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We consider inertial waves propagating in a fluid contained in a non-axisymmetric
three-dimensional rotating cavity. We focus on the particular case of a fluid enclosed inside
a truncated cone or frustum, which is the volume that lies between two horizontal parallel
planes cutting an upright cone. While this geometry has been studied in the past, we
generalise it by breaking its axisymmetry and consider the case of a truncated elliptic cone
for which the horizontal sections are elliptic instead of circular. The problem is first tackled
using ray tracing, where local wave packets are geometrically propagated and reflected
within the closed volume without attenuation. We complement these results with a local
asymptotic analysis and numerical simulations of the original linear viscous problem. We
show that the attractors, well known in two dimensional or axisymmetric domains, can
be trapped in a particular plane in three dimensions provided that the axisymmetry of
the domain is broken. Contrary to previous examples of attractors in three-dimensional
domains, all rays converge towards the same limit cycle regardless of initial conditions,
and it is localised in the bulk of the fluid.

Key words: waves in rotating fluids

1. Introduction

Inertial waves and internal gravity waves are waves propagating in rotating and stratified
fluids, respectively. In three dimensions, when forced locally in a uniformly rotating (or
stratified) fluid, these waves have the particularity to propagate along a double cone
that makes a constant angle with respect to the axis of rotation (or to the direction of
stratification). This property allows one to show that, when propagating within a closed
container, wave packets may converge after multiple reflections on solid boundaries to a
particular surface called attractor in two dimensions (Maas & Lam 1995) or axisymmetric
geometries such as the spherical shell (Rieutord & Valdettaro 1997). One of the simplest
geometries giving rise to attractors is a rectangular container with a sloping boundary.
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This trapezoidal geometry has been the subject of numerous works since the first study in
a stratified fluid by Maas et al. (1997). The theoretical attractors obtained by ray tracing
have been observed both experimentally (Hazewinkel et al. 2008, 2010; Scolan, Ermanyuk
& Dauxois 2013) and numerically (Drijfhout & Maas 2007; Grisouard, Staquet & Pairaud
2008). Similar results were also obtained in rotating fluids in the same geometry (Maas
2001; Manders & Maas 2003, 2004) or in its axisymmetric version (Klein et al. 2014;
Sibgatullin et al. 2019; Boury et al. 2021; Pacary et al. 2023). Attractors have also been
found to be generic features of inertial waves in spherical shells (Rieutord & Valdettaro
1997; Rieutord, Georgeot & Valdettaro 2000). Early studies concerned attractors localised
close to the equator (Stern 1963; Bretherton 1964; Stewartson 1972) which possess similar
properties to two-dimensional (2-D) attractors (Rieutord, Valdettaro & Georgeot 2002).
However, the picture seems more complex in a spherical shell owing to the presence of the
rotation axis in the domain and of a critical latitude singularity issued from the inner sphere
(Rieutord & Valdettaro 2010, 2018; He et al. 2022, 2023). The robustness of attractors
has been analysed with respect to wall friction (Beckebanze et al. 2018), nonlinearity
(Grisouard et al. 2008; Favier et al. 2014; Jouve & Ogilvie 2014; Beckebanze et al. 2021;
Ryazanov et al. 2021) and instabilities (Brouzet et al. 2016b, 2017; Dauxois et al. 2018).
The 2-D framework has also been used to obtain most of the available mathematical results
(Maas & Lam 1995; Manders, Duistermaat & Maas 2003; Maas 2009; Bajars, Frank &
Maas 2013; Beckebanze & Keady 2016; de Verdière & Saint-Raymond 2020; Dyatlov,
Wang & Zworski 2022; Makridin et al. 2023).

While fundamental in nature, studies about attractors are motivated by their ability
to focus energy at small length scales, which could potentially impact the dissipative
properties of many geophysical systems. Internal gravity waves and attractors can break
and lead to turbulence (Staquet & Sommeria 2002; Brouzet et al. 2016a), and as such
are known to play an important role in the energy budget of the ocean, where they are
often excited by tides (Wunsch 1975). Attractors can for example be excited by tidal waves
in a paraboloidal basin (Maas 2005) or between two ridges (Echeverri et al. 2011). Their
occurrence has been analysed in the configurations of the Mozambique Channel (Manders,
Maas & Gerkema 2004) and of the Luzon strait (Tang & Peacock 2010; Wang et al.
2015). In the astrophysical context, inertial waves and attractors could be important in
the synchronisation processes of rapidly rotating astrophysical objects as they provide a
way to rapidly dissipate energy (Zahn 1975; Ogilvie & Lin 2004).

Most of the works mentioned above have considered a 2-D or a 3-D framework with
symmetry (axisymmetric or invariant along one direction). In that case, rays were assumed
to remain confined within a particular 2-D plane since the system is effectively invariant
along the third direction. As soon as the rays are assumed to propagate out of this 2-D
plane, it becomes important to consider the 3-D reflection law of localised wave beams
(Manders & Maas 2004; Maas 2005). This was done in an axisymmetric geometry by
Maas (2005) and Rabitti & Maas (2013, 2014), and in a 3-D rectangular domain with a
sloping wall but invariant along one direction by Manders & Maas (2004) and Pillet et al.
(2018). For both the axisymmetric spherical shell and the 3-D trapezoidal basin that has a
uniform shape in a transverse direction, the authors showed that the attractor is possibly
trapped in a specific plane which depends on the initial conditions of the ray tracing
protocol. To our knowledge, the only study who considered a completely 3-D geometry is
the recent work of Pillet, Maas & Dauxois (2019). They considered a trapezoidal geometry,
but for which the sloping plane is also inclined in the transverse direction, thus breaking
the symmetry on which previous studies were implicitly constructed. In that case, the
ray beams tend to drift along the twice-inclined boundary towards the vertical boundary

980 A6-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.5


Inertial wave super-attractor

eventually closing the domain. The rays accumulate there around a trapped attractor close
to the vertical boundary (Pillet et al. 2019), which is not due to a global focusing but
instead due to the arrest by the vertical side boundary of the continuous shift of the wave
beams.

In the present work, focusing on the purely rotating case with inertial waves only, we
consider a 3-D non-axisymmetric geometry and show that we obtain a global focusing,
regardless of initial conditions, of the wave beams along a local curve (as opposed to a
surface in the axisymmetric case). Contrary to the work of Pillet et al. (2019), our attractor
does not rely on the confinement induced by a vertical boundary but is trapped in the bulk
of the fluid domain. We thereby provide the first evidence of a super-attractor, that is, a
1-D curve on which all rays tend to focus after multiple reflections on solid boundaries,
regardless of their initial positions and orientations within the fluid volume. In § 2, we
present the framework, the 3-D reflection law and our geometry (a truncated elliptic cone).
In § 3, we demonstrate that, in our geometry, ray beams corresponding to waves of a given
frequency do converge for almost all initial conditions to a unique limit cycle. This limit
cycle only depends on the geometry and the frequency of the waves. An analytic formula
for the contracting factors obtained in the two focusing directions is derived in this section
and compared with numerical ray tracing results. In § 4, numerical simulations of the linear
viscous problem are presented. We show that the viscous response to a global forcing
tends to be focused onto the super-attractor. A preliminary scaling with respect to the
Ekman number is also proposed for the velocity amplitude, before we finally present our
conclusions.

2. Formulation of the problem and methods

In this section, we describe the equations of motion, the reflection law of a localised wave
packet and the particular geometry considered for the rest of the study.

2.1. General problem and equations
We consider the incompressible flow of a fluid of constant kinematic viscosity ν contained
inside a closed container rotating at a constant rate Ω = Ωez. While we expect our
results to remain valid when the fluid is stratified in density, due to the similarity in the
dispersion relations and propagation properties, we focus on the purely rotating case here
for simplicity. Using 1/(2Ω) as the time scale and the characteristic length scale a of the
container as the reference length scale, and focusing on infinitesimal perturbations to the
solid body rotation flow, the linearised dimensionless equations of motion in the rotating
frame are

∂u
∂t

+ ez × u = −∇P + E∇2u, (2.1)

∇ · u = 0, (2.2)

where u is the perturbation velocity, P is the pressure incorporating the centrifugal
acceleration and E = ν/(2Ωa2) is the Ekman number. We shall focus on the response to a
harmonic boundary forcing of dimensionless frequency ω and for small Ekman numbers.
The frequency of inertial waves is bounded by twice the rotation rate and we therefore
focus on dimensionless frequencies comprised between 0 and 1.

Information on the solution can be obtained in an inviscid framework by monitoring the
propagation of localised wave beams, as detailed in the next section.
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2.2. Reflection law of a localised beam
Our description mainly follows the approach of Manders & Maas (2004), Maas (2005),
Rabitti & Maas (2014) and Pillet et al. (2018, 2019). However, we slightly modify their
approach to obtain a simpler reflection law.

As in Rabitti & Maas (2014), we consider a wave beam of frequency ω that is sufficiently
localised such that it travels along a geometrical ray path. Each ray is characterised by its
angle of propagation ϕ with respect to the vertical rotation axis ez and by its azimuthal
angle φ with respect to the axis ex. We assume 0 ≤ ϕ ≤ π and 0 ≤ φ < 2π. The angle ϕ
is given by π/2 ± θ , where the angle θ (between 0 and π/2) is fixed by the frequency of
the inertial oscillations according to the dispersion relation of inertial waves, which in our
dimensionless formulation is simply

ω = cos θ. (2.3)

This condition means that the rays propagate in an axial cone that makes an angle θ with
respect to the horizontal plane. This property is maintained during the ray propagation,
including when it reflects on solid boundaries (Phillips 1966). In two-dimensional or
axisymmetric domains, this non-specular reflection can lead to limit cycles towards which
all rays converge. These cycles are called attractors.

The horizontal (or azimuthal) angle φ is irrelevant in two dimensions since the ray
always propagates inside the same predefined plane. In three dimensions, however, the
ray is free to move through the whole volume. Contrary to ϕ, φ is not conserved during
reflections on solid boundaries. The reflection law is not specular but corresponds to a
tendency for the ray to converge towards the vertical plane containing the steepest descent
direction. This has been extensively discussed in Manders & Maas (2004), Rabitti & Maas
(2013, 2014) and Pillet et al. (2018, 2019).

In the present study, we shall use the following relation between the incident and
reflected angles φi and φr when a ray reflects on a plane surface inclined by an angle
α (between 0 and π/2) with respect to the horizontal plane (see figure 1):

tan(φr − φn) = (tan2 θ − tan2 α) sin(φi − φn)

(tan2 θ + tan2 α) cos(φi − φn)+ 2ζ tanα tan θ
. (2.4)

In this expression, φn is the azimuthal angle of the normal vector n of the surface oriented
towards the fluid and ζ = sgn(nzViz), where nz is the vertical component of the normal
vector and Viz is the vertical component of the incident velocity. A similar expression
was derived in Manders & Maas (2004) for wavevector angles in the context of plane
wave reflection. In term of wave propagation directions, the reflection law has never been
written in this form in the literature. We provide a derivation in Appendix A.

2.3. Geometry of the fluid domain
We consider the volume contained within a truncated elliptic cone defined by

x2 + y2

b2 ≤ z2

tan2 α
, (2.5)

with tanα ≤ z ≤ tanα + H. The angle α is the angle made by the conical surface with
respect to the horizontal in the x-direction. The base of the cone always has a unit
radius along the x-axis while it reaches b along the y-axis. Without loss of generality, we
assume b ≥ 1, so that the short axis is always along the x-axis. As will become apparent
later, the attractor will localise in that case onto the particular plane (Oxz). The case
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Figure 1. Reflection of an inertial beam on an inclined surface. The incident and reflected beams are defined
by their velocity vectors Vi and Vr , and the surface by its normal vector n oriented toward the fluid.
(a) Three-dimensional view; (b) projected view on the horizontal plane.

b = 1 corresponds to the classical axisymmetric truncated cone geometry. This type of
axisymmetric geometry involving a truncated conical surface, sometimes called a frustum,
has already been studied previously (Beardsley 1970; Henderson & Aldridge 1992; Borcia
& Harlander 2013; Klein et al. 2014; Sibgatullin et al. 2019; Pacary et al. 2023). The
novelty of our study is to extend the linear wave dynamics to the case of non-axisymmetric
domains, which correspond in our case to b > 1. Although theoretical results will be
derived for any values of H and α, the numerical investigations will focus on the particular
parameters H = 1 and α = π/4 and consider super-critical slopes only for which θ < α.

3. Ray tracing and local analysis

In this section, we discuss the properties of the 3-D ray paths satisfying the reflection laws
discussed above. We start by discussing the axisymmetric case (b = 1) before considering
ray paths in the non-axisymmetric geometry (b > 1).

3.1. Axisymmetric truncated cone
In this section, we consider the case b = 1 in (2.5), which corresponds to an axisymmetric
truncated cone. This geometry has recently been considered in Pacary et al. (2023). It
corresponds to the axisymmetric version of the 2-D trapezoidal geometry that has been
studied in numerous works, as described in the introduction. Owing to the axisymmetry,
the normal vector of the conical surface is always oriented toward the axis of symmetry
Oz. This implies that, if a ray is oriented towards this axis, it reaches the conical surface
with a meridional angle φi = φn + π, and reflects with an angle φr = φn as prescribed
by (2.4). It therefore continues to be oriented towards the axis. This means that, if a ray
initially lies within a meridional plane, it remains confined to this plane forever as in a 2-D
geometry.

The ray paths confined within a particular meridional 2-D plane of the axisymmetric
cone, which is equivalent to a 2-D trapezoid, have been analysed in many papers (Maas
& Lam 1995; Maas et al. 1997; Grisouard et al. 2008; Brunet, Dauxois & Cortet 2019;
Pacary et al. 2023). They converge towards attractors owing to the focusing effect resulting
from the reflection along the conical slope. This is illustrated in figure 2(a), where we
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Figure 2. (a) Two-dimensional ray paths for two particular trajectories starting from the orange empty circles
and for ω = 0.8. The red path corresponds to the last half of the many reflections and shows the final attractor.
(b) Position of each reflection along the x axis of the last few reflections as a function of ω. The two vertical
lines correspond to ω = 1/

√
2 and ω = 2/

√
5.

show two ray paths converging towards an attractor for the particular case ω = 0.8,
H = 1 and tanα = 1. This particular attractor (shown in red in figure 2a) is composed
of two symmetrical quadrangles and is the simplest attractor (with the lowest number
of reflections) that can be obtained in this geometry. It exists for α > θ (i.e. when the
reflection on the sloping boundary is supercritical) and in a finite range of parameters that
can be obtained by finding the coordinates of the reflection points. For instance, the points
(±xa, za), where the attractor reflects on the inclined boundary (see figure 6 below), can
be expressed in terms of the angles α and θ and the height H as

xa = H
tan θ

, za = H tanα
tan θ

. (3.1a,b)

Writing the condition that za is between tanα and tanα + H, implies the following
condition:

tan θ < H <
tanα tan θ

tanα − tan θ
. (3.2)

This condition can be written in term of the frequency ω = cos θ as

1√
1 + H2

< ω <
tanα + H√

(tanα + H)2 + H2 tan2 α
, (3.3)

which defines the frequency range for which this type of attractor exists. For the parameters
used in figure 2 (H = 1 and tanα = 1), it corresponds to the interval 1/

√
2 < ω < 2

√
5.

This interval can be seen in figure 2(b), where we show the positions on the x-axis of each
reflection (after a large number of reflections in order to focus on the attractor path) for
many random initial conditions uniformly distributed across the surface and as a function
of frequency. There are no attractors for frequencies below ω < 1/

√
2. The relatively

empty regions for these low frequencies correspond to rays trapped in the upper corners.
For ω > 2/

√
5, other attractors are still observed but they are now characterised by a more

complex path involving multiple reflections on each of the boundaries. In the following,
we will focus on the simpler attractor observed for frequencies satisfying the conditions
(3.3).

If we now authorise the ray beams to deviate from a particular meridional plane, their
path becomes more complex. One has to monitor the horizontal angle φ of the direction
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Figure 3. Ray path for two particular trajectories initialised at the same point indicated by the empty circle.
The two trajectories differ only by the initial horizontal angle of propagation. The thin lines correspond to
the transient propagation while the thick lines correspond to the final limit cycle after many reflections. The
conical surface is coloured in light grey to distinguish it from the horizontal planes. The height of the cone is
H = 1, its opening angle is tanα = 1 and the frequency is ω = 0.8. (a) Side view. (b) View from the top. A
movie (Movie 1) showing the propagation of many randomly initialised rays can be found in the Supplementary
materials available at https://doi.org/10.1017/jfm.2024.5.

of the ray and the meridional angle ψ of the position where it reflects on the boundaries
(see figure 6b below). This problem has been recently studied in Pacary et al. (2023) for
this particular geometry (see also § 7 in Maas 2005). They showed that the 2-D attractor
is still obtained but its location along the azimuthal direction is now dependent on the
choice of initial conditions. This phenomenon is illustrated in figure 3, where we show
that two rays emitted from the same location with different initial horizontal angles of
propagation φ end on the same 2-D attractor but in different meridional planes. However,
the geometry being azimuthally invariant, all the meridional planes are possible and should
be obtained with the same probability. A fully axisymmetric attractor would then be
obtained (with a non-uniform distribution of trapping planes though, see Maas 2005) if
all the possible initial conditions were simultaneously considered (with the exception of
whispering gallery modes (Pillet et al. 2019) which we did not observe here). More details
can be found in Pacary (2023) and Pacary et al. (2023), where such an axisymmetric
system is explored using both ray tracing and experiments.

3.2. Elliptic cone
In this section, we consider the unexplored case b > 1 in (2.5) which corresponds to a
truncated elliptic cone. As the axisymmetry is now broken, we do not expect the presence
of any axisymmetric attractor. In the following, we focus on the case where the reflection
on the conical surface remains supercritical, which leads to the following upper bound on
b:

b < bc = tanα
tan θ

. (3.4)

The first effect of the elliptic deformation is to modify the orientation of the normal
vector of the conical surface. Except in the vertical planes x = 0 and y = 0 corresponding
to the directions of the principal axes of the elliptic cone, the normal vector to the cone
is no longer oriented towards the vertical rotation axis. This means that, contrary to the
axisymmetric case, no ray can stay trapped in a particular meridional plane apart from
the planes x = 0 and y = 0. When a ray is initialised inside any other meridional plane, it
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deviates from it after its first reflection on the conical surface. Whether the planes x = 0
and y = 0 are an stable or unstable equilibrium will be discussed below.

We first repeat the ray tracing experiment done previously for b = 1 but in a
non-axisymmetric geometry with b = 1.2. The same frequency ω = 0.8 is considered.
An example is shown in figure 4, where two ray paths are generated from the same
initial position but with different horizontal angles. We observe that the two ray paths
now converge towards the same unique attractor localised in the plane y = 0 containing
the semi-minor axis of the elliptic cone. One can repeat the experiment for many initial
positions and horizontal angles φ showing that all rays eventually end up in this particular
plane y = 0 and along the same limit cycle. For this particular case, it thus seems that
the plane y = 0 is a stable equilibrium while the plane x = 0 is unstable. This is further
confirmed in figure 5, where we show the positions x and y of the reflection points of the
limit cycle (obtained by considering the last ten iterations of a total of five hundred) for
many frequencies and many random initial conditions. We compare the axisymmetric case
b = 1 in figure 5(a) with the elliptic case b = 1.2 in figure 5(b). The thin lines indicate
the x coordinates of the six reflection points of the 2-D attractor path, as already shown
in figure 2(b), in the particular plane y = 0 which is the same for all ellipticities b in our
case. For the axisymmetric case, each independent ray path converges towards a similar
2-D attractor in a particular meridional plane, depending on its initial conditions, leading
to a dense pattern of reflection points when plotting their (x, y) coordinates. Note that the
projection from the axisymmetric domain to the arbitrary coordinates x and y leads to a
non-uniform density of reflection points which tend to accumulate close to the expected
positions of the 2-D attractors (shown by the thin lines). For the non-axisymmetric case
b = 1.2, however, all the rays converge towards the particular plane y = 0, regardless of
their initial conditions in terms of position and initial horizontal angle, while we recover
the same attractor structure as in two dimensions when considering the x coordinates. Note
that we recover this peculiar property for all frequencies within the attractor range given
by (3.3).

The attractor in the particular plane y = 0 seems to attract all the rays, regardless of
their initial positions within the volume, with the exception of rays initialised within the
x = 0 plane, which is also an equilibrium, albeit unstable. Contrary to the axisymmetric
case, there is a second azimuthal convergence (related to the varying curvature of the
elliptic cone along the azimuthal direction) in addition to the meridional convergence at
the origin of the classical 2-D attractor (related to the inclination of the conical surface).
For this reason, we call this final limit cycle a ‘super-attractor’, to differentiate it from
the classical attractor surface observed in the axisymmetric case. The super-attractor
results from a convergence of rays in both axial and azimuthal directions while there is
no azimuthal convergence for an attractor in an axisymmetric geometry, as its azimuthal
position depends on the initial position and horizontal angle of propagation.

3.2.1. Local analysis of the super-attractor
In this section, we analyse the local properties of the super-attractor. Our objective is
to confirm the attracting character of the super-attractor both towards a particular limit
cycle in the meridional plane and towards a particular meridional plane, regardless of
initial conditions. While the first property is shared with regular attractors, we show that
the second is specific to super-attractors. We aim to obtain an analytic expression for the
attraction rate (i.e. Lyapunov coefficient) as a function of the geometrical parameters.

We focus on the super-attractor which is made of two symmetrical quadrangles, as
illustrated in figure 2(a). This 2-D attractor has been studied in § 3.1. It exists in the
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Figure 4. Same as figure 3 but for a non-axisymmetric domain with b = 1.2 in (2.5). The other parameters
are ω = 0.8, H = 1 and tanα = 1. (a) Side view in the ( y, z) plane. (b) Side view in the (x, z) plane.
(c) Three-dimensional view. (d) Top view in the (x, y) plane. A movie (Movie 2) showing the propagation
of many randomly initialised rays can be found in the Supplementary materials available at https://doi.org/10.
1017/jfm.2024.5.
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Figure 5. Positions of the reflection points along the x axis in red and along the y axis in blue for the final
limit cycle obtained from many random initial conditions. (a) Axisymmetric case b = 1 and (b) elliptic case
b = 1.2. The cone height is H = 1 and its opening angle is tanα = 1. The graph focuses on the frequency
range defined by (3.3). The thin lines correspond to the analytical position of the six reflection points of the
2-D attractor.

plane x = 0 for frequencies in the interval defined in (3.3). The points (±xa, 0, za) where
reflection occurs has been given in (3.1a,b).

We now want to analyse the behaviour of a ray close to the attractor. We consider a
ray emitted from a point (x0, y0, z0) on the inclined surface close to (xa, 0, za). This ray
is emitted downward with a vertical angle ϕ0 = π/2 + θ and an azimuthal angle φ0 as
illustrated in figure 6. If this ray is not too far from the attractor, it first reflects on the
lower plane surface, then reflects on the upper plane surface before reaching the inclined
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n

φ1
x

y

n⊥

ψ1

(x1, y1, z1)

(xa, 0, za)

(xa, 0, za)

φn

(x0, y0, z0)
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Figure 6. (a) Perspective view of the elliptic cone in thick solid line. The attractor is indicated by the red line.
The cone is twice symmetrically duplicated to avoid considering the reflections on the horizontal planes. (b)
View from the top of a ray emitted close to the attractor. The red dashed lines indicate the section of the cone at
the altitude za of the attractor. The ray emitted from the point (x0, y0, z0) with a horizontal angle φ0 is reflected
at (x1, y1, z1) with the angle φ1.

surface on the other side in a point (x1, y1, z1) close to (−xa, 0, za). Both points (x0, y0, z0)
and (x1, y1, z1) are on the cone defined by (2.5) so their horizontal coordinates can be
written as

x0 = z0
cosψ0

tanα
, y0 = bz0

sinψ0

tanα
, (3.5a)

x1 = z1
cosψ1

tanα
, y1 = bz1

sinψ1

tanα
, (3.5b)

where ψ0 and ψ1 are their azimuthal angles (see figure 6b).
As the reflections on the plane surfaces do not modify the azimuthal angle of the ray

(see (2.4) for the particular case α = 0), the coordinates of the point (x1, y1, z1) can be
obtained by continuing the ray in horizontal mirror images of the cones. Such a ray reaches
the boundary of the second cone image in a point which has just been shifted vertically
by twice the height of the cone, that is in (x1, y1, z1 − 2H) (see figure 6). This property
means that there exists λ such that

x1 = x0 − λ cos θ cosφ0, (3.6a)

y1 = y0 − λ cos θ sinφ0, (3.6b)

z1 − 2H = z0 + λ sin θ. (3.6c)

When the ray is close to the attractor, (x0, y0, z0) and (x1, y1, z1) are assumed to be close
to (xa, 0, za) and (−xa, 0, za), respectively. Moreover, ψ0 is assumed to be small, and φ0
and ψ0 are close to π. At first order, (3.5) give for the relative distances

δx0 ∼ δz0

tanα
, δy0 ∼ bza

ψ0

tanα
, (3.7a)

δx1 ∼ − δz1

tanα
, δy1 ∼ −bza

(ψ1 − π)

tanα
. (3.7b)

From (3.6c), one gets λ as

λ ∼ −2H + δz1 − δz0

sin θ
. (3.8)
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Inserting this expression in (3.6a), one obtains, using (3.7a,b), that

δx1 ∼ −Kδx0, δz1 ∼ Kδz0, (3.9a,b)

with

K = tanα − tan θ
tanα + tan θ

= sin(α − θ)

sin(α + θ)
, (3.10)

which corresponds to the 2-D contraction factor of the attractor.
In (3.5b), we obtain

δy1 ∼ δy0 − 2H(φ0 − π)

tan θ
, (3.11)

which gives a first relation between the angles

ψ1 − π = −ψ0 + 2
b
(φ0 − π). (3.12)

A second relation that expresses the angle φ1 of the reflected ray in terms of φ0 andψ0 is
obtained by applying the condition of reflection (2.4) at (x1, y1, z1). Close to the attractor,
the azimuthal angle φn of the normal vector n is given at leading order by

φn ∼ (ψ1 − π)

b
. (3.13)

The normal vector n and the incident rays are oppositely oriented with respect to the
vertical, so ζ = sgn(nzViz) = −1. Expression (2.4) then gives, for small angles,

φ1 − φn ∼ − tanα − tan θ
tanα + tan θ

(φ0 − π − φn) = −K(φ0 − π − φn). (3.14)

Using (3.12) and (3.13), this expression finally reduces to

φ1 ∼ −1 + K
b

ψ0 +
(

2(1 + K)
b2 − K

)
(φ0 − π). (3.15)

Expressions (3.12) and (3.15) can be written as

Ψ1 = MΨ0, (3.16)

for the vectors Ψ1 = (ψ1 − π, φ1)
� and Ψ0 = (ψ0, φ0 − π)� where the matrix M is

M =
( −1 2/b

−(1 + K)/b 2(1 + K)/b2 − K

)
. (3.17)

The operation can be repeated and after 2N reflections on the cone boundary, that is N
cycles, we get

Ψ2N = M2NΨ0, (3.18)

where Ψ2N = (ψ2N, φ2N − π)�.
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Introducing the eigenvalues λ± and associated eigenvectors Ψ± of the matrix M, which
are defined by

λ± = (1 + K)(2/b2 − 1)± (
(1 + K)2(2/b2 − 1)2 − 4 K

)1/2

2
, (3.19a)

Ψ± = (2/b, 1 + λ±)�, (3.19b)

Ψ2N can be written as

Ψ2N = C0(λ+)2NΨ+ + D0(λ−)2NΨ−, (3.20)

where C0 and D0 are constants depending on the initial condition only

C0 = 2(φ0 − π)− b(1 + λ−)ψ0

2(λ+ − λ−) , (3.21a)

D0 = 2(φ0 − π)− b(1 + λ+)ψ0

2(λ− − λ+) . (3.21b)

The functions λ+ and λ− characterise the behaviour of the angles ψ2N and φ2N − π as
a function of the cycle number N. These angles go to zero if and only if |λ±| < 1. This
condition is here equivalent to b > 1 (since 0 < K < 1). The functions λ± depend on the
value of b with respect to the particular values

bc± =
√

2(1 + K)

1 ± √
K

. (3.22)

The two λ± are real positive for 1 < b < bc+, and real negative for b > bc−. For bc+ <
b < bc−, they are complex conjugates with a constant absolute values equal to

√
K. When

b = bc±, the solution evolves differently as shown in Appendix B.

3.2.2. Comparison between local analysis and numerical ray tracing
This section compares the prediction of the local analysis with that of the global ray tracing
approach described above. To do so, we randomise the initial position inside the volume,
the horizontal angle of propagation and the sign of the vertical velocity component.
We then track the ray for 104 reflections on boundaries, which is enough to reach the
attractor in most cases. The horizontal angle is computed at each reflection on the conical
surface and for xi > 0 according to ψi = arg(xi + iyi) = atan2( yi, xi), where (xi, yi) are
the coordinates of the ith reflection point on the positive half x > 0 of the conical surface.
The horizontal angle difference ψi = |ψi − ψi−1| is then tracked as a function of the
number of cycles. Note that we track the convergence of the horizontal angle after a
complete cycle around the attractor for comparison with the prediction (3.19) of the local
analysis presented in § 3.2.1. In that case, the analysis is performed on the number of
cycles around the attractor and not on the number of reflections on the boundaries (there
are 6 reflections on boundaries and 2 reflections on the conical surface per cycle for the
particular attractor considered here).

The evolution of the horizontal angle increment is typically characterised by a short
transient followed by an exponential decay until machine accuracy is eventually reached
and the ray becomes trapped in a particular plane. Some examples for ω = 0.8, H = 1,
tanα = 1 and three values of b are shown in figure 7(a) to illustrate the convergence
process. We observe that all rays converge towards the super-attractor at the same
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Figure 7. (a) Angle differenceψN = |ψN − ψN−1| in logarithmic scale as a function of the number of cycles
N. We show 100 independent realisations with different initial conditions for each value of b. (b) Decay rate σ
defined by ψN ∼ exp(σN) as a function of the long axis b. Symbols correspond to the ray tracing approach
while lines correspond to the linear local analysis (3.19). The upper branches correspond to σ = ln |λ+| while
the lower branches correspond to σ = ln |λ−|. Note that the data for ω = 0.76 stop because of the upper bound
bc ≈ 1.17 as given by (3.4).

exponential rate, irrespective of the initial conditions. The duration of the transient before
the ray effectively converges towards the attractor depends on the initial conditions and
corresponds to the early reflections far from the final limit cycle. Note that for this
particular case, the particular value of b defined by (3.22) is bc+ = 1.097. Consistent with
the theoretical prediction, we observe real values for the decay rate when b < bc+ (see the
two cases b = 1.02 and b = 1.05 in figure 7a) and complex values when b > bc+ (see the
case b = 1.2).

A best fit ψN ∼ exp(σN), where N is the number of cycles, is computed in the range
10−14 < ψN < 10−3 and averaged over 103 independent rays initialised randomly within
the whole volume. Results are shown in figure 7(b). An excellent agreement between the
local theoretical prediction and the ray tracing approach is observed for various values of
b and three different frequencies within the attractor range. Interestingly, the decay rate
is σ = ln |λ−| = ln |K| when b = 1 while it is smaller when b > 1. There is therefore a
drastic difference between the case b = 1, for which all rays converge rapidly toward a
plane different for each ray, and the case b > 1, for which the convergence rate is smaller
and actually tends to 0 when b → 1. Although the breaking of the axisymmetry does
create a globally attracting plane, as already discussed previously, the rate of convergence
towards this unique plane increases with b and is actually maximum once b > bc+. In that
case, it is actually half of that observed when b = 1.

4. Numerical simulations of the linear viscous problem

Up to now, we have only discussed the properties of the ray paths which are only valid in
the limit of vanishing Ekman numbers. The link between the properties of the ray paths
and the actual viscous solution of the original linear Navier–Stokes equations (2.1) is not
obvious. In this context, it is desirable to check whether the globally attracting solutions
discussed in previous sections have any counterpart when considering the direct solution
of (2.1).

To that end, we solve the linear viscous equations (2.1) using the spectral element
solver Nek5000 (Fischer 1997; Deville, Fischer & Mund 2002). The domain is discretised
using a number E of hexahedral elements. Elements have been refined close to all
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boundaries to properly resolve viscous Ekman layers. The velocity is discretised within
each element using Lagrange polynomial interpolants based on tensor-product arrays of
Gauss–Lobatto–Legendre quadrature points. The polynomial order ld of the expansion
basis on each element is fixed to 11 in this study, while the number of elements goes
up to E = 29 952 for E = 10−7. Convergence has been tested by gradually increasing the
polynomial order for a fixed number of elements. The Coriolis term is treated explicitly
by a third-order extrapolation scheme whereas the viscous terms are treated implicitly
by a third-order backward differentiation scheme. Similarly to the ray tracing approach
discussed previously, we focus on the particular case H = 1, α = π/4 and ω = 0.8.

Since we want to compare the axisymmetric conical geometry with its elliptic
counterpart, care must be taken when choosing the forcing. In particular, latitudinal
libration is not well suited since the forcing would be of viscous nature in the axisymmetric
case (since the velocity at the boundaries would be purely tangential) while there would be
a non-zero normal velocity and hence pressure coupling in the non-axisymmetric elliptic
case. Another constraint comes from the corners, which will inevitably contribute to the
viscous dynamics by emitting their own singular shear layers. Taking into account these
considerations, we opted for a rotating vertical forcing at the bottom plane of the cone,
sometimes called negative nutation (Sibgatullin et al. 2017), defined by

uz(z = 1) =
{
(x cos(ωt)− y sin(ωt)) f (r), if r < 1,
0, if r > 1,

(4.1)

where f (r) = 2r3 − 3r2 + 1 is a smoothing function to ensure that the forcing vanishes
close to the corners and r =

√
x2 + y2 is the cylindrical radius. The other two velocity

components are zero and the other boundaries are all no slip. A similar forcing has
already been used both experimentally (Pacary et al. 2023) and numerically (Sibgatullin
et al. 2019). Note that we obtained qualitatively similar results when considering an
axisymmetric forcing similar to that used by Boury et al. (2021) for example.

From a fluid at rest, we run the simulation until a periodic response is obtained. In
order to quantify the inhomogeneities between different attractor planes, we first define the
2-D attractor path for each plane obtained from the intersection between a vertical plane
containing the origin and the frustum. Each plane is parametrised with its azimuthal angle
with respect to the x direction. The plane crossing the short elliptic axis thus corresponds to
φ = 0 while the plane crossing the long elliptic axis corresponds to φ = ±π/2. Note that
the 2-D attractor path on each plane depends on the ellipticity b. While the same attractor
path is expected on each individual plane when b = 1, different attractors (but the same
rectangular topology) are expected when b > 1. We then compute the averaged velocity
amplitude along each path by averaging over time once the periodic response is obtained
and along the attractor path. This averaged amplitude is a constant in the axisymmetric
case b = 1 but depends on the orientation of the plane once b /= 1. As we vary the
ellipticity of the domain, the amplitude of the response also varies. In order to focus on
the azimuthal inhomogeneities induced by the wave attractor, we further normalise the
amplitude by its average over all azimuthal angles φ.

This ratio is plotted in figure 8(a) for a fixed E = 10−7 and varying b ≥ 1. As expected,
it is unity for the axisymmetric case b = 1. As b increases, a clear focusing of the
energy along the short axis corresponding to φ = 0 is observed. Note that a second local
maximum is also observed along the long axis φ = ±π/2. The same simulations are now
run at a fixed b = 1.2 and varying Ekman number from E = 10−4 down to E = 10−7.
Results are displayed in figure 8(b). While focusing is observed for all Ekman numbers, it
is more and more pronounced as the Ekman number decreases. Note again that a residual
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Figure 8. Azimuthal profile of the velocity amplitude averaged over time and over the 2-D attractor path
on each meridional plane. (a) Variable long axis b at constant Ekman number E = 10−7. The amplitude is
normalised by its azimuthal average. (b) Variable Ekman number at constant long axis b = 1.2. The forcing
frequency is ω = 0.8 and the forcing pattern is defined by (4.1) in all cases.

localisation also persists around the long axis φ = ±π/2. This secondary localisation
of the energy is not expected from the ray tracing approach only since it corresponds
to an unstable equilibrium as discussed previously in § 3.2.1. We have observed such
residual localisation strongly depends on the particular choice of forcing and seems to
be partially dependent on contributions from the bottom corner (see figure 9b), which
goes well beyond our current understanding mostly based on local ray tracing.

A visual inspection of the wave field qualitatively confirms this conclusion. Figure 9
shows the vertical velocity component at a particular time once a periodic response has
been obtained. One can see that the response along the attractor path is much stronger in
the y = 0 plane (see figure 9a) than it is in the x = 0 plane (see figure 9b). Note of course
that the 2-D attractor path (shown as dashed lines in figure 9a,b) is not the same in both
planes since the domain is non-axisymmetric. This explains why we observe apparently
curved wave beams. They correspond to the gradual modification of the attractor path as
the geometry changes along the azimuthal direction due to the weak elliptic deformation.
Similar structures were for example observed by Bühler & Muller (2007). We also see in
figure 9(b) that the attractor path in the unstable plane x = 0 is very close to the bottom
corner, which perhaps explains why we have observed a secondary peak of energy in
figure 8. The bottom corner forces a local shear layer which might overlap with the attractor
beam in a non-trivial way. Nevertheless, figure 9(c) clearly shows that the amplitude of the
stable attractor localised around the plane y = 0 is significantly larger than that of any
other planes, including the unstable attractor localised in the x = 0 plane.

In order to show the local structure of the super-attractor, we define a plane
perpendicular to the attractor path along the short axis, as shown in figure 9(a). The
velocity amplitude is averaged over time and normalised by its local maximum closest to
the attractor path to obtain the maps displayed in figure 10. We compare the axisymmetric
case b = 0 on the bottom row with the non-axisymmetric case b = 1.2 on the top row. For
the axisymmetric case, one observes the gradual focusing of the axisymmetric wave beam
around the attractor position as the Ekman number is decreased. The observed curvature
is due to intersection between the flat plane and the curved axisymmetric wave beam. This
axisymmetric pattern is clearly broken for b = 1.2. At E = 10−5, while we observe a local
maximum close to the theoretical position of the super-attractor (which corresponds to
the origin with our choice of coordinates), no local beam is observed. At lower Ekman
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Figure 9. Vertical velocity component in the planes (a) y = 0, (b) x = 0 and (c) z = 1.9. The same colour scale
is used for the three plots. Parameters are E = 10−7, ω = 0.8 and b = 1.2. The inclined line in (a) indicates the
profile of the plane shown in figure 10. The dotted lines in (a,b) indicate the plane z = 1.9 shown in (c) while
the dashed lines show the 2-D attractor path in each meridional plane.

numbers, however, a localised beam is observed with a complex anisotropic structure. It is
more elongated along the transverse direction y than along the in-plane coordinate s. This
confirms that the energy injected by the global large-scale forcing is eventually focused
preferentially onto the super-attractor path localised around the y = 0 plane. While it is too
early to convincingly discuss possible scalings with the Ekman number, we nevertheless
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Figure 10. Maps of averaged velocity amplitude normalised by its maximum value on the local plane shown
in figure 9(a). The Ekman number is decreasing from left to right. The top row (a–c) corresponds to the
non-axisymmetric case b = 1.2 while the bottom row (d–f ) corresponds to the axisymmetric case b = 1. The
line shows the iso-contour corresponding to 90 % of the local maximum value around the theoretical attractor
location which is the origin of the local frame used here.

report the amplitude scaling observed in our simulations in figure 11. We consider three
different measures of amplitudes. The first is obtained by averaging over all 2-D attractor
paths of each meridional section, which we refer to as global. The second corresponds to
the average on the short axis attractor only while the last corresponds to the local amplitude
maximum obtained from the maps displayed in figure 10. We observe that, for all three
measures, the amplitude increases as the Ekman number decreases. The local measure
might follow the scaling E−1/6, which is expected from classical 2-D attractors (He et al.
2023) forced by inviscid forcing, although a much larger range of Ekman numbers should
be explored to convincingly conclude on this matter. This is left for future works.

5. Discussion

We have shown how a 2-D attractor can be localised in three dimensions into a particular
plane by breaking the axisymmetry of the fluid domain. All ray paths have been observed
to converge to a particular 1-D curve contained within a specific plane. A local analysis
has allowed us to confirm the exponential decay of the horizontal angle and has been
successfully compared with ray tracing computations. While numerical simulations have
shown a localisation of the energy onto the attracting plane, the harmonic response also
contains contributions from the corners which might be at the origin of a secondary peak
of energy along the long axis, which is unstable according to our ray tracing analysis.
By construction of our particular geometry, the secondary unstable attractor is more and
more affected by the corner contributions as b increases, which might explain why we
observe a secondary energy increase there. However, the observed increase of kinetic
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Figure 11. Amplitude scaling with Ekman for three different measures: the average is performed over all
attractor paths irrespective of their azimuthal orientation (Global), only along the ray path corresponding to
the short axis (Short axis) or focusing on the local maximum observed on the maps shown in figure 10 (Local).
Note that the local value at E = 10−4 is absent since we cannot unambiguously measure a local maximum in
that case.

energy along the stable super-attractor can only be explained by a secondary focusing since
its topology within the particular plane y = 0 remains the same regardless of the elliptic
deformation b.

While our example has convincingly shown the existence of such super-attractors,
generalising this result to other geometries would be valuable. We have focused on
super-critical reflections only since α > θ in our case while it is known that the focusing
properties of the 3-D reflection is non-trivially depending on the criticality of the
slope (Pillet et al. 2019). We suspect that similar super-attractors exist in other conical
geometries, including those involving sub-critical slopes, such as those used by Klein et al.
(2014), Sibgatullin et al. (2017) and Boury et al. (2021), provided that the axisymmetry
used up to now is broken. Other geometries known to support 2-D or axisymmetric
attractors, such as the spherical shell or the paraboloidal/parabolic-shaped stadium,
can probably generate super-attractors once elliptically deformed. In that respect, much
remains to be done to bridge the gap between the local analysis close to the attracting
plane and the global properties for which the whole geometry, and not just its asymptotic
behaviour close to the attracting plane, matters.

We have considered the particular case of an elliptic deformation in order to break
the axisymmetry. While it has the advantage of being a well-defined perturbation of the
axisymmetric reference case, it is certainly not the only way to proceed. It would be
interesting to consider other types of non-axisymmetric geometries such as cuboids (Wu,
Welfert & Lopez 2023). Possible connections with quantum chaos in stadium billiards
resulting in scarred patterns could also be explored (Kudrolli, Abraham & Gollub 2001).
One could also further investigate the required geometrical properties of the fluid container
necessary for the emergence of super-attractors. Finally, it is important to realise that,
while the final super-attractor is indeed one-dimensional in the sense that all rays converge
towards a 1-D parametric curve, this particular attractor is contained inside a plane since
it corresponds to the localisation of the otherwise 2-D attractor. An interesting question
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would be to know whether general 1-D curves, not necessarily contained within the
same plane, can be super-attractors and, if so, in which geometries. This is a tremendous
geometrical problem and we hope this preliminary work will motivate future studies in
that direction.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.5.
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Appendix A. Three-dimensional reflection law

In this section, the 3-D reflection law is obtained. The relation between the incident and
reflected angles φi and φr can be obtained by writing down the conditions on the velocity
vectors V i and V r during the reflection process. We consider a plane surface inclined
by an angle α (between 0 and π/2) with respect to the horizontal plane and defined it
using its normal vector n oriented towards the fluid. The first condition is the condition of
non-penetrability, which reads

(V r + V i) · n = 0. (A1)

The second condition is the conservation of the horizontal velocity perpendicular to the
normal, which can be written as

(V r × ez) · n = (V i × ez) · n. (A2)

They are two other conditions that prescribe the direction of propagation of the incident
and reflected beams which should be on the axial cone of angle θ :

tan2 θ‖V r × ez‖2 = |V r · ez|2, (A3)

tan2 θ‖V i × ez‖2 = |V i · ez|2. (A4)

To obtain a general formula, the idea is to express the vectors n, V r and V i in the frame
(x′, y′, z) oriented along the steepest descent direction (see figure 1).

The above equations can then be written as

(Vrx′ + Vix′) tanϕn + (Vrz + Viz) = 0, (A5a)

Vry′ = Viy′, (A5b)

tan2 θ(V2
rx′ + V2

ry′) = V2
rz, (A5c)

tan2 θ(V2
ix′ + V2

iy′) = V2
iz, (A5d)

where ϕn is the angle (between 0 and π) of the vector n with respect to the vertical axis.
Using (A5b) to eliminate Vry′ and Viy′ in the equation obtained by subtracting (A5d)–(A5c)
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gives

tan2 θ(V2
rx′ − V2

ix′) = V2
rz − V2

iz, (A6)

which, after eliminating vix′ using (A5a), reduces to

(tan2 θ − tan2 ϕn)Vrx′ = 2 tanϕnViz + (tan2 θ + tan2 ϕn)Vix′ . (A7)

Using

Viz

Viy′
= cotanϕi

sin(φi − φn)
,

Vix′

Viy′
= cotan(φi − φn),

Vrx′

Vry′
= cotan(φr − φn), (A8a–c)

we get an expression that gives the angle φr − φn ,

tan(φr − φn) = (tan2 θ − tan2 ϕn) sin(φi − φn)

(tan2 θ + tan2 ϕn) cos(φi − φn)+ 2 tanϕncotanϕi
. (A9)

This formula applies to all configurations. Only the term tanϕncotanϕi depends on the
orientation of the normal n and of the incident beam V i with respect to the vertical.
As ϕi = π/2 − θ and ϕn = α (respectively ϕi = π/2 + θ and ϕn = π − α) when these
vectors are oriented upwards (respectively downwards), we get

tan(φr − φn) = (tan2 θ − tan2 α) sin(φi − φn)

(tan2 θ + tan2 α) cos(φi − φn)± 2 tanα tan θ
, (A10)

where the sign − is taken when the two vectors n and Vi are oriented oppositely with
respect to the vertical (one of the two vectors is oriented upward and the other downward).
This formula works for all types of reflections (subcritical or supercritical), and for
horizontal and vertical surfaces as well. For this reason, we think that it is more convenient
than the formulas that have been used in Rabitti & Maas (2014) and Pillet et al. (2018).

Appendix B. Local behaviour for b = bc±
For the values b = bc±, the two eigenvalues are equal (to λc± = ±√

K) and (3.21a,b)
giving C0 and D0 break down. In that case, the two eigenvectors given by (3.19b) are also
equal (to Ψc±). One should introduce another vector, say E1 = (1, 0)� to decompose the
vector Ψ2p. Using the fact that when b = bc±,

M2pE1 = KpE1 ∓ pKp−1/2
√

2(1 + K)Ψc±, (B1)

one can easily show that

Ψ2p = (
Cc±Kp ∓ Dc pKp−1/2

√
2(1 + K)

)
Ψc± + DcKpE1, (B2)

where

Cc± = φ0 − π

1 ± √
K
, Dc = ψ0 −

√
2

1 + K
(φ0 − π). (B3a,b)
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