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Abstract. Based on results obtained in [15], we construct groups of spSeiatits for function

fields of characteristip > 0, and show that they satisfy Gras-type conjectures. We use these results
in order to give a new proof of Chinburgt®z-conjecture on the Galois module structure of the group
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0. Introduction

Let K/k be a finite, Abelian extension of function fields of characterigtic- O.
Let G = G(K/k) andg = |G|. We will denote byF, andF,. the exact fields
of constants ok and K, respectively, where is a power ofp andv is a positive
integer. In what follows we will use the same notations as in [15]. For the con-
venience of the reader, we briefly summarize in this section the main concepts and
results of [15] which will be used in our arguments.

For any two finite, nonempty and disjoint setsand 7' of primes ink, and
any field F, k € F C K, Urs and U 5.7 denote the groups af-units and,
respectively(S, T)-units of F; Ar s andAr s r are, respectively, th&-ideal class
group andS, T')-ideal class group of', as defined in [15, Sect. 1.1]. In particular,
if F =K, we suppresk from the notation, s&/x s = Us, Ug s.7 = Us 1 €tc.

All the exterior powers considered in this paper are taken over the group ring
Z[G], unless stated otherwise.

Let us assume for the moment that for a certain positive integbe set of data
(K/k, S, T, r) satisfies the following set of hypotheses
S#0, T#0, SNT =40
S contains all primes which ramify ik / k.
(H) S contains at least primes which split completely i& / k.

IS| >r+ 1
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Let (vq, ..., v,) be an ordered-tuple of primes inS which split completely in
K/k,andletW = (wq, ..., w,), withw; prime inK, w;|v;, foreveryi = 1,...,r.

One can define a regulator mé:p/r\ Usr Rw, C[G], by

-1
Ry(uy Ao nuy) = 9@t (—Zloglu; |w,.-a>,

oceG

-
Yui A+ Au, €A US,T'

Throughout this papen| = Nw=°%® for everyu € K*, and Nw is the order of
the residue field~,» (w) atw, for every primew of K. Similarly, if v is a prime in
k, Nv denotes the order of its residue fig¢lg(v).

For every irreducible character € G, let Ls (s, x) be the associated, T')-
L-function, as defined in [15, Sect. 1.2], and ®t 7(s) = ZX Lg7r(s, x)e,—1
be the Stickelberger function, wheeg = > . x(0) o™t € C[G]. If r, =
ords—oLs.7 (s, x), then

Cal’c{v es: Xle = le}, if X 75 1(;,

ry = .

cards) — 1, if x =1g,
whereG, is the decomposition group ofin K/ k. This shows that hypotheses (H)
imply thatr, > r, for everyx € G, and therefore the following definition makes
sense irC[G]
def . _, o,
= im s~ ©5.7(s) = Zlm)s Lsz(s, x) - e,1 € C[G.

xeG

ey (0)

DEFINITION. For any ringR with 1, and any{G]R-moduleM, let

Mr)sdzef{meM|eX-m=0inM®RC, VX eaWith’"x #Fr}

In [15] (see Theorem 3.2.1 and Corollary 3.2.2) we proved the following result.

THEOREM 0. If the set of data K / k, S, T, r) satisfies hypothesdkl) then

(1) There exists a uniques r € (Z[1/g] A" Us.7),.s Such that

Ry (es,r) = ©F(0).

(2) The elements 1 satisfies the equality

Z[1/g1[Gles,r = Fittzi61(As,7) - (Z[1/g] A" Us 1)y s.
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Throughout this paper, for any Noetherian riRgvith 1 and any finitely gener-
atedR-moduleM, Fittz (M) denotes the Fitting ideal @ff. For the definition and
properties of the Fitting ideals needed for our purposes, the reader can consult [15,
Sect. 1.4].

Let us now fix once and for all two finite, nonempty, disjoint Setsd 7 of
primes ink, S containing at least one prime which splits completehKipk, and
T not containing primes which ramify ik / k.

We will use Theorem 0(1) in order to construct t&dG]-modules of special
units & 7 and &g, of finite index inUg r and Uy respectively. Theorem 0(2) will
help us prove that statements similar to the ones conjectured by Gras in [9] and
proved by Mazur and Wiles in [12] for the classical number field case of cyclotomic
units, are satisfied b§s r and&s (Theorems 1.4, 2.2, 3.10). We use these results in
Section 4 in order to give a new proof to a special case of Chinbfxg€onjecture
(Theorem 4.2.7).

Before proceeding we would like to make a final useful remark on group-rings
and their modules (see also [15, Sect. 1.3]) i a field of characteristic 0, then
G(L) will denote the set of characters associated foreducible representations
of G. If L is an algebraic closure df, thenG(L/L) acts canonically o (L) and
G (L) can be viewed as the set of orbits with respect to this actionXF@ﬁ(Z)
andyr € G(L), we write x |y if x is in the orbit represented hy. For a subgroup
H C G (or an element € G) we write |y = 1y (or ¥ (o) = 1) if x|pg = 1y
(or x(o) = 1), for some (i.e. all) < G(f), such thaty |.

If RisaDedekind domain containifff1/¢], andL isits field of fractions, then
one has a canonical decompositi®fG] = P, .z, Dy, whereDy = R[G] - e,
are finite extensions ok, ande, = 1/gY ;¥ (o) -0~ € R[G]. If M is an
R[G]-module, then one has a decompositih= D, .5, MY, whereMV =

M @ g6y Dy, for everyyr € G(L).

1. The group &gt of Stark (S, T)-Units

Throughout this section the sets of prinfeandT as above will be fixed, so that
contains at least one prime which splits completely @rabes not contain primes
which ramify in K / k. Let F be an intermediate field & / k and letS’ be a finite
set of primes irk containingsS. We define

card{v € §’| v splits completely inF/k}, for F #k,
r -
card(S') —1, for F =k.

In particular, ifS” = S, we will make the notations s = rr.
Let L be any finite field of characteristic 0, and lete G(L). We define

card{v € §'| ¢¥|g, = 1s,}, fory # 15,
r —
Vs card(s) —1, fory =1;.
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In particular, forS = §’, we make the notation, s = ry,.

Foryr € G(L) as above, letf, = ker(y) and letK,, be the maximal subfield of
K fixed by H, . The injectivity ofy on G(K, /k) obviously implies that,, s =
ry.s, for any S” as above.

LetS = {vg,...,vs}. Foreveryi =0, ...,s, let us fix a primew; abovev; in
K and letw; r denote the prime i sitting beloww;, for every intermediate field
F. Let W be the orderedg-tuple of primes inF defined by

(w; r | v; splits completely inF), for F #k,
Wr = '
"1 wo.....v,1). forF =k,

ordered so thab; » preceedsv; r iff i < j.

DEFINITION 1.1. A pair(F, S) consisting of an intermediate field, F # k, and
a finite set of primes’ in k is called(S, T)-admissible if the following conditions
are satisfied:

1) scys,
(2 18" =181+ 2,
(3) the set of dataF/k, S', T, rr) satisfies hypotheses (H).

The pair(k, S) is also declared to bg$, T)-admissible.

Let us emphasize that(f, S’) is an(S, T')-admissible pair, then the set of data
(F/k,S', T, rr) satisfies hypotheses (H). For any such pairs’), let

ers.T €[2[1/8] A Ur,s1lre.s

be the unique element associated by Theorem 0 to the set ofd&kas’, T, rr)
and the regulatoRy, .
Let U;’S,,T = Homy6,(Ur.s'.7, ZIG]) be theZ[G]-dual of Ur ¢ r. Then for

every® =¢1 A - A1 € Z[1/g] ”Xl Ur ¢+ We get aZ[1/g][G]-morphism

®
Z[1/gl N Up g7 — Z[1/g1UF.s 1,

given by

Qi A Auy)= ) (D' det () - u;,
1<i<rp ISk, jsrr
J#i

a
forallug A--- A Upp, EN UF,S’,T-
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For every intermediate field, let u» be the group of roots of unity iR, and let
er = |ur|. In particular, if F = K, we haveu g = quv and thereforey = ¢¥ — 1.

DEFINITION 1.2. LetES,T be theZ[1/g][G]-submodule oZ[1/g] Q, (K*/uk)
generated by the set

(@(er.57)|(F. S) is (5. T)-admissible @ € Z[1/g] A U% g ;).

DEFINITION 1.3. The groupgs ; of Stark (S, T)-units is defined byes 7 =
Es.r () Us.r, where the intersection is viewed insidél/g] @, (K* /).

The main goal of this section is the proof of the following Gras-type Conjecture
for the groupé€s, 1 of special(S, T)-units.

THEOREM 1.4.LetK /k, S andT be as above. Then

(1) The indeXUs 1 : &s.7]is finite. R
(2) For any prime numbet, such thagcd(¢, g) = 1, and anyy € G(Q,)

|(Us.r/&s.1 @ Z)V| = [(As.r ® Zo)V |V

Before proceeding to the proof of the theorem above, we need a few more
lemmas and definitions.

DEFINITION 1.5. LetL be a field of characteristic 0, and ¢t € G(L). A pair
(F, S is called(S, T, v)-admissible if the following conditions are satisfied

(1) (F, 8 is (S, T)-admissible,
(2) Ky C F,
3 Iy,.s =TF.

Let us notice thatk, S) is the only(S, T, 15)-admissible pair, while fogy #
1; there exist infinitely manys, T, ¥)-admissible pairs.

LEMMA 1.6 (1) Lety € G(L) and let(F, ') be an(s, T, Y)-admissible pair.
Thenrg, =ry s =rrand(Ky, ) is also(S, T, y)-admissible.

2 If (F,S) and(F, ") are (S, T, ¥)-admissible pairs, theqr, S’ U S”) is
(S, T, y)-admissible as well.

Proof. Both statements are clearnjf = 15. Lety #£ 15.
(1) From the definitions above we have the following sequence of inequalities

Yk, ZTF =Tyg 21y =Tk,

181024 .tex; 23/08/1999; 10:04; p.5

https://doi.org/10.1023/A:1001586625441 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001586625441

268 CRISTIAN D. POPESCU

which shows thatg,, = ry s = rr. This obviously implies thatkK, ') is (S, 7,
Y¥)-admissible.

(2) Sincerp = ry g = ry s, We havey|g, # 1g,, for everyv € §"\ S and
everyv € §”\ S. This shows thatr = ry gus, Which obviously implies that
(F,S"US8")is (S, T, y)-admissible. O

LEMMA 1.7 Lety € @(Q) and let (F, S") be an(S, T, y)-admissible pair.
Thenthe naturaZ[G]-morphisms involved in the following commutative diagrams

Usrt Us r As T Ag 1

] ]

Ursr Urs. T ApsT Ars.T,

becomeZ[1/g][G]¥ -isomorphisms, when tensored wili1/g1[G]" overZ[G].

Proof. The vertical morphisms in both diagrams obviously become isomorph-
isms when tensored with[1/g][G]”. (Their inverses are th&[1/g][G]Y-linear
extensions of the norm map frokto F at the level of units and ideal class-groups
respectively.) This observation settles the lemma above/fer 1; and it shows
that it is enough to prove that the lower horizontal morphisms in both diagrams
become isomorphisms when tensored vdfh/g][G1]V, for ¥ # 1.

Lety # 15 and letS be theZ[G]-submodule ofd r s 7 generated by the ideal
classes

{w|w prime in F, w|v for somev € S\ S}.

Let us fix a primew(v) in F for every primev € §’ \ S. We have two exact
sequences d[G]-modules (see [15, Sect. 2 (9)] and [17, Sect. 5.1])

0— 88— Apsr— Ap g7 —0,

0— Upsr — Urs.r — P ZIGlw()s.
veS\S

Let us fixv € §'\ S. Sincey # 15 and(F, §’) is (S, T, ¥)-admissible, we have
Vg, # 1g,- This shows that there exists € G such that w(v) = w(v) and
¥ (o) # 1. We therefore have an equality

ey(0c—1)-ww) =0 D)

in Z[1/g1[G1Y, wheree,, is the idempotent associated foin Z[1/g][G]. The
fact thaty (o) # 1 easily implies thak, (o — 1) is invertible inZ[1/g][G]¥
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and therefore relation (1) above shows @@\ s Z[1/g1[G]” - w(v) = 0. The
last equality proves that, when tensored witfi/g][G]¥ (which is a flatZ[G]-
algebra), the exact sequences above yield isomorphisms

(ZI1/81Ars )Y — ZIL/glArs )Y,

(Z11/8lUr.s.1)" — (ZI1/glUr.s.1)",

which concludes the proof of Lemma 1.7. O

LEMMA 1.8. (1) Lety e G(Q). Thenéﬁj is generated as &[1/g][G]"-
ry—1
module by the se{ew - D(ek,. )| P € Z[1/g] A U;MQT}, for any S’ such
that (K, S") is (S, T, ¢)-admissible.
(2) €%, C Z[1/g1Us 1 andZ[1/g1Es,r =Es.7-

Proof. (1) Let (F, ') be an(S, T)-admissible pair. If the pai(F, S’) is not
(S, T, ¢)-admissible, then eithek, ¢ F, or K, € F andry ¢ # rp. In both

circumstances%s,!T =0in(Z[1/¢g] I Ur.s 7). We thus have

rp—1
®(e) ) =0, forall ® e Z[1/g] 'A Ujg ;-

It is therefore enough to restrict ourselves (1 T, v )-admissible pairs in the

definition ofégj. Let (F, S’) be such a pair. Then, according to Lemma 1.6,
(Ky, S is also (S, T, y)-admissible andr = rk, = Ty. The definition and
uniqueness ofg, s.r ander ¢ 7 show that

(ry)
EF, 5T = NF>[/Kw (€ky.5'.7)s (2)

where I\ﬁj’}w is theZ[1/g]-linear extension t&[1/g] r/‘( Ur,s 1 Of ther,-exterior
power of the norm map

Nr/k,
Urs 1 — Uk, 5.1

(see [17, Sect. 6] for (2)). Th&-freeness ofUr ¢ 7 gives an isomorphism of
abelian groups

U g7 222 Homy (Ur.s.7, 2), 3

~
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defined byp (u) = 3", g (r/1) Po(0 ~'u) - o, for everyu € Ur g 1. Obviously the
same type of isomorphism holds true t@;w,s,j as well. The inclusiot/x,, .7 €
Ur.s.7 iInduces therefore a surjective morphism

o>

Z[1/glUrp ¢ 1 Z[l/g]Ult,ﬂ,s’,T’

satisfying the reIatiord?(NF/Kwu) = ¢ (u), foreveryu € Uk, s .7, Wherer is the

natural projectiorZ[G (F/k)] N Z[G(Ky/k)]. We therefore obtain a surjective
Z[1/g]-morphism

ry—1 . ry—1 .
Z[1/g] N Upgr—>Z[1/g] A Uk,.s.1>
= GiA Ay D= BN Ay

satisfying the reIatiorﬁ)(Ng}”,){w(u)) = Np/k, (P ), for everyu € Z[1/g] r/f
Ur.s . The equality above obviously implies that, for af#y; 7', y)-admissible
pair (F, S") and any® € Z[1/g] X U ¢ 7 the following relation holds true in
E51

[F:Kyley®(ers.1) = ew&)(EKw,s',T)- 4)

Let nowS” andS” be two sets of primes such that the pdiks,, S’) and (K, S”)

are both(S, T, ¥ )-admissible. According to Lemma 1.6(2), the p@ff,, S'U S”)

is (S, T, ¢)-admissible as well. The definition and uniqueness of the elements
give the following relations (see [17, Sect. 6]):

-1
&Ky, SUS" T = 1_[ 1-0,) EKy.S'.T
ves”\s’

-1
= 1_[ (1—% ) EKy,S".T>

ves\S”

whereg, is the Frobenius morphism associatea o G(K,, / k). This implies that

1_[ ey(L—o,Y ek, 51 = 1_[ ey(L—o,Y | ek, 5.1 5)
ves\S’ ves\S”

Relations (4) and (5), the fact thaF : K] ande, (o, — 1) are invertible in
Z[1/gl[G]Y, forv € (§'\ S") U (S”\ §') (see the proof of Lemma 1.7), and
Lemma 1.7 show that (1) holds true.
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(2) Lemma 1.7 implies that for ar§/ such that K, S’) is (S, T, ¥)-admissible,
we haveZ[1/g][G]Y Uk, s.r = Z[1/g][G]Y Us,r. We thus have, ®(¢k, s.7) €

ry—1
Z[1/gl[G]Y Us 1, for any @ € w/\ U;;W’S,’T. According to this relation, the fact

that 8;T§ Z[1/g]Us r follows from statement (1) in our lemma. The equality
Z[1/g1&s.7 =&s.7 IS NOW an obvious consequence of the definitios of . O

Proof of Theoreni.4. SinceUs 7 is a finitely generated-module, it is ob-
viously enough to prove the second statement of the theoreny. beta prime
number such that g¢d, g) = 1, and letZ,[G] = EBM@(Q() D, be the decom-
position of Z,[G] into a direct sum of discrete valuation rings, as described in
Section 0. Let us fixy € G(Q,) and letS’ be a set of primes such thek,, ')
is (S, T, y)-admissible. Since, s = ry,, Lemma 1.5.1(1) of [15] gives us the
following isomorphisms oD,,-modules

(ZoUk,.5.1)" o D;w, Homp, (Z, Uk, .s.1)". Dy) —> Dy,

Let {es, ..., e} be aDy basis of(Z,Ux, s.r)" and let{e;, ..., e} be its D, -
dual. We have the following equalities 6f,-modules

ry
Dy ® (Z[1/glIG1 A Uk, 5'.7)ry.5°
Z[1/81G]

ry
= (Zy A Uk,.5.1) = Dy(er A+ Nepy).

Let us now combine Theorem 0(2), applied to the set of d&tg/k, ', T, ry),
with the equalities above. After tensoring with, overZ[1/g][G], we obtain

Dyek, s, =ay(erN---Nep,), (6)
where
ay = Fittzj6)(Ak,.s.7) Q) Dy =Fittp, | Ax,.s.7 Q) Dy |- 7)
Z[G] Z[G]

(For the last equality above see [15, Sect. 1.4(b)].) We are now prepared to compute
the DI,,-moduIe(Z,ZSS,T)W in terms of the chosen basfg,, ..., e, }. Let us first
notice that (3) shows that we have the following relations

(Z.Ug,.s.1) S Homz,161(Z¢ Uk, .s'.7, Ze[G])

= @ Homp, (Z¢Uk,,s.7)*, Dy).
x€GQn)
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This direct sum decomposition together with the definitioréng, Lemma 1.8
and equality (6) imply that

(Zo&sr)" = (Zi &s.1)

= Z (eI/\---/\e;“/\---/\ef‘p)(DweKw,SgT)
1<i<ry

_ * “x *
= Z(el/\---/\el./\---/\erw)(av,-el/\---/\ew)
1<i<ry

= aye1® ... Daye,,, (8)

equality viewed insid&€Z U, s.7)" = (Z;Us.r)" = D;‘” (see Lemma 1.7 above
and [15], Lemma 1.5.1(1)). Relation (8), together with (7) and [15, Sect. 1.4(f)],
obviously give us the following equality

|(Us.7/8s.0 @ Z)V | = [Dy : ayl™” = [(Ak, 5.1 ® Z)V|™.

On the other hand, after tensoring with,, Lemma 1.7 shows that

(Ak,.s.1 ®Z)Y —> (As7 ®Zp)Y,

as Dy,-modules, which, combined with the previous equality, settles statement (2)
in our theorem. a

2. The Group &s of Stark S-Units

With the same assumptions as in the previous section, let usSkidegd and letT
vary, so thatS N 7 = ¢, andT does not contain any prime which ramifieskiy k.
We will denote by7 the set of all possible choices of s@tsFor eachl’ € 7T we
have just defined 4[G]-submodulegs  of Us 7.

DEFINITION 2.1. The group of Starl§-units &s is theZ[G]-submodule otUs,
generated by.x U (Urcs Es.7)-

The main goal of this section is the proof of the following Gras-type conjecture
satisfied by the grougs of specialS-units.

THEOREM 2.2. Let S be a finite set of primes ik, containing at least one prime
which splits completely i / k. Then

(1) The indeX{ Uy : &s] is finite.
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(2) For any prime numbet, such thatgcd(¢, g - ex) = 1, and any character
¥ € GQu, [(Us/Es ®Z)V| = [(As ® Z)V |

In order to prove the theorem above, we need the following.

LEMMA 2.3. ForanyT € 7, |Es/&s.7| is divisible only by primes dividing
g- ]_[weTK(Nw - 1.

Proof. Let 71, 7> € T and lety ¢ @(Q). Let S’ be a finite set of primes
in k such that the paitKy, S') is (S, T1 U Ty, ¥)-admissible. Ther(K,, S’) is
obviously (S, Ty, ¥)-admissible ands, T», ¥)-admissible as well. The definition
and uniqueness of the elementsassociated by Theorem 0 to the sets of data
(Ky, S, T;,ry), fori = 1,2, and(Ky,, §', T1UT, ry), give the following relations

-1
€K,.S\ T\, = 1_[ Q-0,7-Nv) | ek, 5.1
_UETZ\TJ_ |
-1
= 1_[ (1—O'U NU) '8[(‘//)3"T2, (9)
veT\T»

(see [17, Sect. 6] for (9)). Let us also notice (see Lemma 3.1 below as well) that
for any primev in k, which is unramified inK / k, we have

(1—o, b Noyug = {1}, (10)

whereo, is the Frobenius morphism associated ia G (K /k). In light of Lemma
1.8(1), equalities (9) and (10) imply that, for any get 7,

[[a-o," Nv)-Z[1/g16s € Z[1/8]8s.7.

veT

and therefore

[1@-Nw)-Z[1/g1€s < Z[1/g1Es - (12)

weTg

(We are using the fact that — o, 1. Nv) divides(1— Nw) in the group ringZ[G],
foranyv € T, and anyw in K, such thatv|v.) The statement in the lemma follows
directly from (11). O

Proof of Theoren2.2. SincdJy is a finitely generated-module, it is obviously
enough to prove (2) in the statement of the Theorem above.
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Due to the fact thak has a divisor of degree 1 ovEy», supported outside any
finite set of primes (see [13]), we have

ge(1— Nw); w € Tx, T € T} = ek.

Let us fix a prime numbet, such that gctl, gex) = 1, and let us considdr € 7,
T = {v}, such that gcl — Nw, £) = 1, for every primew € Tx. We have the
following exact sequences @f G]-modules (see [15, Sect. 1.1, (1)])

U
0— — ED Fo(w)” — Agr — Ay — 0,

US’T weTk

(&sNUs,r) Usr Us Us
H H —

— — —————— 0.
Es 1 Es 1 €s (Us,r - &)

Lemma 2.3 implies that, when tensored with, the exact sequences above give
the following isomorphisms of ,[G]-modules

As1®Zy — As®Zy, Ust/€s1 ®Zy —> Us/Es ® Z,.
These isomorphisms, combined with Theorem 1.4(2), imply that

|(Us/&s ® Z)V ™ = |(Us,1/&s.1 ® Z)V |
= [(As,r @ Z)V " = |(As ® Z)V |7,

for every characteyy € G(Q,). This concludes the proof of Theorem 2.2. O

3. TheCasgsS| =1

We keep the same notations as in the previous sections, and we assume in addition
thatS consists of a single primg which splits completely irK / k. (If one thinks of
vo as the prime at infinity, then this case is the function field analogue of the totally
real Abelian number field case.) The goal of this section is to remove condition
gcd?, ex) = 1 in Theorem 2.2(2), under the present hypotheses. This result will
prove to be of crucial importance in our approach of a particular case of Chinburg’s
Q3-conjecture (see Section 4).

Let us first remark that, under the present hypotheses

1, forF #k, 1, forvy # 1g,
rp = ry = (12)
0, for F =k, 0, fory =1;,

for any F and ¢ as in Section 1. For any intermediate fielg let Ur s be the
group of S-units of F (Us = Uk s), let ur be the group of roots of unity ifr™,

181024 .tex; 23/08/1999; 10:04; p.12

https://doi.org/10.1023/A:1001586625441 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001586625441

GRAS-TYPE CONJECTURES FOR FUNCTION FIELDS 275

Ietﬁp,s d=ef UF,S/,LLK andgg d=ef Es/uk, and letay = AnnZ[G(F/k)](,bLF). As a con-
sequence ofS| = 1, we obviously have the equalitiég s = u; andU; s = {1}.
We also have the following characterizationagf (see [21], Chapter IV, Section 1,
Lemma 1).

LEMMA 3.1 (Tate). The idealar is generated oveZ [G(F/k)] by the set
{1—0o, % Nvlvprimeink,v ¢ S},
for any finite set of prime$’ of k, containing all the primes which ramify if/ k.

An immediate consequence of Lemma 3.1 is thak, i§ any intermediate field,
and if rp: Z[G] — Z[G(F/k)] is the natural projection given byr(o) = o,
forall o € G, then

7TF((1K) =dar. (13)

We call a pair( F, §’) as in Definition 1.1S-admissible ifF’ # k, and for every finite

setT of primes ink, such thats’ N T = @, the pair(F, §’) is (S, T)-admiss@le, in

the sense of Definition 1.1. For any fieldof characteristic 0, and any € G (L),

v # 1g, a pair (F, S") is called (S, y)-admissible if, for everyl' as above,

the pair(F, §’) is (S, T, ¥)-admissible, in the sense of Definition 1.5. An obvi-
ously equivalent and certainly easier to handle definition of these concepts is the
following.

DEFINITION 3.2. A pair(F, §’) consisting of an intermediate fielll, F # k,
and a finite sef’” of primes ink, is calledS-admissible if it satisfies the following
conditions:

(1) e s,
(2 15123,
(3) S’ contains all the primes which ramify iR/ k.

If ¢ is as above and if, in addition to (1)—(3), §’) satisfies
(4) rl//,S/ — 1!

then(F, ") is called(S, )-admissible.
For anS-admissible pai(F, '), let
OFs(s) = Z Lg(s, x) ey
xeG(F/k)

be the §’-Stickelberger function associated ¥y k, whereLg (s, x) is the Artin
L-function associated tg, with Euler factors at primes i’ removed.
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Let us fix a primewg|vg in K. In what follows we will denote bywg the
prime lying below this fixed prime in any intermediate fiefdas well. For an
S-admissible pai(F, S") we will denote byRr,,, the regulator map

CUr.s.7 = CUpy —% CIG(F/K)]

associated as in Section OWo = {wo} andr = 1. The following is a reformulation
in this context of Brumer-Stark’s Conjecture proved independently by Deligne (see
[21], Chapter V) and Hayes (see [10]).

THEOREM 3.3 (Deligne, Hayes)For any S-admissible pair(F, S) there exists
a unique elemenjr ¢ € (Ur,s)1 s Satisfying the following properties

1 /
(l) _Rwo(nF,S’) = ®F’S/(0)!
er

1
) [l_lver(l —o, NU)] : <e_77F,S/> € (Urs1)Ls

F

in QUF.s.1, for every finite, nonempty sétof primes ink, such thatr’ N §' = ¢.

Let (F, §’) andT be as in the Theorem above. Rubin’s Conjecture (Conjecture
B in [15, Section 1.6]) applied to the set of d&fa S’, T, 1) predicts the existence
of a unique elementr g r € (Ur s 1)1s (Se€ Lemma 1.5.3(2) in [15] as well)
satisfying the regulator conditioR,,,(¢r s 1) = ®% ¢ 7(0). Due to the obvious
relation

O g 7(0) = []‘[(1 —o Nv):| - @ ¢ (0)

veT

and to the uniqueness 9f ¢ ander s 7, the link between Theorem 3.3 above and
Rubin’s Conjecture in this context is given by

1
ER.S' T = |:1_[(1— O‘Jl . NU):| . (ZﬂF,S’) . (14)

veT

This relation shows that Theorem 3.3 implies Rubin’s conjecture fer 1. One
can actually show that they are equivalent (see [17]).

LEMMA 3.4. Let? be a prime number, such thgtd¢, g) = 1, lety € G(Q(),
v # 1g, and letay, € ax ® Z, such that(ax ® Z,)¥ = ayDy. (Such an
element always exists becauBg is a discrete valuation rng.Then(Es ® Z,)¥
is generated as ®,,-module by, - [(1/ex,)nk,.s |, for anys’ such that the pair
(Ky, S is (S, ¥)-admissible.

181024 .tex; 23/08/1999; 10:04; p.14

https://doi.org/10.1023/A:1001586625441 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001586625441

GRAS-TYPE CONJECTURES FOR FUNCTION FIELDS 277

Proof. Let us fix a setS” such that the pai(K,, S’) is (S, ¥)-admissible. Ac-
cording to Lemma 1.8(1) (for, = 1) and to the definition o€g, we have the
following equality

(Es®Z)Y = Z Dy ek, s, (15)
T

where the sum is taken with respect to all finite, nonempty Bet$ primes ink,
such tha’ NS’ = ¢. Lemma 3.1 shows that for any suth[],.,(1—o,1-Nv) €
ag,,, and therefore (14) and (15) show that

_ 1
(&s®Zy)Y C Dy |:011// : —nK¢,S’:| .
€[(W
On the other hand, Lemma 3.1 also shows that one can write

oy = Zav -(1- O'UleU),
DEAY

with a, € Dy, almost all equal to 0. LeI, = {v}, for anyv ¢ §'. The equality
above, combined with (14) and the definition&f gives

1 1
Qy - —Nk,.s = a -(l—av_le) <—77 ,s/)
12 ex, Ky ;S, v ex, Ky
= Zav “€K,.8'T, € (Es®ZyY.
vegS’
This concludes the proof of Lemma 3.4. O

LEMMA 3.5. For any ¢, ¢ and S’ as in Lemma3.4, the natural morphisms of
Z[G]-modules involved in the following commutative diagrams

Usg Ug Ag Ag
va,S —\UK,/,,S’ Ak, s — Ak,.s

becomeD,, -isomorphisms, when tensored with, overZ[G].
Proof. Same as the proof of Lemma 1.7. O

PROPOSITION 3.6Let¢, y andS’ be asin Lemma&.4. Then|(Us/8s®Z,)Y| >
[(As ® Zp)Y|.
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Proof. Let T be a finite, nonempty set of primes in such thatl’ N S' = @.
After tensoring withD,, overZ[1/g][G], Theorem 0 (2) applied to the set of data
(Ky,S', T,1) gives us the inclusion

Dy -ek,.s.7 C Fittp, (Ax,.5.r ® Z)?) - (Uk,.5.1 ® Zy)Y. (16)

On the other hand, after tensoring with), overZ|[G], the surjectiveZ [G]-morphism
Ak, 5.1 —>Ag, 5, (see [15, (1)]) gives a surjective morphismiof -modules

(Ag,,570 ®Z)V —>(Ag, .5 ®Z)"

which, according to [15, Sect. 1.4(e)], gives the following inclusion at the level of
Fitting ideals

Fittp, (Ak,.s.r ® Z)¥ C Fittp, (A, s ® Zo)V. (17)

If we now combine inclusions (16) and (17) with the obvidls » < U and with
Lemma 3.5, we obtain

Dy -ex,.s.r < Fittp, (As ® Z)" - (Us ® Zy)”,
for everyT as above. This last relation together with (15) show that
(Es®Zy)¥ CFittp, (As®Z)" - Us ®Zy)Y. (18)

On the other hand, sincg, s = 1, we have an isomorphism db,-modules

(Us ® Z,) — D,. Relation (18), together with [15, Sect. 1.4(f)], therefore
imply that

|(Us/€s ®Z)V| = |(Us/Es®Zy)Y|
> [Dy : Fittp, (As ® Z,)V]

[(As ® Zy)" |,
which concludes the proof of Proposition 3.6. O
Our next goal is to prove the following.

PROPOSITION 3.7 Let£ be a prime number such thgtd¢, g) = 1. Then

[T 1Ws/es@zn1= ] IAs @201,
v#le v#le

where the products above are taken with respect to charaﬂte&s@(QZ).
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In order to prove the statement above we employ techniques similar to those
used by Rubin in [16]. Let us fix a prime numb&rgcd¢, g) = 1, a completion
C, of the algebraic closure @f),), with respect to the normalizedadic valuation
v, an embedding:, — C, and a finite, u/r]ramified extensianm of Z,, insideC,,
containing the values of all characterss GC,. In what follows we will denote by
Y ageneric element @ (Q,), and byy a generic element @ (C,). The extension
of the normalized-adic valuatiorw to C, (which will also be denoted by) gives
an equivalence relation onC}, defined bya ~ b if v(ab™') =0, Va, b € C;.
Let X be theZ[G]-module defined by

Zaw -w|ay, € Z,Zaw =0

wlvg wlvg

— A
Asin[15, Sect. 1], we have an injectivd G]-morphismU g RN RXg, given by
rs(@) = wao —log|aly,-w, foralla € Ug, which becomes €[ G]-isomorphism
rs

CUs; — CX,, when extended bg-linearity toCU .

Let us notice that sincg = {uv}, the definitions oRR,,, andi s show that
As(u) = Ryy(u) - wo, Vu € Us. (19)

Let Z,[G] = @wea(% D, be the usual decomposition @f[G] in a direct
sum of Dedekind domains. An argument similar to the one in [15], Lemma 1.5.1,
combined with the second equality in (12) shows that we have isomorphisms of
Z,[G]-modules

ZgUS —) Z(XS —> @ Dy/, (20)
¥eG(Qu)
V#1g

and equalities
(0X9)* =0 (e wo), VYx €G(Cy, x# 1o (21)

These show in particular that one can find an injectigG]-morphism
f

X — U g, which becomes Z,[G]-isomorphism, when tensored wifh.
Let Rg, Rs,, and Rk s be the determinants abs o f), (Ag o f)* andAg,
respectively, computed with respectdobases o0 X, (0 X5)*, andZ-bases of

X and Uy, respectively, for every e G(Cy). For everyyr € G(Q,) we set

Rs.y def ]‘[Xw Rs . As a consequence of ggdoker f)|,¢) = 1, we have the

following ¢-adic equivalences

~ RS l_[ RSX = 1_[ RS,I[/- (22)

xeG(Cp) ¥eG(Qp)
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LEMMA 3.8. Lety € G(Q), ¥ # 15, andu € Z,Us, such that the index
[(Z,Us)¥ : Dyulis finite. Then

[(ZeUs)? - Dyul ~ RS - | [ ] Ruox @) |-
xlv

whereR,,, , =def X © Ru,-
Proof. As a direct consequence of (19), (20) and (21), one can easily prove that
[(OTs)* : O(eu)] = Zv(Rg,lX»Rwo,Xw)){ozu’ Vv

By taking the product of the equalities above, fordhlr, one obtains the statement
in the lemma. a

COROLLARY 3.9. Let¢, ¢ anday, be asin Lemm&.3.4. Then

1
|(Us/6s ® Zo)V | = Ry 1_[ Rup.x (“w ”Kw Sw)
xly

Proof. Immediate consequence of Theorem 2.2(1), Lemma 3.4 and Lemma
3.8. O

Lety € G(C). (Under the chosen embeddinG@,) <— C, x can be viewed as
an element of;\(Ce) as well.) LetLs(s, x) be the ArtinL-function associated tg,
with the Euler factor ato removedLs(s, x) = (1— x(o,)Nvy*) - L(s, x), where
L(s, x) is the ‘complete’ ArtinL-function associated tg. For everyyr G(Qg)

v # 1g, let S, be a fixed finite set of primes i, such that the pai(k, Sy ) is
(S, ¥)-admissible. Then every € G(C@) x |¥, gives a relation

Ls,(s, )= [] Q= x@)Nv™)- Ls(s, x),
veSy\Sy,

wheresS;, = {v € S| vramifies inK, / k, orv = vo}. Due to the fact thatk,, Sy)
is (S, ¥)-admissible, we havey 5, = 1, and therefore (o) is a root of unity of
orderg, different from 1, for allv € S, \ S(p and allx |y. Since gcde, g) = 1, this
shows that fory andv as above we havd — x (5,)) € O*. We therefore have the
following ¢-adic equivalences

Ls, 0,0 =[] @=x(@))- L0 x) ~ L, x), (23)
veSy\S,

for everyyr andy as above. We are now prepared to prove Proposition 3.7.
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Proof of Proposition3.7. Let¢k s(s) andgg s(s) be theS-zeta functlons ok
andk respectively. Letig S = |Asl|, hx.s = |Ar.s|, and for everyyr € G(Q@) let
hZ,S =[(As®Z,)] andeK = |(ug ® Z¢)¥|. We have the equality

s _ T TTestee |- (24)

Ges) i\

Since S consists of a single prime which splits completely&iy k, we have the
following equalities (see [21], Chapter I):

ord,—ol,s(s) =0, ordy—olk, s(s) = [K 1 k] — 1,
ord—oLs(x,s) =1 Vx # 1.

The S-class number formula (see [21], Chapter I) together with equality (24) there-
fore give us

h R
e =TT [T o). (25)
L8 TSRyt \aw

According to (22), (25), and Theorem 3.3(1) applied to the p@tig, Sy), for all
v e G(Q@) ¥ # 1, we therefore have

-1
[T ks T1 Rsw | [T ex

v#le v#le v#lc

~ 1_[ HwaJX( NKy, Sw) : (26)

v#le \xlv

Let us choosex,, € (ax ® Z;) as in Lemma 3.4, for everyr as above. The
flatness ofD,, and the cyclicity ofux asZ[G]-modules give us the following
exact sequence @b, -modules

0— (ax ®Zy)V — Dy — (ux ® Z)Y — 0,
for everyyr. This together with (13) give
ex, = ey = [Dy 1 ayDyl. 27)

Let vy as above, and for a fixegh|y, let Z,[xo] be the discrete valuation domain
obtained by adjoining the values gf to Z,. Then we have the equalities

[Dy oy Dyl = [Zlxol : (xolay))]

— pPo(@y))[Zelxol:Ze]

= ¢y ), (28)

181024 .tex; 23/08/1999; 10:04; p.19

https://doi.org/10.1023/A:1001586625441 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001586625441

282 CRISTIAN D. POPESCU

Equalities (27) and (28) show that we have é&mdic equivalenceeg, ~
]_[W x(ay), for everyyr # 15. This equivalence together with ti@-linearity

of R, show that, if we multiply (26) bY{T,,., Ry, (]‘[W X(a¢)>, we obtain

l_[ hﬁ’S ~ l_[ RE}# ) HRwosX (a‘/’ ’ inkwsv/) : (29)

V£l V£l Xl €Ky
If we now combine (29) with Corollary 3.9, we obtain

[T res~ [] 1ws/es @z,
Yv#1lG Yv#1lG

which concludes the proof of Proposition 3.7. O

By combining Propositions 3.6 and 3.7 we obtain the desired result:

THEOREM 3.10. Let S be a set consisting of a single prime igfwhich splits
completely inK / k. Then:

(1) The indeqUs : &s] is finite. R
(2) For every prime numbef such thatgcd(Z, g) = 1, and every € G(Q,),
v # 16, [(Us/Es @ Z)V| = [(As @ Zy)V|.

Remark Equalities similar to the ones in Theorems 1.4(2), 2.2(2) and 3.10(2)
were proved in the number field case, for= Q, as consequences of the Main
Conjecture in lwasawa Theory (see [12]), or by using Kolyvagin—Euler system
techniques (see [11], Appendix). It is conceivable, as Rubin shows in [17, Sect. 6],
that the element® (er ¢ r) give Kolyvagin—Euler systems in the function field
case as well. One could therefore hope to be able to prove the theorems above by
using Kolyvagin—Euler system techniques. However, there would be a major draw-
back: these techniques would fail to give information at the prime chark).

The methods we are using do not force us to stay away from the prinidis

is mainly due to the fact that we are not avoidipgin Theorem 0. The cause

for this lies deeper, in the links between crystalline anddic étale cohomology
theories, and in the fact that the action of the geometric Frobenius morphism on
the crystalline cohomology groups gives the righfunctions (see Appendix of

[15] or [14]). The idea of using crystalline cohomology in order to understand the
structure of thep-part of class groups of function fields has been used in the past
by Goss and Sinnott (see [7]).
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4. On Chinburg’'s £3-Conjecture for Function Fields
4.1. THE CONJECTURE

Let K/k be any finite, Galois extension of global fields (number fields or func-
tion fields of characteristip > 0.) LetG = G(K/k), and let x(Z[G]) be the
Grothendieck group of isomorphism classes of finitely generated, projedtive
modules. IfP is a finitely generated, projectivé[G]-module, thenP ®; Q is
Q[G]-free (see [18]) and we define raiik) =qef ranky (P @z Q).

In this way we obtain a surjective group morphism

rank

Ko(Z[G]) Z,
defined by rani{ P]) = rank(P), for the clasq P] in Ko(Z[G]) of any finitely
generated, projectivE[G]-moduleP.

DEFINITION 4.1.1. The projective class-group(Z[G]) of Z[G] is defined by
rank
CI(ZIG)) = ker(Ko(Z[G]) e Z) .

In [6] Frohlich defined an invariant ainalytic nature Wi, € CI(Z[G]) for
finite, Galois extension& /k of number fields, by means of the Artin root num-
bers associated to the irreducible, symplectic representatiaisiof[5] Chinburg
shows that the definition dVx,, can be carried through in the function field case
as well. In particular, if the grou@ has no irreducible, symplectic representations
(as it is the case whe@ is abelian, for example), théiWy ,, = 0in CI(Z[G)).

In [3] and [4] Chinburg defined an invariant afithmeticnatureQ2 (K /k, 3) €
Cl(Z[G)) for finite, Galois extensions of number fields, measuring the complexity
of the Z[G]-module structure of the groufds of S-units in K, for a sufficiently
large finite setS of primes ink. In [5] he extends this definition to the function
field case.

The link between the invariants described above is believed to be the following
(see [3], [4] and [5]).

CONJECTURE (Chinburg). For any finite, Galois extension of global fields
Q(K/k,3) = Wg/i.
Chinburg shows in [3, Sect. IX] how, in the case of a cyclic extension of prime
degree of the fiel® of rational numbers, the conjecture above follows from Gras’
Conjecture satisfied by the group of cyclotomic units in that context. Following

Chinburg’s ideas, we are going to show in the next section that the conjecture above
holds true for cyclic extensions of prime degree of function fields, as a consequence
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of Theorem 3.10 (our analogue of Gras’ Conjecture in the function field setting).
Chinburg’s Conjecture in this situation follows from work of S. Bae [1] as well.
However Bae's approach is completely different from ours.

4.2. CYCLIC EXTENSIONS OF PRIME DEGREE

Throughout this section we are going to assukiy to be a cyclic function field
extension of prime degree. Since in this case there are no irreducible, symplectic
representations af, we have

Wk =0, (29)

and therefore Chinburg’s Conjecture asserts thé8, K/k) = 0 in CI(Z[G]).
Since|G| = 2 implies CIZ[G]) = 0 (see [3, Sect. I1X]), we can assume from now
onthat|G| > 2.

Let Go(Z[G]) be the Grothendieck group of isomorphism classes of finitely
generate@ [G]-modules, and let: Ko(Z[G]) — Go(Z[G]) be the Cartan morph-
ism, taking the clas§P] of a finitely generated, projectivé[G]-module P in
Ko(Z[G)), into its clasg P) in Go(Z[G)).

For a finite setS of primes ofk, let Sy be the set of primes ok lying above
primes inS. Let us consider the following[G]-modules

Y = Zaw-wlawez ,
weSk

Xs = Zaw-wlawez, Zaw=o
weSk weSk

The following statements are proved in [5] and [19] respectively.

PROPOSITION 4.2.1 (Chinburg)The image of2(3, K/k) via the Cartan majh
satisfiesh(2(3, K/k)) = (Us) — (Xs) — (Ay), for any finite, sufficiently large set
S of primes ink.

PROPOSITION 4.2.2 (Reiner)lf G is a cyclic group of prime order then, the
Cartan maph : Ko(Z[G]) — Go(Z[G)) is injective.

According to these Propositions, all we have to do in order to prove the Conjec-
ture above under the present assumptions, is show(that— (Xs) — (As) = 0
in Go(Z[GY)), for a sufficiently large set of prime$. Although one can make the
expression ‘sufficiently large’ very precise (see [5]), the next result shows that there
is no need for that in the present situation.
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LEMMA 4.2.3. The classcs =qef (Us) — (Xs5) — (As) € Go(Z[G]) does not
depend on the finite, nonempty Saif primes ink.
Proof. There is an exact sequenceZfiG]-modules

0— Xg— Y5 —~Z — 0,

where

s Zaw-w d=EfZaw, forallZaw-weYS.

weSk weSk weSk

This gives the following relation in §Z[G])

Xs)=Ts) — (D) (30)

In order to prove the desired statement, it is obviously enough to prove tisat, if
ands; are two sets of primes as in the statement of the lemma, satisfyings,,
thencs, = cs, in Go(Z[G)).

Let us fix such set$§; and S,. Let Ag, s, be theZ[G]-submodule ofAs, gen-
erated by the classes of the idealsSiy =qer S2.x \ S1.x, and letYs, s, be the
free abelian group generated by the idealsSin. We have the following exact
sequences of finitely generatgfiG]-modules

o
0— Y5, — Y5, — V5,5, — 0,

14

B
0— Us,— Us, — Y5, 5, — Ag5,— 0,

2
0— Ay 5, — Ay — A5, — O,
where
o Zaw-w = Zaw-w,ﬂ(u)=20rdw(u)-w,
weSy weS1 2 weSy 2

forallu € Us,,

andy (w) = w (the class ofw in Ag, s,), for all w € S;,. If we write down the
relations given in G(Z[G]) by the three exact sequences above, and eliminate the
classegYs, s,) and(Ag, s,), we obtain

(Ys,) — (Us,) — (Ag,) = (Ys,) — (Us,) — (Agy).

This relation combined with (30) faf = S; andS = S, respectively, gives the
desiredcs, = cs, in Go(Z[G]). O
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Lemma 4.2.3 shows that, in order to prove Chinburg’s Conjecture under the

present assumptions, we have to find a finite, nonemptys saft primes ink,
satisfyingcs = 0.

Let S = {vo,...,vs} be a fixed set of primes ik satisfying the following
properties:

(1) vo splits completely ink/ k.

) 151 >3

(3) S contains all the primes which ramify K / k.
4) G, =G, foralli =1,...,s.

We intend to prove thaf satisfiescs = 0. In order to do this, we return to some
of the notations and techniques employed in Section 3.

Let Sg = {vo}. Properties (1)—(3) satisfied by show that(K, S) is an Sp-
admissible pair. Letx s € (Uk.s,)1.5 be the unique element provided by Theorem
33 WithF = K, S = SpandS’ = S). Let E be theZ[G]-submodule olU s =
Us/uk defined by

— 1
Eg = (Clk . —ﬂk,s) @(hk,szm D Zuy @ - ® Zuy),
€K

where{us, ..., u} is aZ-basis ofU, 5. (Sinceng s € (Uk.s,)1.s5, andry, s > 2
(see property (2) satisfied I8), we haveey,, - nx s = 0 and therefore the relation

ag - ek s NUks=1{0})
Let Es C Uy be the preimage af s € U under the projection

Us —> Us = Us/ux.

Then we obviously have an exact sequence of finitely geneggi@i-modules
0— pug — Es— Es— 0,

which gives the following relation in &Z[G])
(Es) = (Es) + (ug)- (31)

PROPOSITION 4.2.4. (Iyhe inde{Us : Eg] is finite. R
(2) For every prime numbet such thatgcd(¢, g) = 1, and every € G(Q,)

(Us/Es @ Z)V | = |(As @ Z)V|.

Proof. As remarked many times before, it is enough to prove (2) above.

Let ¢ be as above and let us fix € G(Qy), Y # 15 for the beginning. The fact
that|G| is prime implies thak, = K. Properties (1)—(4) satisfied i8yimply that
the pair(K = Ky, S) is (So, ¥)-admissible. Lemma 3.5 therefore shows that

ZUs)V =2, Us)” and (Z,A5)" = (ZeAs,)". (32)
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The definition ofE g and Lemma 5.3.4 show that

_ 1
(Z(Es)Y = (Zyag)? (e—ﬂK,s) = (Zegso)v/- (33)
K
If we now combine equalities (32) and (33) with Theorem 3.10 §foe Sg) we
obtain
|(Us/Es ®Z)Y| = |(Us/Es ®Zy)Y|

= [(As ® Zy)"|,

which concludes the proof of statement (2), fort 1.
Lety = 15. We obviously have the following equalities

(ZyEs)Y =y sZyu1 @ Zous ® ... & Zyuy,
(ZUs)'e =2Z,Uy s, (ZyAs)'e = Z,Ags.
These imply that
|(Us/Es @ Z)¥| = |(Us/Es ® Zy)*|
= |(Z; ® As)'e|,

which concludes the proof of Proposition 4.2.4 (2), fo= 15 as well. O
For a finiteZ[G]-moduleM, we have &Z[G]-module direct sum decomposition
M =&,(M® Z,), with respect to all prime numbers Let §(M ® Z,) denote

the Z[G] — (or equivalently, th&[G]) — semisimplification ofM ® Z,, for anyZ.
We obviously have the following relation ing&[G1)

(M) = "(83(M ®Zy)). (34)
4

On the other hand, = |G| (recall that/G| is a prime number), anl is a simple
Z[G]-module of order a power d@f then the maximat;-fixed submodulev® of N

is nontrivial, and therefor&/© = N. This fact, combined again with the simplicity
of N, shows thatN| = £. We therefore have an exact sequencg [@f]-modules

0—z Lz N0
which shows thatN) = 0 in Gy(Z[G]).

This remark and (34) show that, for any findgG]-module M, we have the
following relation in G(Z[G])

(M) =) (8(M ®2Z)). (35)

L#IG|
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LEMMA 4.2.5. The equality(Us) — (Es) — (As) = 0 holds true inGo(Z[G]).

Proof. Greenberg shows in [8, Sect. 5] thatdfis a finite Abelian group? is a
prime number such that ged |G|) = 1, andM1, M, are two finiteZ[G]-modules,
the following statements are equivalent:

(1) $(M1®Z,) — $(M,® Z,) asG-modules.
(2) (M1 QZ)V| = (M2 ® Zy)V|, forall v € G(Qy).

The statement in Lemma 4.2.5 follows now from Proposition 4.2.4, relation (35)
and Greenberg’s observation, with, = Us/Es andM, = Ag. O

PROPOSITION 4.2.6 The equality Es) = (X ) holds true inGo(Z[G]).
Proof. Let us fixw; € Sk, w;|v;, for everyi =0, ..., s. Properties (1) and (4)
satisfied byS imply that we haveZ [G]-isomorphisms
Z[Glwo — Z[G], Z[Glw; — Z, Vi=1,...,s,

with G acting trivially onZ. The definition ofY therefore shows that

Yg = @ Z[Glw;, — Z[G] ® Z*

0<i<s

asZ[G]-modules. Relation (30) therefore shows that the following holds true in
Go(ZIGD

(Xs) = (ZIGD + (s — D(D). (36)

We are now going to compute the clagss) in Go(Z[G]). According to (31)
and the definition of g, we obviously have

1
(Es) = (ug) + (Clk ‘ ;ﬂk,s) +s(Z). (37)

Sinceuy is a cyclicZ[G]-module, the definition ofix implies

(ax) = (Z[G]) — (pk), (38)
Proposition 4.2.4 (1) implies that

rank Eg = rankUs = [K : k] + (s — 1),

and therefore, from the definition &g, we have

rank <aK . ;UK,S) =[K : k] -1 (39)

K
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Let X be theZ[G]-module defined by the exact sequence

b 1
0— K —ax —ax - —nxs—0, (40)
€k
wherer (o) = a-(1/ex)nk.s, foralla € ag. Then (39), combined with the obvious
ranks (ax) = [K : k], shows that rank(.K) = 1. But sincg/G| > 2, the only ideal
of Z[G] of Z-rank equal to 1 is isomorphic @ with trivial G-action. This shows
that (KX) = (Z) and therefore the following equality holds true ig(@[G1)

1
(aK . e—ﬂK,s) = (ax) — (2).

K

Combining this equality with (37) and (38) one obtains
(Es) = (ZIGD + (s — D(2),
which, according to (36), concludes the proof of Proposition 4.2.6. O
We are now prepared to prove the main result of this section:

THEOREM 4.2.7.1f K/k is a cyclic extension of prime degree of function fields
of characteristicy > 0, thenQ (K /k, 3) = Wk ,«(= 0) in CI(Z[G]).

Proof. Proposition 4.2.6 together with Lemma 4.2.5 show that, for theSset
of primes ink fixed above, we haves = 0 in Gy(Z[G]). Proposition 4.2.1 and
Lemma 4.2.3 thus show thatQ (K /k, 3)) = 0in Go(Z[G]). The injectivity ofh
(see Proposition 4.2.2) together with (29), therefore imply théK /k,3) = 0 =
Wk ik in CI(Z[G]), which concludes the proof. O
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