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Abstract
A tantalizing open problem, posed independently by Stiebitz in 1995 and by Alon in 1996 and again in
2006, asks whether for every pair of integers s, t ≥ 1 there exists a finite number F(s, t) such that the vertex
set of every digraph of minimum out-degree at least F(s, t) can be partitioned into non-empty parts A and
B such that the subdigraphs induced on A and B have minimum out-degree at least s and t, respectively.

In this short note, we prove that if F(2, 2) exists, then all the numbers F(s, t) with s, t ≥ 1 exist and
satisfy F(s, t)= �(s+ t). In consequence, the problem of Alon and Stiebitz reduces to the case s= t = 2.
Moreover, the numbers F(s, t) with s, t ≥ 2 either all exist and grow linearly, or all of them do not exist.
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1. Introduction
A well-researched area in modern graph theory is that of graph splitting. It is concerned with
problems in which the vertex set of a given graph is to be split into a given number of parts while
meeting specific degree conditions within or between the parts. One of the first instances of such
a result is a classical theorem by Lovász [13] from 1966, stating that for all numbers s, t ∈N, every
graph G of maximum degree �(G)≤ s+ t + 1 admits a partition of its vertex set into sets A and
B such that �(G[A])≤ s and �(G[B])≤ t. In the opposite direction, looking for splittings that
preserve a given minimum degree, Thomassen [18] proved in 1983 that for all integers s, t ≥ 1
there exists some f (s, t) ∈N such that every graph G of minimum degree δ(G)≥ f (s, t) admits a
partition of its vertex set into non-empty sets A and B such that δ(G[A])≥ s and δ(G[B])≥ t. He
also conjectured that the function f (s, t) can be taken to be s+ t + 1, which is best-possible as can
be seen by considering complete graphs. In 1996, Stiebitz [16] proved Thomassen’s conjecture.

The perhapsmost natural way of extending the above problems to directed graphs is to consider
the out-degrees of vertices in a directed graph instead of their total degrees. Alon [3] has written a
short survey about the arising problems in 2006. Maybe surprisingly, most of them turn out to be
either false or much harder than their undirected cousins. In the following, we briefly summarise
what is known.

1.1 Maximum out-degree
The natural analogue of Lovász’s theorem for directed graphs would state that for all s, t ≥ 1, every
directed graph D of maximum out-degree �+(D)≤ s+ t + 1 admits a partition A, B of its vertex
set such that �+(D[A])≤ s,�+(D[B])≤ t. However, this turns out to be completely false – in
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1983, Thomassen [20] constructed a sequence (Dk)∞k=1 of digraphs such that�
+(Dk)= k for every

k and in every partition A, B of V(Dk), we either have �+(Dk[A])= k or �+(Dk[B])= k. In other
words, no matter how we split Dk into two parts, the maximum out-degree of one of the two
parts will not be reduced. However, the situation changes when allowing more than 2 parts in the
partition of the vertex set: Alon [3] was the first to prove that every directed graph of maximum
out-degree at most � can be split into three parts A, B, C such that the maximum out-degree in
each part is bounded by 2

3�. More generally, Alon’s proof yields that for every digraph D the
vertex set of D can be partitioned into three sets A, B, C such that for every vertex v, at most
2
3d

+(v) of its out-neighbors lie in the same part of the partition as v. This statement has been
independently reproved and strengthened several times, see [7, 9, 10]. A popular conjecture due
to Kreutzer, Oum, Seymour, van der Zypen and Wood [11] from 2017, known as the Majority
Coloring Conjecture, states that the constant 2

3 in the above result can be improved to 1
2 , which

would be best-possible. While this remains widely open, some special cases have been solved,
such as tournaments and random graphs, see [5, 6, 9].

1.2 Minimum out-degree
The natural analogue of Stiebitz’s theorem for directed graphs would state that for all s, t ≥ 1,
every directed graph D of minimum out-degree δ+(D)≥ s+ t + 1 admits a partition of its vertex
set into non-empty sets A, B such that δ+(D[A])≥ s and δ+(D[B])≥ t. This statement, too, turns
out to be quite false. Namely, Alon [1] proved in 1984 that for every integer k≥ 1 and every
prime number p> k2 · 22k−2 with p≡ 3 (mod 4), there exists a digraph D of order p such that
δ+(D)= p−1

2 and such that for every non-empty X ⊆V(D) we have that δ+(D[X])< k
2 if |X| ≤ k

and δ+(D[X])<
p−1
2 − k if |X| ≤ p− k. Setting s= k

2 and t = p−1
2 − k, we can see that δ+(D)>

s+ t + 1 but in every partition of V(D) into non-empty sets A, B, we either have |A| ≤ k and thus
δ+(D[A])< s, or |B| ≤ p− k and thus δ+(D[B])< t. More recently, the third author [15] answered
a question of Alon [3] by proving that for arbitrarily large values of s= t, there exists a digraph
D with δ+(D)> 2s+ (1+ o(1)) log3 (s)> s+ t + 1 such that for every non-empty X ⊆V(D) with
|X| ≤ |V(D)|

2 , we have δ+(D[X])< s. Similarly as above this implies a negative answer to the direct
extension of Stiebitz’s theorem when s= t.

The main open problem in this area is the intriguing question asked independently by Stiebitz
[17] in 1995 and Alon [2, 3] in 1996 and again in 2006 whether the qualitative version of Stiebitz’s
theorem extends to directed graphs. We also refer to the open problem garden entry [14].

Problem 1. Does there exist, for all s, t ≥ 1, a number F(s, t) ∈N such that every digraph D with
δ+(D)≥ F(s, t) has a partition V(D)=A 	 B such that δ+(D[A])≥ s and δ+(D[B])≥ t?

In the rest of this paper, we write F(s, t) for the smallest possible integer satisfying the statement
in Problem 1 if it does exist, and set F(s, t)= ∞ otherwise.

So far, F(s, t)< ∞ is only known in the case s= t = 1, in which it is equivalent to the statement
that every digraph of large enough minimum out-degree contains two disjoint directed cycles,
see [2, 8, 19] for proofs and extensions of this statement. However, already whether F(2, 2)< ∞
or even F(1, 2)< ∞ remain open problems. The only other known results on Problem 2 are for
restricted classes of digraphs, for instance [4] and [21] gave positive answers for tournaments and
digraphs with balanced out- and in-degrees.

1.3 Our result
As the main contribution of this paper, we show that in order to solve Problem 1 in full generality,
it suffices to decide whether F(2, 2)< ∞. Moreover, under the assumption of F(2, 2)< ∞, we
settle the question of the asymptotic growth of F(s, t) by showing that it is within a constant factor
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of the trivial lower bound s+ t + 1 for all values s, t ≥ 1. We also obtain similar results for the
values F(s, 1) if we assume that F(2, 1)< ∞.

Theorem 2.

(1) If F(2, 2)< ∞, then F(s, t)= �(s+ t) for s, t ≥ 1. More precisely, we have

F(s, t)<
e2

3
· F(2, 2)6 ·max{s, t}.

(2) If F(2, 1)< ∞, then F(s, 1)= �(s) for s≥ 1. More precisely, we have

F(s, 1)<
e2

3
· F(2, 1)6 · s.

Remark. Upon receiving the reviews for this paper, one of the referees pointed out to us that
the fact that the existence of F(2, 2) implies the existence of F(s, s) was independently shown by
William Lochet in his PhD thesis [12]. However, the upper bound of F(s, s)≤ F(2, 2)s+1 proved by
Lochet is exponential and thus much worse than the linear bound obtained in the main result of
the paper at hand.

2. Proof of Theorem 2
Towards proving Theorem 2, we start with the following two lemmas.

Lemma 3. For every integer k≥ 3 there exists a constant ε = 3
e2k3 such that for every n≥ k there

exists a bipartite graph G on 2n vertices with bipartition V(G)= S 	 T, such that |S| = |T| = n and
all of the following hold.

(i) Every vertex in S has degree exactly k.
(ii) For every non-empty X ⊆ S with |X| ≤ εn and every Y ⊆ T such that |NG(x)∩ Y| ≥ 3 for all

x ∈ X, we have that |Y| > |X|.
Proof. Let G be the random graph on vertex set S 	 T obtained by choosing independently for
each vertex v ∈ S uniformly at random k neighbours in T. Then, 1 follows immediately, so let us
show that 2 also holds with positive probability. Given Y ⊆ T and a set U ⊆ T of three distinct
vertices chosen uniformly at random, we get

P[U ⊆ Y]= |Y|(|Y| − 1)(|Y| − 2)
n(n− 1)(n− 2)

≤
( |Y|

n

)3
.

It follows by a union bound that given a vertex v ∈ S and a set Y ⊆ T,

P[|NG(v)∩ Y| ≥ 3]≤
(
k
3

) ( |Y|
n

)3
≤ 1

6

(
k|Y|
n

)3
.

Thus, for any non-empty sets X ⊆ S and Y ⊆ T we have

P[∀x ∈ X: |NG(x)∩ Y| ≥ 3]≤
(
1
6

)|X| (k|Y|
n

)3|X|
.

There are at most
( n
|X|

)( n
|Y|

)
choices of X and Y . Note that we only have to consider X ⊆ S and

Y ⊆ T with |X| = |Y|, since if 2 is not satisfied then there exist equal sized X and Y contradicting
it. By a union bound, it follows that the probability that there exist such X ⊆ S and Y ⊆ T not
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satisfying 2 is at most
�εn∑
i=1

(
n
i

)2 (
1
6

)i (ki
n

)3i
≤

�εn∑
i=1

(en
i

)2i (1
6

)i (ki
n

)3i

=
�εn∑
i=1

(
e2k3i
6n

)i
<

∞∑
i=1

(
e2k3ε
6

)i
= e2k3ε

6− e2k3ε
= 1.

Thus, there exists a graph G which satisfies both conditions. �
Lemma 4. If F(2, 2)< ∞, then F(4, 4)≤ F(2, 2)2 and similarly, if F(2, 1)< ∞, then F(4, 1)≤
F(2, 1)2.

Proof. We prove both statements simultaneously, where replacing b(k) with either k or 1 gives
the two arguments. Using this notation, we have to show that F(4, b(4))≤ F(2, b(2))2.

Let D be a digraph with δ+(D)≥ F(2, b(2))2 and V(D)= {v1, . . . , vN}. Let D′ be the digraph
obtained from D by taking

V(D′)=V(D)∪ {vi,j|vi ∈V(D), 1≤ j≤ F(2, b(2))}
and the following arcs. For each vi,j ∈V(D′), the arc (vi, vi,j) is inA(D′). Moreover, for each i ∈ [N],
if N+

D (vi)= {u1i , . . . , ukii } with ki ≥ F(2, b(2))2, then for each j= 1, . . . , F(2, b(2)), we have that all
the arcs

(vi,j, u
(j−1)F(2,b(2))+�

i ), ∀� ∈ {1, . . . , F(2, b(2))}
are in A(D′). Intuitively, to obtain D′, we have split the neighbourhood of each vertex vi into
F(2, b(2)) groups of size F(2, b(2)) each, and added a different intermediate vertex on the path
from vi to each group of its neighbourhood in D.

Claim 5. Let W′ ⊆V(D′) be non-empty and W:=W′ ∩V(D).

(a) If δ+(D′[W′])≥ 1, then W is non-empty and δ+(D[W])≥ 1.
(b) If δ+(D′[W′])≥ 2 then W is non-empty and δ+(D[W])≥ 4.

Proof.

(a) Suppose δ+(D′[W′])≥ 1. This condition implies that D′[W′] contains a directed cycle C.
It is easy to see by definition that D′ −V(D) is an acyclic digraph, hence C must meet at
least one vertex in V(D). This shows that V(C)∩V(D) and hence alsoW =W′ ∩V(D) is
non-empty.
Now, consider any vertex vi ∈W. Then there exists a vertex v in W′ ∩ {vi,j|1≤ j≤
F(2, b(2))} which in turn has an out-neighbor in W′ ∩N+

D (vi). This latter vertex is then
an out-neighbor of vi in D[W]. Since vi ∈W was chosen arbitrarily, this shows that
δ+(D[W])≥ 1.

(b) Similarly, suppose that δ+(D′[W′])≥ 2. It follows from the previous part that W is
non-empty. Let vi ∈W be an arbitrary vertex. Since deg+

D′[W′](vi)≥ 2, there exist at least
two vertices inW′ ∩ {vi,j|1≤ j≤ F(2, b(2))}. Since each of them has at least 2 out-neighbors
in D′[W′], at least 4 vertices among N+

D (vi) are in W′ and so also in W. Since vi ∈W was
chosen arbitrarily, this shows that δ+(D[W])≥ 4. �

By construction, δ+(D′)≥ F(2, b(2)), so there is a partition of V(D′) into non-empty
sets A′ and B′ such that δ+(D′[A′])≥ 2 and δ+(D′[B′])≥ b(2). By Claim 5, we get that
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(A:=A′ ∩V(D), B := B′ ∩V(D)) is a partition of V(D) into non-empty sets with δ+(D[A])≥ 4
and δ+(D[B])≥ b(4). �

Proof of Theorem 2. Similarly as in the proof of Lemma 4, we prove both 1 and 2 simultaneously.
Towards this, for k ∈N, let b(k)= k correspond to the proof of 1 and b(k)= 1 to the proof of 2.
Furthermore, in the case of 1, suppose w.l.o.g. that s≥ t. Now, we show

F(s, b(s))≤
⌊
e2

3
· F(3, b(3))3 · s

⌋
=: d,

from which the result follows since F is non-decreasing and, by Lemma 4, F(3, b(3))3 ≤
F(4, b(4))3 ≤ F(2, b(2))6.

Let D be a digraph with δ+(D)≥ d and V(D)= {v1, . . . , vN}. Let us define the digraph D′′
obtained from D with vertex set

V(D′′)=V(D)∪
⋃

1≤i≤N,
3≤j≤s−1

Ui,j,

where each Ui,j is a disjoint set of d new vertices. Furthermore, for each i= 1, . . . ,N, we select an
arbitrary subset of size d of N+

D (vi) and denote it by Ui,s. For each i= 1, . . . ,N and each u ∈Ui,3,
we have that the arc (vi, u) is in A(D′′). Additionally, let G be the graph with bipartition S and
T given by Lemma 3 applied with n := d and k := F(3, b(3)). Thus, ε = 3

e2F(3,b(3))3 . Then for all
1≤ i≤N and 3≤ j≤ s− 1, we add a copy of G between Ui,j and Ui,j+1 to D′′, identifying Ui,j with
S and Ui,j+1 with T, and directing all the edges from Ui,j to Ui,j+1. Those are all the arcs in D′′.
Thus, by Lemma 3, for each 3≤ j≤ s− 1, every vertex in Ui,j has out-degree exactly F(3, b(3)) in
D′′. Now consider any non-empty subset X ⊆Ui,j with |X| ≤ s− 1. Then we have

|X| < s− ε = ε

(
e2F(3, b(3))3

3
s− 1

)
< εd = εn.

Thus by the second item of Lemma 3, for every Y ⊆Ui,j+1 with |N+
D′′(x)∩ Y| ≥ 3 for all x ∈ X, we

have |Y| > |X|.
Claim 6. Let W′ ⊆V(D′′) be non-empty and W:=W′ ∩V(D).

(a) If δ+(D′′[W′])≥ 1, then W is non-empty and δ+(D[W])≥ 1.
(b) If δ+(D′′[W′])≥ 3 then W is non-empty and δ+(D[W])≥ s.

Proof.

(a) Suppose δ+(D′′[W′])≥ 1. Therefore, D′′[W′] contains a directed cycle C. But D′′ −V(D)
is acyclic, and thus, we must have that V(C)∩V(D)⊆W′ ∩V(D)=W is non-empty.
Furthermore, from δ+(D′′[W′])≥ 1 we get that for every vi ∈W there exists Wi,j ⊆Ui,j ∩
W′ with |Wi,j| = 1 for every 3≤ j≤ s, implying that

|N+
D[W](vi)| ≥ |Wi,s| ≥ 1.

(b) Suppose δ+(D′′[W′])≥ 3. By the previous part, we get that W is
non-empty. Let us consider some vi ∈W. We now show by induction on j that for
each 3≤ j≤ s, there is a set Wi,j ⊆Ui,j ∩W′ with |Wi,j| = j. For the base case j= 3,
since deg+

D′′[W′](vi)≥ 3, there is some Wi,3 ⊆Ui,3 ∩W′ with |Wi,3| = 3. Suppose we have
shown that the statement holds for some 3≤ j≤ s− 1, we now show it holds for j+ 1.
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Let X:=Wi,j and Y :=Ui,j+1 ∩W′. Since Wi,j ⊆W′, it must hold that for each x ∈ X, we
have

|N+
D′′[W′](x)| = |N+

D′′(x)∩ Y| ≥ 3.

Thus, as |X| = |Wi,j| = j≤ s− 1, by the above-mentioned properties coming from
Lemma 3 we have that |Y| > |X| = |Wi,j| = j. Taking Wi,j+1 to be an arbitrary subset of
Y of size j+ 1 finishes the induction step. In particular, this shows that

|N+
D[W](vi)| ≥ |Ui,s ∩W| = |Ui,s ∩W′| ≥ |Wi,s| ≥ s,

as desired. �
Since δ+(D′′)≥ k= F(3, b(3)) by construction, there is a partition of V(D′′) into non-empty

sets A′ and B′ such that δ+(D′′[A′])≥ 3 and δ+(D′′[B′])≥ b(3). It follows by Claim 6 that A:=
A′ ∩V(D) and B:= B′ ∩V(D) are non-empty and satisfy δ+(D[A])≥ s and δ+(D[B])≥ b(s), as
desired. This shows that F(s, b(s))≤ d, concluding the proof. �
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