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Abstract. A symplectic ¢bration is a ¢bre bundle in the symplectic category (a bundle of sym-
plectic ¢bres over a symplectic base with a symplectic structure group). We ¢nd the relation
between the deformation quantization of the base and the ¢bre, and that of the total space.
We consider Fedosov's construction ofdeformation quantization.Wegeneralize the Fedosov con-
struction to the quantization with values in a bundle of algebras.We ¢nd that the characteristic
class of deformation of a symplectic ¢bration is the weak coupling form of Guillemin, Lerman,
and Sternberg.We also prove that the classical moment map could be quantized if there exists
an equivariant connection.
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1. Introduction: Statement of the Problem and the Main Theorem

Quantization is a map from functions on a (phase) space to operators on some
Hilbert space. It involves a parameter (usually the Planck's constant h or
T � h=2p). The product of two operators is given by some series in T. The
quantization map transforms the product of functions into a noncommutative prod-
uct of corresponding operators. The zero degree term in the T-decomposition of a
noncommutative function (series in T with functional coef¢cients) gives a com-
mutative product of functions. The term of degree one linearly depend on the Poisson
bracket. This allows one to think of quantization as a deformation of a multiplicative
structure of the algebra of functions on a manifold in the direction of the Poisson
bracket. In the formal deformation quantization one does not consider questions
of convergence of series in T. However, the formal deformation turns out to be
a useful tool for describing global properties of a manifold. The concept of
deformation quantization was described in [1]. When we say quantization we mean
deformation quantization.

Fedosov found a beautiful geometrical construction of deformation quantization
[8], [10] which we use here. What follows can be considered as an exercise in his
domain, it is in fact a generalization of the ¢rst part of his article [9] and owes
a lot to its methods.

Compositio Mathematica 123: 131^165, 2000. 131
# 2000 Kluwer Academic Publishers. Printed in the Netherlands.

https://doi.org/10.1023/A:1002452002677 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002452002677


Quantization of a symplectic (or Poisson) manifold M is a construction of a
noncommutative associative product on M. It is called a �-product. A �-product
is de¢ned as a product on C1�M���h��: This noncommutative algebra AT should
be a deformation of the algebra of functions on the manifold, C1�M�. Let
�M;o0� be a symplectic manifold. Then the symplectic form o0 de¢nes a Lie algebra
structure on C1�M�, called the Poisson structure. (The Jacobi identity follows from
the fact that the form o0 is closed.) For f ; g 2 C1�M� let ff ; gg � �df �]�g�, where
] : T �M ! TM, de¢ned by o0 (see Section (2.2)).

DEFINITION 1.1. Deformation quantization of a symplectic manifold �M;o0� is
an associative algebra AT � C1�M���T�� with an associative product
� : AT �AT! AT such that

(1) The product � is local, that is, in the �-product a�x; T� � b�x; T� �P1k�0 Tkck�x�;
the coe¤cients ck�x� depend only on ai; bj and their derivatives @aai; @bbj with
i � j � jaj � jbjW k for any a�x; T� �P1i�0 Tiai�x� and b�x; T� �P1j�0 T jbj�x�;
ai�x�; bj�x� 2 C1�M�

(2) It is a formal deformation of the commutative algebra C1�M� :
c0�x� � a0�x�b0�x�:

(3) The correspondence principle gives

�a; b� :� i
T
�a � bÿ b � a� � fa0�x�; b0�x�g � T r�a; b�;

where r�a; b� 2 AT:

(4) There is a unit: a�x; T� � 1 � 1 � a�x; T� � a�x; T�:

DeWilde and Lecomte [6] and also Fedosov [8] proved that on any symplectic
manifold there exists a quantization.

The following idea lies behind the Fedosov construction (see [7]): a Koszul-type
resolution is considered for C1�M���T��. Each term of the resolution has a
noncommutative algebraic structure, thus providing the algebra of functions with
a new noncommutative product. Fedosov constructs such a resolution by using
the differential forms on the manifold with values in the Weyl-algebra bundle.
The main step is to ¢nd a differential on it which respects the algebra structure.
This differential is called Fedosov connection and is obtained by an iteration pro-
cedure from a torsion free symplectic connection on the manifold.

It is known [20, 22] that any connection on a symplectic manifold gives rise to a
torsion-free symplectic connection. Hence, one can get the Fedosov connection from
any connection on a tangent bundle: ¢rst adding some tensor to make it symplectic
(Section 2.2) and then applying the iteration procedure.

We introduce a notion of an F -manifold:
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DEFINITION 1.2. An F -manifold F is the following triple (manifold, deformation
of a symplectic form, a connection): F � �M;o;r�; where o � o0 � Ta, and
a 2 G�M;L2T�M���T��, a series in T with coef¢cients being closed 2-forms on the
manifold M:

In a recent article [13] a similar object is called a Fedosov manifold, namely, a
symplectic manifold together with a symplectic connection. Indeed, these three
objects �M;o0;r� de¢ne the ¢rst three terms in the �-product:

. Algebraically a manifold is described by the algebra of functions on it, that isM
de¢nes the structure of the commutative product.

. A symplectic form de¢nes the Poisson structure and, hence, the term at T.

. A connection de¢nes the term at T2 (as follows from [20]).

It turns out that these three terms determine the higher terms in the � product. The
deformation quantization theorem ([8]) can be stated as follows

THEOREM 1.3 (Fedosov). An F-manifold �M;o;r� uniquely determines a
�-product on the underlying manifold M.

Deligne [5] and Nest and Tsygan [25] showed that the class of isomorphisms of
quantizations of a symplectic manifold M is determined by the class of the form
o in H2�M���T��: It is called a characteristic class of deformation.

We study the deformation of the twisted products of two F -manifolds �B;oB;rB�
and �F ; s;rF �. Our question is the following: how to de¢ne the product of two
F -manifolds and what the �^product on the total space is, in other words, what
a `twisted product of quantizations' is.

We show that under certain assumptions a twisted product of two F -manifolds is
again an F -manifold. So we want to relate the �-products on these three manifolds.

One can regard the productM � B j� F as a ¢bre bundleM! B over a symplectic
base B with a symplectic ¢bre F :Obviously, the product depends on how twisted the
symplectic ¢brationM � B j� F is. This can be described by a connection onM! B
which should be compatible with the symplectic form on M.

When the structure group of the bundle M ! B; G, acts by symplectomorphisms
on ¢bres this bundle is a symplectic ¢bration ([15], see Section 3). The total space M
is symplectic and the ¢bres are symplectic submanifolds of it, provided that the
action be Hamiltonian and G be a ¢nite-dimensional Lie group.

The case of B being a cotangent bundle of some differentiable manifoldX was ¢rst
developed by Sternberg [27]. His construction describes the movement of a `classical
particle' in Yang^Mills ¢eld for any gauge group G and any differentiable X .
Weinstein gave a general construction of the symplectic form on M in [29].
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The quantization of a symplectic ¢bration is a quantization with coef¢cients in the
auxiliary bundle of ¢berwise quantizations. This leads us to a more general case of
quantization with coef¢cients in some bundle of algebras (some examples of such
bundles are considered in [10]). Our case is more dif¢cult than the quantization with
values in most other auxiliary bundles. Fibres of the auxiliary bundle obtained from
the symplectic ¢bration structure are noncommutative algebras. This non-
commutativity of ¢bres makes the quantization procedure more complicated.

We believe that it is useful to understand that the quantization of symplectic
¢brations respects a ¢bre bundle structure in order to see that the quantization
is a fundamental notion like some homology theory.

We make a new de¢nition:

DEFINITION 1.4. An F -bundle (with an underlying manifold B) is a triple
C � �F;A;rA�; where

. F � �B;oB;rB� is an F -manifold,

. A is an auxiliary bundle of algebras over B,

. rA is a covariant derivative on A, which respects the algebra structure on the
¢bres.

We construct an F -bundle from a symplectic ¢bration M! B. Each ¢bre of
M ! B is an F -manifold, so we can quantize the ¢bres. Provided the connection
rF be G-invariant we can construct a new bundle A! B; the bundle of algebras
of quantized functions on ¢bres. The ¢bre of A over a point b is the quantization
of the ¢bre of M ! B at that point:

Ab � AT�Mb�: �1�

The bundle A is de¢ned by (1). A connection on the bundle M ! B determines a
covariant derivative rA on the bundle A: Its construction is carried out in section
(5.1) in the way that it respects the algebraic structure, that is this covariant deriva-
tive is a derivation of the �-product on A.

An F -bundle corresponds to an F -manifold modeled on M, the total space of the
symplectic ¢bration, and hence provides a quantization of the total space. Our main
theorem is:

THEOREM 1.5. Consider a symplectic ¢bration M ! B with a standard ¢bre being
an F-manifold �F ; s;rF � and the base an F-manifold F � �B;oB;rB�. An F-bundle
�F;A;rA� with ¢bres Ab � AT�Mb� gives a quantization of the underlying manifold
B with values in the auxiliary bundle. This also de¢nes a quantization of the total
space M.
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The main claim of this theorem is that a quantization of the base with values in the
auxiliary bundle (1) corresponds to a certain F -manifold �M;o;r�, with o being a
series in T starting from a symplectic form on M.

To carry out the program ¢rst of all one has to construct a symplectic form on M.
There is a one-parameter family of symplectic forms on the total space. The con-
struction involves the notion of the weak coupling limit of Guillemin, Lerman
and Sternberg [15]. The behavior of the �-product when the parameter tends to zero
gives us a way to understand the relation between quantizations of the base and
the ¢bre with the quantization of the total space.

Our main Theorem (1.5) can be reformulated as a statement about the solutions of
two equations given in Theorem (5.5).

Fedosov's quantization procedure is discussed in Section 2. The classical setup for
symplectic ¢brations is discussed in Section 3 and the quantization of the moment
map is presented in Section 4. Main results about the quantization of symplectic
¢brations are given in Section 5, examples are discussed in the last section.

NOTATIONS

Repeated indices assume summation.

Grading and ¢ltration of the Weyl algebra bundle are Z-grading and Z-¢ltration,
we do not use the natural Z2-grading on the differential forms.

For any bundle E !M; An�M; E� denotes C1-sections of n-form bundle with
values in the bundle E,

Ak�M; E� � G�M;LkT �M 
 E�; A�M; E� � �1k�0Ak�M; E�:
An�M� denotes the bundle of n-forms on M:

The term `connection' is used in two senses:

. for a covariant derivative on any vector bundle, usually denoted by r

. for a connection on a ¢bre bundle that is a splitting of the tangent bundle to the
total space of a ¢bre bundle into a sum of a vertical and a horizontal
subbundles.

2. Generalities on Deformation Quantization

The subject of this section becomes nowadays fairly standard (see for example an
excellent introduction to Fedosov quantization [19]).

2.1. WEYL ALGEBRA OFAVECTOR SPACE

Let E be a vector space with a nondegenerate skew-symmetric form o. The algebra of
polynomials on E is the algebra of symmetric powers of E�, S�E��, and it has a
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skew-symmetric form on it which is dual too. Let e be a point in E and feig denote its
linear coordinates in E with respect to some ¢xed basis. Then feig de¢ne a basis in E�.
Let oij be the matrix for the skew-symmetric form on E�. Let us consider the power
series in T with values in S�E��:

DEFINITION 2.1. The Weyl algebra W �E�� of a vector space E� is an associative
algebra

W �E�� � S�E����T�� : a�e; T� �
X
kX 0

ak�e�Tk;

given by the Moyal^Vey product:

a � b�e; T� � exp ÿ iT
2
okl @

@xk
@

@zl

� �
a�x; T� b�z; T�

����
x�z�e

: �2�

The Lie bracket is de¢ned with respect to this product. We can look at this algebra as
at a completion of the universal enveloping algebra of the Heisenberg algebra on
E� � TC, namely, the algebra with relations

ei � e j ÿ e j � e j � ÿiToij �3�

where oij � o�ei; e j� de¢nes a Poisson bracket on E�.
Hence, one can de¢ne the Weyl algebra as

W �E�� � U�E� � TC�:

Let us consider the product of the Weyl algebra and the exterior algebra of the
space E�: W �E�� 
 LE�. Let dxi be the basis in LE� corresponding to ei in W �E��.

There is a decreasing ¢ltration on the Weyl algebra W �E��: W0 �W1 �W2 � . . .

given by the degree of generators. The generators e's have degree 1 and T has degree
2, so that the condition (3) is homogeneous of degree 2:

Wp � felements with degreeX pg:

One can de¢ne a grading on W as follows

griW � felements with degree � ig:
it is isomorphic to Wi=Wi�1. One can see that the product (2) preserves the grading.

DEFINITION 2.2. An operator onW �E�� 
 LE� is said to be of degree k if it maps
Wi 
 LE� to Wi�k 
 LE� for all i.

Such an operator de¢nes maps griW 
 LE� to gri�kW 
 LE� for all i.
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DEFINITION 2.3. Derivation on W �E�� 
 LE� is a linear operator which satis¢es
the Leibniz rule:

D�ab� � �Da�b� �ÿ1�~a ~Da�Db�

where ~a and ~D are corresponding degrees. It turns out that all C��T��-linear
derivations are inner.

LEMMA 2.4. Any linear derivation D on W �E�� 
 LE� is inner, namely there exists
such v 2W �E�� so that Da � i=T�v; a� for any a 2W �E��

Proof. Indeed, @=@eia � i=2T�oijej; a�:
So for any derivation one can get a formula:

Da � i
T

1
2
oijeiDe j; a

� �
: &

One can de¢ne two natural operators on the algebra W �E�� 
 LE�: d and d� of
degree ÿ1 and 1 correspondingly. The operator d is the lift of the `identity' operator

u : ei 
 1! 1
 dxi

and d� is the lift of its inverse. On monomials ei1 
 . . .
 eim 
 dxj1 ^ . . . ^ dxjn 2
Wm�E�� 
 LnE� d and d� can be written as follows:

d : ei1 
 . . .
 eim 
 dx j1 ^ . . . ^ dxjn 7!Xm
k�1

ei1 
 . . . beik . . .
 eim 
 dxik ^ dxj1 ^ . . . ^ dxjn

d� : ei1 
 . . .
 eim 
 dxj1 ^ . . . dxjn 7!Xn
l�1
�ÿ1�lejl 
 ei1 
 . . .
 eim 
 dxj1 ^ . . . ddxjl . . . ^ dxjn

LEMMA 2.5. Operators d and d� have the following properties:

da � dxj
@a
@ej
� ÿ i

T
okl ekdxl; a

� �
; d�a � e ji @

@xj
a; d2 � d�2 � 0

On monomials ei1 
 . . .
 eim 
 dx j1 ^ . . . ^ dx jn

dd� � d�d � �m� n�Id;

where Id is the identity operator. Any element a 2 grmW �E�� 
 LnE� has a
decomposition:

a � 1
m� n

�dd�a� d�da� � a0;
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where a0 is a projection of a to the center of the algebra, that is the summands in a
which do not contain e-s.

2.2. SYMPLECTIC CONNECTIONS (COVARIANT DERIVATIVES)

The term symplectic connection in this section in fact must be changed to symplectic
covariant derivative to avoid confusion with another symplectic connection notion in
the next Section. However there is already an established practice to call a covariant
derivative a connection which we decided to follow here. We hope that one can get
used to distinguish one from the other from the context.

Let us consider connections on a manifold M.

PROPOSITION 2.6. Let o be a skew-symmetric 2-form on TM. Then there exists a
torsion-free connection r preserving this form only if o is closed.

Proof. The skew-symmetry of o is the following condition: o�X ;Y � � ÿo�Y ;X �.
The connection r is torsion-free when rXY ÿ rYX � �X ;Y �. Suppose such r exists.
Then it preserves the form o when ro � 0. This means that for all X ;Y ;Z 2 TM:

rX �o�Y ;Z�� � o�rXY ;Z� � o�Y ;rXZ� �4�
Since o�Y ;Z� is a function rX �o�Y ;Z�� � Xo�Y ;Z�. Then,

Xo�Y ;Z� ÿ Yo�X ;Z� � Zo�X ;Y �
� o�rXY ;Z� ÿ o�rXZ;Y � ÿ o�rYX ;Z��
� o�rYZ;X � � o�rZX ;Y � ÿ o�rZY ;X �
� o��X ;Y �;Z� ÿ o��X ;Z�;Y � � o��Y ;Z�;X �

which is exactly the condition do � 0. &

Remark 2.7. Here we want to make an analogy with a Riemannian case. The
Riemannian metric is a symmetric two-form and there is a unique torsion free con-
nection compatible with it (the Levi-Civita connection).

The statement of the uniqueness of Levi-Civita connection in the Riemannian case
is substituted by the requirement for the form to be closed in the skew-symmetric
setting:

. Symmetric: A torsion-free compatible connection always exists and unique
(Levi-Civita connection).

. Skew-symmetric: A torsion-free compatible connection exists if the form is
closed and, in general, not unique.

Let M be a symplectic manifold with a symplectic form o; a closed and
nondegenerate skew-symmetric form 2-form on TM. There are many different
torsion free connections preserving it.
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DEFINITION 2.8. A connection which preserves a symplectic form is called a sym-
plectic connection.

Any connection on a symplectic manifold gives rise to a symplectic connection:

PROPOSITION 2.9 ([20, 22]). Let o be a closed nondegenerate 2-form. Then for
every connection r there exists a 3-tensor S, such that

~r � r � S

be a connection on TM compatible with o. Then

r̂XY � ~rXY ÿ 1
2
Tor�X ;Y �; X ;Y 2 TM

de¢nes a torsion-free connection compatible with the form o. The 2-form Tor is the
torsion of the connection ~r : Tor�X ;Y � � ~rXY ÿ ~rYX ÿ ~r�X ;Y �

The tensor S is de¢ned as follows:

SXY � 1
2
f�rXo��Y ; :�g];

where ] : T �M! TM is the inverse to [ : TM ! T �M u[ � o�u; :� for u 2 TM:

Symplectic connections form an af¢ne space with the associated vector space
A1ÿM; sp�2n��; the Lie algebra sp�2n� valued 1-forms on M.

2.3. DEFORMATION QUANTIZATION OFA SYMPLECTIC MANIFOLD

LetM2n be a symplectic manifold with a symplectic form o. In local coordinates at a
point x:

o � oijdxi ^ dx j:

The symplectic form on a manifold M de¢nes a Poisson bracket on functions onM.
For any two functions u; v 2 C1�M�:

fu; vg � oij @u
@xi

@v
@x j �5�

where �oij� � �oij�ÿ1.
We can de¢ne the bundle of Weyl algebras WM , with the ¢bre at a point x 2M

being the Weyl algebra of T �xM. Let fe1; . . . e2ng be 2n generators in T �xM, corre-
sponding to dxi. The form oij de¢nes pointwise Moyal^Vey product.

The ¢ltration and the grading in WM are inherited from W �T �xM� at each point
x 2M. Denote by W i the ith graded component in WM :

WM � �iW i:
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A symplectic connection r acts on any symmetric power of the cotangent bundle by
the Leibniz rule. Moreover, the cotangent bundle T �M � W1, hencer acts naturally
on the sections G�M;W i� with values in G�M;W i 
 T �M�.

It preserves the grading, in other words it is an operator of degree zero. In general
this connection is not £at: r2 6� 0. Fedosov's idea is that forWM bundle one can add
to the initial symplectic connection some operators not preserving the grading so
that the sum gives a £at connection on the Weyl bundle.

THEOREM 2.10 (Fedosov). There is a unique set of operators rk : G�M;W i� !
G�M; T �M 
W i�k� such that

D � ÿd�r � r1 � r2 � . . . �6�

is a £at connection and d�ri � 0:There is a one-to-one correspondence between formal
series in T with coef¢cients in smooth functions C1�M� and horizontal sections of this
connection:

Q : C1�M���T�� ! Gflat�M;WM�: �7�

Main idea of the proof is to use the following complex:

0! G�M;W� !d A1�M;W� !d A2�M;W� !d . . . : �8�

This complex is exact since d is homotopic to the identity by d�. An equation for ri for
each i > 1 has the form

d�ri� � function�r; r1; . . . ; riÿ1�: �9�

It is not dif¢cult to show that this function is in the kernel of d hence ri exists.
First few terms in the recursive construction ofD, its £at sections and �-product in

coordinates are given in [18].
The noncommutative structure on the Weyl bundle determines a �-product on

functions by this correspondence, namely for two functions f ; g 2 C1�M���T��;

f � g � Qÿ1�Q�f � �Q�g��: �10�

In fact, the equation D2 � 0 is just the Maurer^Cartan equation for a £at con-
nection. One can see the analogy with the Kazhdan connection [12] on the bundle
of algebras of formal vector ¢elds. Notice that d � dxi@=@ei is of degree ÿ1. The
£atness of the connection is given by the recurrent procedure, namely starting from
the terms of degree ÿ1 and 0 one can get other terms step by step. While Kazhdan
connection does not have a parameter involved it has the same structure ^ it starts
with known ÿ1 and 0 degree terms. Other terms are of higher degree and can
be recovered one by one.

Let us also mention here that locally the connection D can be written as a sum of
two terms ^ one being a derivation along the manifold, the usual differential d,
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and the other, denote it G, being an endomorphism of a ¢bre of the Weyl algebra
bundle. Since all endomorphisms are inner, one can write it as an adjoint action
with respect to the Moyal^Vey product. G acts adjointly by an operator from
G�M;W� to G�M; T �M 
W�.

D � d � G � d � i
T
�g; ���; �11�

where g 2 G�M; T �M 
W�. Then the equation D2 � 0 becomes

dG� 1
2
�G;G�� � 0:

The same equation for g then is as follows:

o� dg� i
T

�g; g��
2
� 0; �12�

where o is a central 2-form. This equation states thatD2 is given by an adjoint action
of a central element, so it is zero. However, it turns out to be very important which
exactly form o is given in the center by the connection D. Inner automorphisms
of the Weyl algebra are given by the adjoint action of elements of the algebra
(Lemma 2.4). Its central extension gives the whole algebra. Curvature of the Fedosov
connection is zero, however its lift to the central extension is nonzero and de¢nes the
isomorphism class of quantization.

DEFINITION 2.11. The characteristic class of the deformation quantization is the
cohomology class of the form �o� 2 1

T
H2�M���T��:

2.4. QUANTIZATION WITH VALUES IN A BUNDLE OFALGEBRAS

This subject was discussed at length in the book [9], but here we want to look at it
from a slightly different angle. Given an F -manifold �B;o;rB� we know how to
construct a map C1�B� ! G�B;WB�. Let L ! B be a bundle of C��T��-algebras.
Now we want to generalize the problem of quantization and obtain a map:

QL : G�B;L� ! G�B;WB 
C��T�� L�:

In order to do that we need a connectionrL on L. LetRL 2 A2�B;L� be its curvature.
Also the sections of L must commute with sections of the Weyl algebra bundleWB.
Then we can de¢ne a connection on WB 
C��T�� L as the sum of connections.

r � rB 
 1� 1
 rL

with the curvature

R � RB 
 1� 1
 RL:
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We de¢ne a grading on WB 
C��T�� L as on WB. The operator RL could have a
degree if it changes the power of T, and since the degree of T is 2 it could only
be even: RL �PRL2k; kX 0 where

RL2k : Aq�B; gr��L�� ! Aq�2�B; gr��2k�L��:

One should add an extra term in the equation on ri (9) for each even i � 2k

d�r2k� � function�r; r1; . . . ; r2kÿ1� � RL2k:

Then like in Theorem 2.10 we can consider a complex similar to (8)

0! G�B;WB 
C��T�� L� !d A1�B;WB 
C��T�� L� !d A2�B;WB 
C��T�� L� !d . . .

with d acting only in WB. This complex is still exact (the 
-product is over a ¢eld
C��T��), since dRL � 0 one can ¢nd a preimage of RL and the reasoning is exactly
as before. The £at connection and the corresponding £at sections are constructed
similarly to [18].

However, in the case when L has a Lie algebra structure and RL is an inner action
of the form RL � i=T adH for some H 2 A2�B;L� the procedure changes! The
adjoint action might start from the degree ÿ2 term and one has to change not only
the equations (9), but also the initial d to balance it. This is exactly what happens
in the case of symplectic ¢brations and what makes it more interesting.

3. Symplectic Forms on Symplectic Fibrations

In this section we collect the facts known about symplectic ¢brations: we give a
de¢nition and construct a one-parameter family of symplectic forms on the total
space. One can ¢nd a nice exposition in the sixth chapter of the book [21], see also
[15].

The meaning of the term symplectic connection used in this section is different
from De¢nition 2.8. It is a connection which preserves the symplectic structure
on ¢bres (see De¢nition 3.3) while in Section 2 the symplectic connection was in
fact a symplectic covariant derivative preserving a symplectic form on a symplectic
manifold.

3.1. SYMPLECTIC FIBRATIONS

DEFINITION 3.1. A symplectic ¢bration is a locally trivial ¢bration p : M ! B
with a symplectic ¢bre �F ; s� whose structure group preserves the symplectic form
s on F . This means that
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(1) There is an open cover Ua of B and a collection of di¡eomorphisms
fa : pÿ1Ua ! Ua � F such that the following diagram commutes:

(2) For the ¢bre over b 2 B, Fb � pÿ1�b�, let fa�b� denote the restriction of fa to Fb

followed by projection onto F, fa�b� : Fb! F . Then

fba�b� � fb�b� � fa�b�ÿ1 2 Symp�F ; s�

for all a, b and b 2 Ua
T

Ub.

If p : M ! B is a symplectic ¢bration then each ¢bre Fb carries a symplectic struc-
ture sb 2 A2�Fb� de¢ned by

sb � fa�b��s
for b 2 Ua. The symplectomorphism class of the form is independent of a as follows
from the de¢nition. Also, if there is a G-invariant symplectic torsion-free connection
rF on F it de¢nes a symplectic torsion-free connection rb on each ¢bre Fb.

DEFINITION 3.2. A symplectic form o on the total space M of a symplectic
¢bration is called compatible with the ¢bration p if each ¢bre �Fb; sb� is a symplectic
submanifold of �M;o�, with sb being the restriction of o to Fb.

3.2. SYMPLECTIC CONNECTIONS

Each symplectic form on M compatible with the symplectic ¢bration p : M ! B
de¢nes a connection on it, that is a choice of splitting of the following short exact
sequence of vector bundles:

0! VM ! TM ! p�T B! 0:

Here VM is the canonically de¢ned bundle of vertical tangent vectors, that is those
¢elds which vanish on functions coming from the base.

DEFINITION 3.3. A connection on a ¢bre bundle M ! B is a splitting of the
tangent bundle of M into a sum of subbundles

G : TM � HM � VM; �13�
where HM � p�T B. The connection is compatible with a symplectic form on M; o
if at each point x 2M

HxM :� fX 2 TxMj o�X ;V � � 0 for all V 2 VxMg:
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Each symplectic form such that its restriction to ¢bres is nondegenerate de¢nes a
compatible connection. Namely, the horizontal subbundle consists of all vector ¢elds
which are perpendicular to the vertical ones with respect to the symplectic form.

3.3 INGREDIENTS: A CONNECTION ON A PRINCIPAL BUNDLE AND A HAMILTONIAN

ACTION ALONG THE FIBRES

Symplectic ¢brations are associated ¢bre bundles to the principal bundles with a
structure group being the group of symplectomorphisms of the ¢bre, so we have
a principal G-bundle and a symplectic manifold �F ; s� to start with.

Let us ¢rst consider a principal G-bundle, that is a smooth manifold P with a
smooth action P � Gÿ!P which is free and transitive. Then the quotient
P=G � B is a manifold.

For a principal bundle a connection can be de¢ned by a so-called connection
1-form. Namely, the ¢bres of a vertical subbundle VP are naturally identi¢ed with
g under the map: g! Vect�P� given by the in¢nitesimal action of G on P.

X 2 g 7! X̂ 2 Vect�P�:

Hence the horizontal subbundle HP can be described not only as a kernel of the
projection operator Pr : TP! VP, but also as a kernel of a connection 1-form:

l : TP! g:

It is a G^invariant form on the principal G-bundle P with values in the Lie algebra g,
such that

{X̂l � X ; for X 2 g:

Now let G act on a symplectic manifold �F ; s� by symplectomorphisms, that is
there is a group homomorphism

G! Symp�F ; s� : g 7!cg:

The in¢nitesimal action determines the Lie algebra homomorphism

g! Vect�F ; s� : X 7! X̂ ; defined by X̂ � d
dt

����
t�0

cexp�tX � �14�

A symplectic form determines a correspondence between functions and certain
vector ¢elds, called Hamiltonian vector ¢elds:

C1�F � ! Vect�F ; s� : H 7!XH ; defined by {XHs � dH: �15�
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DEFINITION 3.4. The action of G on F is called Hamiltonian if

(1) There is a lift g! C1�F � : X 7!HX

This means that there is a Hamiltonian function HX so that {X̂s � dHX :

(2) This map is a Lie algebra homomorphism H�X ;Y � � fHX ;HY g: �X ;Y � is the Lie
bracket in g and fHX ;HY g is the Poisson bracket in C1�F �.

(If a group action satis¢es only ¢rst condition it is called weakly Hamiltonian.) Let us
also mention the following equality:

H�X ;Y � � X̂HY ÿ ŶHX �16�

Hamiltonian action determines a map m : F ! g�; for each point x 2 F de¢ned by
hm�x�jXi � HX �x� for any X 2 g, where h�j�i is the pairing: g� � g! C. This map
is usually called a moment map, however for our purposes of quantization we will
call a map g! C1�F � a moment map as well. It is this map of algebras which
we are going to quantize.

3.4. WEAK COUPLING: CONNECTION  ! SYMPLECTIC FORM

The following proposition in its present form is an adaptation for our purposes of a
theorem about weak coupling form from [15].

PROPOSITION 3.5. Let G! Symp�F ; s� : g 7!cg be a Hamiltonian action on �F ; s�
with a moment map mF : g! C1�F �. Then every connection G on the principal
G-bundle P! B over a symplectic manifold �B;oB�; gives rise to a one-parameter
family of symplectic forms on the associated bundle M � P �G F ! B, which
restricts to the forms sb on the ¢bres:

Oe � e2oG � p�oB; �17�
where e is a small parameter and oG is the coupling form. This coupling form at each
point x 2M, p�x� � b is

oG � sb �HT ; �18�
where T 2 A2�B;VM�: T �X ;Y � � ÿPr��XH ;YH ��; X ;Y 2 T B: Pr is the projection
to the vertical subbundle of TM; VM: The Hamiltonian function HT is de¢ned
as follows: iTsb � dHT
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Remark 3.6. Notice that sb is nonzero only on vertical vectors, whileHT is nonzero
only on horizontal ones. This extra term HT is needed for the form to be closed, the
small parameter e insures that the form Oe is nondegenerate.

Proof. Sketch (for the full proof see [15] or [21]). The main idea is to use the so
called Weinstein universal phase space ^ W � P � g�:

Given a connection on P the space W could be identi¢ed with the vertical
subbundle of the cotangent bundle

W � P �G T �G � V�P:
A connection is a splitting G : TP � HP � VP and V�P is de¢ned as 1-forms which
vanish on horizontal vectors: V�P � �HP�?:Hence, it has aG-equivariant symplectic
form coming from the canonical symplectic form on T �P. Moreover, the action of
the group G on W is Hamiltonian.

The moment map mW : W ! g� is given by the projection

prg� : W ! g�:

Then the symplectic reduction ofW � F at 0 value of the moment map m � mW � mF

is exactly M � P �G F , and the symplectic form on M is inherited from W .
The explicit formula is obtained in the following way. Let the connection G be

given by a connection 1-form, lp : TpP! g: It determines a horizontal subbundle
in T P by

HpP � fv 2 TpP j lp�v� � 0g:
V�P � �HP�? is also de¢ned by l. The connection l : TP! g together with the
action r : g! VP de¢ne the injection

{l : V�P ,!T �P:
By de¢nition of the connection 1-form this injection is equivariant under the action
of G and hence the 2-form

ol � {�l ocan 2 A2�V�P�
is invariant under the action of G. This pull-back of the canonical symplectic form on
T �P gives a closed 2-form on V�P.

The canonical 1-form a on T �P is de¢ned as follows. Let �p; sp� be a point in T �pP,
let also v be a tangent vector ¢eld in the tangent bundle p : T�T �P� ! T �P, then at a
point �p; sp�, hajvi�p;sp� � ÿhspjp�vip: Since the pullback of the canonical 1-form to
V�P is h{�lajvi�p;sp� � ÿhprg�spjl�p�v�ip so

ol � ÿdhprg� jli: �19�
The form onW � F is ol � s. The form on the reduced spaceM � �W � F �==G at a
regular value of the moment map mW � mF � 0 is obtained as follows. Since mW is
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given by the projection to g�; mW � prg� the form on M becomes

oG � dhmF jli � s:

The 1-form hmF jli can be rewritten as a Hamiltonian Hl. It should be understood in
the following way. The connection 1-form l : TP! g de¢nes a connection on
the associated bundle M � P �G F . The horizontal subbundle in TM is the image
of HP under the map P � F !M. By abuse of notation we call the map
TM! g also l. From now on l is a 1-form on M with values in the Lie algebra
g: Hence Hl is a 1-form on M:

Its differential gives a two form dhmF jli � d�Hl�. Applied to two vectors
V ;W 2 TM it gives

d�Hl��V ;W � � VHl�W � ÿ VHl�W � ÿHl��V ;W ��:
Using (16) we get that it is nonzero only on horizontal vectors and gives the Ham-
iltonian of the curvature which in this case is the commutator �V ;W �: Also we
see that oG restricted to ¢bres gives the symplectic form on the ¢bres. &

This construction is quite general [15]: the symplectic ¢brations with a connection
constructed this way turn out to include all symplectic ¢bre bundles with a connec-
tion for which the holonomy group is a ¢nite dimensional Lie group.

3.5. LOCAL COORDINATES

Let us take a point x 2M. One can introduce a local frame ffag of vertical tangent
bundle VM and a local frame feig in T B at a point b � p�x� of B, with dual frames
ff ag and feig. Using a connection we obtain a local frame on the tangent bundle
TM � p�T B � VM at a point x. Then the form can be written as a block matrix:

Oe � p�oB � e2HT 0
0 e2sb

�����
�����: �20�

Hence, the corresponding Poisson bracket is also a block matrix:

�p�oB � e2HT �ÿ1 0
0 eÿ2sÿ1b

�����
�����:

We see that the Moyal product with respect to this form is a product of those on the
base and on the ¢bres.

LocallyM � B � F and the connection can be written as r � dx � A; where A is a
1-form on B with values in g: If the we consider the map: g! C1�F �; A becomes the
1-form on B with values in C1�F �; that is a �1; 0� form on M: HT in this local form
becomes just dA:

DEFORMATION QUANTIZATION OF SYMPLECTIC FIBRATIONS 147

https://doi.org/10.1023/A:1002452002677 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002452002677


4. Quantum Moment Map

Let �F ;S;r� be an F -manifold. Here S is a deformation of the symplectic form s:

S � s� Ts1 � T2s2 � � � � ;

si being closed 2^forms on F . LetAT�F � be the corresponding quantization of F with
the characteristic class �S� 2 H2�F ���T��. AT�F � is a noncommutative algebra of for-
mal series in T with coef¢cients being smooth functions on F . The �-product on
AT�F � de¢nes the Lie algebra structure:

� f ; g�� �
i
T
�f � gÿ g � f �; for f ; g 2 AT�F �:

Let G be a group acting on F so that the action is Hamiltonian (De¢nition 3.4). Let
g! C1�F � be its moment map. There is an induced action of G onAT�F �. We want
to quantize the moment map, namely, get a Lie algebra map from the algebra g to the
quantized algebra AT�F �. However it is possible only up to a two-cocycle in
C1�F ���T��, so we get a projective representation, otherwise we should consider a
central extension ofAT�F �:We could also slightly change the de¢nition of a quantum
moment map. We eliminate central elements by considering a map into the adjoint
representation of AT�F �, the inner automorphisms Inn AT�F �. They obviously
inherit the Lie algebra structure from AT�F �, so

DEFINITION 4.1. A quantum moment map is a map of Lie algebras
mLie : g! Inn AT�F �: In particular it means that there is the correspondence
principle: limT!0 mLie�X ��f � � fHX ; f g for X 2 g and f 2 AT�F �.

Remark 4.2. This de¢nition could be reformulated through a homomorphism of
associative algebras m : U�g� ! AT�F �; such that on vector ¢elds it gives
m�X �Lie� f � � �m�X �; f ��:

PROPOSITION 4.3. Consider a Hamiltonian action of a group G on �F ; s�; with the
Hamiltonian function X 7!HX for X 2 g: Let

F ;S � s�
X1
i�1

Tisi;r
 !

be an F-manifold such that r is a G-invariant connection. Assume also that one can
de¢ne functions Hi

X ; i � 1; 2; � � � as follows

iX̂si � dHi
X : �21�

LetAT�F � be the algebra of quantized functions on F. Then the quantum moment map
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is given by

m�X � � HX �
X1
i�1

TiHi
X �22�

Also mLie : g! Inn AT�F �; m�X �Lie�f � � �m�X �; f �� is a homomorphism of Lie
algebras:

mLie��X ;Y �� � �mLie�X �; mLie�Y ���: �23�

Moreover, there are no higher terms in T :

�m�X �; f �� � �HX ; f �� � fHX ; f g: �24�
Proof. *We are going to prove (22^24) by lifting the HamiltonianHX to a section

of the Weyl algebra bundle, since the �-product on C1�F � is de¢ned by the
Moyal^Vey product on the Weyl algebra bundle (7),(10). Namely, let
GDÿflat�F ;WF � be the space of £at sections of the Fedosov connectionD constructed
from r; corresponding to the quantization of F with the characteristic class S. Then
there is a one-to-one correspondence Q : C1�F ���T�� ! GDÿflat�F ;WF � which de¢nes
a product on F by f � g � Qÿ1�Q�f � �Q�g��: The structure of a Lie algebra in the
Weyl algebra bundle WF is de¢ned by the ¢berwise commutator

�a; b�� � a � bÿ b � a; for a; b 2 G�F ;WF �
Recall that the map H : g! C1�F � is given by the condition

iX̂s � dHX ; �25�
where X̂ is a vector ¢eld corresponding to X under the map g! Vect�F � (14). We
¢nd the image of a Hamiltonian HX in GDÿflat�F ;WF � by generalizing the proof
of Fedosov [10, Propositions 5.8.1,2],[11] to the case of a deformed symplectic form.
By construction the Fedosov connection D is G-equivariant since any element of the
group G preserves the initial symplectic connection r. An easy calculation shows
also that £at sections of an equivariant connection D are also equivariant. It also
means that the Lie derivative of D is zero with respect to any vector ¢eld X̂ :

�LX̂ ;D�� � 0: Since LX̂ and DX̂ � {X̂D�D{X̂ are ¢rst-order derivations commuting
with D we can ¢nd an analogue of the Cartan homotopy formula for the Lie deriva-
tive on forms with values in the Weyl algebra bundle. The difference of LX̂ and
DX̂ could only be an inner automorphism of the Weyl algebra bundle, we denote
it �Q�X �; ��� :

LX̂a � �{XD�D{X �a� �Q�X �; a��: �26�
It is easy to see that the equality �26� is true in Darboux coordinates chosen so that
the ¢eld X̂ is just a pure derivation in the direction of only one of the coordinates.

*I am grateful to Boris Tsygan for pointing out a gap in the proof in an earlier version of the
paper.
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Then D � D0 � d � d and Q�X � � Q0�X � � central section�X ; T� ÿ {Xd: Let D �
D0 � �Dg; ��� be another £at connection, Dg being an equivariant one form in
WF . Then since the LX̂ does not change and commutes with the new D as well,
the right-hand side of (26) must not change either, so one has to subtract {XDg from
Q0�X �:

We want to show that we could chose the central section �X ; T� inQ�X � to be equal
to m�X � � HX � T . . . so that Q�X � � m�X � ÿ {Xg becomes a quantization of the
moment map, that is a £at section corresponding to HX :

Recall that locally we can write a connection D as Df � df � i=T�g; f �� (11). The
equation D2 � 0 becomes (12):

S� dg� i
T

�g; g��
2
� 0: �27�

Then since LX̂D � 0, from (26)

0 � {X̂ d � i
T
�g; ���

� �
� d � i

T
�g; ���

� �
{X̂

� �
�D� ÿ �{Xg;D�� � �{X̂ d � d{X̂ ��D�

we get

�{X̂ d � d{X̂ �g � 0: �28�

Using (21),(25), and also (27),(28) we ¢nd that indeed Q�X � is a £at section of D :

DQ�X � � dfHX � TH1
X � � � �g ÿ d�iXg� � i

T
�g; fHX � TH1

X � � � �g�� ÿ
i
T
�g; iXg��

� {XS� {Xdg� 0� {X i
T

�g; g��
2

� �
� {X S� dg� i

T

�g; g��
2

� �
� 0:

We also get that m�X � � HX � S1i�1T
iHi

X , so the commutator

�m�X �; f �� �
i
T
Qÿ1f�Q�X �;Q�f ���g �

i
T
Qÿ1f��HX � TH1

X � � � � ÿ {X̂g�;Q�f ���g

� i
T
Qÿ1f�ÿ{X̂g;Q�f ���g � Qÿ1fÿ{X̂ �Dÿ d�Q�f �g � Qÿ1f{X̂ dQ�f �g

� LX̂ f � X̂ �f � � fHX ; f g:

Then since the action is Hamiltonian we get on the quantum level:

�mLie�X �; mLie�Y ��� � ad�HX ;HY �� �29�
� ad�fHX ;HY g� � ad�H�X ;Y �� � mLie��X ;Y ��: &

For the case S � s, in the absence of additional terms TiHi; we do not need to con-
sider the adjoint representation. The notion of the quantum moment map repeats
the classical one, it is a map from g to AT�F � :
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COROLLARY 4.4. Consider a quantization AT�F � obtained from the F-manifold
�F ; s;r�. Let a group G act on F ; and the connection r be equivariant with respect
to this action. If the action is Hamiltonian with the Hamiltonian function
X 7!HX ; X 2 g, the quantum moment map is a homomorphism of Lie algebras
m : g! AT�F � :

m�X � � HX and �m�X �; f �� � fHX ; f g:
Remark 4.5. We get that mLie : g! Inn AT�F � is a map of Lie algebras. This gives

the positive answer to a question posed in [28] that every classical moment map
can be uniquely lifted to a quantum moment map to AT�F �.

5. Quantization of Twisted Products

5.1. AUXILIARY BUNDLE: QUANTIZATION OF THE FIBRES

In this section we consider the bundle of quantizations along the ¢bres of our sym-
plectic ¢bration M ! B and construct a covariant derivative on this quantized
bundle from the connection on the bundle M ! B.

Fibrewise Quantization
Again, let p : M ! B be a locally trivial ¢bration with a ¢bre F . Let F be an
F -manifold �F ;S;r�. Here we take S to be arbitrary characteristic class, that is
a cohomology class �S� 2 H2�F ���T��. S � s� Ts1 � T2s2 � � � � ; where s is a sym-
plectic form on F .

LetAT�F � be a quantization of F , that is a noncommutative associative algebra of
formal series in T with coef¢cients being C1-functions on F . We are de¢ning the
bundleA over B such that its ¢bres are algebras of quantized functions on the ¢bres
of the bundle p : M ! B, that is the ¢bre ofA at a point b 2 B isAb � AT�Mb�: The
structure group G of p : M ! B acts on F by symplectomorphisms. If r is
G^equivariant there is a G-action on AT�F �. Since M � P �G F is an associated
bundle to a G^bundle P! B, the auxiliary bundle A is also associated to P :

A � P �G AT�F �: �30�
Covariant derivative on an auxiliary bundle
A covariant derivative on the bundle A! B respecting the algebra structure can be
obtained from a connection 1-form on the principal bundle. Understanding of the
formula for this covariant derivative is important for the sequel. We also ¢nd that
the curvature of this covariant derivative equals to the adjoint action of the second
summand in the coupling form (18).

In general, a choice of a connection on the principal G-bundle P determines a
covariant derivative on any associated vector bundle (we follow the exposition
in [2]).
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Let l 2 A1�P; g� be a connection 1-form on a principal G-bundle P. Let also G act
on some vector space E, and the action be given by the map r; r : G! End�E�:
Then the bundle E � P �G E ! B is an associated bundle to the principal bundle
P. The space of differential forms on B with values in E, Ak�B;P �G E�, can be
described as a subspace of the space of differential forms on P with values in E.
This subspace is a space of all basic forms with values in E, A�P;E�bas. A basic
differential form on a principal bundle P with a structure group G, taking values
in the representation �E; r� of G, is an invariant and horizontal differential form,
that is a form a 2 A�P;E� which satis¢es the conditions

(1) g � a � a; g 2 G
(2) {�X �a � 0 for any vertical ¢eld X on P.

An element in P �G E is de¢ned by its representative p� s 2 P � E: Let us denote it
as �p; s�:

LEMMA 5.1. If a 2 Aq�P;E�bas, de¢ne aB 2 Aq�B;P �G E� by

aB�p�X1; . . . ; p�Xq��b� � �p; a�X1; . . . ;Xq��p��;

where p 2 P is any point such that p�p� � b, and Xi 2 T pP. Then aB is well de¢ned, and
the map a! aB is an isomorphism from Aq�P;E�bas to Aq�B;P �G E�:

As a particular case, there is a representation of the sections of E as G^equivariant
functions on P with values in E. Let C1�P;E�G denote the space of equivariant maps
from P to E, that is those maps s : P! E that satisfy s�p � g� � r�g�s�p�. There is a
natural isomorphism between G�B;P �G E� and C1�P;E�G, given by sending
s 2 C1�P;E�G to sB de¢ned by sB�b� � �p; s�p��; here p is any element of pÿ1�b�
and �p; s�p�� is the element of E � P �G E corresponding to �p; s�p�� 2 C1�P;E�G.
In¢nitesimally, a function s in C1�P;E�G satis¢es the formula:

�XP � s��b� � r�X �s�b� � 0; for X 2 g;

where we also denote by r the differential of the representation r:

r : g! Vect�E�: �31�

Given a connection 1^form l on P one obtains the covariant derivative r on the
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associated vector bundle E from the following commutative diagram:

�32�

In other words, the covariant derivative is de¢ned as follows:
�rXs��b� � � p; �XHsP�� p��, where X 2 T B and XH is its horizontal lift to the
principal bundle P. The formula for the covariant derivative on our auxiliary bundle
bellow should be understood by means of the diagram (32).

Covariant Derivative on A
Now let us return to our particular case, namely

E � A � P �G AT�F �; so E � AT�F �;
Then (31) becomes a map r : g! Vect�AT�F ��, or in other words it is given by the
moment map mLie : g! Inn AT�F �.

PROPOSITION 5.2. Covariant derivative on A! B corresponding to a connection
1^form l on P! B is given by the formula:

rAf � df � �Hl; f �� � df � fHl; f g: �33�
Its curvature is a 2^form on B with values in A:

RAf � fHT ; f g; where T �X ;Y � � ÿPr�XH;YH �; Pr : T P! g:

Proof. The covariant derivative formula follows from (25) and the diagram (32).
Then the general de¢nition of the curvature of a covariant derivative
r : G�B;E� ! A1�B;E� is

R�X ;Y � � r ~Xr ~Y ÿ r ~Yr ~X ÿ r� ~X ; ~Y �;

where X ;Y 2 T B; and ~X ; ~Y are their horizontal lifts. In our particular case the
expression for the curvature follows from the formulas (24) and (29). &

5.2. FEDOSOV CONNECTION AND FLAT SECTIONS ON SYMPLECTIC FIBRATIONS

In this section we will show that the complex of differential forms with values in some
twisted Weyl bundle gives a resolution of G�B;A�.

Bundle of Sections
The structure of the bundle p : M ! B is re£ected in the representation of the space
of functions onM as sections of a certain bundle over B. Namely, letF be the bundle
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over B, such that a ¢bre over b 2 B is the space of series in T with coef¢cients being
functions on the ¢bre Mb of the bundle p : M ! B:

F b � C1�Mb���T��:

Then C1�M���T�� can be represented as sections of the bundle F :
C1�M���T�� � G�B;F�: �34�

Hence, we can try to obtain a quantization of M by quantizing the bundle F ! B.
This leads us to consider the twisted Weyl algebra bundle over B.

Let WM be the Weyl algebra bundle on M. Consider WM=B ö the bundle on B;
such that its ¢bre over b 2 B be Wb; the space of sections of the Weyl bundle
on the ¢bre Mb: A symplectic connection (13) on the bundle p : M ! B leads to
an isomorphism of bundles

b : G�M;WM� ! G�B;WB 
C��T�� G�M=B;WM=B�� �35�
or more generally for differential forms.

LEMMA 5.3. A symplectic connection on an F-bundle M! B :

TM � HM � VM; HzM � p�Tp�z�B

de¢nes an isomorphism of bundles:

An�M;WM� ! �p�q�nAp�B;WB 
C��T�� Aq�M=B;WM=B�� �36�

Proof. At each point z of M the Weyl algebra can be de¢ned as the universal
enveloping algebra of the Heisenberg algebra of T �zM � TR. The universal envel-
oping algebra is by de¢nition a quotient of the free tensor algebra by the ideal

I � fe
 f ÿ e
 f � iToÿ1�e; f �g; for e; f 2 T �zM;

whereo is a symplectic form onM:The connection on TM splits the ideal into a sum
of a horizontal and a vertical ideals:

I � IH � IV :

Thanks to the splitting of the symplectic form (20) vertical ideal IV is also an ideal in
the tensor algebra of V�M, which leads to the result.

We consider ¢berwise quantization as a ¢rst step in the quantization of the total
space. This gives the auxiliary bundle described in Section 5.1. The quantization
map along the ¢bres is

Qfibre : G�B;F� ! G�B;A�: �37�
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Twisted Weyl Algebra Bundle
Let WB be the Weyl algebra bundle corresponding to the F^manifold fB;o;rBg.
Consider a twisted bundle

AWB � WB 
C��T�� A! B;

where A is a bundle of quantization along the ¢bres (30). Thanks to the splitting of
the form (20) the sections of WB and sections of A commute with each other.

Remark 5.4. G�B;AWB� can be considered as a space of ¢berwise £at sections of the
bundle obtained by b (35): G�B;WB 
C��T�� G�M=B;WM=B��. Indeed, the F -manifold
�F ; s;rF � induces a structure of F -manifold on each ¢bre. It de¢nes corresponding
isomorphism of £at sections of Weyl algebra bundles:

A � Gflat�M=B;WM=B� �38�

The bundle AWB is a bundle of graded algebras with degrees assigned as in the
original WB bundle, namely,

deg�T� � 2; deg�ei� � 1; ei's being generators of WB: �39�
The ¢ltration

�AWB�n � fs 2 AWB; such that deg�s�X ng

also de¢nes a grading

grn�AWB� � fs 2 AWB; such that deg�s� � ng;
so that grn�AWB� is isomorphic to �AWB�n=�AWB�n�1: The Moyal^Vey product � for
WB and the noncommutative product � on the auxiliary bundleA de¢ne a pointwise
noncommutative product on AWB: Let us denote this product on AWB also by �. The
noncommutative product onA contains terms in different degrees in T, but does not
have any other degree bearing terms. Hence, the product on AWB is not preserving
the grading anymore.

The symplectic connection on B and the connection on the auxiliary bundle give
rise to a connection on AWB: r � rB 
 1� 1
 rA:

In what follows we will omit the tensor signs, this should not cause a confusion.
The curvature of this connection is R � RB � RA: Following the general scheme
we want to construct a £at connection r by adding to the existing one operators
of degree ÿ1 and higher.

Main Theorem

THEOREM 5.5. The equation �DA�2 � 0 for the connection

DA : Aq�B;AWB� ! Aq�1�B;AWB�
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has a solution in the form:

DA � d � i
T
�g; ��; �40�

where g 2 A1�B; InnAWB� is a sum of operators of degree X ÿ 1; so that

d � i=T�g; �� � r � d� r, in particular deg�d� � ÿ1 and

r �
X
kX 1

rk; rk 2 A1�B; grkAWB�:

The solution satisfying a normalization condition dÿ1r � 0 is unique.
Flat sections of this connection are in one-to-one correspondence with sections of

the auxiliary bundle, G�B;A�:

QA : G�B;A� ! Gflat�B;AWB�: �41�

Proof. The main equation is o� dg� i=T�g; g� � 0: It can be rewritten

R� 1
2
�r; d� � 1

2
�r; r� � d2 � 1

2
�d; r� � r2 � 0:

For each k > 1 we get an equation expressing rk in terms of ri; iW k :

�d; rk� � �r; rkÿ1� �
Xkÿ2
i�1
�ri; rkÿi�: �42�

However, the equation on r1 which must kill the curvature gives an unusual term in
ÿ1 degree. Namely, the equation on r1: dr1 � RB � RA gives a solution which is
a sum of two terms in degrees 1 and ÿ1 (sic!). Indeed in a local frame:

r1 � dÿ1�RB � RA� � dÿ1�RB
ijkle

ie j � RA
kl �dxkdxl � �RB

ijkle
iejek � RA

kle
k�dxl :

The operator RA
kle

kdxl � i=T adfHTkl e
kdxlg acts on a section s 2 G�B;AWB� in the

following way:

i
T
�HTkl e

kdxl; s� � i
T
�ek; s��HTkl dx

l � fHTkl ; sgekdx l;

where Tkl is an element in g on M and, hence, its action on AT�F � is de¢ned, so it is
also de¢ned on sections of the bundle AWB : �HTkl ; s�� � fHTkl ; sg � Tkls:

The operator i=T ad�fekgHTkl dx
l is of degreeÿ1. This term has to be added to d, the

initialÿ1-degree operator, but as soon as it is present it changes all the equations (42)
since there is not only d in degree ÿ1 anymore.

However, if we change d the iteration method can still be applied yielding a sol-
ution for the £at connection. In the central extension the curvature of this connection

156 OLGA KRAVCHENKO

https://doi.org/10.1023/A:1002452002677 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002452002677


starts from the term of degree ÿ2 :

i
T
ad�f�okl �HTkl �dxk ^ dxlg:

We are looking for a square root of it in the form Ad � i=TAikeidxk. That is applied
twice Ad must give this central element:

i
T
�okl �HTkl �dxk ^ dxl � gr�ÿ2�

i
T
Aikeidxk;

i
T
Ajlejdxl

� �
:

Obviously, Ajl 2 G�B;A� should be in the form of some series in o and HT :

AikoijAjl � okl �HTkl ;

or

Aik � oim�1mk � 1=2 omnHTnk � . . .� � oim

�����������������������
1� oÿ1HT

p� �m
k

We have used here the skew symmetry of the forms okl � ÿolk and HTkl � ÿHTlk .
This series converges if the ratio of o and HT is much bigger than 1 (that is size
of the ¢bres is very small in comparison to the base). It means that the ¢berwise
symplectic form should be much smaller than the one on the base.

This forces us to introduce a rescaling parameter e:

�okl �HTkl �dxk ^ dxl ! �okl � e2HTkl �dxk ^ dxl :

Then the �ÿ1�-degree term in the £at connection should be

Ad � i
T
okm

���������������������������
1� e2oÿ1HT

p� �m
l
dxlad�fekg:

Now the equation for the £at connection D should start with Ad instead of d:

D � Ad� r � r:

Let us write how Ad acts on a monomial

s � ei1
 . . .
 eim 
 f 
 dx j1^ . . . ^ dx jn 2 grm�WB 
C��T�� A� 
 LnT �B; f 2 gr0�A�:

Ad : ei1 
 . . .
 eim 
 f 
 dx j1 ^ . . . ^ dx jn 7!Xm
k�1

ei1 
 . . . beik . . .
 eim 
 f 
 Xik
l dx

l ^ dxj1 ^ . . . ^ dxjn ;

where X is the following matrix X �
���������������������������
1� e2oÿ1HT

p
: In order to get rid of this cor-

rection term X we can `rescale' the bundle WB by changing

ek 7! êk � �Xÿ1e�k 2 WB 
C��T�� A
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with the following commutation relation:

�êk; êl �� � ÿiT�o� e2HT �kl : �43�
On monomials in ê; Ad has the same action as d on monomials in e (Lemma 2.5). We
can de¢ne Adÿ1 and the whole set up in the twisted Weyl bundle becomes a familiar
data for Fedosov quantization of a symplectic manifold. This way we reduce the
problem to the usual Fedosov quantization and prove the theorem.

We construct a £at connection on the twisted bundle by iterations, ri being
monomials in ê. Uniqueness follows from the condition dÿ1r � 0; which gives
the same restriction as Adÿ1r � 0: The £at sections of this new connection corre-
sponding to the sections of the auxiliary bundle can also be obtained by the standard
recursive procedure. &

5.3. QUANTIZATION OF THE TOTAL SPACE

Here we want to prove that the deformation we got in the previous section is indeed a
deformation of functions on M. Since by quantization of functions on M we under-
stand an isomorphism to £at sections of a £at connection of Weyl algebra bundle
over M we reformulate the problem as follows. Namely, there is a homomorphism
of noncommutative algebras a such that the following diagram commutes:

The ¢rst line is an isomorphism of commutative algebras (34). The left vertical arrow
is a quantization of a symplectic manifold M like in (7). QA is a lift of the
quantization Qfibre (37) to G�B;AWB� followed by the quantization in the twisted
Weyl algebra bundle (41) from Theorem 5.5.

THEOREM 5.6. Let M ! B be a symplectic ¢bration with a symplectic ¢bre F. Let
A be the quantization of F with the characteristic class oF (De¢nition 2.11).

There exists an isomorphism of bundles of algebras:

b : G�M;WM� ! G�B;WB 
C��T�� G�M=B;WM=B��;
where the Weyl algebra structure is de¢ned on G�M;WM� from the symplectic form
(17) on M, and G�B;WB� from the symplectic form oB on B.

Let DF be a £at connection on G�M=B;WM=B�, such that Gflat�M=B;WM=B� � A.
Then there exists a £at connection onWM;DM � ~D�DF ; such that its £at sections

are mapped by the isomorphism b to the £at sections of DA in AWB � WB 
C��T�� A. It
leads to a homomorphism of algebras: AT�M� � Gflat�B;AWB�: The characteristic
class of the quantization of M is exactly the class of the form (17).
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Proof. Again we work in local frames. Let ffag be a frame in the vertical tangent
bundle VM at a point x 2M and feig be a frame in the tangent bundle to
B; T B; at a point b � p�x� of B, with dual frames ff ag and feig.

Using a symplectic connection we obtain a local frame fp�ei; fag on the tangent
bundle TM � p�T B � VM at a point x: Let us denote its dual frame as f~ei; f ag:

Then the form on M can be written as a block matrix (20), so that in this frame

�f a; f b� � e2sabb ; �~ek; ~el � � �p�oB � e2HT �kl : �44�
The £at connection DF de¢nes an isomorphism of algebras of ¢berwise deformed
functions. The map WM ! AWB : ~e 7!ê de¢nes a homomorphism of algebras:

Gfiberwise flat�M;WM� � G�B;WB 
C��T�� A�:
Indeed although the Moyal^Vey products in the bundle of Weyl algebras are
different, the �-product of ê0s in AWB and the �-product of ~e0s in WM give rise
to the same �-product (see (43)), so it gives a homomorphism of algebras.

The last step is to construct a connection ~D in Gfiberwise flat�M;WM� so that £at
sections of DA (40) correspond to the £at sections of ~D. Substituting ê with ~e in
the formula for DA gives ~D:

The connection ~D together with the Fedosov connection along the ¢bres DF gives
rise to a connection DM on W: DM � DF � ~D: Its £at section s 2 G�M;W� satisfy
simultaneously two equations DFs � 0; ~Ds � 0:

The characteristic class of this quantization is exactly the class of Oe (following
from (44)). This way we get a correspondence between the quantization of the total
space and the quantization on the base with values in the auxiliary bundle A. &

Symplectic Fibrations versus Riemannian Fibrations

There is some analogy with Riemannian ¢brations (see [3]). Mazzeo and Melrose
([23]) gave an interpretation of Hodge^Leray spectral sequence from an analytic
point of view. In particular they introduced language similar to b-calculus for
description of Riemannian ¢brations. The idea was to introduce a small parameter
e, so that all horizontal differential forms had the parameter in some degree. In other
words, everything which came from the base was `marked' by this small parameter.
This gave the description of terms in the spectral sequence by the coef¢cients in
the Taylor decomposition with respect to this small parameter.

Symplectic ¢brations provide a somewhat similar picture. We want to introduce
calculus similar to the one in [23]. Let us call it MM-calculus.

In the case of symplectic ¢brations the parameter naturally comes in the con-
struction of a symplectic form on the total space. Indeed, when the parameter is
zero one gets a ¢berwise noncommutative product while along the base it is
commutative. The �-product then is a bidifferential expression only in vertical
coordinates. The term at the ¢rst degree of the parameter gives a Poisson bracket
in the horizontal direction, it is a ¢rst order bidifferential expression in the horizontal

DEFORMATION QUANTIZATION OF SYMPLECTIC FIBRATIONS 159

https://doi.org/10.1023/A:1002452002677 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002452002677


direction. If the ¢bration is trivial these bidifferential expressions are ¢berwise con-
stant.

Given a connection (13) onM: TM � HM � VM one implements the splitting into
the structure of the product manifold X �M � �0;V�, where V � 1 is some ¢xed
small number. (We want it to be small enough so that e involved in the symplectic
form �17� is bigger than V.) The product X �M � �0; e� has an induced ¢bration,
with leaves F and the base B � �0; e�. Consider the space L of smooth vector ¢elds
on X which are tangent to the ¢bres, M, of the product structure X ! �0;V�
and which are also tangent to the ¢bres of the ¢bration M ! B, above
X0 �M � fn � 0g. In local coordinates x j; xk in M, where the x's give coordinates
in B, the elements of L are the vector ¢elds of the form

X2p
j�1

aj�x; x; n�n@xj �
X2q
k�1

bk�x; x; n�@xk :

Consider a vector bundle nTM for which L is the set of sections L � C1�X ;n TM�:
There is a natural bundle map {n : n TM ! T XM, the lift of TM to X . It is an
isomorphism everywhere except over M0, where its range is equal to VM. It is
important to de¢ne the dual map {n : T �XM !n T �M; which range over M0 is a
subbundle which is naturally isomorphic to the bundle of forms on ¢bres.

Given a connection (13) on M: TM � HM � VM, the restriction of nT �M to the
boundary, M0, of X naturally splits

nT �M0M � nÿ1T �B � V�M; u0 � nÿ1p�b� {n�a�:
The exterior powers of nT �M also split at the boundary so one can de¢ne a new
bundle of rescaled differential forms on X . Namely,

nAk
x�M� �

Xk
j�0
Aj

x�M=B� � nÿ�kÿj�Akÿj
p�x��B�:

The symmetric powers of nT �M have the following decomposition

nSkT �M �
Xk
j�0

Sj�M=B� � nÿ�kÿj�SkÿjT �B:

This way one can de¢ne the rescaledWeyl algebra bundle. Let f fkg be a local frame of
vertical tangent bundle VM corresponding to @xk and a local frame feig in T B, cor-
responding to @xj at a point b � p�x� of B, with dual frames f f kg and feig. Using
the connection we obtain a local frame on the tangent bundle
TM � p�T B � VM at a point x. The differential on the bundle of forms nAk�M�
is given by

d � n
dx j

n
@xj � dxk@xk ;
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so that d :n Ak�M� !n Ak�1�M). Similarly a connection on TM determines a sym-
plectic connection on nTM:

The Fedosov connection on rescaled Weyl algebra bundle nWM;
n D, has the

Taylor decomposition in degrees of n. Since Fedosov connection is £at it should
give an equation in each degree of n. The n-decomposition of �nD�2 must give 0
in each degree of n. The result for quantization can be stated as follows:

PROPOSITION 5.7.

(1) The quantization of M for n � 0 is C1�B;AT�M=B��
(2) The term at the ¢rst powerof n is the product on the base given by the Poisson bracket

with values in the quantization of the ¢ber.
(3) nth powerof nallows one towrite a producton the base with values in the quantization

of the ¢bre up to the nth power in T.

6. Examples of Symplectic Fibrations and Their Quantization

Fedosov quantization provides a way to construct a �-product on a symplectic
manifold. In the previous section we showed how Fedosov quantization works
for any symplectic ¢bration. However, step-by-step calculations become com-
plicated very quickly and explicit formulas are readily available only in a few par-
ticular cases. Mostly the results which we are getting are of the type that `under
quantization some of the variables behave in a certain way'.

For the trivial symplectic ¢bration, that is for the direct product of two
F -manifolds �B;oB;rB� and �F ; s;rF � we get the direct product of quantizations:

AT�B � F � � AT�B� 
C��T�� A
T�F �;

with the characteristic class oB � es, where e can be arbitrary nonzero number, since
for nondegenerateo and s for any nonzero e the sum is nondegenerate in the absence
of the curvature term.

An example of a symplectic ¢bration with ¢bres being R2n is considered in [10].
Good source of examples of symplectic ¢brations are cotangent bundles to ¢bre

bundles with connections (see again [15]). Indeed, consider a bundle X over B, such
that X is an associated bundle to a principal G-bundle P with a ¢bre F :

X � P �G F : Then G acts by symplectomorphisms on the cotangent bundle T �F
equipped with the canonical symplectic form. We construct a new bundle
M � T �X over T �B, which is the pullback of P �G T �F to T �B.

The connection, that is a splitting of TM, is inherited from the splitting of T X .
Namely, HM is de¢ned as the pullback of HX .

The symplectic form on M is the canonical symplectic form on the cotangent
bundle. Due to the ¢bre bundle structure we can split it into two parts ^ one along
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the ¢bres and the other one coming from the base. There is no need to introduce the
small parameter since we know that the form is already nondegenerate.

The algebraic index theorem on a cotangent bundle coincides with the analytical
index theorem of Atiyah^Singer on the initial space [26]. Our example shows that
this way we may obtain the relation on the index of the ¢bre, the base, and the total
space for any ¢bre bundle (if the structure group is a ¢nite dimensional Lie group).

Now let us move to other particular examples. Consider the following situation:
the associated bundle M ! B to the principal G-bundle with a ¢bre being T �G
^ the cotangent bundle to G. This example is the inverse of the quantum reduction
problem and it was discussed in the article [11], which is a generalization of [9].

The article [9] treats a symplectic ¢bration M ! B with a symplectic ¢bre being a
cylinder. The ¢bre can be represented as C� � T �S1 ^ the cotangent bundle to the
circle. Locally a point z in M can be described by coordinates �x; r; y�, y being
an angle coordinate on the cylinder and r the height, while x � �x1; . . . ; x2n� denotes
coordinates of the base point p�z�. Then M � P �U�1� C

�, where P is a principal
U�1�-bundle. The symplectic form can be constructed from Proposition (3.5).
Let l be a connection 1-form on P. In this particular case:

l :T P! g � R:

Hamiltonian of l is a function in r only, it does not involve y. Quantization on the
¢bres is the Weyl quantization like in R2n:

a � b � exp ÿiT @

@yk
@

@zn�k

� �
a�y�b�z�jy�z�x

� abÿ iT
@a
@xk

@b
@xn�k

� T2

2
@2a
@xk@xl

� �
@2b

@xn�k@xn�l

� �
� � � � : �45�

The symplectic connection is £at. Hence the the ¢berwise £at sections are expressions
in �r� f 1�; �y� f 2�, where � f 1; f 2� are generators in the Weyl algebra bundle cor-
responding to �dr; dy� in T�F . The resulting £at connection in the Weyl algebra
bundle onM is a series in �r� f 1� (it does not involve the other coordinate �y� f 2�).

Examples of symplectic ¢brations are numerous. Symplectic ¢brations with
two^dimensional ¢bres are ¢rst nontrivial examples to look at, in particular
¢brations over a symplectic base with a Riemannian surface as ¢bres (see [21]).

A nontrivial example of a symplectic ¢bration is provided by an S2-bundle over a
symplectic base. An S2-bundle p : M ! B can be considered as an associated bundle
to a principal U�1�-bundle, P. We construct a symplectic form on M � P �U�1� S2.
The manifoldM is presented as the symplectic reduction of �W ;O� at a regular value
0 of the moment map. The algebra of the groupU�1� is simplyR. Let VP � TP be the
bundle of vertical tangent vectors. The ¢bre at a point p being VpP � T pP. A con-
nection 1-form, l : TpP! R; determines a horizontal subbundle by

Hp � fv 2 T pP j lp�v� � 0g:
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This horizontal subbundle induces an injection: {l : V�P ,!T �P; namely, a vertical
cotangent vector x 2 V�pP is a linear functional on T pP which vanishes on the hori-
zontal subspaceHpP. The subbundle V�P inherits the standard symplectic form from
T �P; dacan: The manifold (Weinstein universal space)

W � V�P � S2

carries a natural symplectic form O � pr�BoB � {�ldacan � pr�Ss, where prB : W ! B
and prS : W ! S2 are the obvious projections and s is aU�1�-invariant volume form
on S2. O is invariant under the diagonal action of U�1�. V�P is equivariantly
diffeomorphic to P �R, so the moment map m : W � P �R� S2 ! R is given by

m�p; Z; z� � h�z� ÿ Z

where h : S2! R is the height function, it is a moment map for the action ofU�1� on
S2 by rotating about the vertical axis, and Z is a projection P �R! R:

The level set mÿ1�0� can be identi¢ed with the manifold P � S2 by the map which
takes the form O to pr�BoB ÿ d�Hl� � pr�Ss on P � S2, where H�p; z� � h�z� is the
height function on S2. This form is equivariant under the U�1� action, to make sure
it is nondegenerate we need to introduce a small number e, so that the form on
M becomes

o � pr�BoB ÿ e2fd�Hl� � pr�Ssg:
Let us consider local coordinates at a point m inM: �x; x; y�, where x � �x1; . . . ; x2n�
denotes coordinates of the base point p�m� while x and y are cylindrical polar
coordinates in the ¢bre, x gives a height function and y is an angle. Then the sym-
plectic form on the ¢bre is

s � dx ^ dy:

The vertical vector ¢eld @=@y has a Hamiltonian x:H @
@y
� x: The auxiliary bundleA is

a bundle of quantized functions on ¢bres, it is associated to a U�1�-bundle P: The
connection on A is inherited from a connection 1-form by Proposition (5.2). In
coordinates it is rAs � ds� lfx; sg; where l is a local 1-form on the base and
f�; �g is a ¢berwise Poisson bracket, s being some section of A. The curvature of this
connection is

RA � i
T
adHT � Tfx; �g;

where T is a 2-form on the base, the curvature of the connection l. Since a Ham-
iltonian of any vector ¢eld is a linear function of just one coordinate x. A £at con-
nection is DA � �d�r � r; where

�d � ad�okl ê
kdxl� and êk � �

���������������������������
1� e2oÿ1Tx

p
e�k:

As a result one gets that a £at connection in the case of a sphere bundle does not
depend on the cylindrical angle coordinate y. The characteristic class of the
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deformation with values in the auxiliary bundle of quantization of the ¢bres is
oB � e2Tx.
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