
Section 1. Solar and Stellar Convection

https://doi.org/10.1017/S1743921323005239 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1743921323005239&domain=pdf
https://doi.org/10.1017/S1743921323005239


https://doi.org/10.1017/S1743921323005239 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323005239


Invited talks

https://doi.org/10.1017/S1743921323005239 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323005239


https://doi.org/10.1017/S1743921323005239 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323005239


Dynamics of Solar and Stellar Convection Zones and Atmospheres
Proceedings IAU Symposium No. 365, 2024
A. V. Getling & L. L. Kitchatinov, eds.
doi:10.1017/S1743921323005239

Effects of rotation and surface forcing on
deep stellar convection zones

Petri J. Käpylä
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Abstract. The canonical undestanding of stellar convection has recently been put under doubt
due to helioseismic results and global 3D convection simulations. This “convective conundrum”
is manifested by much higher velocity amplitudes in simulations at large scales in comparison to
helioseismic results, and the difficulty in reproducing the solar differential rotation and dynamo
with global 3D simulations. Here some aspects of this conundrum are discussed from the view-
point of hydrodynamic Cartesian 3D simulations targeted at testing the rotational influence and
surface forcing on deep convection. More specifically, the dominant scale of convection and the
depths of the convection zone and the weakly subadiabatic – yet convecting – Deardorff zone
are discussed in detail.
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1. Introduction

The solar convective envelope rotates differentially, such that the rotation rate at the
equator is about 40 per cent faster than at near the poles. Furthermore, helioseismol-
ogy has revealed that the angular velocity Ω increases (decreases) with radius near the
equator (high latitudes), with narrow shear layers at the base and near the surface of
the convection zone (e.g. Thompson et al. 2003). This large-scale phenomenon is one of
the principal observations that global 3D simulations seek to reproduce. Early 3D sim-
ulations of the late 1970s and early 1980s were able to capture this (e.g. Gilman 1977),
although dynamo cycles in those simulations did not match that of the Sun (e.g. Gilman
1983; Glatzmaier 1985). However, it took another two decades for such simulations to
become more mainstream (e.g. Brun et al. 2004; Ghizaru et al. 2010; Brown et al. 2011;
Käpylä et al. 2012); see also Käpylä et al. (2023) for a recent review. Soon thereafter it
was realized that obtaining solar-like differential rotation (fast equator, slow poles) with
simulations with the nominal solar rotation rate and luminosity is highly non-trivial (e.g.
Gastine et al. 2014; Käpylä et al. 2014; Fan and Fang 2014; O’Mara et al. 2016). This is
thought to be due to too weak rotational influence on the dominant convective scales, or
equivalently, a too low Coriolis (inverse Rossby) number.
At the same time, efforts were made to study the velocity amplitudes in the Sun using

helioseismology (Hanasoge et al. 2010, 2012). These studies led to the realization that
convective amplitudes at horizontal scales of the order of hundreds of Mm in the Sun
appear to be several orders of magnitude weaker than in the global simulations, and that
the velocity power spectrum in the Sun peaks at supergranular scale of 20-30 Mm. While
the difference between helioseismic and simulation results has reduced somewhat in the
meantime, a large discrepancy remains (e.g. Proxauf 2021). Adding to the puzzle are
the results of Greer et al. (2015) from a ring-diagram analysis that shows high velocity
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amplitudes in the near-surface shear layer of the Sun consistent with global 3D convection
simulations.
Several physical processes have been suggested as possible solutions of the convective

conundrum. Rotationally constrained convection in the deep parts of the convection zone
is one such possibility (Featherstone and Hindman 2016; Vasil et al. 2021). Linear sta-
bility analysis and non-linear simulations of convection indicate that the convective scale
decreases with rotation. Given that the velocity power spectrum peaks at the supergran-
ular scale in the Sun, it is has been conjectured that this scale coincides with the largest
convectively driven scale in the deep convection zone. The question if convection in the
Sun is indeed sufficiently constrained by rotation was studied systematically in Käpylä
(2023a). These results are reviewed in more detail below.

Another possibility is that the solar convection zone is in fact largely subadiabatic, that
is, the thermal stratification is formally weakly Schwarzschild stable. This can be enabled
by plumes originating near the surface that transport cool low entropy material deep into
the interior far beyond the formally unstable layer. This is related to the idea that con-
vection in the Sun is driven by the cooling at the surface rather than by a superadiabatic
temperature gradient throughout the convection zone (Stein and Nordlund 1989; Spruit
1997). Such non-local driving of convection due to surface cooling has been dubbed
“entropy rain” (e.g. Brandenburg 2016). The convective flux in the stably stratified,
but convecting, layer is carried by a counter-gradient term proportional to the variance
of entropy fluctuations (Deardorff 1961, 1966). Hence this layer is referred to as the
Deardorff zone. Simulations of overshooting convection routinely capture such subadi-
abatic layers if the transition between the radiative and convective regions is smooth
enough (e.g. Roxburgh and Simmons 1993; Tremblay et al. 2015; Käpylä et al. 2017;
Hotta 2017). Most of the previous works considered non-rotating cases, whereas here
recent results of Käpylä (2023a), where the effects of rotation were included, are discussed.
Finally, the strength of the surface forcing depends on the physics near the sur-

face of the star. In real stellar convection zones the density drops vertigineously near
the surface and this cannot be directly reproduced in numerical simulations (e.g.
Kupka and Muthsam 2017; Käpylä et al. 2023). Here preliminary results from an effort to
study the effects of surface forcing by varying the (imposed) surperadiabatic temperature
gradient at the surface are discussed based on earlier models presented in Käpylä et al.
(2017). The novelty of these simulations is that they are constructed in such a way that
the depth and structure of the convection zone are self-consistent results of the models
instead of being fixed from the outset.

2. The model

The set-up is the same as in Käpylä (2019), Käpylä (2021), and Käpylä (2023a),
and the Pencil Code (Pencil Code Collaboration et al. 2021) was used to make the
simulations. The simulation domain is a rectangular box with dimensions (Lx, Ly, Lz) =
(4, 4, 1.5)d, where d is the depth of the initially isentropic layer which is situated between
0≤ z/d≤ 1. Initially this layer is sandwiched between a radiative layer with polytropic
index n= 3.25 (−0.45≤ z/d < 0) and an isothermal layer (1< z/d≤ 1.05). The equations
for compressible hydrodynamics are solved:

D ln ρ

Dt
=−∇ ·u, (1)

Du

Dt
= g− 1

ρ
(∇p−∇ · 2νρS)− 2Ω×u, (2)

https://doi.org/10.1017/S1743921323005239 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323005239


Effects of rotation and surface forcing on deep stellar convection zones 7

T
Ds

Dt
=−1

ρ
[∇ · (Frad +FSGS)−C ] + 2νS2, (3)

where D/Dt= ∂/∂t+u · ∇ is the advective derivative, ρ is the density, u is the velocity,
g=−gêz with g > 0 is the acceleration due to gravity where êz is the unit vector along
the vertical (z) direction, p is the gas pressure, ν is the viscosity, S is the traceless
rate-of-strain tensor, Ω=Ωêz is the rotation vector, T is the temperature, and s is the
specific entropy. Frad =−K∇T is the radiative flux where K =K0ρ

−2T 6.5 is the heat
conductivity following Kramers opacity law, and FSGS =−χSGSρT∇s′ is the subgrid-
scale (SGS) entropy flux, where χSGS is a constant SGS diffusivity and s′ = s− s is the
deviation of the entropy from its horizontally averaged profile which is denoted by the
overbar. The gas obeys the ideal gas equation p=RρT , where R = cP − cV is the gas
constant and where cP and cV are the specific heats in constant pressure and volume,
respectively. Finally, C describes cooling near the surface.

In Käpylä (2023a) it was shown that a Coriolis number based on a hypothetical velocity
u� = (Ftot/ρ)

1/3 is equivalent to

CoF = 2ΩHp

(
ρ

Ftot

)1/3

= (Ra�F)
−1/3, (4)

where Ftot is the total energy flux, Hp = (d ln p/dz)−1 is the pressure scale height, and

Ra�F =
gFtot

8cPρTΩ3H2
=

Ftot

8ρΩ3H3
p

, (5)

is the flux-based diffusion-free modified Rayleigh number (e.g. Christensen 2002), where
the length scale H was chosen such that H = cPT/g=Hp, where Hp is taken at the
base of the convection zone. The advantage of CoF is that it does not depend on any
dynamical velocity or length scale and it can be computed using observables (Ω, Ftot) and
quantities from stellar structure models (ρ, Hp); see also the discussion in Käpylä (2023b).
Further system parameters include the Taylor number Ta= 4Ω2d4/ν2, and the Prandtl
number related to the SGS diffusivity PrSGS = ν/χSGS. The energy flux is measured
by the dimensionless flux Fn = Ftot/ρc

3
s at z/d=−0.45 in the initial non-convecting

state. Diagnostic quantities include the Reynolds (Re = urms/νk1) and Péclet number
(Pe = urms/χSGSk1 =PrSGSRe), and the global Coriolis number Co= 2Ω/(urmsk1), where
urms is the volume-averaged rms-velocity, and k1 = 2π/d is an estimate of the scale of the
largest eddies. A more detailed description of the model is given in Käpylä (2023a).
Three main sets of runs (Sets A, B, and C) were made where Co was varied between

0 and about 17. The imposed flux Fn was varied between the sets to study the scaling
of dynamical quantities with respect to it. The diffusivities were varied proportional to

F
1/3
n to achieve the same Re, Pe, and Co in each set (cf. Käpylä et al. 2020, for more

details). The primary difference between the sets is that the Mach number Ma= urms/cs,
where cs is the sound speed, and therefore relative stability of the radiative layer below the
convection zone vary. In Sets A to C, Re =Pe≈ 30 . . . 40 and PrSGS = 1. A subset of Set A,
denoted as Set Am, was repeated at a higher resolution (5763 instead of 2883 grid points),
and correspondingly higher values of Reynolds and Péclet numbers (Re =Pe≈ 65 . . . 84),
while keeping Ra�F fixed.

3. Rotational scaling of convection

In Käpylä (2023a) the scaling of various quantities in rotating convection were studied.
The numerical results were compared with scalings derived for slow rotation where a
balance between inertial and buoyancy forces is assumed and for rapid rotation where
a balance between Coriolis, inertial, and Archimedean (buoyancy) forces, or the CIA
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Figure 1. Mean (kmean) and peak (kmax) wavenumbers from power spectra of velocity as a
function of Co from simulations Set A from Käpylä (2023a). Data taken near the surface of the

convectively unstable layer at z/d= 0.85. The dotted line shows the Co1/2 prediction from the
CIA balance. The blue vertical dotted line indicates the solar value of CoF. The tildes indicate
normalization by kH.

balance (e.g. Stevenson 1979; Barker et al. 2014; Aurnou et al. 2020), is assumed. For
the dominant convective scale this leads to:

�conv ∼Hp (slow rotation), and �conv ∼HpCo
−1/2 (rapid rotation). (6)

Similarly, the scalings for the convective velocity are:

uconv ∼ u� (slow rotation), and uconv ∼ u�Co
−1/6 (rapid rotation). (7)

Finally, the local Coriolis number Co� = 2Ω�conv/uconv, can be shown to depend on Ra�F:

Co� ∼ (Ra�F)
−1/3 (slow rotation), and Co� ∼ (Ra�F)

−1/5 (rapid rotation). (8)

Here the convective length scale is estimated from the power spectrum of velocity, E(k),
for which u2 =

∫
E(k)dk, either by taking the wavenumber where the power has its max-

imum (kmax) or the mean wavenumber kmean =
∫
kE(k)dk/

∫
E(k)dk. The length scales

�max and �mean are given by �max,mean =Lx/k̃max,mean, where k̃max,mean = kmax,mean/kH,
and where kH = 2π/Lx = π/2d is the wavenumber corresponding to the horizontal extent

of the simulation domain. Figure 1 shows k̃max and k̃mean from Set A. For slow rotation
(Co<∼ 1) both k̃max and k̃mean are approximately constant, although the former is already

consistent with the Co1/2 scaling due to the large error estimates which are taken to be
the standard deviation of the mean values calculated from several snapshots. For rapid
rotation the Co1/2 scaling from the CIA balance is recovered for both k̃max and k̃mean.

The case that the deep parts of the solar convection zone is strongly rotationally con-
strained has been discussed recently by Featherstone and Hindman (2016) and Vasil et al.
(2021). Both of these studies argue that the maximum horizontal scale of convection is
reduced by rotation in the deep parts of the convection zone, such that the largest
convectively driven scale coincides with supergranules (20–30 Mm) at a spherical har-
monic degree �≈ 100. Using Eq. (4) it is possible to compute CoF at the base of the
solar convection zone with Ω� = 2.7 · 10−6 s−1, H�

p ≈ 5 · 107 m, ρ� ≈ 200 kg m−3, and

F�
tot =L�/(4πr2bot), where L� = 3.83 · 1026 W, and rbot = 0.7R�, gives Co�F ≈ 3.1. On

the other hand,

Co=
u�
urms

CoF
k1Hp

. (9)
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Figure 2. Volume-averaged rms-velocity as a function of Co from simulations in Sets A, B, C,
and Am from Käpylä (2023a). The dotted lines are either constant (for Co≤ 1.5) or proportional

to Co−1/6 (for Co≥ 6). The inset shows Co� as a function of Ra�F for the same runs with

power laws proportional to (Ra�F)
−1/5 for fast and (Ra�F)

−1/3 for slow rotation corresponding
to Ra�F ≤ 3 · 10−3 and Ra�F ≥ 0.03, respectively. The blue dotted vertical lines indicate the solar
values of Co and Ra�F, respectively.

For the current slowly rotating simulations in Sets A to C, u�/urms ≈ 0.87 (see, Figure 2),
and (k1Hp)

−1 ≈ 0.32, such that the solar CoF is achieved in a simulation with Co≈
0.87. Inspection of Figure 1 suggests that the Sun is somewhere in between the weakly
rotationally influenced and the rotationally constrained regimes.
The dominant convective scale in a simulation with Co≈ 0.83 and CoF = 3.1 is again

estimated from the power spectrum of the velocity. In this case the maximum power
occurs at wavenumber k̃max = 3 and the mean wavenumber is k̃mean = 7, corresponding
to length scales �max = 1.33d and �mean = 0.57d. The pressure scale height at the base of of
the convective layer in this run is Hp = 0.49d. Assuming the simulations to represent the
deep parts of the convection zone at the interface to the radiative layer, the pressure scale
height corresponds to H�

p ≈ 5 · 107 m. This leads to �max ≈ 135 Mm and �mean ≈ 58 Mm,
respectively. These results seem to refute the idea that rotationally constrained convection
can explain the supergranular scale as the largest convectively driven scale. Furthermore,
Käpylä (2023a) showed that in the simulations of Featherstone and Hindman (2016),
where the supergranular scale is the dominant scale correspond to a value of CoF that
requires a rotation rate which is at least 15 times higher than in the Sun.
Figure 2 shows the time and volume-averaged rms-velocity from Sets A, B, C, and Am

normalized by u�. The scalings for slow and rapid rotation from Eq. (7) are recovered
for Co<∼ 1.5 and Co>∼ 6, respectively. For Co exceeding the maximum values here (Co≈
17), the flow begins to develop a large-scale vortical component (see also Chan 2007;
Käpylä et al. 2011) which is likely due to two-dimensionalization of turbulence, and
extending the calculations to higher Co becomes challenging. Finally, the local Coriolis
number Co� is shown in the inset of Figure 2. Co� adheres to the scalings given in Eq. (8)
with respect to Ra�F for both slowly and rapidly rotating regimes.

4. Deardorff layer as a function of rotation

In the canonical models of stellar convection relying on mixing length theory (e.g.
Böhm-Vitense 1958), the whole convection zone is unstably stratified and convection is
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Figure 3. Left panel: Horizontally averaged energy fluxes from the non-rotating Run A0 from
Käpylä (2023a). Grey (orange) areas indicate mixed (radiative) layers, and the red circles high-

light the boundaries between the layers. The various zones are characterised as F rad ≈ Ftot

(radiative; RZ), F conv < 0, F rad >Ftot (overshoot; OZ), F conv > 0, Δ∇< 0 (Deardorff; DZ),

and F conv > 0, Δ∇> 0 (buoyancy; BZ). Right: Depth of the Deardorff layer (dDZ) as a function
of Co from simulations in Sets A (black solid line), B (blue dashed), and C (red dotted). The
blue dotted vertical line indicates the value of Co corresponding to the solar CoF. Adapted from
Käpylä (2023a).

thought to be driven locally by a superadiabatic temperature gradient

Δ∇=∇−∇ad =− 1

Hp

ds

dz
> 0, (10)

where ∇=d ln T/d ln p is the logarithmic temperature gradient, ∇ad =
(d ln T/d ln p)ad = 1− 1/γ is the corresponding adiabatic gradient, and where γ = cP/cV.
If this were the case in the Sun, giant cell convection on the scale of 200 Mm is expected
to be prominent. This is not observed in the Sun and 3D hydrodynamic simulations
suggest that the deep parts of convective layers are often weakly subadiabatic (e.g.
Roxburgh and Simmons 1993; Tremblay et al. 2015; Käpylä et al. 2017; Hotta 2017).
This is thought to be due to the inherently non-local nature of convection which is
driven by cooling near the surface instead of heating from the base as has been shown,
e.g., in Käpylä et al. (2017).

This subadiabatic but convecting layer is referred to as the Deardorff zone (DZ), and
it is characterised by Δ∇< 0 and F conv > 0, where

F conv = F enth + F kin = cP(ρuz)′T ′ + 1
2ρu

2uz, (11)

is the total convected flux (e.g. Cattaneo et al. 1991), which is the sum of the time
and horizontal averages of the enthalpy and kinetic energy fluxes, and where the primes
denote deviations from the horizontal average. The left panel of Figure 3 shows the flux
balance from a non-rotating Run A0 from Käpylä (2023a), where in addition to F conv,
F enth, and F kin, also the radiative (F rad =−KdT/dz) and cooling (F cool =− ∫ C dz)
fluxes, as well as a quantity proportional to Δ∇ are shown for reference. The DZ in this
run is over 40 per cent of the pressure scale height at the base of the convection zone
which is here defined as the lower boundary of the DZ. For the run closest to the solar
value of CoF, dDZ ≈ 0.3Hp which corresponds to 15 Mm in the Sun.
Figure 3 shows dDZ as a fraction of the pressure scale height at the base of the con-

vection zone as a function of rotation for Sets A, B, and C from Käpylä (2023a). The
sets differ from each other in that the input energy flux is varied such that between the
extreme cases (Sets A and C), Fn decreases by factor of five. This has implications for
the Mach number and also for the overshooting below the convection zone (e.g. Käpylä
2019). However, the depth of the DZ is virtually unaffected by the change of Fn. This is
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Figure 4. Left panel: Absolute value of the superadiabatic temperature gradient Δ∇ for
Runs G[1-4]. Red (blue) parts of the curves indicate regions where Δ∇> 0 (Δ∇< 0). The
black vertical lines denote the bottom of the convectively mixed layer. The inset shows the
depth of the mixed zone d̃mix = dmix/d as a function ∇max

D . Right: depth of the Deardorff zone,

d̃DZ = dDZ/d as a function of |˜∇s|. The inset shows the relative fraction of the Deardorff zone

of the mixed zone as a function of |˜∇s|.

because the cooling time at the surface is varied inversely proportional to Fn such that
the thermal forcing remains unaffected.

5. Effects of surface forcing

There are some a few into the effects of varying surface forcing using convection sim-
ulations. For example, Cossette and Rast (2016) varied the superadiabatic gradient at
the surface and found that it had a substantial effect on the convective length scale and
deep convection zone dynamics. On the other hand, Hotta et al. (2019) found only a weak
influence of the surface in a simulation that encompassed nominally the entire convection
zone of the Sun.
Here a similar approach as in Cossette and Rast (2016) is explored with a simulation

set-up that was used in Käpylä et al. (2017). In distinction to the simulations discussed
above, the upper cooling layer is replaced by an imposed entropy gradient at the upper
boundary, and the z-coordinate runs between −0.5≤ z/d≤ 1 such that the transition
between the initially isentropic and radiative layers is at z = 0. Furthermore, the SGS
diffusion term has an extra term proportional to the mean entropy gradient:

FSGS =−(χSGSρT∇s′ + χm
SGSρT∇s), (12)

where χm
SGS is non-zero only above z/d= 0.95, such that the second term on the rhs

of Eq. (12) transports the heat flux through the upper boundary. Here PrSGS = 1 and
PrmSGS = ν/χm

SGS = 0.5. In Käpylä et al. (2017), the entropy gradient at the surface was

fixed to ∇̃s= (d/cP)(ez · ∇s) =−10. Here four values between −1 and −10 for ∇̃s are
explored in Set G. In distinction to Cossette and Rast (2016) where a spatially fixed
Newtonian cooling term was used which does not allow the depth of the convection zone
to change appreciably, the current simulations use Kramers opacity law which enables
this.
In the absence of convection the hydrostatic solution with the Kramers opacity law

is convectively unstable only in a shallow surface layer (e.g. Barekat and Brandenburg
2014; Käpylä 2023a). This solution is modified by the onset of convection and the final

outcome is expected to be sensitive to the surface physics. Decreasing |∇̃s| leads to a
shallower convection zone as can be seen from the left panel of Figure 4. Furthermore,
Δ∇ near the surface decreases and the surface temperature increases. In the updated
mixing length model of Brandenburg (2016), the enthalpy flux was quantified in terms
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of gradient (FG) and non-gradient (FD) contributions

F enth = FG + FD =−τρT ( 13u2rms∇zs+ s′2g/cP) = 1
3ρcPT (τu

2
rms/Hp)(Δ∇+∇D), (13)

where τ is a relaxation time, and where the magnitude of the non-gradient is characterised
by

∇D = (3/γ)(s′2/c2P)Ma−2. (14)

Brandenburg (2016) argued that ∇D in deeper parts is proportional to its maximum
value near the surface, ∇max

D . The depth of the mixed layer dmix, consisting of the buoy-
ancy, Deardorff, and overshoot zones, is shown as a function of ∇max

D in the inset of the
left panel of Figure 4 for the runs in Set G. While dmix increases monotonically with

∇max
D (corresponding to increasing |∇̃s|), there appears to be no straightforward relation

between the two. The depth of the Deardorff zone is not very sensitive to |∇̃s|, although
its size relative to the mixed zone decreases somewhat as |∇̃s| increases; see the inset of
the right panel of Figure 4.

6. Conclusions

Several ways to address the “convective conundrum,” or the discrepancy between con-
vective velocity amplitudes in simulations and solar observations, were reviewed based on
results from recent hydrodynamic Cartesian convection simulations. First the effects of
rotation from Käpylä (2023a) were considered. These results suggest that the convective
scale in the deep convection zone of the Sun is not sufficiently affected by rotation to
reduce the largest convectively driven scale to the supergranular scale of 20-30 Mm as
has been conjectured earlier (Featherstone and Hindman 2016; Vasil et al. 2021). These
simulations also suggest that the depth of the convective but formally stably stratified
Deardorff zone is reduced as rotation increases, but that a substantial subadiabatic layer
of about 15 Mm is still expected to be found at the base of the solar convection zone.
Scaling laws of several dynamical quantities such as convective scale, velocity amplitude,
and local Coriolis number were shown to follow scalings derived under the CIA balance
(e.g. Stevenson 1979; Barker et al. 2014; Aurnou et al. 2020).
The effects of surface forcing were explored with a set of new simulations where the

entropy gradient at the surface was imposed similarly as in Käpylä et al. (2017). Unlike
in the previous studies in the literature that study the effects of the surface for the
deep convection zone, the current simulations allow the depth of the convective layer
to vary self-consistently. These preliminary results show that stronger surface forcing, in
terms of a steeper entropy gradient, leads to a deeper convectively mixed layer. Although
there is a monotonic dependence between the imposed entropy gradient and the depth
of the convective layer, no clear relation between the two can be identified. However, the
fraction of the Deardorff layer of the total depth of the convectively mixed layer decreases
somewhat when the surface forcing is increased.
The results quoted above come with the caveat that the surface forcing of convection

in the current simulations is assumed to be accurately modelled. This, however, cannot
be guaranteed, and it is likely that much smaller scales need to be resolved to capture
the effects of radiative cooling in the photosphere accurately (e.g. Kupka and Muthsam
2017). Furthermore, the effects of astrophysically relevant low Prandtl numbers (e.g.
Spiegel 1962; Käpylä 2021) and vigorous magnetism (e.g. Hotta et al. 2022) are also
likely to play important roles for solar and stellar convection.
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Hanasoge, S. M., Duvall, Thomas L., J., & DeRosa, M. L. 2010, Seismic Constraints on Interior
Solar Convection. ApJ, 712(1), L98–L102.

Hanasoge, S. M., Duvall, T. L., & Sreenivasan, K. R. 2012, Anomalously weak solar convection.
Proc. Natl. Acad. Sci., 109, 11928–11932.

Hotta, H. 2017, Solar Overshoot Region and Small-scale Dynamo with Realistic Energy Flux.
ApJ, 843, 52.

Hotta, H., Iijima, H., & Kusano, K. 2019, Weak influence of near-surface layer on solar deep con-
vection zone revealed by comprehensive simulation from base to surface. Science Advances,
5(1), 2307.

Hotta, H., Kusano, K., & Shimada, R. 2022, Generation of Solar-like Differential Rotation. ApJ,
933(2), 199.
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