonal approximation and, from our choice of B, we get the desired approximation
of (1 − z)k. With this choice of parameters, the Equations (2.1) can be rewritten as the
following lemma.

Lemma 2.2 [3]. For positive integers k and r with k > r, there exist polynomials Pr(z),
Qr(z) and Er(z) with integer coefficients such that:

(1) Qr(z) = ((k + r)!/(k − r − 1)!r!r!)
∫ 1

0 tk−r−1(1 − t)r(1 − t + zt)rdt;

(2) Er(z) = ((k + r)!/(k − r − 1)!r!r!)
∫ 1

0 tr(1 − t)r(1 − tz)k−r−1dt;
(3) deg Pr = deg Qr = r and deg Er = k − r − 1;
(4) Pr(z) − (1 − z)kQr(z) = (−1)rz2r+1EA(z);
(5) Pr(z)Qr+1(z) − Qr(z)Pr+1(z) = cz2r+1 for some nonzero constant c.

An important parameter in these approximations is the ratio r/k. Smaller ratios give
better results, but only for larger values of |β|. To get more general results, we take

k = 5 j, r = 4 j − g, (2.4)

where g ∈ {0, 1}. With our choices of k and r, we can rewrite the functions Qr(z), Pr(z)
and Er(z) of Lemma 2.1 as

Pr(z) = (−1)g
4 j−g∑
i=0

(
9 j − g

i

)(
8 j − 2g − i

4 j − g

)
(−z)i,

Qr(z) =

4 j−g∑
i=0

(
8 j − 2g − i

4 j − g

)(
j + g − 1 + i

i

)
(z)i,

Er(z) =

j+g∑
i=0

(
4 j − g + i

i

)(
9 j − g

8 j − 2g + i + 1

)
(−z)i.

To use Padé approximations, we need explicit bounds for Qr(z0) and Er(z0). The
polynomials Pr, Qr and Er have integer coefficients and, by dividing by the greatest
common divisor of their coefficients, we get polynomials with integer coefficients and
smaller heights and, consequently, a better approximation. Set

cg( j) = gcd
i∈{0,1,...,4 j−g}

(
8 j − 2g − i

4 j − g

)(
j + g − 1 + i

i

)
.

Then p∗r (z) = cg( j)−1Pr(z),Q∗r (z) = c( j)−1Qr(z) and E∗r (z) = cg( j)−1Er(z) have integer
coefficients and, by Lemma 2.2(4) and (5),

P∗r (z) − (1 − z)kQ∗r (z) = (−1)rz2r+1E∗A(z)

and
Pr(z)g∗Q∗r+1(z) − Q∗r (z)P∗r+1(z)g = cz2r+1

for some nonzero constant c. We have the following result to bound cg( j).
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Lemma 2.3 [4]. For j > 50 and g ∈ {0, 1},

cg( j) > 2.943 j.

Proof. This is the special case of [4, Proposition 5.1] with d = 4, c = 5 and m = j. �

2.1. Explicit bounds for approximations. From now on, we take

z0 = 1 −
β̄

β
=
λ

β
,

where λ = 2
√
−D if p is an odd prime and λ =

√
−D if p = 2.

2.1.1. Upper bound for |Q∗r (z0)|. For g = 1, there is a much stronger upper bound
for Q∗r (z0). Therefore, to determine an upper bound for |Q∗r (z0)|, we assume that g = 0.
First we recall a useful lemma.

Lemma 2.4 [2]. For positive integers A, B and C,

(A + B + C)!
A!B!C!

<
1

2π

√
A + B + C

ABC
(A + B + C)A+B+C

AABBCC .

From this lemma, by making suitable choices of A, B and C,
(k + r)!

(k − r − 1)!r!r!
=

(9 j)!
( j − 1)!((4 j)!)2 <

3
8π

(
3182−16) j

.

For 0 < t < 1, since 1 − z0 = β̄/β,

|1 − (1 − z0)t|2 = 1 − 2bt + t2 where b = 1 −
2D
|β|2

.

Since D > 12, from (1.1) or (1.2), b is a positive number between 0.953 and 1. With a
smaller value of b, we get a larger value of {(1 − z)4z(1 − 2bz + z2)2}. It follows that

max
t∈[0,1]

{
(1 − t)4t(1 − 2bt + t2)2} ≤ 0.044479.

Also, under the same conditions,∫ 1

0
(1 − t)4(1 − 2bt + t2)2dt < 0.114552.

Therefore,∣∣∣∣∣ (k + r)!
(k − r − 1)!r!r!

∫ 1

0
tk−r−1(1 − t)r(1 − t + z0t)r dt

∣∣∣∣∣
≤

3
8π

(
3182−16) j

∫ 1

0
((1 − t)4t(1 − 2bt + t2)2) j−1(1 − t)4(1 − 2bt + t2)2 dt

≤
3

8π
(
3182−16) j0.044479 j−1

∫ 1

0
(1 − t)4(1 − 2bt + t2)2 dt

≤ 0.308 × (262.9407) j.

It follows that ∣∣∣Q∗r (z0)
∣∣∣ < 0.308 × (89.3445) j. (2.5)
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2.1.2. An upper bound for |E∗r (z0)|. For any t ∈ [0, 1],

|1 − tz0|
2 = 1 −

|λ|

|β|
t(1 − t) ≤ 1.

Therefore,

|Er(z0)| =
∣∣∣∣∣ (k + r)!
(k − r − 1)!r!r!

∫ 1

0
tr(1 − t)r(1 − tz0)k−r−1 dt

∣∣∣∣∣
≤

(k + r)!
(k − r − 1)!r!r!

∫ 1

0
(1 − t)rtr dt

=
(k + r)!

(k − r − 1)!(2r + 1)!
.

Lemma 2.5. Let A and B be positive integers. Then

(A + B)!
A!B!

<
1
√

2π

√
A + B

AB
(A + B)A+B

AABB .

Proof. The result follows from the explicit version of Stirling’s formula by considering
the following inequality for positive integers A and B:

1
12(A + B)

−
1

12A + 1/4
−

1
12B + 1/4

< 0. �

This lemma gives a weaker bound for |Er(z0)| when g = 1 and so

|Er(z0)| ≤
(9 j − 1)!

( j)!(8 j − 1)!
<

0.377
√

j

(99

88

) j
.

Consequently,

|E∗r (z0)| <
0.377

j
× (7.847) j. (2.6)

To summarise, we have the approximation

βkP∗r (z0) − β̄kQ∗r (z0) = βk−2r+1λ2r+1E∗r (z0) (2.7)

with explicit exponential bounds on P∗r (z0) and E∗r (z0) in terms of r, as desired.

3. Second approximation: algebraic setup

We assume that the equation X2 + D = PN has a σ-huge solution (x0, n0) and
x2 + D = pnM with n� n0. Then, working in the ring of algebraic integers of the
number field Q(

√
−D), we will relate this solution (x, n) to the given solution (x0, n0).

This enables us to find an approximation for ( β̄/β)k.

Theorem 3.1. Let x0,D and β be as in Theorem 1.1 and x2 + D = pnm with n > 5n0.
Then there exist a rational integer j and an algebraic integer µ in the number field
Q(
√
−D) such that βkµ − β̄kµ̄ = ±λ, where k = 5 j, λ = 2

√
−D if p is an odd prime and

λ =
√
−D if p = 2.
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Proof. As outlined above, consider the two solutions

x2
0 + D = pn0 (3.1)

and
x2 + D = pnm. (3.2)

First assume that p is an odd prime number. Since (−D/p) = 1, the ideal (p) of
Q(
√
−D) splits into two prime ideals (α) and (α′) with (p) = (α)(α′). Factoring

Equation (3.1) in the ring of integers of the number field Q(
√
−D) gives(

x0 +
√
−D

)(
x0 −

√
−D

)
= (α)n0 (α′)n0 , (3.3)

where α and α′ are prime ideals. Each of α and α′ divides at least one of the two
factors on the left-hand side of (3.3). Moreover, since none of the factors on the left-
hand side of (3.3) belongs to the ideal (p), the ideals (α) and (α′) cannot both divide
the same factor. Therefore, we can assume that(

x0 +
√
−D

)
= (α)n0 ,

(
x0 −

√
−D

)
= (α′)n0 .

Both ideals (α)n0 and (α′)n0 are principal ideals. Define β = x0 +
√
−D as a generator

of the ideal (α)n0 and β′ = x0 −
√
−D as a generator of the ideal (α′)n0 . Factoring the

Equation (3.2) in the ring of integers of number field Q(
√
−D) gives(

x +
√
−D

)(
x −
√
−D

)
= (α)n(α′)n(m).

By a similar argument, each of the factors
(
x ±
√
−D

)
belongs to exactly one of the

ideals (α)n and (α′)n. Let us assume that
(
x +
√
−D

)
belongs to the ideal (α)n. Then

it belongs to any ideal (α)i with i < n. Since n > 5n0, there exists an integer j with
k = 5 j such that n = 5n0 j + l = n0k + l, where l < 5n0. Therefore,

(
x +
√
−D

)
belongs

to the ideal (αnO )k = (β)k. On the other hand, (β)k is a principal ideal with βk as a
generator. Hence, there is an algebraic integer µ in the number field Q(

√
−D) such

that x +
√
−D = βkµ. Taking conjugates, x −

√
−D = β̄kµ̄. If

(
x +
√
−D

)
belongs to

the ideal (α′)n, the same steps show that there is an algebraic integer µ in the number
field Q(

√
−D) such that x +

√
−D = β̄kµ. Thus, in any case, βkµ − β̄kµ̄ = ±2

√
D.

For p = 2, the argument is similar with minor modifications. Let x2
0 + D = 2n0 . Since

−D ≡ 1(mod 4), we can factorise the equation as

1
2
(
x0 +

√
−D

)
· 1

2
(
x0 −

√
−D

)
= 2n−2.

There is an algebraic integer µ in the number field Q(
√
−D) such that either

1
2
(
x +
√
−D

)
= βkµ and 1

2
(
x −
√
−D

)
= β̄kµ̄

or
1
2
(
x +
√
−D

)
= β̄kµ and 1

2
(
x −
√
−D

)
= βkµ̄.

In any case βkµ − β̄kµ̄ = ±
√

D = ±λ. �
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Theorem 3.1 states that, whenever |µ| is small compared to βk, there exists a good
approximation for ( β̄/β)k. In fact, µµ̄ = 2lm, where l < 5n0 for an odd prime p and
l < 5(n0 − 2) for the case p = 2. Thus, whenever m is small compared to βk, there
exists a good approximation for ( β̄/β)k.

The following inequalities will also be helpful in the proof of Theorem 1.1. If p = 2,
then |βkµ| = 1

2

√
x2 + D > 0.7x and, if p is an odd prime, then |βkµ| =

√
x2 + D > x.

4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using approximations of ( β̄/β)k in (2.7) and
Theorem 3.1. Throughout the proof, we assume that

k = 5 j, j ≥ 50 and n > M ≥ 250n0.

Let x2 + D = pnm with n > M, it follows that x2 + D ≥ pM+1. Since x2
0 + D = pn0 , we

can conclude that x > p125n0 . Multiplying both sides of the Equation (2.7) by βr,

βkP − β̄kQ = E, (4.1)

where
P = βrP∗r (z0), Q = βrQ∗r (z0) and E = βk−r−1λ2r+1E∗r (z0).

Note that by considering the degrees of Pr, Qr and Er, we can see that P, Q and E are
algebraic integers in the quadratic number field Q(

√
−D).

From Equations (4.1) and (3.1),

βk(Qµ − Pµ̄) = ±Qλ − Eµ̄.

From Lemma 2.2(5), for at least one of the values of g in r = 4 j − g, the left-hand side
of the equation above is nonzero. Thus, Qµ − Pµ̄ is an algebraic integer in the number
field Q(

√
−D), so its norm is at least 1. Therefore,

|βk| ≤ |Q| |λ| + |E| |µ̄|.

From (2.5) and (1.1),

|Q| |λ| < 0.238074 × (89.3445) jβrβ0.4873.

Thus, whenever β > 90.93,
|Q| |λ| < 9

10 |β
k|

and so
1
10 |β|

k ≤ |β|k−r−1|λ|2r+1|E∗r (z0)| |µ|.

It follows that

|µ| ≥
(
βr+1

λ2r+1

) 1
10E∗r (Z0)

>
(

β4

7.847(λ)8

) j λ
√

j
3.7

.
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Using the conditions in (1.1),(
|β|k

)(σ+0.04)/(1.96−σ)
=

(
|β|(5σ+0.2)/(1.96−σ)) j

<
(

β4

λ87.847

) j
≤
|µ|

6.89
.

It is easy to check that βkµ > 0.7x, so (0.7x)(σ+0.04)/(1.96−σ) < (βkµ)(σ+0.04)/(1.96−σ). But,
from the above,

(
|β|k

)(σ+0.04)/(1.96−σ)
< |µ|/6.89 and so

µ2/(1.96−σ) > 5.24x(σ+0.04)/(1.96−σ) =⇒ µ2 > 6.32xσ+0.04.

Finally, since x > p125n0 ,

m ≥
|µ|2

p5n0−1 >
6.32xσ+0.04

p5n0−1 > xσ.

This completes proof of Theorem 1.1.
As mentioned before, smaller values of r/k give stronger results for larger values

of |β|. As an example, we take the case in which k = 7 j and r = 6 j − σ without a
detailed proof. For |β| > 1300, it is enough to take ηε = (11.76 − 6σ)/(11.48 − 13σ),
Cσ,p = (42106)(1.96−σ)/(11.48−13σ) and Cσ,2 = (10.28)(1.96−σ)/(11.48−13σ) to obtain a similar
result to Theorem 1.1.

5. The equation x2 + 76 = 101nm

As an application of Theorem 1.1, we consider the equation x2 + 76 = 101nm. The
value of M in Corollary 1.2 might appear extraordinary large. In practice it is easy to
check the values less than PM . To see this, we present the following result.

Theorem 5.1. Let x2 + 76 = 101nm. Then either x ∈ {5, 1015} or m > x0.14.

Proof. Note that (1015, 3) is a solution to the equation X2 + 76 = 101N . This can be
considered as a large solution. To be more precise, (1015, 3) is a σ-huge solution for
any σ with σ ≤ 0.14 and it satisfies the conditions of Theorem 1.1. Therefore, from
Corollary 1.2, the result holds for x > 101750.

Assume that x < 101750 and m < x0.14. We have to check for solutions of the
equation x2 + 76 = 101nm for n ≤ 750 and x < 101n. For any n < 750, we solve the
equation x2 + 76 ≡ 0 (mod 101n) and find m = (x2 + 76)/101n. From Hensel’s lemma,
for each n there are two values that need to be checked and this can be easily done
using a recursion relation. In this way it is easy to confirm the theorem for all the
values n < 750. In fact, for x < 1013000, we have the stronger result that m > x0.9 or
x ∈ {5, 1015}. �
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