38

Hybrid correlators

38.1 Light hybrid correlators

We shall be concerned with the two-point correlator (standard notations):

$$
\begin{align*}
\Pi_{V / A}^{\mu \nu}\left(q^{2}\right) & \equiv i \int d^{4} x e^{i q x}\langle 0| \mathcal{T} \mathcal{O}_{V / A}^{\mu}(x)\left(\mathcal{O}_{V / A}^{\nu}(0)\right)^{\dagger}|0\rangle \\
& =-\left(g^{\mu v} q^{2}-q^{\mu} q^{\nu}\right) \Pi_{V / A}^{(1)}\left(q^{2}\right)+q^{\mu} q^{\nu} \Pi_{V / A}^{(0)}\left(q^{2}\right), \tag{38.1}
\end{align*}
$$

built from the hadronic local currents $\mathcal{O}_{\mu}^{V / A}(x)$:

$$
\begin{equation*}
\mathcal{O}_{V}^{\mu}(x) \equiv: g \bar{\psi}_{i} \lambda_{a} \gamma_{\nu} \psi_{j} G_{a}^{\mu \nu}:, \quad \mathcal{O}_{A}^{\mu}(x) \equiv: g \bar{\psi}_{i} \lambda_{a} \gamma_{\nu} \gamma_{5} \psi_{j} G_{a}^{\mu \nu}: \tag{38.2}
\end{equation*}
$$

which select the specific quantum numbers of the hybrid mesons; A and V refer respectively to the vector and axial-vector currents. The invariant $\Pi^{(1)}$ and $\Pi^{(0)}$ refer to the spin one and zero mesons. The correlator is represented in Fig. 38.1.

The perturbative QCD expressions of the invariants are:

$$
\begin{align*}
& \frac{1}{\pi} \operatorname{Im} \Pi_{V / A}^{(1)}(t)_{\text {pert }}=\frac{\alpha_{s}}{60 \pi^{3}} t^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\frac{121}{16}-\frac{257}{360} n_{f}+\left(\frac{35}{36}-\frac{n_{f}}{6}\right) \log \frac{v^{2}}{t}\right]\right\} \\
& \frac{1}{\pi} \operatorname{Im} \Pi_{V / A}^{(0)}(t)_{\text {pert }}=\frac{\alpha_{s}}{120 \pi^{3}} t^{2}\left\{1+\frac{\alpha_{s}}{\pi}\left[\frac{1997}{432}-\frac{167}{360} n_{f}+\left(\frac{35}{36}-\frac{n_{f}}{6}\right) \log \frac{v^{2}}{t}\right]\right\} \tag{38.3}
\end{align*}
$$

The anomalous dimension of the current can be easily deduced to be:

$$
\begin{equation*}
\gamma_{H}=\beta_{1}+\frac{32}{9}, \tag{38.4}
\end{equation*}
$$

where $\beta_{1}=-1 / 2\left(11-2 n_{f} / 3\right)$ is the first coefficient of the beta function. The shortdistance tachyonic gluon mass effect is given by the diagram in Fig. 38.2 and reads [462]:

$$
\begin{align*}
& \frac{1}{\pi} \operatorname{Im} \Pi_{V / A}^{(1)}(t)_{\lambda}=-\frac{\alpha_{s}}{60 \pi^{3}} \frac{35}{4} \lambda^{2} t \\
& \frac{1}{\pi} \operatorname{Im} \Pi_{V / A}^{(0)}(t)_{\lambda}=\frac{\alpha_{s}}{120 \pi^{3}} \frac{15}{2} \lambda^{2} t . \tag{38.5}
\end{align*}
$$

Fig. 38.1. Feynman diagrams corresponding to the OPE of the hybrid correlator: (a) perturbative; (b) quark condensate; (c) gluon condensate; (d) mixed condensate; (e) three-gluon condensate; (f) four-quark condensate.

Fig. 38.2. Lowest order tachyonic gluon contribution to the hybrid correlator. The cross in the internal gluon propagator corresponds to the tachyonic gluon mass insertion λ^{2}.

The (corrected) contributions of the dimension-four and -six terms have been obtained by [461] and reads in the limit $m^{2}=0$:

$$
\begin{aligned}
\Pi_{V}^{(1)}\left(q^{2}\right)_{N P}= & -\frac{1}{9 \pi}\left[\alpha_{s}\left\langle G^{2}\right\rangle+8 \alpha_{s} m\langle\bar{\psi} \psi\rangle\right] \log -\frac{q^{2}}{v^{2}} \\
& +\frac{1}{q^{2}}\left[\frac{16 \pi}{9} \alpha_{s}\langle\bar{\psi} \psi\rangle^{2}+\frac{1}{48 \pi^{2}} g^{3}\left\langle G^{3}\right\rangle-\frac{83}{432} \frac{\alpha_{s}}{\pi} m g\langle\bar{\psi} G \psi\rangle\right]
\end{aligned}
$$

$$
\begin{align*}
\Pi_{A}^{(0)}\left(q^{2}\right)_{N P}= & -\left[\frac{1}{6 \pi}\left[\alpha_{s}\left\langle G^{2}\right\rangle-8 \alpha_{s} m\langle\bar{\psi} \psi\rangle\right]\right. \\
& \left.-\frac{11}{18} \frac{\alpha_{s}}{\pi} \frac{1}{q^{2}} m g\langle\bar{\psi} G \psi\rangle+\mathcal{O}\left(\frac{1}{q^{2}}\right)\right] \log -\frac{q^{2}}{v^{2}}, \tag{38.6}
\end{align*}
$$

where one can notice from [461] the miraculous cancellation of the log-coefficient of the $D=6$ condensates in $\Pi_{V}^{(1)}$.

38.2 Heavy hybrid correlators

Analogous hybrid correlators but for heavy quarks have been evaluated in [463] for unequal masses and for the (axial-)vector channels. In the following, we shall present the results for the equal mass case m in the vector channel which has been checked and completed in [464]. Using the same normalization of currents as in the case of light quarks, one obtains the perturbative spectral functions [464]:

$$
\begin{align*}
& \frac{1}{\pi} \operatorname{Im} \Pi_{V, \text { pert }}^{(1)}=\frac{m^{6} \alpha_{s} N C_{F}}{16 \pi^{3}} \frac{1}{t}\left(\frac{7}{3}+\frac{1}{60 z^{2}}-\frac{5 z}{3}-\frac{3 z^{2}}{4}+\frac{z^{3}}{15}+\ln z+2 z \ln z\right) \\
& \frac{1}{\pi} \operatorname{Im} \Pi_{V, \text { pert }}^{(1+0)}=-\frac{m^{4} \alpha_{s} N C_{F}}{16 \pi^{3}}\left(\frac{2}{3}-\frac{1}{15 z^{3}}+\frac{1}{2 z^{2}}-\frac{2}{z}+z-\frac{z^{2}}{10}-2 \ln z\right) \tag{38.7}
\end{align*}
$$

where $z=t / m^{2}$. Note that, in [463], the result is given in integral forms. The contributions of the tachyonic gluon with a mass squared $-\lambda^{2}$ is [464]:

$$
\begin{align*}
\frac{1}{\pi} \operatorname{Im} \Pi_{V, \lambda}^{(1)} & =\frac{m^{4} \lambda^{2} \alpha_{s} N C_{F}}{16 \pi^{3}} \frac{1}{t}\left(-2-\frac{1}{12 z^{2}}-\frac{2}{3 z}+\frac{10 z}{3}-\frac{7 z^{2}}{12}-3 \ln z\right) \\
\frac{1}{\pi} \operatorname{Im} \Pi_{V, \lambda}^{(1+0)} & =-\frac{m^{2} \lambda^{2} \alpha_{s} N C_{F}}{16 \pi^{3}}\left(-\frac{4}{3}+\frac{1}{3 z^{3}}-\frac{4}{3 z^{2}}+\frac{2}{z}+\frac{z}{3}\right) \tag{38.8}
\end{align*}
$$

The contributions of the gluon condensate have been obtained in [463] and expressed in terms of the correlators of bilinear quark currents:

$$
\begin{align*}
& \frac{1}{\pi} \operatorname{Im} \Pi_{V, G^{2}}^{(1)}=\frac{4 \pi}{9}\left\langle\alpha_{s} G^{2}\right\rangle t^{2} \operatorname{Im} \Pi_{V}(t) \\
& \frac{1}{\pi} \operatorname{Im} \Pi_{V, G^{2}}^{(0)}=-\frac{2 \pi}{3}\left\langle\alpha_{s} G^{2}\right\rangle t^{2} \operatorname{Im} \Pi_{V}(t) \tag{38.9}
\end{align*}
$$

where:

$$
\begin{equation*}
\operatorname{Im}_{V}(t)=\frac{N}{24 \pi} v\left(3-v^{2}\right) \tag{38.10}
\end{equation*}
$$

is the vector bilinear current spectral function and where $v^{2}=1-4 m^{2} / t$ is the square of the heavy quark velocity.

