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Abstract. Based on results obtained in [15], we construct groups of specialS-units for function
fields of characteristicp > 0, and show that they satisfy Gras-type conjectures. We use these results
in order to give a new proof of Chinburg’s�3-conjecture on the Galois module structure of the group
of S-units, for cyclic extensions of prime degree of function fields.
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0. Introduction

Let K/k be a finite, Abelian extension of function fields of characteristicp > 0.
Let G = G(K/k) andg = |G|. We will denote byFq andFqν the exact fields
of constants ofk andK, respectively, whereq is a power ofp andν is a positive
integer. In what follows we will use the same notations as in [15]. For the con-
venience of the reader, we briefly summarize in this section the main concepts and
results of [15] which will be used in our arguments.

For any two finite, nonempty and disjoint setsS and T of primes ink, and
any fieldF , k ⊆ F ⊆ K, UF,S andUF,S,T denote the groups ofS-units and,
respectively,(S, T )-units ofF ; AF,S andAF,S,T are, respectively, theS-ideal class
group and(S, T )-ideal class group ofF , as defined in [15, Sect. 1.1]. In particular,
if F = K, we suppressK from the notation, soUK,S = US , UK,S,T = US,T etc.

All the exterior powers considered in this paper are taken over the group ring
Z[G], unless stated otherwise.

Let us assume for the moment that for a certain positive integerr, the set of data
(K/k, S, T , r) satisfies the following set of hypotheses

(H)



S 6= ∅, T 6= ∅, S ∩ T = ∅.
S contains all primes which ramify inK/k.

S contains at leastr primes which split completely inK/k.

|S| > r + 1.
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264 CRISTIAN D. POPESCU

Let (v1, . . . , vr ) be an orderedr-tuple of primes inS which split completely in
K/k, and letW = (w1, . . . , wr), withwi prime inK,wi |vi, for everyi = 1, . . . , r.

One can define a regulator mapC
r∧ US,T RW−→ C[G], by

RW(u1 ∧ · · · ∧ ur) = det
i,j

(
−
∑
σ∈G

log |uσ−1

j |wi · σ
)
,

∀u1 ∧ · · · ∧ ur ∈ r∧ US,T .

Throughout this paper|u| = Nw−ordw(u), for everyu ∈ K×, and Nw is the order of
the residue fieldFqν (w) atw, for every primew of K. Similarly, if v is a prime in
k, Nv denotes the order of its residue fieldFq(v).

For every irreducible characterχ ∈ Ĝ, letLS,T (s, χ) be the associated(S, T )-
L-function, as defined in [15, Sect. 1.2], and let2S,T (s) = ∑

χ LS,T (s, χ)eχ−1

be the Stickelberger function, whereeχ = ∑
σ∈G χ(σ ) · σ−1 ∈ C[G]. If rχ =

ords=0LS,T (s, χ), then

rχ =
{

card{v ∈ S : χ |Gv = 1Gv}, if χ 6= 1G,

card(S)− 1, if χ = 1G,

whereGv is the decomposition group ofv inK/k. This shows that hypotheses (H)
imply that rχ > r, for everyχ ∈ Ĝ, and therefore the following definition makes
sense inC[G]

2
(r)
S,T (0)

def= lim
s→0

s−r2S,T (s) =
∑
χ∈Ĝ

lim
s→0

s−rLS,T (s, χ) · eχ−1 ∈ C[G].

DEFINITION. For any ringR with 1, and any[G]R-moduleM, let

Mr,S
def= {m ∈ M | eχ ·m = 0 inM ⊗R C, ∀χ ∈ Ĝ with rχ 6= r}.

In [15] (see Theorem 3.2.1 and Corollary 3.2.2) we proved the following result.

THEOREM 0. If the set of data(K/k, S, T , r) satisfies hypotheses(H) then:

(1) There exists a uniqueεS,T ∈ (Z[1/g] ∧r US,T )r,S such that

RW(εS,T ) = 2(r)
S,T (0).

(2) The elementεS,T satisfies the equality

Z[1/g][G]εS,T = FittZ[G](AS,T ) · (Z[1/g] ∧r US,T )r,S.
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GRAS-TYPE CONJECTURES FOR FUNCTION FIELDS 265

Throughout this paper, for any Noetherian ringR with 1 and any finitely gener-
atedR-moduleM, FittR(M) denotes the Fitting ideal ofM. For the definition and
properties of the Fitting ideals needed for our purposes, the reader can consult [15,
Sect. 1.4].

Let us now fix once and for all two finite, nonempty, disjoint setsS and T of
primes ink, S containing at least one prime which splits completely inK/k, and
T not containing primes which ramify inK/k.

We will use Theorem 0(1) in order to construct twoZ[G]-modules of special
unitsES,T andES , of finite index inUS,T andUS respectively. Theorem 0(2) will
help us prove that statements similar to the ones conjectured by Gras in [9] and
proved by Mazur and Wiles in [12] for the classical number field case of cyclotomic
units, are satisfied byES,T andES (Theorems 1.4, 2.2, 3.10). We use these results in
Section 4 in order to give a new proof to a special case of Chinburg’s�3-Conjecture
(Theorem 4.2.7).

Before proceeding we would like to make a final useful remark on group-rings
and their modules (see also [15, Sect. 1.3]). IfL is a field of characteristic 0, then
Ĝ(L) will denote the set of characters associated toL-irreducible representations
ofG. If L is an algebraic closure ofL, thenG(L/L) acts canonically on̂G(L) and
Ĝ(L) can be viewed as the set of orbits with respect to this action. Forχ ∈ Ĝ(L)
andψ ∈ Ĝ(L), we writeχ |ψ if χ is in the orbit represented byψ . For a subgroup
H ⊆ G (or an elementσ ∈ G) we writeψ |H = 1H (or ψ(σ ) = 1) if χ |H = 1H
(or χ(σ ) = 1), for some (i.e. all)χ ∈ Ĝ(L), such thatχ |ψ .

If R is a Dedekind domain containingZ[1/g], andL is its field of fractions, then
one has a canonical decompositionR[G] =⊕ψ∈Ĝ(L) Dψ , whereDψ = R[G] · eψ
are finite extensions ofR, andeψ = 1/g

∑
σ∈G ψ(σ ) · σ−1 ∈ R[G]. If M is an

R[G]-module, then one has a decompositionM = ⊕
ψ∈Ĝ(L) M

ψ , whereMψ =
M
⊗

R[G]Dψ , for everyψ ∈ Ĝ(L).

1. The groupES,T of Stark (S,T )-Units

Throughout this section the sets of primesS andT as above will be fixed, so thatS
contains at least one prime which splits completely andT does not contain primes
which ramify inK/k. LetF be an intermediate field ofK/k and letS ′ be a finite
set of primes ink containingS. We define

rF,S ′ =
{

card{v ∈ S ′| v splits completely inF/k}, for F 6= k,
card(S ′)− 1, for F = k.

In particular, ifS ′ = S, we will make the notationrF,S = rF .
LetL be any finite field of characteristic 0, and letψ ∈ Ĝ(L). We define

rψ,S ′ =
{

card{v ∈ S ′|ψ |Gv = 1Gv }, for ψ 6= 1G,

card(S ′)− 1, for ψ = 1G.
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266 CRISTIAN D. POPESCU

In particular, forS = S ′, we make the notationrψ,S = rψ .
Forψ ∈ Ĝ(L) as above, letHψ = ker(ψ) and letKψ be the maximal subfield of

K fixed byHψ . The injectivity ofψ onG(Kψ/k) obviously implies thatrKψ,S ′ =
rψ,S ′ , for anyS ′ as above.

Let S = {v0, . . . , vs}. For everyi = 0, . . . , s, let us fix a primewi abovevi in
K and letwi,F denote the prime inF sitting belowwi , for every intermediate field
F . LetWF be the orderedrF -tuple of primes inF defined by

WF =
{
(wi,F | vi splits completely inF), for F 6= k,
(v0, . . . , vs−1), for F = k,

ordered so thatwi,F preceedswj,F iff i < j .

DEFINITION 1.1. A pair(F, S ′) consisting of an intermediate fieldF ,F 6= k, and
a finite set of primesS ′ in k is called(S, T )-admissible if the following conditions
are satisfied:

(1) S ⊆ S ′,
(2) |S ′| > |S| + 2,
(3) the set of data(F/k, S ′, T , rF ) satisfies hypotheses (H).

The pair(k, S) is also declared to be(S, T )-admissible.

Let us emphasize that if(F, S ′) is an(S, T )-admissible pair, then the set of data
(F/k, S ′, T , rF ) satisfies hypotheses (H). For any such pair(F, S ′), let

εF,S ′,T ∈ [Z[1/g] rF∧ UF,S ′T ]rF ,S ′
be the unique element associated by Theorem 0 to the set of data(F/k, S ′, T , rF )
and the regulatorRWF .

Let U ∗F,S ′,T = HomZ[G](UF,S ′,T ,Z[G]) be theZ[G]-dual ofUF,S ′,T . Then for

every8 = φ1 ∧ · · · ∧ φrF−1 ∈ Z[1/g] rF−1∧ U ∗F,S ′,T we get aZ[1/g][G]-morphism

Z[1/g] ∧rF UF,S ′,T
8−⇀ Z[1/g]UF,S ′,T ,

given by

8(u1 ∧ · · · ∧ urF ) =
∑

16i6rF
(−1)i det

16k,j6rF
j 6=i

(φk(uj )) · ui,

for all u1 ∧ · · · ∧ urF ∈
rF∧ UF,S ′,T .
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For every intermediate fieldF , letµF be the group of roots of unity inF , and let
eF = |µF |. In particular, ifF = K, we haveµK = F×qν and thereforeeK = qν −1.

DEFINITION 1.2. LetẼS,T be theZ[1/g][G]-submodule ofZ[1/g]⊗Z(K
×/µK)

generated by the set

{8(εF,S ′T )|(F, S ′) is (S, T )-admissible, 8 ∈ Z[1/g] rF−1∧ U ∗F,S ′,T }.

DEFINITION 1.3. The groupES,T of Stark (S, T )-units is defined byES,T =
ẼS,T

⋂
US,T , where the intersection is viewed insideZ[1/g]⊗Z(K

×/µK).
The main goal of this section is the proof of the following Gras-type Conjecture

for the groupES,T of special(S, T )-units.

THEOREM 1.4. LetK/k, S andT be as above. Then

(1) The index[US,T : ES,T ] is finite.
(2) For any prime number̀, such thatgcd(`, g) = 1, and anyψ ∈ Ĝ(Q`)

|(US,T /ES,T ⊗ Z`)ψ | = |(AS,T ⊗ Z`)ψ |rψ .

Before proceeding to the proof of the theorem above, we need a few more
lemmas and definitions.

DEFINITION 1.5. LetL be a field of characteristic 0, and letψ ∈ Ĝ(L). A pair
(F, S ′) is called(S, T ,ψ)-admissible if the following conditions are satisfied

(1) (F, S ′) is (S, T )-admissible,
(2) Kψ ⊆ F ,
(3) rψ,S ′ = rF .

Let us notice that(k, S) is the only(S, T ,1G)-admissible pair, while forψ 6=
1G there exist infinitely many(S, T ,ψ)-admissible pairs.

LEMMA 1.6 (1) Letψ ∈ Ĝ(L) and let(F, S ′) be an(S, T ,ψ)-admissible pair.
ThenrKψ = rψ,S ′ = rF and(Kψ, S ′) is also(S, T ,ψ)-admissible.
(2) If (F, S ′) and (F, S ′′) are (S, T ,ψ)-admissible pairs, then(F, S ′ ∪ S ′′) is

(S, T ,ψ)-admissible as well.

Proof.Both statements are clear ifψ = 1G. Letψ 6= 1G.
(1) From the definitions above we have the following sequence of inequalities

rKψ > rF = rψ,S ′ > rψ = rKψ ,
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268 CRISTIAN D. POPESCU

which shows thatrKψ = rψ,S ′ = rF . This obviously implies that(Kψ, S ′) is (S, T ,
ψ)-admissible.

(2) SincerF = rψ,S ′ = rψ,S ′′ , we haveψ |Gv 6= 1Gv , for everyv ∈ S ′ \ S and
everyv ∈ S ′′ \ S. This shows thatrF = rψ,S ′∪S ′′, which obviously implies that
(F, S ′ ∪ S ′′) is (S, T ,ψ)-admissible. 2

LEMMA 1.7 Let ψ ∈ Ĝ(Q) and let (F, S ′) be an(S, T ,ψ)-admissible pair.
Thenthe naturalZ[G]-morphisms involved in the following commutative diagrams

US,T −−−−⇀ US ′,T AS,T −−−−⇀ AS ′,T

UF,S,T

6

−−−−⇀UF,S ′,T

6

AF,S,T

6

−−−−⇀AF,S ′,T ,

6

becomeZ[1/g][G]ψ -isomorphisms, when tensored withZ[1/g][G]ψ overZ[G].

Proof. The vertical morphisms in both diagrams obviously become isomorph-
isms when tensored withZ[1/g][G]ψ . (Their inverses are theZ[1/g][G]ψ -linear
extensions of the norm map fromK toF at the level of units and ideal class-groups
respectively.) This observation settles the lemma above forψ = 1G and it shows
that it is enough to prove that the lower horizontal morphisms in both diagrams
become isomorphisms when tensored withZ[1/g][G]ψ , for ψ 6= 1G.

Letψ 6= 1G and letS be theZ[G]-submodule ofAF,S,T generated by the ideal
classes

{ŵ|w prime inF,w|v for somev ∈ S ′ \ S}.
Let us fix a primew(v) in F for every primev ∈ S ′ \ S. We have two exact
sequences ofZ[G]-modules (see [15, Sect. 2 (9)] and [17, Sect. 5.1])

0−⇀ S−⇀ AF,S,T −⇀ AF,S ′,T −⇀ 0,

0−⇀ UF,S,T −⇀ UF,S ′,T −⇀
⊕
v∈S ′\S

Z[G]w(v)S.

Let us fixv ∈ S ′ \ S. Sinceψ 6= 1G and(F, S ′) is (S, T ,ψ)-admissible, we have
ψ |Gv 6= 1Gv . This shows that there existsσ ∈ G such thatσw(v) = w(v) and
ψ(σ ) 6= 1. We therefore have an equality

eψ(σ − 1) ·w(v) = 0 (1)

in Z[1/g][G]ψ , whereeψ is the idempotent associated toψ in Z[1/g][G]. The
fact thatψ(σ ) 6= 1 easily implies thateψ(σ − 1) is invertible in Z[1/g][G]ψ
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and therefore relation (1) above shows that
⊕

v∈S ′\S Z[1/g][G]ψ · w(v) = 0. The
last equality proves that, when tensored withZ[1/g][G]ψ (which is a flatZ[G]-
algebra), the exact sequences above yield isomorphisms

(Z[1/g]AF,S,T )ψ ∼−→ (Z[1/g]AF,S ′,T )ψ,
(Z[1/g]UF,S,T )ψ ∼−→ (Z[1/g]UF,S ′,T )ψ,

which concludes the proof of Lemma 1.7. 2
LEMMA 1.8. (1) Let ψ ∈ Ĝ(Q). Then

∼
E
ψ

S,T is generated as aZ[1/g][G]ψ -

module by the set

{
eψ ·8(εKψ,S ′,T )|8 ∈ Z[1/g] rψ−1∧ U ∗Kψ,S ′,T

}
, for anyS ′ such

that (Kψ, S ′) is (S, T ,ψ)-admissible.

(2)
∼
E
ψ

S,T ⊆ Z[1/g]US,T andZ[1/g]ES,T =
∼
ES,T .

Proof. (1) Let (F, S ′) be an(S, T )-admissible pair. If the pair(F, S ′) is not
(S, T ,ψ)-admissible, then eitherKψ 6⊆ F , or Kψ ⊆ F andrψ,S ′ 6= rF . In both

circumstancesεψF,S ′,T = 0 in (Z[1/g] rF∧ UF,S ′,T )ψ . We thus have

8(ε
ψ

F,S ′,T ) = 0, for all 8 ∈ Z[1/g] rF−1∧ U ∗F,S ′,T .

It is therefore enough to restrict ourselves to(S, T ,ψ)-admissible pairs in the

definition of
∼
E
ψ

S,T . Let (F, S ′) be such a pair. Then, according to Lemma 1.6,
(Kψ, S

′) is also (S, T ,ψ)-admissible andrF = rKψ = rψ . The definition and
uniqueness ofεKψ,S ′,T andεF,S ′,T show that

εF,S ′,T = N
(rψ)

F/Kψ
(εKψ,S ′,T ), (2)

where N
(rψ)

F/Kψ
is theZ[1/g]-linear extension toZ[1/g] rψ∧ UF,S ′,T of therψ -exterior

power of the norm map

UF,S ′,T
NF/Kψ−−−−⇀ UKψ,S ′,T .

(see [17, Sect. 6] for (2)). TheZ-freeness ofUF,S ′,T gives an isomorphism of
abelian groups

U ∗F,S ′,T
φ→φ0−−−−⇀∼ HomZ(UF,S ′,T ,Z), (3)
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defined byφ(u) = ∑σ∈G(F/k) φ0(σ
−1u) · σ , for everyu ∈ UF,S ′,T . Obviously the

same type of isomorphism holds true forU ∗Kψ,S ′,T as well. The inclusionUKψ,S ′,T ⊆
UF,S ′,T induces therefore a surjective morphism

Z[1/g]U ∗F,S ′,T
φ→φ̃−−−−⇀−⇀ Z[1/g]U ∗Kψ,S ′,T ,

satisfying the relatioñφ(NF/Kψu) = πφ(u), for everyu ∈ UKψ,S ′,T , whereπ is the

natural projectionZ[G(F/k)] π−⇀ Z[G(Kψ/k)]. We therefore obtain a surjective
Z[1/g]-morphism

Z[1/g] rψ−1∧ U ∗F,S ′,T −⇀−⇀ Z[1/g] rψ−1∧ U ∗Kψ,S ′,T ,

8 = φ1 ∧ · · · ∧ φrψ−1−⇀ 8̃ = φ̃1 ∧ · · · ∧ φ̃rψ−1,

satisfying the relation8̃(N
(rψ)

F/Kψ
(u)) = NF/Kψ (8(u)), for everyu ∈ Z[1/g] rψ∧

UF,S ′,T . The equality above obviously implies that, for any(S, T ,ψ)-admissible

pair (F, S ′) and any8 ∈ Z[1/g] rψ∧ U ∗F,S ′,T , the following relation holds true in
∼
E
ψ

S,T

[F : Kψ ]eψ8(εF,S ′,T ) = eψ8̃(εKψ,S ′,T ). (4)

Let nowS ′ andS ′′ be two sets of primes such that the pairs(Kψ, S ′) and(Kψ, S ′′)
are both(S, T ,ψ)-admissible. According to Lemma 1.6(2), the pair(Kψ, S ′ ∪ S ′′)
is (S, T ,ψ)-admissible as well. The definition and uniqueness of the elementsε

give the following relations (see [17, Sect. 6]):

εKψ,S ′∪S ′′,T =
 ∏
v∈S ′′\S ′

(1− σ−1
v )

 εKψ,S ′,T
=
 ∏
v∈S ′\S ′′

(1− σ−1
v )

 εKψ,S ′′,T ,
whereσv is the Frobenius morphism associated tov inG(Kψ/k). This implies that ∏

v∈S ′′\S ′
eψ(1− σ−1

v )

 εKψ,S ′,T =
 ∏
v∈S ′\S ′′

eψ(1− σ−1
v )

 εKψ,S ′′,T . (5)

Relations (4) and (5), the fact that[F : Kψ ] and eψ(σv − 1) are invertible in
Z[1/g][G]ψ , for v ∈ (S ′ \ S ′′) ∪ (S ′′ \ S ′) (see the proof of Lemma 1.7), and
Lemma 1.7 show that (1) holds true.
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(2) Lemma 1.7 implies that for anyS ′ such that(Kψ, S ′) is (S, T ,ψ)-admissible,
we haveZ[1/g][G]ψUKψ,S ′,T = Z[1/g][G]ψUS,T . We thus haveeψ8(εKψ,S ′,T ) ∈
Z[1/g][G]ψUS,T , for any8 ∈rψ−1∧ U ∗Kψ,S ′,T . According to this relation, the fact

that
∼

ES,T⊆ Z[1/g]US,T follows from statement (1) in our lemma. The equality

Z[1/g]ES,T =
∼
ES,T is now an obvious consequence of the definition ofES,T . 2

Proof of Theorem1.4. SinceUS,T is a finitely generatedZ-module, it is ob-
viously enough to prove the second statement of the theorem. Let` be a prime
number such that gcd(`, g) = 1, and letZ`[G] = ⊕

ψ∈Ĝ(Q`)
Dψ be the decom-

position of Z`[G] into a direct sum of discrete valuation rings, as described in
Section 0. Let us fixψ ∈ Ĝ(Q`) and letS ′ be a set of primes such that(Kψ, S ′)
is (S, T ,ψ)-admissible. Sincerψ,S ′ = rψ , Lemma 1.5.1(1) of [15] gives us the
following isomorphisms ofDψ -modules

(Z`UKψ,S ′,T )
ψ ∼−→ D

rψ
ψ , HomDψ ((Z`UKψ,S ′,T )

ψ,Dψ)
∼−→ D

rψ
ψ ,

Let {e1, . . . , erψ } be aDψ basis of(Z`UKψ,S ′,T )
ψ and let{e∗1, . . . , e∗rψ } be itsDψ -

dual. We have the following equalities ofDψ -modules

Dψ

⊗
Z[1/g][G]

(Z[1/g][G] rψ∧ UKψ,S ′,T )rψ ,S ′

= (Z`
rψ∧ UKψ,S ′,T )ψ = Dψ(e1 ∧ · · · ∧ erψ ).

Let us now combine Theorem 0(2), applied to the set of data(Kψ/k, S
′, T , rψ ),

with the equalities above. After tensoring withDψ overZ[1/g][G], we obtain

DψεKψ,S ′,T = aψ(e1 ∧ · · · ∧ erψ ), (6)

where

aψ = FittZ[G](AKψ,S ′,T )
⊗
Z[G]

Dψ = FittDψ

AKψ,S ′,T ⊗
Z[G]

Dψ

 . (7)

(For the last equality above see [15, Sect. 1.4(b)].) We are now prepared to compute
theDψ -module(Z`ES,T )ψ in terms of the chosen basis{e1, . . . , erψ }. Let us first
notice that (3) shows that we have the following relations

(Z`U ∗Kψ,S ′,T )
∼−→ HomZ`[G](Z`UKψ,S ′,T ,Z`[G])

=
⊕

χ∈Ĝ(Q`)

HomDχ ((Z`UKψ,S ′,T )
χ ,Dχ).
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This direct sum decomposition together with the definition of
∼
E S,T , Lemma 1.8

and equality (6) imply that

(Z`ES,T )ψ = (Z`
∼
ES,T )

ψ

=
∑

16i6rψ
(e∗1 ∧ · · · ∧ ê∗i ∧ · · · ∧ e∗rψ )(DψεKψ,S ′,T )

=
∑

16i6rψ
(e∗1 ∧ · · · ∧ ê∗i ∧ · · · ∧ e∗rψ )(aψ · e1 ∧ · · · ∧ erψ )

= aψe1⊕ . . .⊕ aψerψ , (8)

equality viewed inside(Z`UKψ,S ′,T )
ψ = (Z`US,T )ψ = Drψ

ψ (see Lemma 1.7 above
and [15], Lemma 1.5.1(1)). Relation (8), together with (7) and [15, Sect. 1.4(f)],
obviously give us the following equality

|(US,T /ES,T ⊗ Z`)ψ | = [Dψ : aψ ]rψ = |(AKψ,S ′,T ⊗ Z`)ψ |rψ .

On the other hand, after tensoring withDψ , Lemma 1.7 shows that

(AKψ,S ′,T ⊗ Z`)ψ
∼−→ (AS,T ⊗ Z`)ψ,

asDψ -modules, which, combined with the previous equality, settles statement (2)
in our theorem. 2

2. The Group ES of Stark S-Units

With the same assumptions as in the previous section, let us keepS fixed and letT
vary, so thatS ∩ T = ∅, andT does not contain any prime which ramifies inK/k.
We will denote byT the set of all possible choices of setsT . For eachT ∈ T we
have just defined aZ[G]-submoduleES,T of US,T .

DEFINITION 2.1. The group of StarkS-units ES is theZ[G]-submodule ofUS ,
generated byµK ∪

(⋃
T ∈T ES,T

)
.

The main goal of this section is the proof of the following Gras-type conjecture
satisfied by the groupES of specialS-units.

THEOREM 2.2. LetS be a finite set of primes ink, containing at least one prime
which splits completely inK/k. Then

(1) The index[US : ES] is finite.
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(2) For any prime number̀ , such thatgcd(`, g · eK) = 1, and any character
ψ ∈ Ĝ(Q`), |(US/ES ⊗ Z`)ψ | = |(AS ⊗ Z`)ψ |rψ .

In order to prove the theorem above, we need the following.

LEMMA 2.3. For anyT ∈ T , |ES/ES,T | is divisible only by primes dividing
g ·∏w∈TK (Nw − 1).

Proof. Let T1, T2 ∈ T and letψ ∈ Ĝ(Q). Let S ′ be a finite set of primes
in k such that the pair(Kψ, S ′) is (S, T1 ∪ T2, ψ)-admissible. Then(Kψ, S ′) is
obviously(S, T1, ψ)-admissible and(S, T2, ψ)-admissible as well. The definition
and uniqueness of the elementsε associated by Theorem 0 to the sets of data
(Kψ, S

′, Ti, rψ), for i = 1,2, and(Kψ, S ′, T1∪T2, rψ), give the following relations

εKψ,S ′,T1∪T2 =
 ∏
v∈T2\T1

(1− σ−1
v ·Nv)

 · εKψ,S ′,T1

=
 ∏
v∈T1\T2

(1− σ−1
v ·Nv)

 · εKψ,S ′,T2, (9)

(see [17, Sect. 6] for (9)). Let us also notice (see Lemma 3.1 below as well) that
for any primev in k, which is unramified inK/k, we have

(1− σ−1
v · Nv)µK = {1}, (10)

whereσv is the Frobenius morphism associated tov inG(K/k). In light of Lemma
1.8(1), equalities (9) and (10) imply that, for any setT ∈ T ,∏

v∈T
(1− σ−1

v · Nv) · Z[1/g]ES ⊆ Z[1/g]ES,T ,

and therefore∏
w∈TK

(1−Nw) · Z[1/g]ES ⊆ Z[1/g]ES,T . (11)

(We are using the fact that(1−σ−1
v ·Nv) divides(1−Nw) in the group ringZ[G],

for anyv ∈ T , and anyw inK, such thatw|v.) The statement in the lemma follows
directly from (11). 2

Proof of Theorem2.2. SinceUS is a finitely generatedZ-module, it is obviously
enough to prove (2) in the statement of the Theorem above.
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Due to the fact thatK has a divisor of degree 1 overFqν , supported outside any
finite set of primes (see [13]), we have

gcd{(1− Nw);w ∈ TK, T ∈ T } = eK.
Let us fix a prime number̀, such that gcd(`, geK) = 1, and let us considerT ∈ T ,
T = {v}, such that gcd(1− Nw, `) = 1, for every primew ∈ TK . We have the
following exact sequences ofZ[G]-modules (see [15, Sect. 1.1, (1)])

0−→ US

US,T
−→

⊕
w∈TK

Fqν (w)× −→ AS,T −→ AS −→ 0,

0−→ (ES ∩ US,T )
ES,T

−→ US,T

ES,T
−→ US

ES
−→ US

(US,T · ES) −→ 0.

Lemma 2.3 implies that, when tensored withZ`, the exact sequences above give
the following isomorphisms ofZ`[G]-modules

AS,T ⊗ Z`
∼−→ AS ⊗ Z`, US,T /ES,T ⊗ Z`

∼−→ US/ES ⊗ Z`.

These isomorphisms, combined with Theorem 1.4(2), imply that

|(US/ES ⊗ Z`)ψ |rψ = |(US,T /ES,T ⊗ Z`)ψ |rψ
= |(AS,T ⊗ Z`)ψ |rψ = |(AS ⊗ Z`)ψ |rψ ,

for every characterψ ∈ Ĝ(Q`). This concludes the proof of Theorem 2.2. 2
3. The Case|S| = 1

We keep the same notations as in the previous sections, and we assume in addition
thatS consists of a single primev0 which splits completely inK/k. (If one thinks of
v0 as the prime at infinity, then this case is the function field analogue of the totally
real Abelian number field case.) The goal of this section is to remove condition
gcd(`, eK) = 1 in Theorem 2.2(2), under the present hypotheses. This result will
prove to be of crucial importance in our approach of a particular case of Chinburg’s
�3-conjecture (see Section 4).

Let us first remark that, under the present hypotheses

rF =
{

1, for F 6= k,
0, for F = k, rψ =

{
1, for ψ 6= 1G,

0, forψ = 1G,
(12)

for any F andψ as in Section 1. For any intermediate fieldF , let UF,S be the
group ofS-units ofF (US = UK,S), let µF be the group of roots of unity inF×,
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letUF,S
def= UF,S/µK andES

def= ES/µK , and letaF = AnnZ[G(F/k)](µF ). As a con-
sequence of|S| = 1, we obviously have the equalitiesUk,S = µk andUk,S = {1}.
We also have the following characterization ofaF (see [21], Chapter IV, Section 1,
Lemma 1).

LEMMA 3.1 (Tate). The idealaF is generated overZ[G(F/k)] by the set

{1− σ−1
v ·Nv|v prime ink, v 6∈ S ′},

for any finite set of primesS ′ of k, containing all the primes which ramify inF/k.

An immediate consequence of Lemma 3.1 is that, ifF is any intermediate field,
and if πF : Z[G] → Z[G(F/k)] is the natural projection given byπF (σ ) = σ |F ,
for all σ ∈ G, then

πF(aK) = aF . (13)

We call a pair(F, S ′) as in Definition 1.1S-admissible ifF 6= k, and for every finite
setT of primes ink, such thatS ′ ∩ T = ∅, the pair(F, S ′) is (S, T )-admissible, in
the sense of Definition 1.1. For any fieldL of characteristic 0, and anyψ ∈ Ĝ(L),
ψ 6= 1G, a pair (F, S ′) is called (S,ψ)-admissible if, for everyT as above,
the pair(F, S ′) is (S, T ,ψ)-admissible, in the sense of Definition 1.5. An obvi-
ously equivalent and certainly easier to handle definition of these concepts is the
following.

DEFINITION 3.2. A pair(F, S ′) consisting of an intermediate fieldF , F 6= k,
and a finite setS ′ of primes ink, is calledS-admissible if it satisfies the following
conditions:

(1) v0 ∈ S ′,
(2) |S ′| > 3,
(3) S ′ contains all the primes which ramify inF/k.

If ψ is as above and if, in addition to (1)–(3),(F, S ′) satisfies

(4) rψ,S ′ = 1,

then(F, S ′) is called(S,ψ)-admissible.

For anS-admissible pair(F, S ′), let

2F,S ′(s) =
∑

χ∈Ĝ(F/k)
LS ′(s, χ) · eχ−1

be theS ′-Stickelberger function associated toF/k, whereLS ′(s, χ) is the Artin
L-function associated toχ , with Euler factors at primes inS ′ removed.
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Let us fix a primew0|v0 in K. In what follows we will denote byw0 the
prime lying below this fixed prime in any intermediate fieldF as well. For an
S-admissible pair(F, S ′) we will denote byRw0 the regulator map

CUF,S ′,T = CUF,S ′
RW−→ C[G(F/k)]

associated as in Section 0 toW = {w0} andr = 1. The following is a reformulation
in this context of Brumer-Stark’s Conjecture proved independently by Deligne (see
[21], Chapter V) and Hayes (see [10]).

THEOREM 3.3 (Deligne, Hayes).For anyS-admissible pair(F, S ′) there exists
a unique elementηF,S ′ ∈ (UF,S)1,S ′ satisfying the following properties

(1)
1

eF
Rw0(ηF,S ′) = 2′F,S ′(0),

(2)
[∏

v∈T (1− σ−1
v ·Nv)

] · ( 1

eF
ηF,S ′

)
∈ (UF,S,T )1,S ′

in QUF,S,T , for every finite, nonempty setT of primes ink, such thatT ∩ S ′ = ∅.
Let (F, S ′) andT be as in the Theorem above. Rubin’s Conjecture (Conjecture

B in [15, Section 1.6]) applied to the set of data(F, S ′, T ,1) predicts the existence
of a unique elementεF,S ′,T ∈ (UF,S ′,T )1,S ′ (see Lemma 1.5.3(2) in [15] as well)
satisfying the regulator conditionRw0(εF,S ′,T ) = 2′F,S ′,T (0). Due to the obvious
relation

2′F,S ′,T (0) =
[∏
v∈T
(1− σ−1

v ·Nv)
]
·2′F,S ′(0)

and to the uniqueness ofηF,S ′ andεF,S ′,T , the link between Theorem 3.3 above and
Rubin’s Conjecture in this context is given by

εF,S ′,T =
[∏
v∈T
(1− σ−1

v · Nv)
]
·
(

1

eF
ηF,S ′

)
. (14)

This relation shows that Theorem 3.3 implies Rubin’s conjecture forr = 1. One
can actually show that they are equivalent (see [17]).

LEMMA 3.4. Let ` be a prime number, such thatgcd(`, g) = 1, letψ ∈ Ĝ(Q`),
ψ 6= 1G, and letαψ ∈ aK ⊗ Z` such that(aK ⊗ Z`)ψ = αψDψ . (Such an
element always exists becauseDψ is a discrete valuation ring.) Then(ES ⊗ Z`)ψ

is generated as aDψ -module byαψ ·
[
(1/eKψ )ηKψ,S ′

]
, for anyS ′ such that the pair

(Kψ, S
′) is (S,ψ)-admissible.

181024.tex; 23/08/1999; 10:04; p.14

https://doi.org/10.1023/A:1001586625441 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001586625441


GRAS-TYPE CONJECTURES FOR FUNCTION FIELDS 277

Proof. Let us fix a setS ′ such that the pair(Kψ, S ′) is (S,ψ)-admissible. Ac-
cording to Lemma 1.8(1) (forrψ = 1) and to the definition ofES , we have the
following equality

(ES ⊗ Z`)ψ =
∑
T

Dψ · εKψ,S ′,T , (15)

where the sum is taken with respect to all finite, nonempty setsT of primes ink,
such thatT ∩S ′ = ∅. Lemma 3.1 shows that for any suchT ,

∏
v∈T (1−σ−1

v ·Nv) ∈
aKψ , and therefore (14) and (15) show that

(ES ⊗ Z`)ψ ⊆ Dψ

[
αψ · 1

eKψ
ηKψ,S ′

]
.

On the other hand, Lemma 3.1 also shows that one can write

αψ =
∑
v 6∈S ′

av · (1− σ−1
v Nv),

with av ∈ Dψ , almost all equal to 0. LetTv = {v}, for anyv 6∈ S ′. The equality
above, combined with (14) and the definition ofES , gives

αψ · 1

eKψ
ηKψ,S ′ =

∑
v 6∈S ′

av · (1− σ−1
v Nv)

(
1

eKψ
ηKψ,S ′

)

=
∑
v 6∈S ′

av · εKψ,S ′,Tv ∈ (ES ⊗ Z`)ψ .

This concludes the proof of Lemma 3.4. 2
LEMMA 3.5. For any `, ψ and S ′ as in Lemma3.4, the natural morphisms of
Z[G]-modules involved in the following commutative diagrams

US −−−−⇀ US ′ AS −−−−⇀ AS ′

UKψ,S

6

−−−−⇀UKψ,S ′

6

AKψ,S

6

−−−−⇀AKψ,S ′

6

becomeDψ -isomorphisms, when tensored withDψ overZ[G].

Proof.Same as the proof of Lemma 1.7. 2
PROPOSITION 3.6.Let`,ψ andS ′ be as in Lemma3.4. Then|(US/ES⊗Z`)ψ | >
|(AS ⊗ Z`)ψ |.
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Proof. Let T be a finite, nonempty set of primes ink, such thatT ∩ S ′ = ∅.
After tensoring withDψ overZ[1/g][G], Theorem 0 (2) applied to the set of data
(Kψ, S

′, T ,1) gives us the inclusion

Dψ · εKψ,S ′,T ⊆ FittDψ ((AKψ,S ′,T ⊗ Z`)ψ) · (UKψ,S ′,T ⊗ Z`)ψ . (16)

On the other hand, after tensoring withDψ overZ[G], the surjectiveZ[G]-morphism
AKψ,S ′,T −⇀−⇀AKψ,S ′, (see [15, (1)]) gives a surjective morphism ofDψ -modules

(AKψ,S ′,T ⊗ Z`)ψ −⇀−⇀(AKψ,S ′ ⊗ Z`)ψ

which, according to [15, Sect. 1.4(e)], gives the following inclusion at the level of
Fitting ideals

FittDψ (AKψ,S ′,T ⊗ Z`)ψ ⊆ FittDψ (AKψ,S ⊗ Z`)ψ . (17)

If we now combine inclusions (16) and (17) with the obviousUS ′,T ⊆ US ′ and with
Lemma 3.5, we obtain

Dψ · εKψ,S ′,T ⊆ FittDψ (AS ⊗ Z`)ψ · (US ⊗ Z`)ψ,

for everyT as above. This last relation together with (15) show that

(ES ⊗ Z`)ψ ⊆ FittDψ (AS ⊗ Z`)ψ · (US ⊗ Z`)ψ . (18)

On the other hand, sincerψ,S = 1, we have an isomorphism ofDψ -modules

(US ⊗ Z`)ψ
∼−→ Dψ . Relation (18), together with [15, Sect. 1.4(f)], therefore

imply that

|(US/ES ⊗ Z`)ψ | = |(US/ES ⊗ Z`)ψ |
> [Dψ : FittDψ (AS ⊗ Z`)ψ ]
= |(AS ⊗ Z`)ψ |,

which concludes the proof of Proposition 3.6. 2
Our next goal is to prove the following.

PROPOSITION 3.7.Let` be a prime number such thatgcd(`, g) = 1. Then∏
ψ 6=1G

|(US/ES ⊗ Z`)ψ | =
∏
ψ 6=1G

|(AS ⊗ Z`)ψ |,

where the products above are taken with respect to charactersψ ∈ Ĝ(Q`).
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In order to prove the statement above we employ techniques similar to those
used by Rubin in [16]. Let us fix a prime number`, gcd(`, g) = 1, a completion
C` of the algebraic closure of(Q`), with respect to the normalized̀-adic valuation
v, an embeddingC` ↪→ C, and a finite, unramified extensionO of Z`, insideC`,
containing the values of all charactersχ ∈ ĜC`. In what follows we will denote by
ψ a generic element of̂G(Q`), and byχ a generic element of̂G(C`). The extension
of the normalized̀ -adic valuationv to C` (which will also be denoted byv) gives
an equivalence relation∼ onC∗`, defined bya ∼ b if v(ab−1) = 0, ∀a, b ∈ C∗`.

LetXS be theZ[G]-module defined by

XS =
∑
w|v0

aw · w| aw ∈ Z,
∑
w|v0

aw = 0

 .
As in [15, Sect. 1], we have an injectiveZ[G]-morphismUS

λS−−−−⇀ RXS , given by
λS(ᾱ) =∑w|v0

− log |α|w ·w, for all α ∈ US, which becomes aC[G]-isomorphism

CUS

λS∼−→ CXS , when extended byC-linearity toCUS .

Let us notice that sinceS = {v0}, the definitions ofRw0 andλS show that

λS(u) = Rw0(u) ·w0, ∀u ∈ US. (19)

Let Z`[G] = ⊕
ψ∈Ĝ(Q`)

Dψ be the usual decomposition ofZ`[G] in a direct
sum of Dedekind domains. An argument similar to the one in [15], Lemma 1.5.1,
combined with the second equality in (12) shows that we have isomorphisms of
Z`[G]-modules

Z`US

∼−→ Z`XS
∼−→

⊕
ψ∈Ĝ(Q`)

ψ 6=1G

Dψ, (20)

and equalities

(OXS)
χ = O · (eχw0), ∀χ ∈ Ĝ(C`), χ 6= 1G. (21)

These show in particular that one can find an injectiveZ[G]-morphism

XS

f

−−−−⇀US , which becomes aZ`[G]-isomorphism, when tensored withZ`.
Let R̂S, RS,χ andRK,S be the determinants of(λS ◦ f ), (λS ◦ f )χ and λS ,

respectively, computed with respect toO-bases ofOXS , (OXS)χ , andZ-bases of
XS andUS , respectively, for everyχ ∈ Ĝ(C`). For everyψ ∈ Ĝ(Q`) we set

RS,ψ
def= ∏

χ |ψ RS,χ . As a consequence of gcd(|coker(f )|, `) = 1, we have the
following `-adic equivalences

RK,S ∼ R̂S ∼
∏

χ∈Ĝ(C`)
RS,χ =

∏
ψ∈Ĝ(Q`)

RS,ψ . (22)

181024.tex; 23/08/1999; 10:04; p.17

https://doi.org/10.1023/A:1001586625441 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001586625441


280 CRISTIAN D. POPESCU

LEMMA 3.8. Let ψ ∈ Ĝ(Q`), ψ 6= 1G, and u ∈ Z`US , such that the index
[(Z`US)

ψ : Dψu] is finite. Then

[(Z`US)
ψ : Dψu] ∼ R−1

S,ψ ·
∏
χ |ψ

Rw0,χ (u)

 ,
whereRw0,χ =def χ ◦ Rw0.

Proof.As a direct consequence of (19), (20) and (21), one can easily prove that

[(OUS)
χ : O(eχu)] = `v(R−1

S,χ ·Rw0,χ (u))·[O:Z`], ∀χ |ψ.
By taking the product of the equalities above, for allχ |ψ , one obtains the statement
in the lemma. 2
COROLLARY 3.9. Let`, ψ andαψ be as in Lemma5.3.4. Then

|(US/ES ⊗ Z`)ψ | = R−1
S,ψ ·

∏
χ |ψ

Rw0,χ

(
αψ · 1

eKψ
ηKψ,Sψ

)
.

Proof. Immediate consequence of Theorem 2.2(1), Lemma 3.4 and Lemma
3.8. 2

Let χ ∈ Ĝ(C). (Under the chosen embedding(C`) ↪→ C, χ can be viewed as
an element of̂G(C`) as well.) LetLS(s, χ) be the ArtinL-function associated toχ ,
with the Euler factor atv0 removedLS(s, χ) = (1−χ(σv0)Nv

−s
0 ) ·L(s, χ), where

L(s, χ) is the ‘complete’ ArtinL-function associated toχ . For everyψ ∈ Ĝ(Q`),
ψ 6= 1G, let Sψ be a fixed finite set of primes ink, such that the pair(Kψ, Sψ) is
(S,ψ)-admissible. Then everyχ ∈ Ĝ(C`), χ |ψ , gives a relation

LSψ (s, χ) =
∏

v∈Sψ\S ′ψ
(1− χ(σv)Nv−s) · LS(s, χ),

whereS ′ψ = {v ∈ Sψ | v ramifies inKψ/k, orv = v0}. Due to the fact that(Kψ, Sψ)
is (S,ψ)-admissible, we haverψ,Sψ = 1, and thereforeχ(σv) is a root of unity of
orderg, different from 1, for allv ∈ Sψ \S ′ψ and allχ |ψ . Since gcd(`, g) = 1, this
shows that forχ andv as above we have(1−χ(σv)) ∈ O×. We therefore have the
following `-adic equivalences

L′Sψ (0, χ) =
∏

v∈Sψ\S ′ψ
(1− χ(σv)) · L′S(0, χ) ∼ L′S(0, χ), (23)

for everyψ andχ as above. We are now prepared to prove Proposition 3.7.
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Proof of Proposition3.7. LetζK,S(s) andζk,S(s) be theS-zeta functions ofK
andk respectively. LethK,S = |AS |, hk,S = |Ak,S |, and for everyψ ∈ Ĝ(Q`), let
h
ψ

K,S = |(AS ⊗ Z`)ψ | andeψK = |(µK ⊗ Z`)ψ |. We have the equality

ζK,S(s)

ζk,S(s)
=

∏
ψ 6=1G

∏
χ |ψ

LS(χ, s)

 . (24)

SinceS consists of a single prime which splits completely inK/k, we have the
following equalities (see [21], Chapter I):

ords=0ζk,S(s) = 0, ords=0ζK,S(s) = [K : k] − 1,

ords=0LS(χ, s) = 1, ∀χ 6= 1G.

TheS-class number formula (see [21], Chapter I) together with equality (24) there-
fore give us

hK,S

hk,S
· RK,S
Rk,S
· ek
eK
=

∏
ψ 6=1G

∏
χ |ψ

L′S(χ,0)

 . (25)

According to (22), (25), and Theorem 3.3(1) applied to the pairs(Kψ, Sψ), for all
ψ ∈ Ĝ(Q`), ψ 6= 1G, we therefore have

∏
ψ 6=1G

h
ψ

K,S ·
∏
ψ 6=1G

RS,ψ ·
 ∏
ψ 6=1G

e
ψ

K

−1

∼
∏
ψ 6=1G

∏
χ |ψ

Rw0,χ

(
1

eKψ
ηKψ,Sψ

) . (26)

Let us chooseαψ ∈ (aK ⊗ Z`) as in Lemma 3.4, for everyψ as above. The
flatness ofDψ and the cyclicity ofµK as Z[G]-modules give us the following
exact sequence ofDψ -modules

0−⇀ (aK ⊗ Z`)ψ −⇀ Dψ −⇀ (µK ⊗ Z`)ψ −⇀ 0,

for everyψ . This together with (13) give

eKψ = eψK = [Dψ : αψDψ]. (27)

Let ψ as above, and for a fixedχ0|ψ , let Z`[χ0] be the discrete valuation domain
obtained by adjoining the values ofχ0 to Z`. Then we have the equalities

[Dψ : αψDψ ] = [Z`[χ0] : (χ0(αψ))]
= `v(χ0(αψ))·[Z`[χ0]:Z`]

= `
v
(∏

χ |ψ χ(αψ )
)
. (28)
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Equalities (27) and (28) show that we have an`-adic equivalenceeKψ ∼∏
χ |ψ χ(αψ), for everyψ 6= 1G. This equivalence together with theG-linearity

of Rw0 show that, if we multiply (26) by
∏
ψ 6=1G R

−1
S,ψ

(∏
χ |ψ χ(αψ)

)
, we obtain

∏
ψ 6=1G

h
ψ

K,S ∼
∏
ψ 6=1G

R−1
S,ψ ·

∏
χ |ψ

Rw0,χ

(
αψ · 1

eKψ
ηKψ,Sψ

) . (29)

If we now combine (29) with Corollary 3.9, we obtain∏
ψ 6=1G

h
ψ

K,S ∼
∏
ψ 6=1G

|(US/ES ⊗ Z`)ψ |,

which concludes the proof of Proposition 3.7. 2
By combining Propositions 3.6 and 3.7 we obtain the desired result:

THEOREM 3.10. Let S be a set consisting of a single prime ofk, which splits
completely inK/k. Then:

(1) The index[US : ES] is finite.
(2) For every prime number̀ such thatgcd(`, g) = 1, and everyψ ∈ Ĝ(Q`),
ψ 6= 1G, |(US/ES ⊗ Z`)ψ | = |(AS ⊗ Z`)ψ |.

Remark. Equalities similar to the ones in Theorems 1.4(2), 2.2(2) and 3.10(2)
were proved in the number field case, fork = Q, as consequences of the Main
Conjecture in Iwasawa Theory (see [12]), or by using Kolyvagin–Euler system
techniques (see [11], Appendix). It is conceivable, as Rubin shows in [17, Sect. 6],
that the elements8(εF,S ′,T ) give Kolyvagin–Euler systems in the function field
case as well. One could therefore hope to be able to prove the theorems above by
using Kolyvagin–Euler system techniques. However, there would be a major draw-
back: these techniques would fail to give information at the primep = char(k).
The methods we are using do not force us to stay away from the primep. This
is mainly due to the fact that we are not avoidingp in Theorem 0. The cause
for this lies deeper, in the links between crystalline andp-adic étale cohomology
theories, and in the fact that the action of the geometric Frobenius morphism on
the crystalline cohomology groups gives the rightL-functions (see Appendix of
[15] or [14]). The idea of using crystalline cohomology in order to understand the
structure of thep-part of class groups of function fields has been used in the past
by Goss and Sinnott (see [7]).
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4. On Chinburg’s �3-Conjecture for Function Fields

4.1. THE CONJECTURE

Let K/k be any finite, Galois extension of global fields (number fields or func-
tion fields of characteristicp > 0.) LetG = G(K/k), and let K0(Z[G]) be the
Grothendieck group of isomorphism classes of finitely generated, projectiveZ[G]-
modules. IfP is a finitely generated, projectiveZ[G]-module, thenP ⊗Z Q is
Q[G]-free (see [18]) and we define rank(P ) =def rankQ[G](P ⊗Z Q).

In this way we obtain a surjective group morphism

K0(Z[G])
rank−−−−⇀−⇀ Z,

defined by rank([P ]) = rank(P ), for the class[P ] in K0(Z[G]) of any finitely
generated, projectiveZ[G]-moduleP .

DEFINITION 4.1.1. The projective class-group Cl(Z[G]) of Z[G] is defined by

Cl(Z[G]) = ker

(
K0(Z[G])

rank−−−−⇀ Z
)
.

In [6] Fröhlich defined an invariant ofanalytic natureWK/k ∈ Cl(Z[G]) for
finite, Galois extensionsK/k of number fields, by means of the Artin root num-
bers associated to the irreducible, symplectic representations ofG. In [5] Chinburg
shows that the definition ofWK/k can be carried through in the function field case
as well. In particular, if the groupG has no irreducible, symplectic representations
(as it is the case whenG is abelian, for example), thenWK/k = 0 in Cl(Z[G]).

In [3] and [4] Chinburg defined an invariant ofarithmeticnature�(K/k,3) ∈
Cl(Z[G]) for finite, Galois extensions of number fields, measuring the complexity
of the Z[G]-module structure of the groupUS of S-units inK, for a sufficiently
large finite setS of primes ink. In [5] he extends this definition to the function
field case.

The link between the invariants described above is believed to be the following
(see [3], [4] and [5]).

CONJECTURE (Chinburg). For any finite, Galois extension of global fields

�(K/k,3) =WK/k.

Chinburg shows in [3, Sect. IX] how, in the case of a cyclic extension of prime
degree of the fieldQ of rational numbers, the conjecture above follows from Gras’
Conjecture satisfied by the group of cyclotomic units in that context. Following
Chinburg’s ideas, we are going to show in the next section that the conjecture above
holds true for cyclic extensions of prime degree of function fields, as a consequence
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of Theorem 3.10 (our analogue of Gras’ Conjecture in the function field setting).
Chinburg’s Conjecture in this situation follows from work of S. Bae [1] as well.
However Bae’s approach is completely different from ours.

4.2. CYCLIC EXTENSIONS OF PRIME DEGREE

Throughout this section we are going to assumeK/k to be a cyclic function field
extension of prime degree. Since in this case there are no irreducible, symplectic
representations ofG, we have

WK/k = 0, (29)

and therefore Chinburg’s Conjecture asserts that�(3,K/k) = 0 in Cl(Z[G]).
Since|G| = 2 implies Cl(Z[G]) = 0 (see [3, Sect. IX]), we can assume from now
on that|G| > 2.

Let G0(Z[G]) be the Grothendieck group of isomorphism classes of finitely
generatedZ[G]-modules, and leth: K0(Z[G])−⇀G0(Z[G]) be the Cartan morph-
ism, taking the class[P ] of a finitely generated, projectiveZ[G]-moduleP in
K0(Z[G]), into its class(P ) in G0(Z[G]).

For a finite setS of primes ofk, let SK be the set of primes ofK lying above
primes inS. Let us consider the followingZ[G]-modules

YS =
∑
w∈SK

aw · w | aw ∈ Z

 ,
XS =

∑
w∈SK

aw · w | aw ∈ Z,
∑
w∈SK

aw = 0

 .
The following statements are proved in [5] and [19] respectively.

PROPOSITION 4.2.1 (Chinburg).The image of�(3,K/k) via the Cartan maph
satisfiesh(�(3,K/k)) = (US)− (XS)− (AS), for any finite, sufficiently large set
S of primes ink.

PROPOSITION 4.2.2 (Reiner).If G is a cyclic group of prime order then, the
Cartan maph : K0(Z[G])−⇀ G0(Z[G]) is injective.

According to these Propositions, all we have to do in order to prove the Conjec-
ture above under the present assumptions, is show that(US) − (XS) − (AS) = 0
in G0(Z[G]), for a sufficiently large set of primesS. Although one can make the
expression ‘sufficiently large’ very precise (see [5]), the next result shows that there
is no need for that in the present situation.
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LEMMA 4.2.3. The classcS =def (US) − (XS) − (AS) ∈ G0(Z[G]) does not
depend on the finite, nonempty setS of primes ink.

Proof.There is an exact sequence ofZ[G]-modules

0−⇀ XS −⇀ YS
s−⇀ Z−⇀ 0,

where

s

∑
w∈SK

aw ·w
 def=

∑
w∈SK

aw, for all
∑
w∈SK

aw · w ∈ YS.

This gives the following relation in G0(Z[G])
(XS) = (YS)− (Z) (30)

In order to prove the desired statement, it is obviously enough to prove that, ifS1

andS2 are two sets of primes as in the statement of the lemma, satisfyingS1 ⊆ S2,
thencS1 = cS2 in G0(Z[G]).

Let us fix such setsS1 andS2. Let AS1,S2 be theZ[G]-submodule ofAS1 gen-
erated by the classes of the ideals inS1,2 =def S2,K \ S1,K , and letYS1,S2 be the
free abelian group generated by the ideals inS1,2. We have the following exact
sequences of finitely generatedZ[G]-modules

0−⇀ YS1−⇀ YS2

α−⇀ YS1,S2−⇀ 0,

0−⇀ US1−⇀ US2

β−⇀ YS1,S2

γ−⇀ AS1,S2−⇀ 0,

0−⇀ AS1,S2−⇀ AS1 −⇀ AS2−⇀ 0,

where

α

 ∑
w∈S2,K

aw ·w
 = ∑

w∈S1,2

aw · w,β(u) =
∑
w∈S1,2

ordw(u) · w,

for all u ∈ US2,

andγ (w) = ŵ (the class ofw in AS1,S2), for all w ∈ S1,2. If we write down the
relations given in G0(Z[G]) by the three exact sequences above, and eliminate the
classes(YS1,S2) and(AS1,S2), we obtain

(YS2)− (US2)− (AS2) = (YS1)− (US1)− (AS1).

This relation combined with (30) forS = S1 andS = S2 respectively, gives the
desiredcS1 = cS2 in G0(Z[G]). 2
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Lemma 4.2.3 shows that, in order to prove Chinburg’s Conjecture under the
present assumptions, we have to find a finite, nonempty setS of primes in k,
satisfyingcS = 0.

Let S = {v0, . . . , vs} be a fixed set of primes ink satisfying the following
properties:

(1) v0 splits completely inK/k.
(2) |S| > 3
(3) S contains all the primes which ramify inK/k.
(4) Gvi = G, for all i = 1, . . . , s.

We intend to prove thatS satisfiescS = 0. In order to do this, we return to some
of the notations and techniques employed in Section 3.

Let S0 = {v0}. Properties (1)–(3) satisfied byS show that(K, S) is an S0-
admissible pair. LetηK,S ∈ (UK,S0)1,S be the unique element provided by Theorem
3.3 (withF = K, S = S0 andS ′ = S). LetES be theZ[G]-submodule ofUS =
US/µK defined by

ES =
(
aK · 1

eK
ηK,S

)⊕
(hk,SZu1⊕ Zu2⊕ · · · ⊕ Zus),

where{u1, . . . , us} is aZ-basis ofUk,S . (SinceηK,S ∈ (UK,S0)1,S, andr1G,S > 2
(see property (2) satisfied byS), we havee1G · ηK,S = 0 and therefore the relation
aK · (1/eK)ηK,S ∩ Uk,S = {0}.)

LetES ⊆ US be the preimage ofES ⊆ US under the projection

US −⇀−⇀ US = US/µK.
Then we obviously have an exact sequence of finitely generatedZ[G]-modules

0−⇀ µK −⇀ ES −⇀ ES −⇀ 0,

which gives the following relation in G0(Z[G])
(ES) = (ES)+ (µK). (31)

PROPOSITION 4.2.4. (1)The index[US : ES] is finite.
(2) For every prime number̀ such thatgcd(`, g) = 1, and everyψ ∈ Ĝ(Q`)

[|(US/ES ⊗ Z`)ψ | = |(AS ⊗ Z`)ψ |.
Proof.As remarked many times before, it is enough to prove (2) above.
Let ` be as above and let us fixψ ∈ Ĝ(Q`),ψ 6= 1G for the beginning. The fact

that|G| is prime implies thatKψ = K. Properties (1)–(4) satisfied byS imply that
the pair(K = Kψ, S) is (S0, ψ)-admissible. Lemma 3.5 therefore shows that

(Z`US)
ψ = (Z`US0)

ψ and (Z`AS)ψ = (Z`AS0)
ψ. (32)
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The definition ofES and Lemma 5.3.4 show that

(Z`ES)ψ = (Z`aK)ψ
(

1

eK
ηK,S

)
= (Z`ES0)

ψ. (33)

If we now combine equalities (32) and (33) with Theorem 3.10 (forS = S0) we
obtain

|(US/ES ⊗ Z`)ψ | = |(US/ES ⊗ Z`)ψ |
= |(AS ⊗ Z`)ψ |,

which concludes the proof of statement (2), forψ 6= 1G.
Letψ = 1G. We obviously have the following equalities

(Z`ES)1G = hk,SZ`u1⊕ Z`u2⊕ . . .⊕ Z`us,

(Z`US)
1G = Z`Uk,S, (Z`AS)1G = Z`Ak,S.

These imply that

|(US/ES ⊗ Z`)1G | = |(US/ES ⊗ Z`)1G |
= |(Z` ⊗ AS)1G |,

which concludes the proof of Proposition 4.2.4 (2), forψ = 1G as well. 2
For a finiteZ[G]-moduleM, we have aZ[G]-module direct sum decomposition

M = ⊕
`(M ⊗ Z`), with respect to all prime numbers̀. Let S(M ⊗ Z`) denote

theZ[G] – (or equivalently, theZ[G]) – semisimplification ofM ⊗ Z`, for any`.
We obviously have the following relation in G0(Z[G])

(M) =
∑
`

(S(M ⊗ Z`)). (34)

On the other hand, if̀ = |G| (recall that|G| is a prime number), andN is a simple
Z[G]-module of order a power of̀, then the maximalG-fixed submoduleNG ofN
is nontrivial, and thereforeNG = N . This fact, combined again with the simplicity
of N , shows that|N | = `. We therefore have an exact sequence ofZ[G]-modules

0−⇀ Z
×`−⇀ Z−⇀ N −⇀ 0,

which shows that(N) = 0 in G0(Z[G]).
This remark and (34) show that, for any finiteZ[G]-moduleM, we have the

following relation in G0(Z[G])
(M) =

∑
` 6=|G|

(S(M ⊗ Z`)). (35)
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LEMMA 4.2.5. The equality(US)− (ES)− (AS) = 0 holds true inG0(Z[G]).
Proof.Greenberg shows in [8, Sect. 5] that, ifG is a finite Abelian group,̀ is a

prime number such that gcd(`, |G|) = 1, andM1,M2 are two finiteZ[G]-modules,
the following statements are equivalent:

(1) S(M1⊗ Z`)
∼−→ S(M2⊗ Z`) asG-modules.

(2) |(M1 ⊗ Z`)ψ | = |(M2⊗ Z`)ψ |, for all ψ ∈ Ĝ(Q`).

The statement in Lemma 4.2.5 follows now from Proposition 4.2.4, relation (35)
and Greenberg’s observation, withM1 = US/ES andM2 = AS . 2
PROPOSITION 4.2.6.The equality(ES) = (XS) holds true inG0(Z[G]).

Proof.Let us fixwi ∈ SK , wi|vi , for everyi = 0, . . . , s. Properties (1) and (4)
satisfied byS imply that we haveZ[G]-isomorphisms

Z[G]w0
∼−→ Z[G], Z[G]wi ∼−→ Z, ∀i = 1, . . . , s,

with G acting trivially onZ. The definition ofYS therefore shows that

YS =
⊕

06i6s
Z[G]wi ∼−→ Z[G] ⊕ Zs

asZ[G]-modules. Relation (30) therefore shows that the following holds true in
G0(Z[G])

(XS) = (Z[G])+ (s − 1)(Z). (36)

We are now going to compute the class(ES) in G0(Z[G]). According to (31)
and the definition ofES , we obviously have

(ES) = (µK)+
(
aK · 1

eK
ηK,S

)
+ s(Z). (37)

SinceµK is a cyclicZ[G]-module, the definition ofaK implies

(aK) = (Z[G])− (µK), (38)

Proposition 4.2.4 (1) implies that

rankZES = rankZUS = [K : k] + (s − 1),

and therefore, from the definition ofES , we have

rankZ

(
aK · 1

eK
ηK,S

)
= [K : k] − 1. (39)
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Let K be theZ[G]-module defined by the exact sequence

0−⇀ K −⇀ aK
π−⇀ aK · 1

eK
ηK,S −⇀ 0, (40)

whereπ(α) = α·(1/eK)ηK,S , for all α ∈ aK . Then (39), combined with the obvious
rankZ(aK) = [K : k], shows that rankZ(K) = 1. But since|G| > 2, the only ideal
of Z[G] of Z-rank equal to 1 is isomorphic toZ with trivial G-action. This shows
that(K) = (Z) and therefore the following equality holds true in G0(Z[G])(

aK · 1

eK
ηK,S

)
= (aK)− (Z).

Combining this equality with (37) and (38) one obtains

(ES) = (Z[G])+ (s − 1)(Z),

which, according to (36), concludes the proof of Proposition 4.2.6. 2
We are now prepared to prove the main result of this section:

THEOREM 4.2.7. If K/k is a cyclic extension of prime degree of function fields
of characteristicp > 0, then�(K/k,3) = WK/k(= 0) in Cl(Z[G]).

Proof. Proposition 4.2.6 together with Lemma 4.2.5 show that, for the setS

of primes ink fixed above, we havecS = 0 in G0(Z[G]). Proposition 4.2.1 and
Lemma 4.2.3 thus show thath(�(K/k,3)) = 0 in G0(Z[G]). The injectivity ofh
(see Proposition 4.2.2) together with (29), therefore imply that�(K/k,3) = 0 =
WK/k in Cl(Z[G]), which concludes the proof. 2
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