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Abstract

The integral structure of a simple Lie algebra L of Chevalley type over a field F of fractions of
an integral domain D is studied. Sandwich relations for sufficiently large orders are obtained,
including a new general sandwich relation for orders of L in case D is an integrally closed
Noetherian domain. Generalizations of the principal results of Hyman (1966) in the case
when D is a ring of algebraic integers are obtained, using techniques developed by the author
and Stewart (1973) which are applied to certain orders in L that arise in a natural fashion
from the Chevalley basis.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 17 B 20; secondary 17 B 10,
17 B 45, 20 G 15, 20 G 05.

1. Introduction

Since Chevalley (1955) showed for a simple finite dimensional Lie algebra L over
the complex field the existence of a basis relative to which the structure constants
are integers, the arithmetic theory of Lie algebras has developed as an area of
considerable attention. In addition to playing a fundamental role in the con-
struction of finite simple groups, Chevalley bases have been a prominent part of
much recent work in algebraic group theory. To mention a few examples, Springer
(1966) has used the arithmetic of semisimple Lie algebras to obtain (under mild
restrictions on p) the existence of regular unipotent elements in semisimple
algebraic groups over algebraically closed fields of characteristic p (see also
Steinberg (1965)), and the ideal arithmetic of simple Lie algebras has been used
by the author (1971) to construct normal subgroups of certain algebraic groups
over rings and by Abe (1969) and Abe-Suzuki (1976) to classify the normal structure
of Chevalley groups over local rings and Dedekind domains.

The present paper explores the integral structure of a simple Lie algebra L of
Chevalley type over a field F which is the field of fractions of an integral domain D.
To study forms of L over D (that is, algebras 4 over D such that FpAxL)
it suffices to study orders in L. Using to good advantage results of Stewart (1973)
we obtain sandwich relations for sufficiently large orders in L involving the orders
which arise naturally from the Chevalley basis for L (Theorem 1). Then application
of methods in the spirit of an earlier paper (1969) lets us obtain in rather direct
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fashion generalizations of the principal results of the (otherwise unpublished)
doctoral dissertation of M. Harvey Hyman (1966) (Theorems 2 and 4). Finally,
Stewart’s results in combination with ours (1971) are used to obtain a new general
sandwich relation for orders in L in case D is an integrally closed Noetherian
integral domain (Theorem 3).

2. Background

In this section definitions of the main ideas of the present paper are given, as
well as some preliminary results which do not seem to be in the literature apart
from special cases in Hyman (1966).

Let D be an integral domain not of characteristic 2 or 3. In case we are dealing
with a Lie algebra of type 4,,, we further assume that n+1 is not a multiple of the
chaljacteristic of D. Let F be the field of fractions of D, and V a finite dimensional
vector space over F. We assume F+ D, that is, D is not a field.

DErRNITION 1. A finitely generated D-module £ <V which spans V over F is
called a lattice in V.

DEerFINITION 2. If L is a finite dimensional Lie algebra over the field F, then a
lattice O< L is an order in L if it is closed under multiplication. (In a natural way
then we can regard @ as a Lie algebra over the ring D.)

Henceforth we assume that L is a finite dimensional split (Jacobson, 1962)
simple Lie algebra over F, and H is a Cartan subalgebra. Then L has a basis
B ={e,|r#0}u{hy, hs, ..., h,} made up of root vectors e, and a basis for H satisfying

[e,,e_,] = h,, an integral linear combination of the #;,

[hs ;) =0,

le,,e,) = £ N, e, if r+5#0, where N,, is O in case r+s is not a root and is
D,s+1 otherwise, p,, being the greatest integer i such that s—ir is a root,

[A,, e,] = c(s,r)e,, where c(s,r) = 2(s,r)/(r,r) is the Cartan integer of s and r

(see Chevalley, 1955).

The Chevalley order Ly, is the D-submodule of L generated by the Chevalley
basis B. For a more complete discussion of Chevalley bases, see Chevalley (1955),
Steinberg (1968) or Hurley (1969). An algebra L with such a basis B is said to be
of Chevalley type.

LemMmA 1. If D is a Dedekind domain and T is a linear transformation of L into
itself which leaves an order O invariant, then Trace Te D and det T € D.

Proor. Extend F to a field K which contains all the eigenvalues of T. Let Dy
be the integral closure of D in K. Consider the extensions Lx = K®pL,
Tx = 1®5 T, and Ok, the Dg-module generated by 1 ® 0. We have Tg: Ox— Ok,
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and Tk has the same eigenvalues as T. Let xcLx be an eigenvector belonging to
any eigenvalue A. Now Ox n Kx cannot be 0 since x € Lg, the K-span of Ox. Thus
Ox 0 Kx is a torsion free finitely generated Dx-module. Also,

TK(GKOKX) = A@KﬁKxS 0KnKx,

hence by Lemma 22.4 of Curtis—Reiner (1962, p. 146) Ae Dg since Dy is a
Dedekind domain by Zariski-Samuel (1958, p. 281). Thus A is integral over D.
So all eigenvalues of T are integral over D. Then all the coefficients of the character-
istic polynomial of T (which are sums of products of the eigenvalues) are integral
over D by Zariski-Samuel (1958, p. 255) and are in F. Since D is a Dedekind
domain, it is integrally closed (that is, integrally closed in F), so all the coefficients
of the characteristic polynomial of T are actually in D. In particular then,
Trace Te D and det Te D.

ProPOSITION 1. If D is a Dedekind domain, then L has infinitely many orders.

Proor. Consider a nonzero element a € D which is not invertible. Then a, a2, a, ...
is a sequence of nonzero elements of D which are not invertible. We then have
a™Lp>a™t Ly, For inclusion is clear, and a®*' Ly, = T(a™ L) where

T:a"Lp—~>a™Lp
is given by T(x) = ax. Since detT = g™ is not invertible in D, T¢ GL(a"Lp) in
view of Lemma 1 above. For if T-1e GL(a" L), then det T~ = (det 7)* = (a®)!
would be in D. Thus T is not onto, so the inclusion is proper. We then have an
infinite descending chain of orders L, alp>a®*L;,>a*Lp> ... in L.

This result was obtained by Hyman (1966, p. 25) for the case of D a ring of
algebraic integers. We now focus attention on the Chevalley order L;,. In many
cases the orders which contain this order will comprise a manageable collection.

DEerFINITION 3. The superstructure of an order @ is the collection of orders in L
which contain @.

For Dedekind domains we can show that the superstructure of an order in L is
relatively simple.

PROPOSITION 2. Let D be a Dedekind domain of characteristic 0 or p where
pXn+lifLisoftype A, or C,, p¥2n—1if L is of type B,, p¥n—1 if L is of
type D, and p#5 if L is of type E,. Let ¥ be a lattice in L. Then every order O
containing & is contained in a fixed lattice £*.

Proor. Since the Killing form X is nondegenerate on L (Jacobson, 1962, p. 70),
for any basis B = {v,, v, ...,0,} of L made up of elements of ., there is a dual
basis B* = {v},0f,...,v}*} such that K(v, vf)=29; for i,j=12,..,r. Let
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L* =37 Dvf and let @ be any order in L such that 02.%. For xe0, write
x= Y5, div}, d;eF. Then K(x,v;) = K35, d;v¥,v;) =d;. Now xe0, and so
we have adx: 00, and adv;: O 0 since v;€£< 0. Thus adxoadv;: 00,

and ad xoad v; is a linear transformation of L. So by Lemma 1,
Trace (ad xoad v)) = K(x,v;) = d;e D.
Thus x = Y7_, d;v¥ €£* and we have X< . L*.

Proposition 2 holds in particular if .2 is an order @. If D is a ring of algebraic
integers in a finite extension K of Q, then Hyman (1966, p. 21) showed the super-
structure of such an @ is actually finite.

Hyman’s dissertation consisted mainly of a study of the superstructure of L,
in case D was the ring of algebraic integers of a finite extension of the rational
field (hence D was a Dedekind domain). His first theorem concerned the algebra
of type A,, in which case the superstructure of Ly, consists of five orders. These are
Ly, (with basis {e, h,f}), L}, (with basis {e,3h,f}) in which L;, has index 2, and
three orders .#,, .#,, .#;, in which L}, has index 2. .#, has basis {e, }4, if}; 4,
has basis {3e, 14,f}; and ; has basis {e, }(e+h), —ie—3h+1f}. For a proof, see
Hyman (1966, pp. 67-69). Theorems 2 and 4 below generalize the remaining two
theorems of Hyman (1966) and are proved in a more direct manner here.

3. A sandwich relation for orders
Our first theorem gives upper and lower bounds for an order containing the
Chevalley order Ly,

THEOREM 1. Let O be an order in L which contains Lp. Then there is an integer k
such that
kJIL,c O=JLyp,
where J is the smallest D-submodule of F such that JLy contains 0. The prime
Jactors of k are in the set {2,3,p,,...,p,,}, where the p; are the prime divisors of
det C, the determinant of the Cartan matrix C of L.

Proor. First, J is well defined. We have in fact @<= J’ L, if J' is the D-submodule
of F generated by 1 and all coefficients ¢,,c; of the elements x of @ expressed
uniquely as F-linear combinations of the members of B, x = X2, ¢; ;4 X, ¢, €,.
Next we observe that D satisfies the hypotheses for the ground ring in Theorem 3.1
of Stewart (1973). Then as in the proof of that result, for an appropriate integer k
there is an element of the multiplication ring of L, sending x to kc, e; and another
sending x to kc; hy, for arbitrary roots r and s and arbitrary positive integers i and j.
For if we represent an arbitrary element of B by the generic symbol p,, then there
is a v,p in the multiplication ring of L, sending p, to k3,sps. If v,4 is expressed
as a sum of products of left and right multiplications by e¢lements y in L,, then
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¥yp sends X d, ® p, to k8, ,d, ® pg, Where i, is the corresponding sum of products
of left and right multiplications by elements 1®y in Ly. Since =Ly, all the
kc, e, and kc; h; belong to @. Hence O=2kJLp,. The proof is then complete as soon
as we remark that k has only the factors specified by Proposition 4.1 of Stewart
(1973).

If D is a Noetherian integral domain (in particular a Dedekind domain), then
we remark that J in Theorem 1 is actually a fractional ideal (Curtis-Reiner, 1962,
p. 107). For 0@ is a finitely generated D-module (since it is an order) and kJLy, is
a submodule, hence also finitely generated if D is Noetherian. Thus JLy is a
finitely generated D-module. But then J is a finitely generated D-module (or else
no finite number of elements of J would suffice to generate the coefficients of
elements in JLp), that is, J is a fractional ideal.

4. Superstructure of the Chevalley order
We now proceed to a detailed study of the orders @ in L which contain the
Chevalley order Ly,

DerINITION 4. If D is an integral domain with quotient field F, then P represents
the lattice of weights of all representations of L. P has as Z-basis the fundamental
weights {wy, w,,...,w,} given by wyh;)) = 8;;. The lattice of D-coweights is
pPt={he H|wh)e D for all weP}, which has basis {h,,hs, ...,h,} over D. This
coincides with Hy,, the abelian algebra D ®, H,, and we shall use the latter notation
frequently.

DEFINITION 5. P, represents the free abelian group generated by the roots of
L relative to H. P, has Z-basis {ry,rs,...,75}, the set of simple roots. Recall
ry = 2% c(ry, r;) w;. The lattice of D-coroots is

L ={he H|r(h)e D for every root r}.
We also need the lattice of D-coroots defined by replacing D by D in P} where
D is the integral closure of D (that is, the integral closure of D in F, so that D = D
if D is integrally closed). The lattice ,P} is labelled H7, in Hurley (1969, 1971).
L}, is the algebra D®, L, where L; = E; @ Hy, E, the free abelian group on the
root vectors e,.

LEMMA 2. Suppose that o.€ F and the coweight h,€ Hy,. Then oh, € Hy, if and only
if a€ D.

Proor. If ae D, then for any weight we P, we have w(ah,) = aw(h,) € D, since
h.€ Hy, = pP+. Conversely, if ah,€Hyp, then we can express o, in terms of the
basis elements h;: ah, = 32, c;h;, c;€D. Find weP such that w(h,) =1. (The
existence of w follows from the fact that r belongs to some simple system of roots,
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so has a corresponding fundamental weight w, or from Jacobson (1962, p. 140).)
Then apply w to oh,.. We get a-1 =32, c,w(h), and w(h)e D since weP,
h;e Hp = pP*. Thus a€ D.

LeMMA 3. Suppose that o€ F and r is a root. Then

(1) IfLis not of type B,, (n>2) or A,, then we have ah,€ pP} if and only if a€ D.

(2) If L is of type B,, then for a long root r, ah,€ P} if and only if o€ D, while
Jor a short root r, ah,€ P} if and only if 2a€ D.

(3) If L is of type A,, then ah,€ pP}- if and only if 2a€ D.

The same assertions hold if D is replaced by D.

Proor. We have ah, € P if and only if s(ah,) € D for all roots s, that is, if and
only if ac(s, r) € D for all roots s. Suppose first that ah, € , P} In the single root length
case,find a root s such that s+r is a root. We then have c¢(s,7) = —1,s0aeD. In
the general case we can imbed r into a simple system of roots. Then all the ¢(s, r) as
s varies over this simple system occur in some fixed column of the Cartan matrix.
In all cases save 4,, G, and B,, at least one entry in any column of the Cartan
matrix is —1, so choosing corresponding s we get ac(s,r) = —a€D. In type G,,
-3 2
and hence « = —2a+3a€ D. (If 7 = r,, then the previous reasoning gives a€ D.) In
type B,,, every column has a —1 except for the last column, which corresponds to
the Cartan integers c(s, r) for the short simple root r. This means that if r is short,
then we can only conclude 2« € D, and if r is long, then as before a € D. The proof
of this half is now complete as soon as we remark that in type 4, the Cartan matrix
is (2). For the converse, if a € D, then clearly ok, € pP}. In type B, with r short, if
2a.€ D, then again imbed r into a simple system of roots. Since c¢(s, r)is linear in s, it
is sufficient to consider s ranging over this simple system. For either simple root s
not orthogonal to r, we have s(ah,) = ac(s,r) = +2a € D. The case 4, is clear.
Finally, it is apparent that D can be replaced throughout by D.

the Cartan matrix is ( ) and so if r = r;, then we have 20 and —3« in D

LEMMA 4. Suppose that D is a Noetherian integral domain. Let he€ H belong to
an order O in L. Then hezP}, that is, h is a D-coroot.

ProOF. Consider the linear transformation adh: L-—>L. Then adh leaves @
invariant. Since L is split, the eigenvalues of ad 4 all belong to F, and are the values
r(h) for r a root of L relative to H. Then as in the proof of Lemma 1, with F playing
the role of K, we see that all the eigenvalues of ad 4 are integral over D. Thus
r(h)€ D for all roots r, that is, 4 is a D-coroot.

We now have all the tools we need to generalize the main result of Hyman (1966)
on the superstructure of Ly,
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THEOREM 2. Let L be a simple Lie algebra of Chevalley type and rank at least 2
over F, the field of fractions of the Noetherian integral domain D. Let ¢ be an
order in L which contains the Chevalley order Ly, In case L is of type B, or C,,
assume additionally that 2 is invertible in D. Then Lp< O< Ly, where D is the
integral closure of D.

ProoF. In the non-symplectic cases, 5.1, 5.2, and 5.3 of Hurley (1969) show that
given any x = Y, ¢, e,+hel, since each e, we can obtain each c,e,€0 by
multiplication by suitable root vectors e,. Thus @ nFe, is a direct summand of 0.
Now let A4, ={acF|ae,e@®nFe}. Then A, is a D-submodule of F. The map
ar>ae, establishes a D-module isomorphism between A, and @n Fe,. Since 0 is
a finitely generated D-module by definition, its direct summand On Fe, is also
finitely generated. Thus 4, is a finitely generated D-module, and thus is a fractional
ideal. Then by Lemma 4, r(h)e D. So heL. Also we have from c,e,€0 that
[c,ee_)=c.h.€0. So by Lemma 4, ¢,h,€5P}. Hence by Lemma 3 and our
assumption about 2, ¢,€ D. It now follows that x = h+ Y, c,e,€L5.

Some restriction on 2 seems essential in the case of B, even if D is a Dedekind
domain. For example, see Hyman (1966, p. 115) where the restriction that 2 be
unramified in F (recall that D is a ring of algebraic integers in that paper) allows
the theorem just proved to go through.

In case C,, if we remove the assumption that 2 is invertible, then we can only
conclude from x = A+ Y, ¢, e,€ 0 that c,e,€ 0 for every short root s, and 2¢,e,€0
for every long root 7. While the submodules 4, and 24, are finitely generated since
they are isomorphic to D-submodules 0 n Fe, and 20 n Fe, respectively of the
finitely generated module @, we cannot conclude that A€ @ and hence that heL3.
Hyman’s less direct approach does allow this difficulty to be overcome if D is a
ring of algebraic integers. See Hyman (1966, pp. 114-117).

COROLLARY. Let D be of rank at least 2. Let D be a Noetherian integrally closed
integral domain such that in type B, and C,, 2 is invertible in D. Then for each order
O= Ly, there is a unique D-module M lying between the lattice Hy, = P+ and the
lattice Hyy = p P+ of coroots such that O = M® (00 Ep).

PROOF. In this case D= D and so L =L} = E,® Hy = E,® pP}. As the
proof of Theorem 2 shows, M = Hpn @ is a direct summand of ¢ and is contained
in Hy = pP+. Since O2Ly, M2 Hp,

As a special case, we obtain Theorem 3 of Hyman (1966) in the non-symplectic
cases, and in all cases if 2 is invertible in D.
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THEOREM 3. Let L be of rank at least 2, D a Noetherian integrally closed integral
domain, and O= Ly, an order in L. Then kL, O0< L, for some integer k, assuming
again that 2 € D is invertible in case L is of type B, or C,.

PrOOF. Such an order 0 is contained, in view of the Corollary to Theorem 2, in
L}, and so is an algebra lying between Ly, and Ly,. Then by 2.6 of Hurley (1971),
0 is an ideal in L}, whose intersection with Ey, is Ep,. As Ly, = D®zLy and D is
commutative with identity, we can apply Theorem 3.1 of Stewart (1973) to conclude
that there is an integer & such that kJL, < @< JL}, for the ideal J of D generated by
the coefficients of the elements of 0. Since O=2 Ep,J = (1) = D. Thus kL= O< L3,

From this and Proposition 4.1 of Stewart (1973), we have the following informa-
tion about the integer k.

COROLLARY. The integer k <Ilp, where {p;} is the set of prime divisors of det C
and m, the ratio of the squares of the lengths of the long to the short roots.

5. Integral orders
We now proceed to study integral representations of L.

DEFINITION 6. Let @ be an order in L. Let w: L—>End V be a representation of
L on the finite dimensional vector space V over F. 0 is m-integral if m(0)< End ¥
for some lattice L in V. O is called an integral ofder in case @ is m-integral for
every representation 7 of L over F. An element x in L is m-integral if m(x) e End %
for some lattice < V. The element xeL is an integral element if it is w-integral
for every representation = of L over F.

LemMmA 5. If he H is integral and D is a Noetherian integral domain, then
wy(h)€ D for every fundamental weight w;, and so h€ Hp = PL.

Proor. If A is integral, then for any representation « 7(h) is an integral element.
In particular if = is a representation with w; as a weight, then w(h) has eigenvalue
wy(h) € F since w(h)v = wyh)v, for some weight vector v belonging to w;. If £ is
a lattice in ¥ such that w(h)eEnd.¥, then £ nFrc ¥ is a finitely generated
D-module of the form Av where A = {ac F|ave.¥} is finitely generated, as in the
proof of Theorem 2. Now n(h)ZLnFv<¥nFv and so wyh)A<A. Then
wy(h)™ A< A for any positive integer m. So for any fixed a€ 4, we have w(h)y"ae A
and hence wy(h)"c€alA4. Since A is finitely generated, so is a'A4. Thus
Dlwyh)]< a1 A is a finitely generated D-module, since D is Noetherian. Hence by
Zariski-Samuel (1958, p. 254) wy(h)€F is integral over D, that is, wy(h) € D.
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We are now in position to characterize integral orders in L which contain Lp,
First recall that by Chevalley (1961), Kostant (1966) or Steinberg (1968, pp. 7-21),
for any representation =: L—End ¥ where V is a finite dimensional vector space
over F, there is a lattice .# in V invariant under all w(e™/m!) for e,c B and m a
positive integer. In particular . is invariant under all #(e,) and hence under all
n(h,) = n([e,, e_,)). Thus £ is m(Lp)-invariant. Hence we see that LD is integral
in the sense of Definition 6. We can say considerably more.

THEOREM 4. Suppose that D is a Noetherian integral domain of characteristic 0,
and L is of rank at least 2. If 0= Ly, is an integral order, then 0< Ly, provided that
in case L is of type C,, 2 is invertible in D.

PROOF. Let x = h+ 3 ¢,e,€0. Then using e €@ as multipliers, we obtain as
in Theorem 2 every c,e,€@. Then [c,e,,e_,]=c,h,€0. So c,h, is an integral
element, since @ is integral. Then by Lemma 5, ¢ b, e 5P+. Then by Lemma 2,
¢,€ D for each root r. Then x—Y c,e, = he® and so h is an integral element.
Hence by Lemma 5, he ;P+ = Hy and hence xeLz.

COROLLARY. If L has rank at least 2, D is a Dedekind domain, and the hypotheses
of Theorem 4 hold, then © = Ly,. Thus in this case Ly, is a maximal integral order in L.

PROOF. In this case D = D since D is integrally closed, so we have L, 0< L,

In particular if D is the ring of algebraic integers in a finite algebraic extension
K of @ we get Theorem 2 of Hyman (1966) in the non-symplectic cases, and the
full result in all cases if 2 D is invertible.

We can extend Theorem 4 in a weakened form to the case of prime characteristic.

DerINITION 7. Suppose that Ly = F®, L, where L is simple over the complex
field. If D is of characteristic p with field of fractions F, then @< L will be called a
partially integral order in case O is o-integral for every representation ¢ of Ly
obtainable from a complex representation = of L by reduction modulo p. An
element xeLy is a partially integral element if it is o-integral for every such o.

Thus Lj, is a partially integral order. The reasoning of Lemma 5 establishes the
following result immediately.

LEMMA 6. If he H is partially integral and D is Noetherian, then wh)e D for
every fundamental weight w; and so he Hp = 5P+.

The foregoing now enables us to carry over verbatim the proof of Theorem 4

(with “partially” prefixed to each occurrence of “integral’”) to establish the
following, which must be termed a partial result.
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THEOREM 5. Let L, D, F, and O be as in Definition 7 with L of rank at least 2.
If D is Noetherian and 022 Ly, is a partially integral order, then O < Ly, provided that
2€ D is invertible in case L is of type C,. In particular, if D is a Dedekind domain,
then Ly, is a maximal partially integral order.
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