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Sum-frequency triad interactions among surface
waves propagating through an ice sheet
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We study nonlinear resonant wave–wave interactions which occur when ocean waves
propagate into a thin floating ice sheet. Using multiple-scale perturbation analysis, we
obtain theoretical predictions of the wave amplitude evolution as a function of distance
travelled past the ice edge for a semi-infinite ice sheet. The theoretical predictions
are supported by a high-order spectral (HOS) method capable of simulating nonlinear
interactions in both open water and the ice sheet. Using the HOS method, the amplitude
evolution predictions are extended to multiple (coupled) triad interactions and a single
ice sheet of finite length. We relate the amplitude evolution to mechanisms with
strong frequency dependence – ice bending strain, related to ice breakup, as well as
wave reflection and transmission. We show that, due to sum-frequency interactions, the
maximum strain in the ice sheet can be more than twice that predicted by linearised theory.
For an ice sheet of finite length, we show that nonlinear wave reflection and transmission
coefficients depend on a parameter in terms of wave steepness and ice length, and can
have values significantly different than those from linear theory. In particular, we show
that nonlinear sum-frequency interactions can appreciably decrease the total wave energy
transmitted past the ice sheet. This work has implications for understanding the occurrence
of ice breakup, wave attenuation due to scattering in the marginal ice zone and the resulting
ice floe size distribution.

Key words: sea ice, surface gravity waves, wave–structure interactions

1. Introduction

Ocean surface waves propagating from open water into ice-covered regions can cause
mechanical ice breakup, which is a key process affecting the ice floe size distribution
in the marginal ice zone (MIZ), the region of fragmented ice at the boundary between
open water and consolidated sea ice. For small incident wave steepness, observations
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coincide with a scattering model based on linear wave theory where the ice is treated as
a thin elastic plate (Kohout & Meylan 2008). For large wave events, however, ice breakup
has been observed O(100 km) past the ice edge, which is beyond where linear theory
predicts wave-induced ice breakup can typically occur. A number of possible mechanisms
to explain these observations have been proposed, such as nonlinear focusing due to
lateral pack compression (Liu & Mollo-Christensen 1988) and inverse energy cascades
characteristic of open water waves (Kohout et al. 2014). In this work, we propose a simple
mechanism based on (leading-order) nonlinear resonant interactions among surface waves
on the ice sheet. In particular, the dispersion relationship admits nonlinear resonant triads
which generate sum-frequency interactions that significantly modify total wave amplitudes
and can lead to an appreciable increase in maximum ice strain that is not predicted by linear
theory.

Nonlinear wave–wave interactions among flexural-gravity waves have received less
attention than, for example, periodic waves of maximum height (Forbes 1986;
Vanden-Broeck & Părău 2011), solitary wave solutions (Guyenne & Părău 2012; Alam
2013) and a moving load on ice (Părău & Dias 2002; Bonnefoy, Meylan & Ferrant 2009)
for the flexural-gravity wave problem. The existence of triad resonant interactions between
flexural-gravity waves in a floating ice sheet of infinite extent was noted by Marchenko
(1999), who also provided temporal amplitude evolution equations for the resonating
components. The current work focuses on triad interactions among solely flexural-gravity
waves without considering the effects of stratification, lateral ice compression and current,
which add further richness to the dispersion relation and the possible triad interactions
(Das, Sahoo & Meylan 2018; Bisht et al. 2022).

None of the aforementioned works consider nonlinear wave–wave interactions in a finite
ice sheet. This is a problem of significant interest because the MIZ can be modelled as a
collection of finite ice sheets (Kohout & Meylan 2008). The majority of work concerning
nonlinear effects on wave–ice interactions in the MIZ (e.g. Liu et al. 2020; Waseda
et al. 2022) uses phase-averaged models, such as WaveWatch3. To study general wave–ice
interactions, we use a phase-resolved high-order spectral (HOS) method which explicitly
captures the direct physical mechanisms, including wave reflection and transmission at ice
edges. These phase-resolved findings are complementary to phase-averaged models and
may inform their ongoing development.

The main objective of this work is to elucidate nonlinear sum-frequency triad
interactions in a semi-infinite or finite-length ice sheet under specific incident ocean
wave conditions. Of special interest are the spatial wave amplitude evolution and
key frequency-dependent mechanisms, such as wave reflection/transmission and the
maximum ice bending strain. For simplicity, we consider the well-established model of
two-dimensional (2-D) potential flow partially covered by a thin ice sheet, treated as
an Euler–Bernoulli beam; see e.g. Fox & Squire (1990) and Marchenko (1999) in two
dimensions and Marchenko & Shrira (1991) and Kirby (1992) in three dimensions.

The problem statement and the potential flow nonlinear boundary value problem
are specified in § 2. In § 3, we review the triad resonance condition and derive the
multiple-scales (MS) perturbation evolution equations for the nonlinear wave amplitudes.
The formulation and generalisation of the HOS method for nonlinear wave–ice interactions
is outlined in § 4 along with supporting convergence tests. We present our results and
findings in § 5 for semi-infinite and finite ice sheets. In § 5.1, we present theoretical (MS)
and numerical results for a semi-infinite ice sheet – nonlinear wave amplitude evolutions
and the variation of the ice strain, including the magnitude and location of its maximum.
The HOS results show agreement with all the theoretical predictions in the domain where
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Figure 1. Definition sketch.

MS analysis is valid. The case of a finite-length ice sheet is considered in § 5.2 where,
in addition to amplitude evolution and ice strain, the wave transmission and reflection
associated (mainly) with the trailing edge are of special interest owing to their implications
for wave attenuation in the MIZ (Wadhams et al. 1988; Kohout et al. 2020). We provide a
brief summary in § 6.

2. Problem statement

We consider 2-D potential flow of wave propagation in deep water partially covered by
a thin ice sheet of length L and uniform thickness h, assumed to be small relative to the
characteristic (ice) wavelength λ� h. We assume a linear elastic ice sheet with flexural
rigidity D = Eh3/(12(1 − ν2)), Young’s modulus E and Poisson ratio ν. Let x be the
horizontal coordinate with ambient waves incident from negative x. For the ice sheet
located in 0 ≤ x ≤ L, we consider two cases of interest: a semi-infinite ice sheet (L → ∞)
and a finite ice sheet (L finite). The vertical coordinate is z, where z = 0 corresponds to the
mean free surface, z is positive upward, and z = η(x, t) denotes the elevation of the water
(x < 0, x > L) and ice (0 ≤ x ≤ L) surface, which is assumed to be comparable to h. See
figure 1.

The flow can be described by a velocity potential Φ(x, z, t) satisfying the nonlinear
initial boundary-value problem

∇2Φ = 0 for z ∈ (−∞, η(x, t)], x ∈ (−∞, ∞), (2.1a)

ηt + Φxηx = Φz on z = η(x, t), x ∈ (−∞, 0) ∪ (0, L) ∪ (L, ∞), (2.1b)

Φt + 1
2
|∇Φ|2 + gη + D

ρw
ηxxxx = 0 on z = η(x, t), x ∈ [0, L], (2.1c)

ηxx = ηxxx = 0 on z = η(x, t), x = 0, L, (2.1d)

Φt + 1
2
|∇Φ|2 + gη = 0 on z = η(x, t), x ∈ (−∞, 0) ∪ (L, ∞), (2.1e)

|∇Φ| → 0 as z → −∞, x ∈ (−∞, ∞), (2.1f )

where g is gravitational acceleration and ρw is water density. The initial boundary-value
problem is complete with the inclusion of a radiation condition for outgoing scattered
waves in the far field and suitable initial conditions for η(x, 0) and Φ(x, η(x, 0), 0).

Note that in (2.1), we include nonlinearity in the flow equations but, consistent with
h/λ	 1 and η/h = O(1), we incorporate a linear Euler–Bernoulli beam model (2.1c)
which does not consider the ice inertia (cf. e.g. Alam 2013). Past works regarding nonlinear
flexural-gravity waves have used more complex beam models such as the nonlinear
Kirchoff–Love model (e.g. Vanden-Broeck & Părău 2011) or that of Plotnikov & Toland
(2011) (e.g. Guyenne & Părău 2012). To second order in wave steepness, the leading order
considered in the current work, these models reduce to the linear Euler–Bernoulli beam
model we use.
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3. Theoretical results

We consider the conditions for nonlinear resonant triad interactions of waves on the
ice surface and obtain the evolution equations of these wave components using MS
perturbation analysis. As expected, the results resemble those of three-wave interactions
appearing in other physical contexts, e.g. capillary-gravity waves (McGoldrick 1965) and
nonlinear optics (Armstrong et al. 1962). We define the wave perturbation parameter
ε = O(κa) 	 1, where κ = 2π/λ and a are the wavenumber and complex amplitude in
ice, respectively (εw, k and A in open water). We expand the dependent variables to second
order in ε:

Φ(x, z, t) = εΦ(1) + ε2Φ(2) + O(ε3); η(x, t) = εη(1) + ε2η(2) + O(ε3). (3.1a,b)

For the general triad interaction case, with wavenumber κj and frequency ωj for j = 1, 2, 3,
the first-order solution is

Φ(x, z, t) =
3∑

j=1

− i
2

ωj

|κj|aj exp (i(κjx − ωjt) + |κj|z) + c.c., (3.2a)

η(x, t) =
3∑

j=1

aj

2
exp (i(κjx − ωjt)) + c.c., (3.2b)

ω2
j = g|κj| + D

ρw
|κj|κ4

j , (3.2c)

where c.c. denotes complex conjugate. A special case of (3.2) is the double-frequency
case, where (ω, κ)j are identical for j = 1, 2 and a1 = a2 = a3/2.

The triad resonance conditions for flexural-gravity waves, similar to those for
capillary-gravity waves, are given by Marchenko (1999), which we summarise here for
completeness. The dispersion curve has an inflection point because the gravitational and
flexural restoring exhibit different functional dependences. As a result, flexural-gravity
waves admit triad resonant interactions at O(ε2) while, in the limit of either pure gravity
or pure flexural waves, resonant interactions do not occur until O(ε3) for the 2-D deep
water problem. The general triad resonance conditions are as follows:

κ1 ± κ2 = ±κ3, ω1 ± ω2 = ±ω3, (3.3a,b)

where each wave component satisfies (3.2c) and the same sign combinations must be taken
in both equations. Given our focus on sum-frequency resonant interactions, we consider
only the plus signs in (3.3a,b) and assume |κ1| ≤ |κ2|.

A particular case of general sum-frequency resonance which is of special interest is
the double-frequency case, where κ1 = κ2 ≡ κ0, hereafter referred to as the primary
wave, and κ3 = 2κ0, the double-frequency wave, form a resonant triad. Using the
dispersion relationship (3.2c), we obtain κ0 = 2π/λ0 = (ρwg/(14D))1/4 and ω0 =
2π/T0 � 0.744(g5ρw/D)1/8, which are functions of the ice sheet physical parameters. For
convenience, we specify a general triad (3.3a,b) relative to the double-frequency condition
using the parameter γ = (κ2 − κ0)/κ0. Figure 2(a) displays the wavenumber combinations
which form sum-frequency triads.

To obtain a uniformly valid solution when the resonance conditions are satisfied,
we apply standard MS analysis (e.g. Mei, Stiassnie & Yue 2005) up to O(ε2). We
introduce slow variables t̄ = εt and x̄ = εx and obtain governing equations for Φ =
980 A45-4
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Figure 2. (a) Wavenumber combinations that form resonant triads with κ1 (black), κ2 (blue) and κ3 (red) as
a function of γ = (κ2 − κ0)/κ0; (b) phase speed Cp (——–) and group speed Cg (– – – ) as functions of
frequency.

Φ(x, x̄, z, t, t̄) and η = η(x, x̄, t, t̄). For the general triad resonance case, the amplitude
evolution equations are

∂a1

∂ t̄
+ Cg1

∂a1

∂ x̄
= −i

ω1ω2

2|Cp1|a∗
2a3, (3.4a)

∂a2

∂ t̄
+ Cg2

∂a2

∂ x̄
= −i

ω1ω2

2|Cp2|a∗
1a3, (3.4b)

∂a3

∂ t̄
+ Cg3

∂a3

∂ x̄
= −i

ω1ω2

2|Cp3|a1a2, (3.4c)

where an asterisk indicates complex conjugate; here Cpj = ωj/κj is the phase speed and
Cgj = ωj/(2κj) + 2Dκ3

j |κj|/(ρwωj) the group speed, for j = 1, 2, 3, both shown for a range
of frequencies in figure 2(b). We remark that for the double-frequency case, Cp1,2 = Cp3 =
Cp0, while Cg1,2 < Cp0 < Cg3.

It is known (e.g. Simmons (1969) for capillary-gravity waves) that the double-frequency
case is not recovered in the limit as ω1 → ω2 in (3.4), but the double-frequency evolution
equations can be derived separately to obtain

∂a1

∂ t̄
+ Cg1

∂a1

∂ x̄
= −i

ω1|κ1|
2

a∗
1a3, (3.5a)

∂a3

∂ t̄
+ Cg3

∂a3

∂ x̄
= −i

ω1|κ1|
4

a2
1. (3.5b)

Equations (3.4) and (3.5) show that for resonant triads, significant interactions occur at
a propagation distance of Lε = O(λ0/ε). It is instructive to see how this compares with
the length scale Lν at which viscous dissipation beneath the ice sheet must be considered.
In terms of the double-frequency parameters, the dissipation length scale is (see Liu &
Mollo-Christensen 1988)

Lν = Cg0

κ0
√

νwω0
, (3.6)

where νw denotes the eddy viscosity used to parametrise the turbulent boundary layer.
Viscous dissipation effects can be neglected relative to nonlinear triad interactions for
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ε

h (m) T0 (s) νw = 4 cm2 s−1 νw = 24 cm2 s−1

0.1 4 0.032 0.078
1 11 0.009 0.021

Table 1. Threshold wave steepness values ε given by (3.7) for different values of ice thickness h and eddy
viscosity (corresponding to different ice roughness) νw = 4 cm2 s−1 (Liu, Holt & Vachon 1991) and νw =
24 cm2 s−1 (Hunkins 1966), for realistic physical parameters E = 6 GPa, ν = 0.3, ρw = 1025 kg m−3 and
g = 9.81 m s−2.

Lε/Lν < O(1). In terms of wave and ice parameters, this gives

ε > O(
√

νwω0/Cg0). (3.7)

For realistic sea ice and water parameters, table 1 gives values of (3.7) for different values
of ice thickness h and the corresponding double-frequency resonant wave period T0. For
all subsequent results (§ 5), the values of ε satisfy (3.7).

4. High-order spectral method for wave–ice interactions

We develop an O(N) numerical solution for wave–ice interactions by extending the HOS
method for nonlinear wave–wave interactions (Dommermuth & Yue 1987) through the
inclusion of the dynamic boundary condition (2.1c) for ice. We use this method to
validate the theoretical results for semi-infinite ice sheets and extend the analysis to more
general wave–ice interaction problems. These involve multiple resonant interactions and
higher-order effects, for which theoretical analysis becomes increasingly cumbersome,
or ice sheets of finite length, where the application of theoretical analysis is not as
straightforward given the feedback from the trailing edge. The HOS method is capable of
modelling nonlinear interactions of a large number N of spectral modes up to an arbitrary
order M in wave steepness. It can be shown through linear stability analysis (cf. Pan 2020)
that, due to the flexural term, the maximum time step �t ∼ 1/N5/2 for sufficiently large N,
as compared to �t ∼ 1/N1/2 for open water computations. Time integration is performed
using the fourth-order Runge–Kutta method, and the time step is limited by stability rather
than accuracy. The operation count is O(MN ln N) per time step and the method exhibits
exponential convergence with respect to N.

For future reference, we denote wave amplitudes in open water by A, with superscripts
( )I,R,T respectively indicating incident, reflected and transmitted waves, and denote
the reflection and transmission coefficients by Rj = AR

j /AI
1 and Tj = AT

j /AI
1, with

j = 1, 2, 3, for a finite ice sheet. Since R and T capture the cumulative effects of
reflection/transmission at the leading and trailing edges as well as the nonlinear amplitude
evolution within the ice sheet, it is useful to consider the reflection/transmission at each
edge separately. These single-edge reflection/transmission coefficients are equivalent to
considering, at the leading edge, waves propagating from open water into a semi-infinite
ice sheet or, for right-going waves at the trailing edge (or left-going waves at the leading
edge), propagation from a semi-infinite ice sheet into open water (Meylan & Squire
1993). For wave amplitudes, a, on ice, we denote right-going and left-going waves with
superscripts + and −, respectively. We define R = (AR/AI)x=0 and T = (a+/AI)x=0
as the leading-edge reflection and transmission coefficients for waves propagating from
open water to ice. We define the ice-to-water reflection and transmission coefficients as
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Figure 3. Single-edge reflection and transmission coefficients (a) from open water to ice and (b) from ice to
open water, denoted by T (T̃ ) (——–) and R(R̃) (– – – ), obtained from eigenfunction matching (cf. Fox &
Squire 1990), HOS (M = 1) (◦), and HOS (M = 2) for εw = 0.05 (ε = 0.01 for T̃ , R̃) (×) and for εw = 0.1
(ε = 0.02) (�).

M = 2 M = 3 M = 4

N/Nλ |a1|/|aI
1| |a3|/|aI

1| |a1|/|aI
1| |a3|/|aI

1| |a1|/|aI
1| |a3|/|aI

1|
4 0.2420 0.4371 0.2359 0.4365 0.2379 0.4372
8 0.2403 0.4368 0.2357 0.4359 0.2361 0.4366
16 0.2408 0.4366 0.2358 0.4358 0.2356 0.4365

Table 2. Convergence of wave component amplitudes at x/λ0 = 25 with the number of spectral modes per
open-water wavelength N/Nλ and the nonlinear order M for a semi-infinite ice sheet using the representative
double-frequency case with ε = 0.04.

R̃ = (a+/a−)x=0 = (a−/a+)x=L and T̃ = (AR/a−)x=0 = (AT/a+)x=L, respectively. For
the semi-infinite case, we drop the ± since only right-going waves are present.

The HOS method has been used to study wave–ice interactions in the past (Bonnefoy
et al. 2009; Guyenne & Părău 2012), with the majority of the applications considering
ice sheets of infinite extent, and only more recently finite ice sheets (Guyenne & Părău
2017a,b; Xu & Guyenne 2023). Similar to these works, in the context of the HOS method,
we model a finite ice sheet by smoothly varying the flexural rigidity term (D(x)ηxx)xx in
(2.1c) from 0 to D over a taper length LT . While the numerical results are affected by values
of the numerical parameter LT , we remove this uncertainty by performing convergence
tests so that the final results are insensitive to further decreases in (small) LT . We do
not explicitly impose the ice edge boundary conditions (2.1d), which we find does not
generally alter the numerical results. Figure 3 shows a representative converged prediction
of the HOS method for the single-edge reflection and transmission coefficients R and T
as well as R̃ and T̃ for small wave steepness εw, compared with linearised numerical
predictions (Fox & Squire 1990).

We perform systematic convergence studies for the computational parameters of the
HOS method for semi-infinite and finite ice sheets for increasing M and increasing
number of spectral modes per open water wavelength N/Nλ. Table 2 shows nonlinear
wave component amplitudes for a semi-infinite ice sheet, where aI

1 = T1AI
1, while table 3
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(a) M = 2 M = 3

N/Nλ |T1| |R1| |T3| |R3| |T1| |R1| |T3| |R3|
8 0.710 0.014 1.009 0.086 0.708 0.021 0.980 0.079
16 0.736 0.031 0.905 0.255 0.735 0.029 0.904 0.253
32 0.751 0.031 0.864 0.307 0.749 0.031 0.863 0.303

(b) TS/T0 |T1| |R1| |T3| |R3|
50 0.720 0.033 0.865 0.319
70 0.749 0.018 0.862 0.303
90 0.750 0.030 0.865 0.307
110 0.751 0.027 0.864 0.308

Table 3. Convergence of reflection and transmission coefficients Rj and Tj for double-frequency triad wave
components j = 1, 3 for a finite ice sheet of length L/λ0 = 20 and ε = 0.02 with (a) the number of spectral
modes per open-water wavelength N/Nλ and the nonlinear order M, and (b) increasing total simulation time
TS/T0 with M = 3.

displays reflection and transmission coefficients for a finite ice sheet. These results
consistently show exponential convergence with respect to M and N/Nλ. We further
show convergence to steady-state reflection and transmission coefficients with increasing
simulation time TS (starting from the time incident waves enter a finite ice sheet) in table 3.

Based on systematic convergence results such as these, for all the HOS simulations we
use the following settings. For semi-infinite cases, we use N/Nλ = 16, LT/λ0 = 0.175,
computation domain size Nλ = k0�/(2π) = 256 and integration time step T0/�t = 704.
For the finite ice sheet, the double-frequency reflection and transmission coefficients of
interest require a somewhat higher grid resolution, and we use N/Nλ = 32, LT/λ0 =
0.102, T0/�t = 3952, �/L = 6.9 and simulation time to reach steady-state TS >

O(100T0). With these computational parameters, all the results we present are expected
to have converged to within 1 % for semi-infinite cases and less than 5 % for finite ice
cases. As an additional check, our computations are shown to conserve total fluid volume
to within O(10−5) and total energy to within 1 % of their initial values.

5. Results

5.1. Semi-infinite ice sheet: strain increase due to sum-frequency interactions
We first consider the case of the semi-infinite ice sheet, where we obtain theoretical
(MS) solutions, and compare and complement these with HOS computations. We consider
ambient incident wave components satisfying the double-frequency resonance condition,
the general triad conditions or some combination thereof, yielding multiple coupled
resonances.

5.1.1. Closed-form solutions for the nonlinear strain
We consider the steady, spatially varying solution pertaining to both the double-frequency
case (3.5) and a general triad case (3.4), and decompose the complex amplitude aj(x̄) =
rjeiθj , where rj and θj are real and functions of x̄. Consider (i) pure amplitude modulation
(constant phase) where, for the double-frequency case, 2θ1 − θ3 = ±π/2 and, for a
general triad resonance case, θ3 − θ2 − θ1 = ±π/2, and (ii) the situation where the
shortest wave has zero initial amplitude, r1(x = 0) = rI

1 and r3(x = 0) = 0 for double
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frequency, and r1(x = 0) = rI
1, r2(x = 0) = rI

2 and r3(x = 0) = 0 for a triad. For the
double-frequency case, the amplitude evolution in closed form is

r1(x) = rI
1sech

(
rI

1|κ1| ω1√
8Cg1Cg3

x

)
; r3(x) = rI

1

√
Cg1

2Cg3
tanh

(
rI

1|κ1| ω1√
8Cg1Cg3

x

)
.

(5.1a,b)

For the general triad interaction, the amplitude evolution can be expressed using Jacobi
elliptic functions:

r1(x) = rI
1dn(u|m), r2(x) = rI

2cn(u|m), r3(x) = rI
2

√
Cp2Cg2

Cp3Cg3
sn(u|m), (5.2a–c)

where
u = rI

1
ω1ω2√

Cp2Cg2Cp3Cg3
x (5.3)

and

m = (rI
2)

2Cp2Cg2

(rI
1)

2Cp1Cg1
(5.4)

is the ratio of the energy transfer rate by the two incident wave components, and, by
definition, m = 1 for the double-frequency case. When m = 1, each component transfers
energy to the short wave at an equal rate such that the solution behaviour is monotonic
rather than periodic (McGoldrick 1965).

A main interest here is the (maximum) bending strain S(x, t) in the ice sheet, which
governs the breakup of the sheet. For the Euler–Bernoulli beam, this is given by

S(x, t) = h
2

ηxx

(1 + η2
x)

3/2 = h
2
ηxx + O(ε3). (5.5)

We define the ratio QT,D(x) of the slowly varying strain envelope Senv(x) relative to its
value at the ice edge SI

env = Senv(0+) (which is approximately equivalent to the linear
solution). For the general triad (T) ( j = 1, 2, 3) and double-frequency (D) ( j = 1, 3)
interactions,

QT,D(x) = Senv(x)
SI

env

=
∑
j=1

qj(x), where qj(x) =
κ2

j rj(x)∑2
i=1 κ2

i rI
i

. (5.6)

For the double-frequency interaction, we obtain the maximum of the envelope to be

Q̂D = maxxQD(x) = √
1 + 8Cg1/Cg3 ≈ 2.06, (5.7)

where the ratio of the group speeds is a constant when the double-frequency condition is
satisfied.

The location of this maximum is an intermediate point where both r1 and r3 are
non-zero,

x
λ0

=
√

8Cg1Cg3

εω0λ0
ln

(
4

√
Cg1

2Cg3
+
√

8
Cg1

Cg3
+ 1

)
≈ 0.605

ε
. (5.8)

Additional parameters become important when considering general triad interactions,
namely, the ratio of the initial wave amplitudes, encompassed in the parameter m, and the
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deviation of the triad from the double-frequency resonance condition, γ . We remark that
Q̂T = maxxQT(x) is obtained in the monotonic limit of (5.2a–c) where m = 1 and that
Q̂T decreases from approximately 1.6 near γ = 0 to an asymptotic value of Q̂T ≈ 1.4 for
large γ , reflecting the difference in conversion efficiency between the double-frequency
and triad interaction cases.

5.1.2. Amplitude and strain evolution due to double-frequency interactions
We study the double-frequency interaction with incident wave frequency ω0 for two initial
wave steepnesses (ε = 0.04, 0.08) using perturbation analysis and HOS computations with
M = 2, 3. Figure 4(a,c) show the steady-state amplitude evolution for the two ε values
considered. At the leading ice edge, most of the primary incident wave is transmitted
with single-edge transmission coefficient |T1| = 0.83. However, since an ice edge acts
as a low-pass filter, much less of the incident double-frequency wave (if present) would
be transmitted (|T3| = 0.25). Nonlinear sum-frequency interactions provide a mechanism
for introducing significant high-frequency wave energy in the ice sheet that is minimally
transmitted past the leading edge. Considering the amplitude evolution in the ice sheet, the
MS predictions and HOS results agree up to a nonlinear interaction length εx/λ0 ≤ O(1)

but deviate for greater distances, where the HOS results exhibit recurrence/oscillatory
features in contrast to the monotonic behaviour of the analytic solution (5.1a,b). This is
expected as the HOS method contains many (non-resonant) interacting modes, free and
locked, not represented in the perturbation theory, and it is in principle valid (up to the
included order M) for long times/distances beyond x̄ = O(1) of the MS analysis. In this
case, the presence of the locked wave component manifested in a non-zero aI

3 in the HOS
incident waves is found to be the main source of the deviation in figure 4. This latter point
can be verified by adjusting the initial condition of the perturbation evolution equations
(3.5) to account for aI

3 (in the HOS method), thus obtaining oscillatory predictions in
close qualitative agreement with the HOS results for longer distances.

To show the effect in the HOS results when higher-order interactions are included,
figure 4 plots results also for M = 3, which shows that the present double-frequency
resonance mechanism is well captured at leading order M = 2.

The accompanying strain evolution from HOS computations at M = 3 is displayed in
figure 4(b,d). It is clear that the strain from the ω3 component exceeds that of the ω1
component as energy is transferred to the higher wavenumber, causing an increase in QD.
Both the sum of strain magnitudes QD and the complex summation of strain from N wave
components QM = maxt(

1
2 hηxx)/SI

env are plotted to show that the bulk of the total wave
energy is captured in the two components of the nonlinear interaction and that discarding
phase does not significantly alter the result. We consider only the sum of strain magnitudes
(e.g. QD) for the remaining results. The MS predictions ((5.7) and (5.8)) are also plotted
in figure 4(b,d), showing that MS provides a reasonable estimate of Q̂D for this case.

In summary, we show that double-frequency interactions can result in approximately
double the maximum strain, irrespective of initial wave steepness, relative to that predicted
by linear theory. Furthermore, because this is a result of nonlinear resonant interactions,
this maximum strain occurs at a distance O(λ0/ε) from the ice edge, in contrast to linear
theory, which predicts that the maximum bending strain occurs within O(λ) of the ice edge
(Fox & Squire 1991).

The amplification of the maximum strain by an approximate factor of 2, predicted
computationally (see e.g. figure 4b,d) and theoretically in (5.7), can be argued heuristically.
From figure 4(a) for example (also cf. figure 4c), it is seen that there is some point
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Figure 4. Double-frequency interaction in semi-infinite ice sheet with (a,b) ε = 0.04 and (c,d) ε = 0.08.
(a,c) Spatial amplitude evolution: MS (5.1a,b) (– – – ), HOS (M = 2) (——–) and HOS (M = 3) (– - – -
–); (b,d) spatial strain evolution for HOS (M = 3), where aj, qj for j = 1 (black) and 3 (red), QD (green), QM
(cyan) and MS prediction (×) from (5.7) and (5.8).

in the interaction where most of the energy in the incident wave is transferred into the
double-frequency κ3 = 2κ0 component. The amplitude of a3 can be obtained by equating
the energy flux associated with this component, F3, to that of the initial energy flux of the
incident component, F I

1. For a flexural-gravity wave, F = 1
2ρw(g + Dκ4/ρw)a2Cg, which

gives a3 ≈ 0.45aI
1. From (5.5), S ∼ hκ2a, so that maxx(S3)/SI

1 ≈ 2.
To the authors’ knowledge, no experimental work specifically addressing nonlinear

interactions among flexural-gravity waves has been conducted. However, the above results
provide a plausible explanation for the ice breakup observed by Herman, Evers & Reimer
(2018), who conducted wave tank tests for an ice sheet under varying (monochromatic)
incident conditions. The intent of these experiments was not to study nonlinear effects, but,
coincidentally, the frequency of the incident waves in some cases is within 1 % of ω0 (runs
2010–2050 of test group A). Using the ice and wave parameters matching the experimental
conditions of run 2030, where ice breakup was observed, we calculate, using linear theory,
a maximum strain of S = 2.9 × 10−3, which is below their reported critical breaking
strain SC = 5.3 × 10−3. However, (5.7) predicts a maximum strain of Senv = 5.9 × 10−3,
which is above the breaking threshold. The spatial extent of ice breakup observed during
the experiment reasonably aligns with the theory as well. Equation (5.8) predicts the
maximum strain to occur at 24 m past the ice edge, which is within the region of observed
ice breakup extending 34 m from the ice edge.
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Figure 5. Triad interaction in semi-infinite ice sheet where κ2 = 2κ1 and κ3 = 3κ1 (γ = 0.357) with ε1 =
0.02 and ε2 = 0.04. (a) Spatial amplitude evolution: MS (5.2a–c) (– – – ) and HOS (M = 2) (——–);
(b) spatial strain evolution for HOS (M = 2), where aj, qj for j = 1 (black), 2 (blue) and 3 (red), and QT
(green).

5.1.3. Amplitude and strain evolution due to general triad interactions
We now consider general triad resonance with a bichromatic incident wave consisting
of components ω1 and ω2. Figure 5 plots representative results for κ2 = 2κ1 (κ3 = 3κ1,
γ = 0.357) and with (initial) amplitudes chosen to correspond to m = 1. Because m = 1,
the transfer of energy from a1 and a2 occurs at a comparable rate (despite the difference in
the initial steepnesses ε1 and ε2) and their evolutions are almost identical. As before, HOS
and MS agree well for x̄ ≤ O(1). Figure 5(b) plots the corresponding strain evolution.
Numerical integration of (3.4) yields that Q̂T ≈ 1.6 for small γ with m = 1, which is
corroborated reasonably well by direct HOS simulation. For broadband incident waves,
mechanisms such as the above are expected to produce significant strain amplification
over a broad range of frequencies.

5.1.4. Features of multiple resonant interactions
So far, we have considered incident waves with specific frequency components that
satisfy a triad resonance. Realistic broadband seas contain many wave components which
may satisfy multiple (coupled) resonant triad conditions and, for greater interaction
times/distances, lead to generalised multiple-resonance (MR) interactions. HOS is capable
of capturing the evolution of these general MR interactions involving many interacting
components (e.g. Alam, Liu & Yue 2009; Xiao et al. 2013). To elucidate the key
mechanisms and features of such MR interactions, we consider the simplest case involving
two interacting triads, which is shown to lead to a further increase in the total strain.
Consider a semi-infinite ice sheet and representative bichromatic incident waves consisting
of a primary wave of frequency ω1 = ω0 and a long wave of frequency ωL. The
double-frequency triad component associated with ω1 is ω3 = 2ω0. The long-wave
component is chosen such that ωL and ω3 form another resonant triad (γ = 1) that
generates a new short wave ωS(>ω3). See figure 6(a). As before, we perform HOS
simulations (with M = 2) to obtain steady-state results.

Figure 6(b) shows that the initial evolution of a1 and a3, up to x ≈ 10λ0, is similar
to that of § 5.1.2 (see figure 4a), with a1 and a3 respectively decreasing and increasing
monotonically with propagation distance. As x/λ0 increases and the magnitude of a3
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Figure 6. Multiple resonances in a semi-infinite ice sheet with initial steepness ε1 = 0.05 and εL ≈ 0.01.
(a) Wavenumber combinations for multiple resonances; (b) spatial amplitude evolution for HOS (M = 2);
(c) strain evolution, where aj, qj for j = 1 (purple), L (black), 3 (blue) and S (red), and QMR (green).

becomes appreciable, however, the aL–a3–aS resonant triad comes into play, generating
and growing the short aS component, with some decrease in a3 and aL.

We define the MR total strain amplification relative to linear predictions: QMR =∑
j κ

2
j |aj|/

∑
i κ

2
i |aI

i |, where j = 1, 3, S, L and i = 1, L. Figure 6(c) plots QMR as a function

of evolution distance, showing that it attains Q̂MR = maxxQMR ≈ 2.73 (at x/λ0 ≈ 26.1),
which, as expected, is primarily a combination of the strain q3 and qS due to the short-wave
components. The MR maximum amplification Q̂MR ≈ 2.73 in this case is appreciably
greater than the theoretical limit of Q̂D ≈ 2.06 (cf. (5.7)) and Q̂T ≈ 1.57 from (5.6)
(also for γ = 1). This can be expected for general MR interactions involving broadband
incidence waves as multiple resonant interaction mechanisms are obtained which could
transfer energy from lower-frequency to higher sum-frequency resonant components.

5.2. Finite ice sheet: strain and reflection/transmission modified by nonlinear
interactions

We consider nonlinear wave propagation over a finite-length ice sheet. We show that in this
case, sum-frequency interactions can increase the maximum strain to more than double the
linear result and that the maximum strain generally occurs near the trailing edge of the ice
sheet.
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Figure 7. Double-frequency interaction in a finite ice sheet with L = 20λ0 for ε = 0.019. (a) Spatial amplitude
evolution with right-going waves a+

j (——–) and left-going waves a−
j (· · · · · · · · · ); (b) spatial strain evolution,

where a±
j , q±

j for j = 1 (black) and 3 (red), and Q′
D (green).

Wave transmission and reflection by a finite ice sheet are of special interest in the
context of wave propagation through aggregate ice fields. In contrast to the semi-infinite
case, finite ice sheet wave reflection and transmission are significantly affected by
nonlinear interactions which transfer energy to frequencies at which the (trailing edge)
reflection/transmission coefficients can be very different to those of the incident waves.
Because of sum-frequency nonlinear interactions, the scattered waves surrounding the
ice sheet are generally at higher frequencies and steeper than those predicted by linear
theory, with a greater portion of the incident wave field reflected. In figure 7, we illustrate
a double-frequency interaction in an ice sheet of moderate length (L/λ0 = 20 = O(ε−1)).
The amplitude evolution of the right-going wave components is qualitatively similar to
that in the semi-infinite case (e.g. figure 4a).

From linear theory, the single-edge reflection and transmission coefficients (see figure 3)
are as follows: at ω1 = ω0, |T1| = 0.829, |T̃1| = 1.21 and |R1| = |R̃1| = 0.034; at ω3 =
2ω0, |T3| = 0.246, |T̃3| = 3.53 and |R3| = |R̃3| = 0.364. At the trailing edge (x = L),
since |R̃3| � |R̃1|, the left-going ω3 component, a−

3 , is greater than the left-going ω1

component, a−
1 . While the left-going components satisfy the double-frequency resonance

condition, they are of much lower wave steepness than the right-going components, so the
nonlinear interaction is not significant over the length of the ice sheet. The reflected wave
components effectively modify the initial conditions of the nonlinear interaction at x = 0
slightly, leading to the small initial decrease in the a+

3 amplitude. We note that it can be
shown that counter-propagating flexural-gravity waves do not resonantly interact at second
order.

Compared with the semi-infinite case, the strain in a finite ice sheet is further amplified
(see table 4) since a−

3 significantly contributes to the total strain amplification (including
the right-going (+) and left-going (−) waves) Q′

D = ∑
j(q

+
j + q−

j ) for j = 1, 3, where
q±

j = κ2
j |a±

j |/(κ2
1 |aI

1|). Unlike in the linear case where the strain is approximately uniform
within the ice sheet, figure 7(b) shows the strain increasing with distance from the leading
edge, with the maximum at the trailing edge.

The wave field surrounding the ice sheet is modified due to the double-frequency
interaction. Compared with the linear case, less wave energy is transmitted since a greater
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|T1| |R1| |T3| |R3| Q̂′
D

Linear (M = 1) 0.99 0.01 — — 1.04
Nonlinear (M = 3) 0.75 0.03 0.86 0.31 2.48

Table 4. Finite ice sheet reflection and transmission coefficients and nonlinear strain amplification Q̂′
D

corresponding to figure 7.

portion of energy transferred to a+
3 is reflected, evident from table 4. Note that, as the

ω3 component propagates from ice into open water, in both the transmitted and the
reflected wave fields it satisfies the open-water dispersion relationship so that k3 = 4k1.
From table 4, the nonlinear double-frequency transmission and reflection coefficients are
O(1), implying that the double-frequency transmitted and reflected wave amplitudes are of
comparable order of magnitude to the amplitude of the incident wave. Consequently, the
steepnesses of the transmitted wave (4k1AT

3 = 0.08) and reflected wave (4k1AR
3 = 0.03)

are much greater than those predicted by linear theory (k1AT
1 = 0.02, k1AR

1 = 0.001) for
the case considered.

We remark that, while the current work considers only a single ice sheet, in the context of
an aggregate ice field with multiple ice sheets, the energy transferred to the ω3 component
is reflected to a greater extent than the ω1 component by each ice edge it encounters. The
net result is that nonlinear interactions could appreciably increase wave attenuation due to
scattering relative to the linear prediction.

According to linear theory, the reflection and transmission of a wave with frequency ω

and wavenumber κ over a finite ice sheet are determined by two parameters: ω/ω0 and κL.
When double-frequency resonance conditions are satisfied, however, the triad interaction
length scale parameter LNL = L/Lε = εL/λ0 becomes significant. We demonstrate the
dependence of the reflection and transmission coefficients and the maximum strain
amplification Q̂′

D on LNL by performing HOS simulations of the double-frequency case
over a broad range of this parameter for different ε.

Figure 8(a,b) plot the primary and double-frequency transmission and reflection
coefficients T1, R1, T3 and R3, as well as the maximum strain amplification Q̂′

D, all as
functions of LNL. The results for different values of ε all collapse as a function of LNL,
confirming that triad nonlinear interactions are the dominant underlying mechanisms. As
expected, with increasing interaction distance, the transmission of the incident component
|T1| decreases, while that of the resonant double-frequency component |T3| (as well as
|R3|) increases. Here, |R1| (figure 8a) is a combination of reflection from the leading edge
(|R1|) and from the trailing edge (|R̃1|). From linear theory, figure 3, |R1| = |R̃1| ≈
0.034. With increasing LNL, the contribution from the leading edge is fixed while that
from the trailing edge decreases with a1 at x = L. The net result is an almost constant |R1|
with a slight decrease for greater LNL. Similar to the semi-infinite case (e.g. figure 4b), the
total strain amplification Q′

D increases with interaction distance. For finite L, Q̂′
D is further

enhanced by a factor (comparing figures 7b and 4b) associated with the strong reflection
at the trailing edge.

Because the reflection of waves propagating from ice to open water is somewhat
weak (|R̃1| = 0.034, |R̃3| = 0.364), the multiple reflection results in figure 8 can be
approximated, say, by using a single-pass (one right-going pass and one left-going pass
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Figure 8. Dependence on LNL for (a) |T1| and |R1|, (b) |T3| and |R3|, and (c) Q̂′
D. Results are for HOS (M = 3)

with ε = 0.012 (◦), ε = 0.015 (�) and ε = 0.019 (�), and SPA (5.9) for |Tj| (Q̂′
D in panel c) (——–) and |Rj|

(– – – ).

with subsequent reflections ignored) approximation (SPA). This gives

|T1| = |T̃1T1a+
1 (L)/aI

1|, |R1| = |R̃1T̃1T1a+
1 (L)/aI

1| + |R1|, (5.9a)

|T3| = |T̃3T1a+
3 (L)/aI

1|, |R3| = |R̃3T̃3T1a+
3 (L)/aI

1|, (5.9b)

Q̂′
D =

∣∣∣∣∣a
+
1 (L)

aI
1

∣∣∣∣∣ (1 + |R̃1|) + 4

∣∣∣∣∣a
+
3 (L)

aI
1

∣∣∣∣∣ (1 + |R̃3|), (5.9c)

where |a+
j (L)|/|aI

1| is determined using (5.1a,b). Comparing (5.9) with HOS results, in

this case the error is shown to be generally O(R̃2).
The maximum amplification of the strain, represented by Q̂′

D for the finite ice sheet in
figure 8(c), can be estimated from (5.9c) using the semi-infinite ice analytic result (5.1a,b)
for |a+

3 (L)|. This yields the SPA estimate maxLNLQ̂′
D ≈ 2.66 which is obtained at LNL ≈

0.717. The error is less than 2 % compared to the HOS prediction.
Primarily because of the higher reflection coefficient of shorter waves (at the trailing

edge), nonlinear sum-frequency interactions generally reduce the energy flux FNL into
open water in the lee of a finite ice sheet. The magnitude of this reduction is of interest
for the attenuation of waves through an aggregate ice field. For double-frequency triad
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interactions, we can obtain a first-principle argument for the lower bound for the ratio of
nonlinear to linear energy fluxes, FNL/FL, where FL = 1

2ρg|AI
1|2Cgw1 is the maximum

linear energy flux assuming perfect transmission. Using SPA (5.9), the total energy flux
into open water is, to leading order,

FNL ≡ F1 + F3 = 1
2ρg(|AT

1 |2Cgw1 + |AT
3 |2Cgw3)

= 1
2ρg|AI

1|2(|T1|2Cgw1 + |T3|2Cgw3). (5.10)

For (sufficiently) long L, there will be some points x = xk near which a1(xk) ≈ 0, and
a3(xk) is maximum with a3,max/aI

1 ≈ 0.45 (cf. § 5.1.2). The lower bound of (5.10) is
obtained for ice sheet lengths close to any xk, yielding, with Cgw3 = Cgw1/2 and using
asymptotic values of |T1| = 0 and |T3| ≈ 1.32 for large L,

FNL/FL = |T1|2 + |T3|2Cgw3/Cgw1 ≈ 0.867. (5.11)

6. Conclusion

We study sum-frequency nonlinear resonant wave–wave interactions which occur when
surface waves propagate through semi-infinite and finite-length thin floating ice sheets.
For semi-infinite ice sheets, using multiple-scale (MS) perturbation analysis, we obtain
theoretical predictions of the spatial evolution for the resonantly interacting wave
components. We modify a numerical approach based on the high-order spectral (HOS)
method of Dommermuth & Yue (1987) which accounts for an arbitrary number N of
interacting modes and nonlinear order M. The theoretical (MS) and HOS results agree well
in the domain where MS is valid, while HOS provides a powerful method for more general
cases involving finite-length ice sheets, multiple resonant interactions and higher-order
effects.

For the semi-infinite ice sheet, in addition to nonlinear amplitude evolutions of the
interacting wave components, a main interest is the maximum ice bending strain which
may lead to ice breakup. Sum-frequency triad interactions generally amplify the maximum
strain relative to linear predictions by some factor Q̂ >1. For the double-frequency (D)
special case, MS theory, confirmed by direct HOS simulations, predicts Q̂D ≈ 2.06 at a
distance O(λ0/ε) from the ice edge, where λ0 is the incident primary wavelength. By
considering the total wave energy flux, we provide a heuristic argument for Q̂D ≈ 2.
For the general triad (T) case, 1 < Q̂T < Q̂D ≈ 2 in general. Multiple (sum-frequency)
resonances can increase Q̂ considerably. This has implications for general broadband
waves incident on an ice sheet. We provide an example of two interacting triads involving
four wave components, with Q̂MR ≈ 2.73.

When the ice sheet length L is finite, we emphasise the significance of both strain
amplification and wave energy transmission past the ice sheet, the latter being of
special interest for wave propagation and attenuation through aggregate ice fields. For
the double-frequency special case, the maximum strain amplification that is Q̂′

D ≈
2.7 > Q̂D ≈ 2 occurs at the trailing edge with L = O(λ0/ε). For L ≤ O(λ0/ε), we
offer a single-pass approximation (SPA) accounting primarily for right-going amplitude
evolution and reflection from the trailing edge. Using SPA, we obtain an estimate of the
maximum strain amplification that is in good agreement with Q̂′

D ≈ 2.7 from direct HOS
computation. Due to sum-frequency resonant interactions, wave energy is transferred to
higher-frequency components which generally have much greater reflection coefficients
(at the trailing ice edge). Consequently, the total nonlinear wave energy flux FNL into
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the lee of the ice sheet is generally less than the predicted linear wave flux FL. For the
double-frequency special case, we use SPA to obtain a lower bound FNL/FL ≈ 0.87,
useful as an estimate of nonlinear effects on wave attenuation. We show that for a range
of L and ε, the nonlinear quantities Q̂′

D and the finite ice reflection and transmission
coefficients each collapse to a single curve as a function of the nonlinear interaction
parameter LNL = εL/λ0.

While the MS equations, (3.4) and (3.5), and HOS are applicable to difference-frequency
triad interactions, we have focused on sum-frequency interactions, which are primarily
responsible for nonlinear amplification of the maximum ice strain and a reduction in
transmitted wave energy flux. Difference-frequency interactions which transfer energy to
lower wavenumber components are not expected to increase the total strain. For wave
transmission over a finite ice sheet, the property of transmission/reflection coefficients at
smaller wavenumbers should allow such long-wave components to be transmitted with
minimum reflection at the trailing ice edge. In this case, the heuristic arguments leading
to (5.11) should still hold to provide an estimate for the wave energy flux due to nonlinear
difference-frequency interactions.

As an initial effort, we have considered only the 2-D problem. For the three-dimensional
problem, which can account for oblique incidence and general ice sheet geometry, we
expect sum- and difference-frequency interactions to lead to behaviour such as longshore
wave generation (e.g. Alam, Liu & Yue (2010) for nonlinear wave–bottom interactions)
not present in this work.
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