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Abstract

For a simple bipartite graph G, we give an upper bound for the regularity of powers of the edge ideal I(G)
in terms of its vertex domination number. Consequently, we explicitly compute the regularity of powers of
the edge ideal of a bipartite Kneser graph. Further, we compute the induced matching number of a bipartite
Kneser graph.

2020 Mathematics subject classification: primary 05E40; secondary 13C14, 13D02.

Keywords and phrases: regularity, bipartite Kneser graph, edge ideal, vertex domination number.

1. Introduction

Let S = k[x1, . . . , xn] be a polynomial ring, where k is a field. For a homogeneous ideal
I, Cutkosky et al. [5] and independently Kodiyalam [11] proved that reg(S/Is) = as + b
for some a, b ∈ Z and s � 0. The value of a can be determined by the degrees of
generators of I but the value of b is quite mysterious. During the last few decades,
many researchers have studied the problem of understanding the value of b for some
special classes of ideals, for example, edge ideals and cover ideals. In this paper, we
consider the edge ideal I(G) of a bipartite graph G and find an upper bound for the
value of b in terms of a combinatorial invariant of G.

For any graph G, it is known that

ν(G) ≤ reg(S/I(G)) ≤ co-chord(G),

where ν(G) denotes the induced matching number of G and co-chord(G) denotes the
co-chordal number of G (see [10, 14]). Bıyıkoğlu and Civan in [4] proved that for any
graph G, reg(S/I(G)) ≤ β(G), where β(G) is called the upper independent vertex-wise
domination set of G (see Definition 2.1(vi)). Beyarslan et al. in [3] proved that for any
graph G,

reg(S/I(G)s) ≥ 2s + ν(G) − 2 for s ≥ 1.
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Moreover, they proved that in the special cases of forests (for s ≥ 1) and cycles (s ≥ 2),
the equality holds. In [8], it is shown that for bipartite graphs,

reg(S/I(G)s) ≤ 2s + co-chord(G) − 2 for s ≥ 1.

Recently, Herzog and Hibi [7] obtained a new upper bound for the regularity of powers
of the ideal of a graph G. They proved that

reg(S/I(G)s) ≤ 2s + c − 1 for s ≥ 1,

where c is the dimension of the independence complex Δ(G) of G.
In Section 3, we prove the main result of this paper, which gives a new upper bound

for reg(S/I(G)s) for any bipartite graph G.

THEOREM 1.1 (Theorem 3.11). Let G be a bipartite graph and I(G) be its edge ideal.
Then reg(S/I(G)s+1) ≤ 2s + β(G) for all s ≥ 0.

To prove Theorem 3.11, we use the technique of even-connection with respect to the
s-fold product e1 · · · es of edges (see Definition 2.5), which was introduced by Banerjee
in [2]. Alilooee and Banerjee [1] proved that if G is a bipartite graph, then the colon
ideal I(G)s+1 : e1 · · · es is a quadratic square-free monomial ideal. Further, the graph
G′ associated to I(G)s+1 : e1 · · · es is also a bipartite graph on the same partition and
G′ is the union of G with all the even-connections with respect to the s-fold product
e1 · · · es (see Remark 3.9).

In Section 4, we study the regularity of powers of edge ideals of the bipartite Kneser
graph H(m, k) for k ≥ 1 and m ≥ 2k (see Definition 2.2). Bipartite Kneser graphs are
of great interest because they are Hamiltonian, as shown by Mütze and Su [13]. We are
interested in finding the regularity of powers of edge ideals of bipartite Kneser graphs.
In [12], it is shown that

2(s − 1) +
(
2k
k

)
≤ reg(S/I(H(m, k))s) ≤ 2(s − 1) +

(
m
k

)
,

and the lower bound is attained if m = 2k + 1. It is known that the problem of finding
the induced matching number of the graph is an NP-hard problem. Given k ≥ 1 and
m ≥ 2k + 1, we compute the induced matching number of the bipartite Kneser graph
H(m, k).

THEOREM 1.2 (Corollary 4.3). For m ≥ 2k + 1, let G = H(m, k) be the bipartite
Kneser graph. Then the induced matching number of G is given by ν(G) =

(
2k
k

)
.

The following question is posed in [3]: for which graphs G does

reg(S/I(G)s) = 2s + ν(G) − 2 for s � 0?

For certain classes of graphs, for example, the bipartite P6-free graph and very
well-covered, unmixed bipartite, weakly chordal bipartite, forest graphs, it is known
that reg(S/I(G)s) = 2s + ν(G) − 2 for s � 0 (see [3, 8, 9]). Using Theorem 3.11, we
prove that the regularity of powers of edge ideals ofH(m, k) attains the lower bound.
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THEOREM 1.3 (Corollary 4.4). For m ≥ 2k + 1, let G = H(m, k) be the bipartite
Kneser graph. Then, for all s > 0, reg(S/I(G)s) = 2(s − 1) +

(
2k
k

)
.

2. Preliminaries

For a positive integer n, we write [n] = {1, 2, . . . , n}. For a finite set Y, the family of
all subsets of Y of size s is denoted by Y (s).

DEFINITION 2.1. Let G be a simple graph with vertex set V(G) = {x1, . . . , xn} and edge
set E(G).

(i) For a pair of vertices xi, xj ∈ V(G), we say xi is adjacent to xj if and only if
xixj ∈ E(G).

(ii) A subset W of V is called an independent set if none of the edges of G has both
endpoints in W.

(iii) For a vertex v ∈ V , the open neighbourhood of v is NG(v) = {x : xv ∈ E(G)} and
the closed neighbourhood of v is NG[v] = NG(v) ∪ {v}.

(iv) For an edge e = xixj, we define NG[e] = NG[xi] ∪ NG[xj].
(v) An independent set W is called a vertex dominant set if NG[e] ∩W � ∅ for any

edge e in G. It is called a minimal vertex dominant set if any proper subset of W
is not a vertex-wise dominant set of G.

(vi) The upper independent vertex-wise domination number of a graph G is defined
by β(G) = max{|W | : W is an independent minimal vertex dominating set of G}.

(vii) A graph G is called bipartite if V(G) = X 	 Y for two independent subsets X and
Y of V(G).

(viii) A subgraph G′ of G is called induced if for every pair of vertices xi, xj ∈ V(G′),
xixj ∈ E(G′) if and only if xixj ∈ E(G).

(ix) A matching of G is a subgraph of G consisting of pairwise disjoint edges. If
the subgraph is an induced subgraph, then the matching is called an induced
matching. The largest size of an induced matching in G is called the induced
matching number, denoted by ν(G).

(x) The graph G is a cycle of length n if after relabelling the vertices of G, the edge
set is E(G) = {x1x2, . . . , xn−1xn, xnx1}.

(xi) A finite sequence of vertices xi1 , . . . , xir is called a path from xi1 to xir in G if
xij xij+1 ∈ E(G) for 1 ≤ j ≤ r − 1.

(xii) A graph is called co-chordal if its complement graph Gc does not have any
induced cycle of length greater than or equal to 4. The co-chordal number,
denoted by co-chord(G), is the minimum number of co-chordal subgraphs
required to cover the edges of G.

DEFINITION 2.2. The bipartite Kneser graph H(m, k) is a graph with vertex set
V(G) = [m](k) ∪ [m](m−k) and two distinct vertices A, B are adjacent if and only if A ⊂ B
or B ⊂ A. For m = 2k,H(m, k) does not have any edges, so we assume that m ≥ 2k + 1.
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DEFINITION 2.3. Let k be a field and S = k[x1, x2, . . . , xn] be a standard graded
polynomial ring over k. The Castelnuovo–Mumford regularity of a finitely generated
graded S-Module M is given by reg(M) = maxi,j{ j − i : Tori(M, k)j � 0}.

DEFINITION 2.4. Let G be a simple graph with the vertex set {x1, . . . , xk} (without
isolated vertices). Then the edge ideal of G is defined as

I(G) = 〈xixj : xixj is an edge of G for some i, j〉.

DEFINITION 2.5 [2, Definition 6.2]. Let G be a graph on the vertex set V. Then vertices
x, y ∈ V are called even-connected with respect to the s-fold product e1 · · · es of edges
in G if there exists a path p0 p1 . . . p2k+1 in G such that:

(a) p0 = x and p2k+1 = y;
(b) p2l+1 p2l+2 = ei for some i for all l with 0 ≤ l ≤ k − 1;
(c) |{l ≥ 0 | p2l+1 p2l+2 = ei}| ≤ |{ j | ej = ei}| for all i.

THEOREM 2.6 [2, Theorem 5.2]. Let G be a simple graph and the set of minimal
monomial generators of I(G)s be {m1, . . . , mk}, where s > 0. Then,

reg(S/I(G)s+1) ≤ max{reg(S/I(G)s+1 : mt) + 2s for 1 ≤ t ≤ k, reg(S/I(G)s)}.

3. Vertex-wise domination number

In general, there is no relation between β(G) and co-chord(G), for a simple graph G.
For example, if P4 is a simple path on 4 vertices, one can check that β(P4) = 2, but P4 is
a co-chordal graph. However, in [4], it is shown that β(C7) = 2 and co-chord(C7) = 3,
where C7 denotes the cycle of length 7.

REMARK 3.1. Let W be a minimal vertex dominant set of G and w ∈ W. Then there
exists an edge e ∈ G such that NG[e] ∩W = {w}.

NOTATION 3.2. Let G be a triangle-free graph and I(G) its edge ideal. For x1x2 ∈
E(G), let G′ be the graph associated to the monomial ideal I(G)2 : x1x2. Denote by
NG(x1) \ {x2} = {x1,1, . . . , x1,r} = X1 and NG(x2) \ {x1} = {x2,1, . . . , x2,s} = X2. To illus-
trate the notation, we consider a graph G on the vertex set {x1, x2, x3, x1,1, x1,2, x2,1, x2,2}
and the edge set E(G) = {x1x2, x1x1,1, x1x1,2, x2x2,1, x2x2,2, x1,1x3}, as shown in Figure
1. Then I(G)2 : x1x2 = I(G) + 〈x1,1x2,1, x1,1x2,2, x1,2x2,1, x1,2x2,2〉, that is, G′ is obtained
from the graph G by connecting all vertices of X1 with vertices of X2.

PROPOSITION 3.3. Let G be a triangle-free graph and I(G) be its edge ideal. Let e ∈
E(G) and G′ be the graph associated to the monomial ideal I(G)2 : e. Then β(G′) ≤
β(G).

We prove this proposition in the following sequence of lemmas.

LEMMA 3.4. With notation as in Notation 3.2, let W be a minimal vertex dominant set
in G′ such that W ∩ (X1 ∪ X2) = ∅. Then W is a minimal vertex dominant set in G.
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FIGURE 1. Illustrative example for Notation 3.2.

PROOF. Since NG[e] ⊂ NG′[e] ⊂ NG[e] ∪ X1 ∪ X2 for any e ∈ E(G), we have NG[e] ∩
W = NG′[e] ∩W. Hence, W is a vertex dominant set in G. We claim that W is a
minimal vertex dominant set in G. In contrast, assume that W is not a minimal
vertex dominant set in G. Then there exists a vertex v ∈ W such that W1 = W \ {v}
is a vertex dominant set in G. Since W is a minimal vertex dominant set in G′,
W1 is not a vertex dominant set in G′. There exists an edge f ∈ E(G′) such that
W1 ∩ NG′[ f ] = ∅. However, NG[ f ] ∩W1 = NG′[ f ] ∩W1 = ∅, so f � E(G) and hence
f = x1,ix2,j for some i, j.

However, note that v ∈ NG′[ f ]. Since v � X1 ∪ X2, then v � {x1,i, x2,j} and v ∈ NG[ f ].
Without loss of generality, assume that vx1,i ∈ E(G). Since NG[ f ] ∩W1 = ∅, we have
NG[x1,i] ∩W1 = ∅ and so NG[v] ∩W1 � ∅. This implies that v and some of its adjacent
vertices are in W, contradicting the hypothesis that W is an independent set. �

LEMMA 3.5. With notation as in Notation 3.2, let W be a minimal vertex dominant set
in G′ such that W ∩ X1 � ∅. Then W ∪ {x2} is a vertex dominant set in G.

PROOF. First of all, note that since W is an independent set in G′ and W ∩ X1 � ∅,
we get W ∩ X2 = ∅. Let f be an edge in G. If x2 ∈ NG[ f ], then we are through.
Suppose x2 � NG[ f ]. This implies that x2,j is not an endpoint of the edge f for
any j. Hence, NG[ f ] ⊂ NG′[ f ] ⊂ NG[ f ] ∪ X2. Since W ∩ X2 = ∅, we get NG[ f ] ∩W =
NG′[ f ] ∩W � ∅, which proves the lemma. �

LEMMA 3.6. With notation as in Notation 3.2, let W be a minimal vertex dominant set
in G′ such that W ∩ X1 � ∅. Let W1 = W ∪ {x2}. Suppose W1 \ {v} is a vertex dominant
set in G for some v ∈ W1. Then v ∈ X1 ∪ {x2}.

PROOF. On the contrary, assume that v � X1 ∪ {x2}. Since W \ {v} is not a vertex
dominant set in G′, there is an edge f ∈ E(G′) such that NG′[ f ] ∩ (W \ {v}) = ∅. If f =
x1,ix2,j for some i, j, then X1 ⊂ NG′[ f ]. Hence, X1 ∩ (W \ {v}) ⊂ NG′[ f ] ∩ (W \ {v}) � ∅,
which is a contradiction to our hypothesis. Therefore, f ∈ E(G). Since NG[ f ] ⊂ NG′[ f ]
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and NG′[ f ] ∩W \ {v} = ∅, NG[ f ] ∩W \ {v} = ∅. Also, we have NG[ f ] ∩W1 \ {v} =
NG[ f ] ∩ (W ∪ {x2}) \ {v} � ∅. Because, v � x2, we get x2 ∈ NG[ f ]. Since W1 \ {v} is
a vertex dominant set in G, we get X1 ⊂ NG′[ f ], reaching the same contradiction. �

LEMMA 3.7. With notation as in Notation 3.2, let W be a minimal vertex dominant set
in G′ with W ∩ X1 � ∅. Let v ∈ W ∩ X1. Then Ŵ = W \ {v} is not a vertex dominant
set in G.

PROOF. On the contrary, assume that Ŵ = W \ {v} is a vertex dominant set in G. Since
Ŵ is not a vertex dominant set in G′, there exists f ∈ E(G′) such that NG′[ f ] ∩ Ŵ = ∅.
This implies that v ∈ NG′[ f ]. Note that f � E(G). As for f ∈ E(G), we have NG[ f ] ∩
Ŵ ⊂ NG′[ f ] ∩ Ŵ = ∅, which is a contradiction to the fact that Ŵ = W \ {v} is a vertex
dominant set of G. Hence, f = x1,ix2,j for some i, j and NG′[ f ] = NG[x1,i] ∪ NG[x2,j] ∪
{X1 ∪ X2}. This implies that NG′[ f ] ∩ Ŵ = ((NG[x1,i] ∪ NG[x2,j]) ∩ Ŵ) ∪ (Ŵ ∩ X1)=∅.
Consider an edge f ′ = x1, x1,i ∈ E(G). Then

NG[ f ′] ∩ Ŵ = (NG[x1] ∪ NG[x1,i]) ∩ Ŵ = ({x1} ∪ X1 ∪ NG[x1,i]) ∩ Ŵ. (3.1)

Note that x1 � Ŵ, because otherwise NG′[ f ] ∩ Ŵ � ∅, which is a contradiction.
Since X1 ∩ Ŵ = ∅ and NG[x1,i] ∩ Ŵ ⊂ (NG[x1,i] ∪ NG[x2,j]) ∩ Ŵ = ∅, Equation (3.1)
gives NG[ f ′] ∩ Ŵ = ∅, which is a contradiction. Hence, Ŵ = W \ {v} is not a vertex
dominant set in G. �

LEMMA 3.8. With notation as in Notation 3.2, let W be a minimal vertex dominant set
in G′ such that W ∩ X1 � ∅ and W1 = W ∪ {x2}. Let ∅ � T ⊂ W1. If W1 \ T is a vertex
dominant set in G, then |T | ≤ 1.

PROOF. On the contrary, suppose that |T | ≥ 2. First we show that x2 � T . Using
Lemma 3.7, we can see that if x2 ∈ T , then W1 \ T = W \ (T \ {x2}) is not a vertex
dominant set in G. Thus, x2 � T .

Let y ∈ T ⊂ W. Since W is a minimal vertex dominant set of G′, there exists an edge
f ∈ E(G′) such that NG′[ f ] ∩W = {y}. Therefore, NG′[ f ] ∩ (W \ T) = ∅. If f ∈ E(G),
then ∅ � NG[ f ] ∩ (W1 \ T) ⊂ (NG′[ f ] ∩ (W \ T)) ∪ (NG[ f ] ∩ {x2}). This implies that
(NG[ f ] ∩ {x2}) � ∅, and hence x2 ∈ NG[ f ], which means that X1 ⊂ NG′[ f ]. Thus,
W ∩X1 ⊂NG′[ f ]∩W = {y}. Since W ∩ X1 � ∅, we have W ∩X1 = {y}. Let y′ ∈ T \ {y}.
Then y′ � X1. Now the fact that W1 \ T is a vertex dominant set in G implies that
W1 \ {y′} is a vertex dominant set in G, which gives a contradiction to Lemma 3.6. If
f ∈ E(G′) \ E(G), then X1 ⊂ NG′[ f ]. Now proceeding as before, W1 \ {v} is a vertex
dominant set in G for some v � X1 ∩ {x2}, which is a contradiction by Lemma 3.6. �

PROOF OF PROPOSITION 3.3. Let W be a minimal vertex dominating set of G′. If we
have W ∩ {X1 ∪ X2} = ∅, then by Lemma 3.4, W is a minimal vertex dominating set
of G. Otherwise, using Lemma 3.5, W1 = W ∪ {x2} is a vertex dominating set of G.
Further, by Lemma 3.8, either W1 = W ∪ {x2} is a minimal vertex dominating set of G
or W1 \ {v} is a minimal vertex dominating set of G for some v ∈ W1. It follows from
the definition of β(G) that β(G′) ≤ β(G). �
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To prove our main theorem, we shall use the following remark.

REMARK 3.9. Let G be a bipartite graph and s ≥ 1 be an integer. Then for every s-fold
product e1 · · · es, the following statements hold.

(a) The ideal (I(G)s+1 : e1 · · · es) is a quadratic square-free monomial ideal. Moreover,
the graph G′ associated to (I(G)s+1 : e1 · · · es) is bipartite on the same vertex set
and the same bipartition as G (see [1, Proposition 3.5]).

(b) The ideal I(G)s+1 : e1 · · · es = (I(G)2 : e1)s : e2 · · · es (see [1, Lemma 3.7]).

Note that if G is a triangle-free graph, then the graph H associated to I(G)2 : e need
not be a triangle-free graph, for e ∈ E(G). Thus, in view of Remark 3.9(a), we prove
the following result for bipartite graphs.

COROLLARY 3.10. Let G be a bipartite graph and u be a minimal monomial generator
of I(G)s. Then β(G′) ≤ β(G), where G′ is the graph associated to I(G)s+1 : u.

PROOF. We use induction on s. For s = 1, the result follows from Proposition 3.3.
Assume that s > 1. Let u = e1 · · · es for some edges e1, . . . , es in the edge set E(G).
If H is the graph associated to I(G)2 : e1, then by Proposition 3.3, β(H) ≤ β(G). By
Remark 3.9, the graph H is a bipartite graph and I(G)s+1 : e1 · · · es = I(H)s : e2 · · · es.
Hence, by induction, we get β(G′) ≤ β(H) ≤ β(G). �

Now we are ready to prove our main theorem.

THEOREM 3.11. Let G be a bipartite graph and I(G) be its edge ideal. Then
reg(S/I(G)s+1) ≤ 2s + β(G) for all s ≥ 0.

PROOF. We use induction on s. For s = 0, the result follows from [4, Theorem 3.19].
Now assume that s ≥ 1. In view of Theorem 2.6, it is enough to prove that

reg(S/I(G)s+1 : u) ≤ β(G)

for all minimal monomial generators u of I(G)s. Let G′ be the graph associated to
(I(G)s+1 : u). Now, the proof follows from Corollary 3.10 and [4, Theorem 3.19]. �

4. Bipartite Kneser graphs

THEOREM 4.1 (Frankl, [6]). Suppose A = {A1, . . . , Al} is a family of r-sets and B =
{B1, . . . , Bl} is a family of s-sets such that:

(i) Ai ∩ Bi = ∅ for 1 ≤ i ≤ m;
(ii) Ai ∩ Bj � ∅ for 1 ≤ i < j ≤ m.

Then

l ≤
(
r + s

s

)
.

PROPOSITION 4.2. Let G = H(m, k) be the bipartite Kneser graph. Then β(G) ≤
(

2k
k

)
.
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PROOF. Let W = {C1, . . . , Ct, Ct+1, . . . , Cm} be a minimal vertex dominant set in G,
where Ci ∈ [n](k), 1 ≤ i ≤ t, and Ci ∈ [n](n−k), t + 1 ≤ i ≤ m. Since W is a minimal
vertex dominant set in G, for each vertex Ci ∈ W, there exists a vertex Di such that
NG(Di) ∩W = {Ci}. This implies that

Ci ⊂ Dj if and only if i = j, 1 ≤ i, j ≤ t
Cj ⊃ Di if and only if i = j, t + 1 ≤ i, j ≤ m.

Therefore,

Ci ∩ Dc
j = φ if and only if i = j, 1 ≤ i, j ≤ t

Cc
j ∩ Di = φ if and only if i = j, t + 1 ≤ i, j ≤ m.

Consider the collection W′ = {(X1, Y1), . . . , (Xm, Ym)} of ordered pairs, where Xi =

Ci, Yi = Dc
i for 1 ≤ i ≤ t and Xi = Di, Yi = Cc

i for t + 1 ≤ i ≤ m. By the choice of the
collection W′, it is clear that Xi ∩ Yi = ∅ for all i, and Xi ∩ Yj � ∅ for 1 ≤ i < j ≤ t and
t + 1 ≤ i < j ≤ m. Now, since W is an independent set, Ci � Cj and hence Ci ∩ Cc

j � ∅
for all i � j. Therefore, Xi ∩ Yj � ∅ for 1 ≤ i ≤ t and t + 1 ≤ j ≤ m. This implies that
Xi ∩ Yj � ∅ for 1 ≤ i < j ≤ m and Xi ∩ Yi = ∅ for 1 ≤ i ≤ m. Since |Xi| = |Yi| = k for
all i, in view of Theorem 4.1, we get m ≤

(
2k
k

)
. �

COROLLARY 4.3. For m ≥ 2k + 1, let G = H(m, k) be the bipartite Kneser graph.
Then the induced matching number of G is given by ν(G) =

(
2k
k

)
.

PROOF. In view of [10, Lemma 2.2] and [4, Theorem 3.19],

ν(G) ≤ reg(S/I(G)) ≤ β(G).

Using [12, Lemma 4.2], ν(G) ≥
(

2k
k

)
. Now, by Proposition 4.2, ν(G) =

(
2k
k

)
. �

COROLLARY 4.4. For m ≥ 2k + 1, let G = H(m, k) be the bipartite Kneser graph.
Then, for all s > 0, reg(S/I(G)s) = 2(s − 1) +

(
2k
k

)
.

PROOF. From [3, Theorem 4.5] and Corollary 4.3, reg(S/I(G)s) ≥ 2(s − 1) +
(

2k
k

)
.

Now, by Theorem 3.11 and Proposition 4.2, reg(S/I(G)s) ≤ 2(s − 1) +
(

2k
k

)
, and hence

we get the desired result. �
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[4] T. Bıyıkoğlu and Y. Civan, ‘Projective dimension of (hyper)graphs and the Castelnuovo–Mumford

regularity of bipartite graphs’, Preprint, 2016, arXiv:1605.02956.
[5] S. D. Cutkosky, J. Herzog and N. V. Trung, ‘Asymptotic behaviour of the Castelnuovo–Mumford

regularity, Compos. Math. 118(3) (1999), 243–261.

https://doi.org/10.1017/S0004972722000855 Published online by Cambridge University Press

https://arxiv.org/abs/1605.02956
https://doi.org/10.1017/S0004972722000855


[9] Powers of bipartite graphs 9

[6] P. Frankl, ‘An extremal problem for two families of sets’, European J. Combin. 3(2) (1982),
125–127.

[7] J. Herzog and T. Hibi, ‘An upper bound for the regularity of powers of edge ideals’, Math. Scand.
126(2) (2020), 165–169.

[8] A. V. Jayanthan, N. Narayanan and S. Selvaraja, ‘Regularity of powers of bipartite graphs’,
J. Algebraic Combin. 47(1) (2018), 17–38.

[9] A. V. Jayanthan and S. Selvaraja, ‘Asymptotic behavior of Castelnuovo–Mumford regularity of edge
ideals of very well-covered graphs, Preprint, 2017.

[10] M. Katzman, ‘Characteristic-independence of Betti numbers of graph ideals’, J. Combin. Theory
Ser. A 113(3) (2006), 435–454.

[11] V. Kodiyalam, ‘Asymptotic behaviour of Castelnuovo–Mumford regularity’, Proc. Amer. Math. Soc.
128(2) (2000), 407–411.

[12] A. Kumar, P. Singh and R. Verma, ‘Certain homological invariants of bipartite Kneser graphs’,
J. Algebra Appl., to appear. Published online (2 July 2021).

[13] T. Mütze and P. Su. ‘Bipartite Kneser graphs are Hamiltonian’, Combinatorica 37(6) (2017),
1207–1219.

[14] R. Woodroofe, ‘Matchings, coverings, and Castelnuovo–Mumford regularity’, J. Commut. Algebra
6(2) (2014), 287–304.

AJAY KUMAR, Department of Mathematics,
Indian Institute of Technology Jammu, Jammu, India
e-mail: ajay.kumar@iitjammu.ac.in

RAJIV KUMAR, Department of Mathematics,
Indian Institute of Technology Jammu, Jammu, India
e-mail: gargrajiv00@gmail.com

https://doi.org/10.1017/S0004972722000855 Published online by Cambridge University Press

mailto:ajay.kumar@iitjammu.ac.in
mailto:gargrajiv00@gmail.com
https://doi.org/10.1017/S0004972722000855

	1 Introduction
	2 Preliminaries
	3 Vertex-wise domination number
	4 Bipartite Kneser graphs

