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Abstract
This paper presents a robust adaptive controller based on the backstepping technique using an extended state
observer (ESO), implemented on a 2PUS+RR parallel robot, to minimize the trajectory tracking error. The pro-
posed backstepping-ESO controller scheme is designed to compensate for the robot’s structured (parametric) and
unstructured (nonlinear friction, external disturbances, and dynamics) uncertainties. The overall stability of the con-
troller is guaranteed by the Lyapunov theory. Cosimulation in MATLAB-Simulink and ADAMS View is presented
to validate the results of the ESO and backstepping controller implemented in the virtual and physical prototype. For
the virtual prototype, it was determined that the system is stable in 2 s and presents a maximum absolute error of 3.5
× 10−6 m for the actuator position and 2.8 × 10−5 rad for mobile platform orientation. Regarding the physical robot,
a maximum absolute error of 5 × 10−4 m for the actuator position and 0.0575 rad for the orientation of the robot
mobile platform values do not represent a problem for ankle rehabilitation movements. Experimental results were
also presented and compared with ankle motion to demonstrate that the applied control system meets the motion
requirements of the ankle rehabilitator.

1. Introduction
Nonlinear systems, such as parallel robots, use techniques that require full dynamic models for control.
One of the techniques used to solve these systems is the sliding mode controller with adaptive backstep-
ping, which is an alternative to feedback linearization that provides stability and tracking to the system
[1, 2]. The adaptive controller allows the user to estimate the unknown dynamic system parameters,
while the sliding modes controller solves the unmodeled dynamics and external disturbances [3]. The
sliding mode control produces a switching control law to force the system to converge to the sliding
surface within a boundary layer near the sliding surface under the convergence of the Lyapunov stability
theory. This approach solves unmodeled dynamics and external disturbances [4], while the adaptive con-
troller allows the user to estimate the unknown dynamic system parameters. Moreover, the backstepping
control is used to deal with nonlinear systems in which the states are used as virtual control signals in
control law design, and the virtual signals and their derivatives are required at every step of the design
process [4, 5]. The main advantage of the backstepping scheme is its ability to handle systems with
different relative degrees (the difference between the number of poles and zeros).

Coutinho et al. [6] used two controls, the first of which was a hybrid control derived from the combi-
nation of a pure PD (Proportional derivative) control with a modified sliding mode control. The second
combined a pure computed torque with the altered sliding mode control. The simulations and the exper-
imental results show a significant reduction in the path tracking and steady-state errors in both hybrid
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control strategies. Mazare et al. [1] proposed a controller that combined an adaptive sliding mode and
backstepping methods to perform exact tracking control of a parallel robot. This is because it uses an
adaptive approach to estimate the uncertainties and disturbances of the dynamic model and a Lyapunov
function to prove the controller’s stability. The dynamic robot model was obtained using the Lagrangian
method, which is robust with time-varying disturbances. Furthermore, the controller’s performance is
evaluated using simulated trajectories with some precision point optimization using harmony search
algorithm (HSA) and interpolation spline cubic (ISC). In a study by Wang et al. [7], the backstepping
sliding mode robust control was proposed for a wire-driven parallel robot (WDPR) system used in a wind
tunnel test to dominate the motion of the end effector. The backstepping design method was adopted and
a sliding mode term was introduced to construct a controller, while the disturbances were compensated in
the controller to reduce the switching gain, thereby guaranteeing robustness. For the sake of verifying the
stabilization of the closed-loop system, the Lyapunov function was constructed to analyze the system’s
stabilization.

Since rehabilitation robots directly operate with the user (physiotherapist/patient), physical interac-
tion must be controlled to ensure the user’s safety. Moreover, the level of forces applied and limb or
joint movements must be regulated so that the rehabilitation goal is achieved. An example of this is pro-
vided by the research of Azcaray et al. [8] and Guzmán et al. [9] which used PID (Proportional integral
derivative) control techniques in ankle rehabilitators. Other authors state that there are also combinations
of this technique, such as the FOPID (fractional-order proportional integral derivative) by Sinasi Ayas
et al. [10], impedance control by Magadán et al. [11] as well as sliding modes by Chen et al. [12]. In
another work, Li et al. [13] described an ankle robot based on a parallel mechanism actuated using four
pneumatic muscle actuators to provide three rotational degrees of freedom to the ankle joint. The con-
troller adaptive impedance control was used with the patients’ active participation to provide customized
robotic assistance. In addition, Wang et al. [14] presented an internal model control (IMC) controller.
The simulation showed that the composite two-degrees of freedom (2-DOF) IMC controller provided a
high level of performance, with the experimental results showing the effectiveness of passive training of
the given trajectory and impedance training active control strategy. Dong et al. [15] developed an ankle
robotic system with three rehabilitation training strategies based on admittance control and its deriva-
tives. The controller’s output is obtained based on proportional and time-shifting methods according to
the continuous measured torque which considers the patient’s muscle strength level and different stages
of recovery. In a further study, Zhang M. et al. [16] proposed an adaptive patient-cooperative control
strategy to improve rehabilitator-assisted ankle efficacy and safety by developing and implementing a
compatible ankle rehabilitation robot.

Recently, the adaptive backstepping sliding mode control has been applied to ankle rehabilitation
robots in some studies. For example, Qingsong et al. [17] explained that human–robot external distur-
bance can be estimated by an observer which is used to adjust the robot output to accommodate external
changes. This means, therefore, that the system’s stability is guaranteed by the Lyapunov theorem. In
the study by Salimi et al. [18], the position control of the pneumatic actuator was performed based on
the backstepping sliding mode controller according to the system’s dynamic model. The results show
the efficiency of the control strategy and the proposed method for calculating the position of the end
effector. In another study, Mohanta et al. [19] presented an adaptive backstepping motion control of
a sitting-type lower limb rehabilitation robot. The proposed robot kinematics and dynamics were dis-
cussed, and its motion control design in the workspace was based on an adaptive backstepping control
strategy which is derived herein. With Lyapunov’s direct method, the closed-loop system stability of the
proposed motion control scheme can be demonstrated. For numerical simulations, in order to validate
the motion control strategy effectiveness and the proposed lower limb rehabilitation robot design, the
clinically obtained test gait data is used for the desired motion trajectory.

In this work, a robust control scheme for a rehabilitation parallel robot is proposed and implemented
numerically and experimentally to prove its effectiveness. The desired trajectory is generated for each
of its actuators, meaning that a decentralized active disturbance rejection controller (ADRC) is used for
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Figure 1. Parallel robot 2PUS+RR [22].

each prismatic actuator. The purpose of the ADRC is that uncertainties, external disturbances, and mod-
eling errors are all integrated as an extended state which is estimated and compensated by the extended
state observer (ESO) [20]. The parallel robot has two active prismatic joints, each with two linear bear-
ings guided by two axes and driven by a power screw, which is coupled to a permanent magnet DC
electric motor. The controller design is based on the backstepping technique and ESOr [21]. The observer
and the controller synchronize and regulate the position of the prismatic actuator, ensuring the robust-
ness of trajectory tracking in each actuator. Finally, the proposed controller facilitates its numerical and
experimental application in real time.

2. Parallel robot description
The parallel robot consists of a mobile platform and a fixed base connected by two PUS (prismatic, uni-
versal, and spherical joints) kinematic chains as well as an RR (revolute-revolute) chain (Fig. 1).There
are 2-DOF to generate the inversion/eversion and flexion/extension movements, along with the adduc-
tion/abduction movements. For the first movement, the rotation of the mobile platform that generates
flexion/extension and abduction/adduction movement is blocked, while to generate flexion/extension
and abduction/adduction movements, the inversion/eversion DOF is blocked. The arrangement of the
kinematic chains allows the prismatic joints axes to be parallel to the Z axis global coordinate system.
The universal joints’ centers are designated as A1 and A2, while the spherical joints’ locations and the
mobile platform are denoted by B1, B2, and B3. The mobile platform coordinates are coplanar to simplify
the analyses. The global coordinate system is OXYZ and the moving reference is Pxyz, where point O and
P are the intersection points of the central pole revolute joints. The longitudinal axis of the Y axis is
colinear to the central pole longitudinal axis [22, 23].

With regard to the analysis of the parallel robot direct kinematics, in Flores et al. [22], the Sylvester
dialytic elimination method was presented, as it consisted of reducing any system of polynomial equa-
tions into a single polynomial with one unknown. This approach was used to obtain all the possible
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Figure 2. Rotation angles on the global coordinate system.

locations of the mobile platform, in addition to the exact solutions of the system of equations. In Flores
et al. [23], the velocity and acceleration analysis was also performed using the screw theory. By system-
atically applying Klein’s form, the passive velocities and accelerations are canceled, and two systems
of linear equations are obtained that link the mobile platform’s velocities and accelerations with the
actuators’ velocities and accelerations, respectively. Singularity calculations (configurations where the
mobile platform gains or loses degrees of freedom) are also obtained using screw theory based on
velocity analysis equations that link the mobile platform’s angular velocities to the actuators’ linear
velocities.

2.1. Inverse kinematics
The inverse kinematics analysis consists of finding the displacement variables qi, given the mobile plat-
form coordinates Px,y,z. Any rigid body position can be specified by knowing their three coordinate points
[24]. The mobile platform position, compared to the fixed reference frame OXYZ , can be determined by
calculating the coordinates of points Bi [23]. Then, the equations that include these variables are written
using mechanical constraint expressions, where the robot limbs lengths di are constrained to

(Bi − Ai) · (Bi − Ai)= d2
i ∀i = 1, 2 (1)

Developing the equations given in Eq. (1) and obtaining q1 and q2:

q1 = Z1 ±
√

X2
1 − 2bX1 − Y2

1 − 2cY1 − b2 − c2 + d2
1 (2)

q2 = Z2 ±
√

X2
2 + 2bX2 − Y2

2 − 2cY2 − b2 − c2 + d2
2 (3)

⎡
⎣ Xi

Yi

Zi

⎤
⎦ = RBi (4)

R is the rotation matrix on the global coordinate system (Fig. 2) formed by the rotation matrices Rx, Ry,
and Rz:
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Figure 3. Electric linear actuator.

R = Ry Rz Rx (5)
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By knowing the mobile platform’s velocity, the actuator’s velocity is calculated by Q̇:

Q̇ = B−1AVo (7)

By knowing the mobile platform’s acceleration, the actuators’ acceleration is calculated by Q̈:

Q̈ = B−1(AAo − Ca) (8)

By having the desired accelerations, velocities, and displacements to be applied to the system, the
magnitudes and directions of the necessary forces and torques to generate the desired motions can be
obtained.

2.2. Dynamic model
The parallel robot dynamics modeling is based on the dynamics of two slides, each one with two linear
bearings guided by two axes and driven by a power screw which is coupled to an electric motor (Fig. 3).
Viscous damping, bq, is considered on both linear slides between them and the corresponding guides,
as well as between the nut and the screw. For the displacement in q, there is an input force denoted by
Fq. The forces generated in each movement due to the mobile platform weight and the foot weight force
are considered as perturbations ξ .

The DC motor dynamic model shown in Fig. 3, using Kirchhoff’s law and Newton’s second law, can
be written as follows:
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La

dia

dt
= −Raia − keθ̇ + u (9)

Jmθ̈ = kmia − bmθ̇ − τL (10)

In permanent magnet DC motors, there is a very small armature inductance, therefore, La ≈ 0

considering La

dia

dt
≈ 0, meaning that the dynamic variable ia can be static:

īa =
(

u − keθ̇

Ra

)
(11)

By substituting Eq. (11) in Eq. (10), the following expression is obtained:

Jmθ̈ = −
(

kmke

Ra

+ bm

)
θ̇ +

(
km

Ra

)
u − τL (12)

The dynamic model for the mobile mass shown (see in Fig. 3), using Newton’s second law, can be
written as:

mq̈ + bqq̇ + ξ = Fq (13)

To couple the DC motor and the mobile mass dynamics, the following is considered:

θ = q

p
, θ̇ = q̇

p
, θ̈ = q̈

p
, τL = pFq (14)

(
Jm

p
+ mp

)
︸ ︷︷ ︸

:=Jeq

q̈ = −
(

kmke

Rap
+ bm

p
+ bqp

)
︸ ︷︷ ︸

:=α

q̇ +
(

km

Ra

)
︸ ︷︷ ︸

:=β

u − pξ (15)

Representing the system in state variables, x1 = q and x2 = q̇:

ẋ1 = x2

ẋ2 =�(x2, ξ)+
(
β

Jeq

)
u

(16)

�(x2, ξ)= −
(
α

Jeq

)
q̇ −

(
p

Jeq

)
ξ (17)

The function� is assumed to be unknown but is bounded. The dynamics of both actuators can be con-
sidered as decoupled, meaning that control strategies for tracking separate position planned trajectories
are proposed.

3. Backstepping control
The backstepping design showed more flexibility compared to the feedback linearization, since it does
not require the resulting input–output dynamics to be linear. The cancelation of potentially useful non-
linearities can be avoided resulting in less complex controllers [25]. The backstepping technique uses a
Lyapunov function for solving the stability of each of the blocks, until reaching the controller design. It
starts from the Eq. (16) dynamic model, choosing the output displacement as q = x1. The second step is
to formulate a candidate Lyapunov function. The next step is to formulate the backstepping control law,
and an analysis of the system’s stability is then performed. Finally, the feedback control system is sim-
ulated to verify that the plant’s controlled outputs meet the previously established design specifications
and that the designed control system a shows stable behavior.

For the origin to be stable, by using Lyapunov’s theorem, the first candidate function must be positive
definite and its semidefinite derivative negative, thus the following function is proposed:
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V(z1)= 1

2
z2

1 (18)

where z1 denotes the selected output tracking error:

z1 = x1 − x∗
1 (19)

where x∗
1 is the desired actuator position.

The Lyapunov candidate function is positive definite by V(z1) > 0 − {0}, where its time derivative is

V̇(z1)= z1ż1 (20)

where ż1 is the tracking error derivative:

ż1 = ẋ1 − ẋ∗
1 = x2 − ẋ∗

1 (21)

where x2 is an output displacement.
Substituting ẋ1 from Eq. (16) in Eq. (21) as an intermediate step, the tracking error z2 is proposed,

which involves the virtual controller γ (x) to make V̇(z1) semidefinite negative:

V̇(z1)= z1

(
x2 − ẋ∗

1

)
(22)

z2 = x2 − γ (x) (23)

Obtaining x2 from Eq. (23), results in:

x2 = z2 + γ (x) (24)

and by substituting Eq. (24) for Eq. (22), the following expression is obtained:

V̇(z1)= z1

(
z2 + γ (x)− ẋ∗

1

)
(25)

Now, a virtual controller is proposed γ (x), to cancel the term ẋ∗
1 and make V̇(z1) negative

semidefinite:

γ (x)= −k1z1 + ẋ∗
1 (26)

where k1 > 0 is a constant value that defines the sensitivity of tracking error proportional of variable z1.
By substituting Eq. (26) for Eq. (25), the following expression is obtained:

V̇(z1)= −k1z2
1 + z1z2 (27)

Proposing a Lyapunov control function as follows:

V(z1, z2)= V(z1)+ 1

2
z2

2 (28)

Deriving the Lyapunov function compared to time, the following is obtained:

V̇(z1, z2)= V̇ (z1)+ z2ż2 = −k1z2
1 + z2(z1 + ż2) (29)

where ż2 is obtained by deriving the Eq. (23) as:

ż2 = ẋ2 − γ̇ (x) (30)

= ẋ2 + k1ż1 − ẍ∗
1 (31)

=�(x2, ξ)+ β

Jeq
u + k1ż1 − ẍ∗

1 (32)

Finally, a control law is proposed that makes the function V̇ (z1, z2) semidefinite negative:

u = −Jeq

β

[
k2z2 + z1 + �̂(x2, ξ)+ k1ż1 − ẍ∗

1

]
(33)
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where �̂(x2, ξ) is a function to be estimated through an ESO, and k2 > 0 is a constant value defining the
sensitivity tracking error proportional of variable z2. Substituting the Eq. (33) for Eq. (29), the following
expression is obtained:

V̇(z1, z2)= −k1z2
1 − k2z2

2 + z2�̃ (x2, ξ) (34)

with

�̃(x2, ξ)=�(x2, ξ)− �̂(x2, ξ) (35)

For the function defined in Eq. (34) to be negative semidefinite and ensure asymptotic stability, the
function �̂ must be bounded as follows:

�̃(z2)≤ k2‖z2‖ (36)

4. Extended state observer
An ESO is designed for an online estimation of the� function and the states x1 and x2 where the estimated
values are adapted to the backstepping controller references. The following assumptions are made for
the ESO design.

• The only variable available for measurement is x1.
• The Ra, Jm, km, m, and p parameters are known.
• The estimated value of the� function, which includes structured and unstructured uncertainties,

is considered an unknown but bounded function.
• The estimate of the unknown function � is denoted by η1.
• The estimates of the output x1 are successive derivatives and are denoted by y1 = x̂1 and y2 = x̂2.

Taking the mobile mass dynamic model from Eq. (37), the ESO is designed as:

ẏ1 = y2 + λ3(x1 − y1)

ẏ2 = η1 +
(
β

Jeq

)
u + λ2(x1 − y1)

η̇1 = η2 + λ1(x1 − y1)

η̇2 = λ0(x1 − y1)

(37)

The selection of constant coefficients {λ3, λ2, λ1, λ0}, such as the Hurwitz polynomial coefficients,
is such that the roots of the characteristic polynomial dominate the output estimation error dynamics’
behavior, placing them in the left half-plane of the complex plane. Therefore, a fourth-order polynomial
was selected given by:

P(s)= (
s2 + 2ζωns +ω2

n

)2 (38)

From this, the coefficient final values are given by:

λ0 =ω4
n

λ1 = 4ζω3
n

λ2 = 4ζ 2ω2
n + 2ω2

n

λ3 = 4ζωn

(39)

for 0< ζ < 1 and ωn > 0.
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Figure 4. Ankle movements [27].

5. Desired trajectories
The desired trajectories for the actuators displacement q∗, q̇∗ and their corresponding velocity q̇∗ and
acceleration q̈∗ are obtained by the inverse kinematic analysis of the parallel robot. The desired trajecto-
ries ψ∗

n and their corresponding velocity ψ̇∗
n and acceleration ψ̈∗

n are proposed as Bézier polynomials as
in Eq. (40). These trajectories represent the ankle movements as shown in Fig. 4, and the rehabilitation
movements start from an initial position and reach a final position with a smooth change [26].

∀n = x, y, z, where:

ψ∗
n =

⎧⎨
⎩
ψ̄n0

ψ̄n0 + (
ψ̄nf − ψ̄n0

)
φ

(
t, t0, tf

)
ψ̄nf

for t< t0

for t0 ≤ t ≤ tf

for t> tf

(40)

φ
(
t, t0, tf

) =
(

t − t0

tf − t0

)5 5∑
i=0

(−1)i
σi

(
t − t0

tf − t0

)i

(41)

with parameters of the polynomial function: σ0 = 252, σ1 = 1050, σ2 = 1800, σ3 = 1575, σ4 =
700, σ5 = 126.
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Table I. Robot’s parameters.

Parameter Value Unit
B1 (−59.09097697, 0, 162.57983565) mm
B2 (59.09097697, 0, 162.57983565) mm
b 115.37157978 × 10−3 m
c 100.45008479 × 10−3 m
d1 206 × 10−3 m
d2 206 × 10−3 m
m 0.2824474643 kg
Ra 2.4 �

km 0.1186 N·m/A
Jm 0.0005 kg·m2

p 0.008 m

Figure 5. Control diagram.

6. Result and discussion
In order to validate the proposed controller-observer scheme, a MATLAB-ADAMS cosimulation was
carried out and a block diagram of the closed-loop system is depicted in Fig. 5. ADAMS is a compu-
tational software focused on the dynamic analysis of multibody systems, and its main objective is to
solve nonlinear problems. It facilitates the analysis of the dynamics of moving parts, as well as the loads
and forces that are distributed along the mechanical systems [28]. Moreover, a MATLAB-Simulink is
a block diagram environment for multidomain simulations and model-based designs. The simulation
software calculates model behavior as conditions evolve over time or as events occur and can be used to
evaluate a new design, diagnose problems with an existing design, and test a system under conditions
that are difficult to reproduce [29].

The virtual prototype in a MSC ADAMS environment is shown in Fig. 6, and the numerical
parameters used in the cosimulation are presented in Table I.

For simulation purposes, an external disturbance ξP is added. This disturbance emulates the torque
required to carry out the flexion/extension passive motion in an ankle rehabilitation therapy [30] and is
shown in Fig. 7. This torque is applied to the mobile platform on the global X-axis direction, and can be
approximated by a fourth-order polynomial given by (42):
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Figure 6. Virtual prototype on MSC ADAMS.
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Figure 7. External disturbance ξP.

ξP = 4.2614e−6ψ 4
x − 6.4331e−4ψ3

x + 0.0212ψ2
x − 0.4632ψx + 4.9973 (42)

Figure 8 shows the trajectories generated by the inverse kinematic analysis and the actuators’ position
with the proposed controller for trajectory tracking. The mobile platform’s motion and the desired tra-
jectories use the Bézier-type polynomial [see Eq. (40)] to generate a combined flexion/extension and
abduction/adduction motion, which are presented in Fig. 9. The flexion/extension motion begins at
ψ̄x = 0 rad and ends at ψ̄x = 0.802851 rad, in the time interval t = [0 s, 1 s]. For the interval t = [1 s, 2 s],
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Figure 8. The actuators position tracking response: (a) position of actuator 1 and (b) position of
actuator 2.
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Figure 9. The mobile angular position tracking response: (a) flexion/extension motion and (b)
abduction/adduction motion.
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Figure 10. Dynamics of error tracking: (a) tracking error dynamic for two actuators and (b) tracking
error dynamic for mobile platform.

this motion starts at ψ̄x = 0.802851 rad and ends at ψ̄x = −0.523599 rad. The abduction/adduction
motion starts at 0 rad and ends at 0.261799 rad in the time interval t = [0 s, 2 s]. In Fig. 10, the track-
ing error dynamics for actuators and mobile platform position are shown. A maximum absolute error
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Figure 11. Estimated value of functions �, during the coupling of the dynamics of the DC motor and
the link considering the uncertainties of both, as well as the disturbances caused by the movement and
force of the foot on each actuator.

Figure 12. Physical prototype.

of 3.5 × 10−6 m for the actuators position and 2.8 × 10−5 rad for the robot mobile platform orienta-
tion can be observed. Finally, the behavior of the unknown estimated function is presented in Fig. 11,
where it can be seen that actuator 2 reaches 5 N in 0.5 s and actuator 1 reaches approximately 4 N over
the same period. Although the estimation of the two actuators is independent, it is observed that their
graphs are similar, and it is proven that it is not necessary to use physical sensors for current, voltage,
or to know the exact applied force of the foot on the prototype to have the system controlled for each
actuator.

6.1. Control implementation in physical prototype
The physical prototype is shown in Fig. 12. The actuator’s position is measured by a linear incremen-
tal encoder with a resolution of 150 pulses per millimeter. The mobile platform’s angular velocity is
obtained by using an inertial measurement unit (MPU 6050), while the angular position and acceler-
ation are estimated with numerical treatment of the velocity signal. The bandwidth of the system is a
1 ms, which is sufficient for a mechatronic system such as the one presented. The results of the designed
controller implementation are shown in Figs. 13–16.
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Figure 13. Experimental response to tracking the actuator position’s trajectory: (a) actuator 1 position
and (b) actuator 2 position.
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Figure 14. The platform trajectory tracking response for flexion/extension movement: (a) comparison
of physical prototype, direct kinematics, and reference for actuators’ angular position, (b) comparison of
physical prototype, direct kinematics, and reference for actuators’ angular velocity, and (c) comparison
of actual, direct kinematics, and reference for actuators’ angular acceleration.

In Fig. 13, the trajectory tracking for the actuators is shown. The response of the two actuators has a
small variation at 8 s because actuator two shows a small perturbation.

Figure 14 presents the flexion/extension movement of the parallel robot’s mobile platform. A flexion
movement test was performed on a healthy adult, while the parameters for the desired trajectory, based on
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Figure 15. Dynamics of error tracking using a physical prototype: (a) tracking error dynamic for two
actuators and (b) mobile platform position on X and Y axes.
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Figure 16. Tracking of trajectory: (a) mobile platform trajectory tracking for abduction movements and
(b) mobile platform trajectory tracking for eversion movements.

Eq. (40), were used for the flexion/extension motion: ψ̄x = 0 rad (initial value) and ψ̄x f = 0.523599 rad
(final value) in the time interval t = [1.25 s, 4.25 s]. For the interval t = [4.25 s, 7.25 s], this movement
starts at ψ̄x= 0.523599 rad and ends at ψ̄x f = 0 rad. In the bibliography consulted [11, 12, 17], in order
to begin to see a response from the control implemented in the ankle rehabilitators, an approximate time
period of between 0 and 20 s was used. In Fig. 15, the tracking error dynamics for the actuators’ and
mobile platforms’ positions are shown. The maximum absolute error can be appreciated at 5 × 10−4 m
for the actuator’s position (see Fig. 15a) and 0.0575959 rad for the robot mobile platform orientation
(see Fig. 15b). The controller and the observer minimize the trajectory tracking error even when external
disturbances are applied to the robot. In Fig. 16, the mobile platform trajectory tracking is shown for
abduction (see Fig. 16a) and eversion (see Fig. 16b) movements. The discrepancy between the values
calculated by direct kinematics and the real values measured at specific time intervals are due to the effect
of a small mechanical defect in one of the couplers, which is detected and measured by the estimator.
Despite this, however, the system follows the desired behavior in the eversion movement, without causing
any problems for the user.

In the physical prototype, the actuators present a tracking error of less than 1 mm which is not signif-
icant for the movement to be performed by the parallel robot. The mobile platform presents a tracking
error between the value estimated by the inertial measurement unit and the desired trajectory of less
than 0.0610865 rad, which does not have an effect on the parallel robot’s performance. Considering the
values calculated by direct kinematics [22, 23], the tracking error is less than 0.003839724 rad (half
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Table II. Results for the virtual and physical movements with the controller and the observer
implemented.

Parameter Virtual movement Real movement
Intervale in (s) t = [0, 1] t = [1.25, 4.25]
Intervale out (s) t = [1, 2] t = [4.25, 7.25 ]
Flexion/extension in (rad) ψ̄x = 0, ψ̄x f = 0.802 ψ̄x = 0, ψ̄x f = 0.523
Flexion/extension out (rad) ψ̄x = 0.802, ψ̄x f = −0.523 ψ̄x = 0.523, ψ̄x f = 0
Abduction/adduction in (rad) ψ̄y = 0, ψ̄y f = 0.174 ψ̄y = 0 rad, ψ̄y f = 0.436
Abduction/adduction out (rad) ψ̄y = 0.174, ψ̄y f = 0.261 ψ̄y = 0.436, ψ̄y f = 0.150
Actuators position error (mm) 3.5 × 10−6 5 × 10−4

Robot mobile platform error (rad) 2.8 × 10−5 0.057

Table III. Comparison with different ankle rehabilitators.

Parameter Ankle movements Our device [26]
Theoretical position (m) – 0.14 (2 s) 0.1 (5 s)
Abduction/adduction angle (rad) 0.261–0.610 0.26 (2 s) 0.349 (5 s)
Flexion/extension angle (rad) 0.436–1.047 −0.48 (2 s) 0.453 (5 s)
Physical position (m) – −0.055 (5 s) 0.1 (5 s)
Abduction/adduction angle (rad) 0.261–0.610 0.5 (5 s) 0.331 (5 s)
Flexion/extension angle (rad) 0.436–1.047 0.523 (5 s) 0.331 (5 s)

a degree). Table II shows an abstract of results for virtual and real movements of the parallel robot.
A difference between the values for the virtual and real prototypes can be observed due to the measure-
ment instruments and users’ characteristics who performed the tests with the prototype. In both cases,
the controller and the observer minimize the trajectory tracking error even when external disturbances
are applied to the robot.

In order to verify the results, the research by Blanco-Ortega A. et al. [26] was used, and the design
and implementation of a generalized proportional integral (GPI) controller for ankle rehabilitation based
on an XY table was shown. The horizontal linear guide provides the abduction/adduction motion, and
the vertical linear guide provides the dorsiflexion/plantarflexion motion. As mentioned above, the same
values were used to obtain the trajectory through the Bézier polynomial. In Table III, the positions of
the mobile platform as well as the error and the angles generated during the abduction/adduction and
flexion/extension movements were compared.

A GPI controller and backstepping technique using an ESO (as presented in this article) can be
observed when using the same values for the Bézier polynomial, on [26], but with different control
systems. It can also be seen that the theoretical results cannot be compared at all by the tests times,
as they differ, with this study measuring 2 s and other studies measuring 5 s. The difference in times is
due to which moment initiates the stability in each system. It can also be observed that theoretically the
[26] work presents a better theoretical response compared to the ankle movement angles, for example in
flexion/extension, 0.436 rad [26] and 0.456 rad ankle movements. The physical prototype presented in
this work provides more accurate results compared to the ankle motion, for example in flexion/extension,
0.436 rad (our project) and 0.523 rad (ankle motion). The practical results presented by this research are
within the ankle’s range of motion.

7. Conclusion
Considering the parallel robot as a highly nonlinear system, the use of inverse kinematics facilitates the
obtention of a set of linear differential equations that are solved using a decentralized control scheme
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based on the backstepping technique and linear ESO. In this work, the aforementioned control system
was used to solve the trajectory tracking problem and estimate the structured and unstructured uncer-
tainties presented by the robot. The proposed controller-observer scheme solves the tracking problem for
the parallel ankle rehabilitation robot with the use of the active disturbance rejection control paradigm.
Furthermore, a decentralized ADRC is used for each prismatic actuator, while the system’s closed-loop
performance is initially tested using a MATLAB-ADAMS cosimulation. The numerical results obtained
show a satisfactory tracking of the mobile platform’s trajectory performing specific rehabilitation move-
ments. This is in addition to achieving system stability in a realistically short time (2 s for the virtual
prototype and 5 s for the physical prototype), which demonstrates the feasibility of the proposed con-
troller to be implemented in the physical prototype for ankle rehabilitation. As observed in Table III, the
physical prototype presented has the ability to comply with the specific trajectories for flexion/extension
and abduction/adduction, as well as being a device that can be validated with the results of other studies
and specific ankle movements. The mobile platform presents a tracking error between the value esti-
mated by the inertial measurement unit and the desired trajectory of less than 0.061 rad, which also has
no effect on the parallel robot’s performance. A proposal for future work would be to use other methods
of advanced control to minimize the errors in the trajectory tracking and to perform a more extensive
verification and validation with other works related to this topic, as well as seeking approval for its use
by specialized personnel in physical rehabilitation.
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