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Abstract. We show that there exists a subset F of the n-dimensional torus T" such
that F has Hausdorff dimension n and for any xe F and any semisimple auto-
morphism cr of T" the closure of the er-orbit of JC contains no periodic points.

0. Introduction
Automorphisms and, more generally, surjective endomorphisms of tori are some of
the first examples that one learns in ergodic theory. Conditions for the ergodicity
of these (with respect to the Haar measure) are well known (cf. [6], for instance)
and when ergodicity holds, one knows that the orbits of almost all points are dense.
However, not much is known about the exceptional set, of points with non dense
orbits, by way of either its location in the torus or its size, in terms other than the
measure.

It is the purpose of this note to show that for any n > l the subset F of T"
of all x such that for any semisimple surjective endomorphism p of T" the closure
of the orbit {p'(x)|i = 0,1,2,...} does not contain any element of finite order (in
particular the orbit is not dense in T") is still a large set in the sense that for any
nonempty open set il of T", F nft has Hausdorff dimension n (cf. Corollary 2.7).
In particular, F is uncountable.

The proof involves showing that F is a winning set of the Schmidt game (cf. § 1)
for suitable values of the constants in the game. This is achieved using a result on
winning sets in W, proved by the present author in [1].

1. Preliminaries
In this we recall various notions and results involved in proving the main theorem.

1.1. Endomorphisms of tori
Let T" be the n-dimensional torus where n > 1. We identify T" as R"/Z". In particular
it is considered to be equipped with the metric given by

d(u + l", v + Z")= inf d(u + m, v) for all u, v e R",

where d is the usual euclidean distance function on R".
We denote by e , , . . . , en the standard basis of R"; via the basis any A e GL(n, R)

corresponds to a linear transformation of R" which is also denoted by A. Any
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AeGL(n,Q)nM(n,Z), namely a matrix with integer entries and nonzero deter-
minant, yields a continuous surjective endomorphism A of T" denned by

. A(u+Z") = Au+Z" forallweR".

Conversely for any continuous surjective endomorphism p of T" there exists a
unique R e GL(n, Q) n M(n, Z) such that p = R(cf. [6]). R is said to be semisimple
if R is semisimple.

For a (continuous) surjective endomorphism p of T" and xel" we denote by
Cp(x) the closure of the orbit of x, namely

Cp(x) = {p'(x)|i = 0,1,2,...}".

1.2. 77ie Schmidt game
In [4] W. M. Schmidt introduced a game which has been used in showing various
sets to be large in a certain sense (cf. [2] and the references therein). The game
involves two players say si and 38, two numbers a, B € (0,1) corresponding to si
and 38 respectively, and a complete metric space X. A sample procedure goes as
follows: 38 starts the game by picking a closed ball Bo in X with arbitrary positive
radius. Then si picks a closed ball A, contained in Bo whose radius is a times that
of Bo. Next 38 chooses a closed ball B, contained in A, having radius B times that
of A, and so on; inductively, after 38 has chosen Bk-t, si chooses a closed ball Ak

contained in Bk_, with radius a times that of Bk_[ and 38 follows by choosing Bk

to be a closed ball contained in Ak having radius B times that of Ak. Since X is a
complete metric space, for each such sample procedure there is a unique point of
intersection of the sets Bo => A, => B[ 3 A2 => B2 • • •. A subset S of X is said to be an
(a, B)-winning set (for .stf) if there is a strategy by which si can ensure (by the
choices during his turns) that, irrespective of how 38 makes the choices during his
turns, the point of intersection belongs to S. A subset S is said to be an a-winning
set if it is an (a, /3)-winning set for all /3 e (0,1).

Evidently the whole space X is an (a, /?)-winning set for all a,j8e (0,1). It turns
out that if B<2-a~\ or equivalently l-2a + aBsQ, then X is the only (a, B)-
winning set (cf. [4] Lemma 5). On the other hand if B > 2 - a"' then there can exist
various proper subsets which are (a, /3)-winning sets and even a-winning sets for
a G (0,5) (cf. Theorem 1.3 below).

Intuitively one would expect that (a, B)-winning sets should be 'large'. We first
note that this does not happen to be true in the 'conventional' sense; for instance,
there exist subsets of W which are of first category and zero Lebesgue measure
which are (a, B)- winning sets for all a, Be (0,1) such that l-2a + aB>0. (cf. [4]).
Nevertheless, thanks to the following results of Schmidt [4] the expectation is
fulfilled in a certain sense.

THEOREM 1.1. If Sis an (a, B) -winning subset ofU", with respect to the usual euclidean
metric, then for any nonempty open set (1 c U", S n O has Hausdorff dimension at least

(\ogcnB-")/\\ogaB\,

where cn is a constant depending only on n. In particular, ifTis an a-winning set then
it is of Hausdorff dimension n.
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THEOREM 1.2. If {Sk}f is a sequence of a-winning sets for some a e (0,1) then P)i° Sk

is also an a-winning set.

It also turns out that for various classes of maps the images of winning sets
are also winning sets for suitably modified values of the constants. This allows one
to conclude that the winning sets are large by various stronger criteria. We refer to
[5] and [2] for details concerning this theme.

1.3. Winning sets in R"
We now note a result which on the one hand provides a large class of examples of
(a, /3)-winning sets in Rn and on the other hand provides a way of showing certain
sets to be (a, /3)-winning; the latter aspect is relevant in § 2.

We consider W equipped with the usual euclidean metric denoted by d. For any
subset E of R" and u e W we denote by d(u, E) the distance of u from E, namely
the infemum of {d(u, v) \ v e E}. Similarly, for two subsets El,E2, d(Ex, E2) denotes
the distance between E, and E2. For any subset S of U" the thickness of S is defined
to be

T(S) = inf sup d(u-v, W),
w u.vsS

where the infemum is taken over all hyperplanes W of R". The result in question
is the following

T H E O R E M 1.3. Let a, (i e (0 ,1) be such that 1 -2a + a/3 > 0 . Let heN be such that

(a/3)'1 < i ( l - 2 a + a/3) and let n = (ap)h. Let P be a countable set and let {S(p, t)}

be a family of subsets of U" (doubly) indexed by peP and t e (0 ,1) . Suppose that for

any compact subset C of R" there exist M > 1 , e e ( 0 , 1 ) and a family { T P } P £ P of

positive numbers such that the following conditions are satisfied:

(a) if peP and t e (0, e) are such that S(p, t)nC is nonempty then rp < M and

(b) ifp, p'e P and te(0,e) are such that S(p, t)nC and S(p', t)nC are nonempty

and fiTp^Tp.^fji-lTp then either p' = p or d(S(p, t),S(p', 0 ) S < - ( T P + v ) .

Then the set

F = U ( R n - U s(j>,,
8>0 \ peP

is an (a, /})-winning set.

This is essentially Theorem 3.2 of [1], except that there we had demanded condition
(b) for all fie(0,1) and correspondingly derived the conclusion for all a, /3 e (0,1)
such that 1 - 2a + a/3 > 0. For a given pair (a, )8) satisfying that condition, the value
for fi was chosen precisely as in the statement of the above theorem: Thus the proof
of Theorem 3.2 of [1] also yields the above theorem.

We refer the reader to [1] for examples of families satisfying the conditions of
the theorem.
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2. Results
We now apply Theorem 1.3 to the study of orbits under endomorphism of tori
following the notation as in § 1. We begin with the following theorem.

THEOREM 2.1. Let p be a semisimple surjective endomorphism of T", where n a l , and
let Fp={xeTn\leTn-Cp(x)}, where 1 is the identity element in T" (namely the
image of Z" in W/I"). Then Fp is an (a, /3)-winning set for all a, /3 € (0,1) such that
1 - 2a + aB > 0. In particular it is an a-winning set for all a such that 0 < a < 5.

Proof. Let R e GL(n, Q)nM(n,Z) be the matrix inducing p. If some root of unity
is an eigenvalue of R then there exists a nontrivial character ^ onT" and fceN
such that the function f=x + X°P + ' ' '+X° pk ' is p-invariant (cf. [6]). In this
case Fp contains the set {x e T" |/(x) #/( l )} , which is readily seen to be the comple-
ment of a proper closed subgroup of T". It is easy to see that such a subset is an
(a, )8)-winning set for all a, B such that 1 -2a + aB > 0. (See Lemma 3.7 in [1] for
an idea of the proof.) We may therefore assume that no eigenvalue of R is a root
of unity. It is well known that for an integral matrix if all eigenvalues are of absolute
value at most 1 then they are all roots of unity. Hence it follows from the assumption
that R has an eigenvalue of absolute value greater than 1.

Now for t> 0 let B, denote the open ball in R" with center at 0 and radius t. Let

6>0

Then FP = FR/Z". We also note that if xel" and welR" are such that x = w + Z"
then the closed ball in T" with center at x and radius r> 0 is the image of the closed
ball in W with center at u and radius r. Therefore to prove the theorem it is enough
to prove that FR is an (a, B)-winning set for all a, B as in the hypothesis. We shall
deduce this from Theorem 1.3 as follows.

Let a, Be(0,1) such that 1 -2a + aB>0 be fixed. Let /* = (aB)h, where heN is
such that (aB)h <\(\-2a + aB). Let A be the maximum of the absolute values of
the eigenvalues of R; then A > 1 by our assumption. Let leNbe such that A"'< fi.
Let a = |det/?|"'; then R~J(Z")caZ" for 1 =£./</. Also let b>0 be such that
R~j(Bi) c Bb for all j = 0 , 1 , . . . , / . Then for any keZ+, viz. a nonnegative integer,
and (>0we have

Now let P = Z"xZ+ and for any p = (m,k)eP, where meZ" and fceZ+, and
t> 0 let

S(p, t) = R-k'(am + Bt).

If F is the set as in the conclusion of Theorem 1.3 for the family {S(p, t)} as above,
then it is easy to see that in view of (1) F is contained in FR. Therefore to prove
the theorem it is enough to prove that the sets {S(p, t)} satisfy the conditions of
Theorem 1.3.

Let V and W be the largest R- invariant subspaces such that the absolute values
of the eigenvalues of R \ V and R \ W are, respectively, equal to and less than A.
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Then R" = V+ W. Let TT-|R" -> V be the corresponding projection onto V. Choosing
hyperplanes containing W in applying the definition we get that for any set E in R"

T(E)ssup{|M||»e7r(E)}.
Since all eigenvalues of R \ V are of absolute value A and R is semisimple there
exists a constant c> 0 such that

||/?~Ju||<cA~-'||w|| forall veVandjeZ+.

Also let

M = sup{\\v\\\ven(Bl)}

Then for any p — (m, k) e P and (>0we have

r(S(p, 0) = r(R-kl(B,)) <sup {\\v\\ \v e ir(R-u(B,))}

= svLP{\\R-klv\\\veTr(B,)}

Thus condition (a) of Theorem 1.3 holds if we choose

rp = cM\-kl for p = (m,k) e P. (2)

(The condition holds independently of the compact set to be given). Now let
p = (m,k) and p' = (m', k') in P be such that /iTp<Tp</i~1Tp. Substituting from (2
and using the fact that A~' <fj. (by the choice of /) we conclude that k' = k. Now,
for any t > 0 we have

d(S(p, t), S(p', t)) = d(R-kl(am + B,), R-kl(am' + B,))

= d{aR-k\m'-m),R-k\B2,)). (3)

Since all eigenvalues of R~l are of absolute value at least A^1 and R is semisimple
there exists a constant cr > 0 such that

H/J-'uJI > o-A"'||«|| for all u e R" and i e Z+. (4)

Now let s e (0, a/2) and

e = min {a(a - 2s)/2cM, s).

Then for any meZ" -(0) and keZ+ we have

-V
-R-kl(Ba^),0), (5)

where a — 2e &a — 2s >0. In view of (4) the right hand side is at least cr(a —2e)\~kl.
Also by the choice of e we have a(a -2e)\~kl>o-(a-2s)\ kl>2cMe\~k' =
e(Tp + Tp), by (2). In view of (3) and (5) this shows that condition (b) of Theorem
1.3 is also satisfied, for e as above, and hence by that theorem FR is an (a, /?)-winning
set. This completes the proof of the theorem.

COROLLARY 2.7. Let 1" = W/Z", «> 1, and let

Q = Q7Z" = {zeT"|zr = l for some re f̂ J}.

Let F be the set of all x in T" such that for any semisimple surjective endomorphism
p of J", Q n Cp(x) = 0 (i.e., the closure of {p'(x) | i e Z+} is disjoint from Q). Then
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F is an a-winning set for all a such that 0 < a s j . Further, for any nonempty open
subset ft of J", Fnil is of Hausdorff dimension n. In particular F is uncountable.

Proof. Let 0 < a s \, p an endomorphism as in the hypothesis and z e Q. There exists
a finite p-invariant subgroup C of T" containing z. Applying Theorem 2.1 to the
factor endomorphism p on T"/C, which is also an n-dimensional torus, we deduce
that the set

{x e T" | z is not contained Cp(x)}

is an a-winning set. Since Q is countable, applying Theorem 1.2 we can conclude
that

{xeT"|<?nCp(x) = 0}

is an a-winning set. Again since there are only countably many endomorphisms the
same theorem yields that the set F in the statement of the corollary is an a-winning
set. Now let F = {« e W | u +Z" e F}. then clearly F is an a-winning set in W. Hence
by Theorem 1.1 for any nonempty open subset ft of U",Fnil has Hausdorff
dimension n. This readily implies that Fnil is of Hausdorff dimension n for all
nonempty open subsets ft of T".

3. Miscellaneous comments and questions

(1) If p is a semisimple automorphism of T" then by Corollary 2.7 Fp n Fp_, is
an a-winning for all a e (0 f]; that is, the set of x £ T" such that Q n {p'(x) 11 e Z}~ =
0 is an a-winning set for all a e (0 \~\. In particular it is incompressible in the sense
of [2]. This result was announced in [2] for n = 2. There we raised the question
whether a similar assertion holds more generally for all Anosov diffeomorphisms.

(2) The method of proof of Theorem 2.1 can also be applied to obtain a similar
result for certain commutative semigroups of surjective endomorphisms and an
analogue of the above for commutative groups of automorphisms of T", n>2. It
may be noted however that for the action of the group of all automorphisms and
also for certain (non-commutative) subgroups the situation is quite the opposite,
in that the orbit of any x£ Q is dense in T".

(3) If Re GL(n,Z) is hyperbolic (that is, no eigenvalue of R has an absolute
value 1) and irreducible over Q and p is the automorphism of T" induced by R
then by a result of R. Mane [3] any rectifiable path in T" contains a point x whose
orbit under p is dense in T". Thus it follows that for such a p the set Fp does not
contain any rectifiable path in T". What about other automorphisms? Are these sets
connected?
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