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TORSORS AND STABLE EQUIVARIANT BIRATIONAL
GEOMETRY

BRENDAN HASSETT and YURI TSCHINKEL

Abstract. We develop the formalism of universal torsors in equivariant

birational geometry and apply it to produce new examples of nonbirational

but stably birational actions of finite groups.

§1. Introduction

Let k be an algebraically closed field of characteristic zero. Consider a finite group G,

acting regularly on a smooth projective variety X over k, generically freely from the right.

Given two such varieties X and X ′ with G-actions, we say that X and X ′ are G-birational,

and write

X ∼G X ′,

if there is a G-equivariant birational map

X
∼���X ′.

We say that X and X ′ are stably G-birational if there is a G-equivariant birational map

X×Pn ∼���X ′×Pn′
,

where the action of G on the projective spaces is trivial. The No-Name Lemma implies that

this is equivalent to the existence of G-equivariant vector bundles E→X and E′ →X ′ that

are G-birational to each other. In particular, faithful linear actions on An are always stably

G-birational but not always G-birational [KT1], [RY2]. We say that the G-action on an n-

dimensional variety X is (stably) linearizable if there exists an (n+1)-dimensional faithful

representation V of G such that X is (stably) G-birational to P(V ).

There are a number of tools to distinguish G-birational actions, including:

• existence of fixed points upon restriction to abelian subgroups of G [RY1];

• determinant of the action of abelian subgroups in the tangent bundle at fixed points

[RY2];

• Amitsur group and G-linearizability of line bundles [BCD+, §6];
• group cohomology for induced actions on invariants such as the Néron–Severi group [BP];

• equivariant birational rigidity (see, e.g., [CS]);

• equivariant enhancements of intermediate Jacobians and cycle invariants [HT];

• equivariant Burnside groups [KT1], [KT4].

Of these, only the fixed point condition for abelian subgroups, the Amitsur group, and group

cohomology—specifically H1(G,Pic(X)) or higher unramified cohomology—yield stable

G-birational invariants.
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276 B. HASSETT AND YU. TSCHINKEL

Nevertheless, nontrivial stable birational equivalences are hard to come by. In this

paper, we adopt the formalism of universal torsors—developed by Colliot-Thélène, Sansuc,

Skorobogatov, and others, in the context of arithmetic questions like Hasse principle

and weak approximation—to the framework of equivariant birational geometry. As an

application, we exhibit new examples of nonbirational but stably birational actions.

Specifically, we:

• show that the linear S4-action on P2 and an S4-action on a del Pezzo surface of degree

6 are not birational but stably birational (Proposition 15),

• settle the stable linearizability problem for quadric surfaces (Proposition 16),

• show that the linear A5-action on P2 and the natural A5-action on a del Pezzo surface of

degree 5 are not birational but stably birational (Proposition 20),

• show that A5-actions on the Segre cubic threefold, arising from two nonconjugate

embeddings of A5 ↪→S6, are not birational but stably birational (Proposition 21).

Here is the road map of the paper: In §§2 and 3, we extend the formalism of universal

torsors and Cox rings to the context of equivariant geometry over k. In §4, we study

the (stable) linearization problem for toric varieties. A key example, del Pezzo surfaces

of degree 6, is discussed in §5; the related case of Weyl group actions for G2 is presented

in §6. In §7, we turn to quadric surfaces. In §8, we discuss linearization of actions of Weyl

groups on Grassmannians and their quotients by tori.

§2. Algebraic tori and torsors over nonclosed fields

Let k be a field of characteristic zero, and let X be a d -dimensional geometrically rational

variety over k. Recall that X is called (stably) k -rational if X is (stably) birational to Pd

over k.

An important class of varieties which was studied from the perspective of (stable)

k -rationality is that of algebraic tori. A classification of (stably) k -rational tori in dimensions

d≤ 5 can be found in [HY], [K], [V1].

In this section, we review the main features of the theory of tori and torsors under tori

over nonclosed fields. Our main references are [CTS1], [CTS2].

2.1 Characters and Galois actions

Recall that an algebraic torus T over k is an algebraic group over k such that

T̄ := Tk̄ =Gd
m,

over an algebraic closure k̄ of k. Let M be its character lattice, and let N be the lattice of

cocharacters, which carry actions of the absolute Galois group Gal(k) of k.

The descent data for a torus T over an arbitrary field k of characteristic zero are encoded

by the continuous representation

Gal(k)→GL(M).

2.2 Quasi-trivial tori

There is a tight connection between (stable) k -rationality of T and properties of the

Galois module M.

Recall thatM is called a permutation module ifM has a Z-basis permuted by Gal(k), that

is, M is a direct sum of modules of the form Z[Gal(k)/H], where H is a closed finite-index
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TORSORS AND BIRATIONAL GEOMETRY 277

subgroup. By definition, a torus T is quasi-trivial if M is a permutation module. Quasi-

trivial tori are rational over k by Hilbert’s Theorem 90 for general linear groups.

Every torus may be expressed as a subtorus or quotient of a quasi-trivial torus, by

expressing the character or cocharacter lattices as quotients of permutation modules.

2.3 Rationality criteria

A fundamental theorem [V2] is that a torus T is stably rational if and only if M is stably

permutation, that is, there exist permutation modules P and Q such that

M ⊕P �Q.

This condition implies the vanishing of

H1(H,M)

for all closed finite-index subgroups H ⊆Gal(k) (i.e., M is coflabby).

2.4 Torsor formalism

Let X be a smooth projective geometrically rational variety over k. Since X̄ is rational,

Pic(X̄)→NS(X̄) is an isomorphism. Let

TNS(X̄)

denote the Néron–Severi torus of X, that is, a torus whose character group is isomorphic,

as a Galois module, to NS(X̄). Let

P →X

be a universal torsor for TNS(X̄) over k ; below, we will discuss when it exists over the ground

field. Recall that P →X is a morphism defined over k, admitting a free action

P ×TNS(X̄) →P

over X with the following geometric property: choose a basis

λ1, . . . ,λr ∈NS(X̄) = Hom(TNS(X̄),Gm),

so that the associated rank-one bundles L1, . . . ,Lr →X satisfy

λi = [Li], i= 1, . . . , r.

This determines P uniquely over an algebraic closure k̄/k; however, for each γ ∈
H1(Gal(k),TNS(X̄)), we can twist the torus action to obtain another such torsor γP.

Given a homomorphism of free Galois modules

α :M →NS(X̄),

there is a homomorphism of tori TNS(X̄) → TM and an induced torsor Pα →X for TM .

A sufficient condition for the existence of a universal torsor over k is the existence of a

k -rational point x∈X(k): one can define P →X over k via evaluation at x. More generally,

suppose that D1, . . . ,Dr is a collection of effective divisors on X̄ that is Galois-invariant

and generates NS(X̄). Let U denote their complement in X ; we have an exact sequence

0→R= k̄[U ]×/k̄× →⊕r
j=1ZDj →NS(X̄)→ 0.
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278 B. HASSETT AND YU. TSCHINKEL

The following conditions are equivalent [CTS2, Prop. 2.2.8]:

• the short exact sequence

1→ k̄× → k̄[U ]× → k̄[U ]×/k̄× → 1 (2.1)

splits;

• the descent obstruction for P̄ in H2(Gal(k),TNS(X̄)) vanishes.

Indeed, each rational point x ∈ U(k) gives a splitting of (2.1).

When can the universal torsor—or more general torsor constructions—be used to obtain

stable rationality results for X over k?

Proposition 1. A smooth projective geometrically rational variety X over k is stably

rational over k provided all of the following conditions are satisfied:

• Its universal torsor P →X is rational over k.

• Its Néron–Severi torus TNS(X̄) is stably rational.

• The morphism P →X admits a rational section, that is, the torsor splits.

The last two conditions hold [BCS+, Prop. 3] if NS(X̄) is stably permutation. Note that

there are examples where the relevant cohomology vanishes (NS(X̄) is flabby and coflabby),

but NS(X̄) fails to be a stable permutation module; these can be found in [CTS1, Rem.

R4] (see also [HY, §1]).

§3. Equivariant formalism

We turn to the equivariant context, working over an algebraically closed field k of

characteristic zero. Our goal is to formulate a G-equivariant version of the torsor formalism

in [CTS2], which will be our main tool in the study of the (stable) linearization problem.

3.1 G-tori

Let Gd
m be an algebraic torus over k. Recall that we have a split exact sequence

1→Gd
m →Aff(Gd

m)→Aut(Gd
m)→ 1, (3.1)

where Aut(Gd
m)=GLd(Z) is the group of automorphisms as an algebraic group and Aff(Gd

m)

is the associated affine group. Note that Aut(Gd
m) acts faithfully on the character lattice.

Let G → Aut(Gd
m) be a homomorphism from a finite group; write T for the resulting

group in the category of G-varieties. We refer to such tori as G-tori ; we continue to write

Gd
m,d = dim(T ), when we forget the G-action on T. Given G ⊂ Aff(Gd

m), the elements in

G∩Gd
m will be called translations. This gives rise to a torsor in the category of G-varieties

P ×T → P,

where T is the G-torus associated with the composition G→Aff(T )→Aut(T ).

The (stable) linearization problem for G-tori concerns (stable) birationality of the

G-action on a torus and a linear G-action on Pd. There are two extreme cases:

• G⊂Gd
m, that is, G is abelian and the G-action is a translation action.

• G∩Gd
m = 1.
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3.2 Linearizing translation actions

An action via G ⊂ Gd
m extends to a linear action; indeed, it extends to a linear action

on the natural compactification Gd
m ↪→ Pd. Note that these do not have to be equivariantly

birational to each other, for different embeddings G ↪→ Gd
m; the determinant condition

of [RY2] characterizes such actions up to equivariant birationality. By the No-Name

Lemma, translation actions are stably equivariantly birational. For nonabelian G containing

an abelian subgroup of rank d, similar examples of nonbirational but stably birational

G-actions on tori can be extracted from [RY2, Prop. 7.2].

3.3 Linearizing translation-free actions

The (stable) linearization problem for actions without translations is essentially equiv-

alent to the well-studied (stable) rationality problem of tori over nonclosed fields. It is

controlled by the G-action on the cocharacters. We record the following proposition.

Proposition 2. Let T be a G-torus (i.e., G∩Gd
m = 1) with cocharacter module N.

Assume that N is a stably permutation G-module. Then the G-action on T is stably

linearizable.

Proof. Suppose first that N is a permutation module. We can realize our torus

T ⊂ Ad, d= dim(T ),

as an open subset of affine space twisted by a permutation of the basis vectors. Any linear

twist of affine space is isomorphic to affine space by Hilbert’s Theorem 90; hence, the

G-action on T is linearizable as well.

If N is stably permutation, then there exist permutation modules P and Q such that

N ⊕P �Q.

The argument above yields

T ×Adim(P ) ∼��� Adim(Q),

which, combined with the No-Name Lemma, gives that the action is stably linear.

Question 3. Can we effectively compute whether a G-module is stably permutation?

3.4 G-equivariant torsors

We now turn to general smooth projective varieties X with a generically free regular

action of a finite group G. We assume that

NS(X) = Pic(X)

is a free abelian group; it inherits the G-action. Let

TNS(X) := Hom(NS(X),Gm)

denote the Néron–Severi torus; it is a G-torus.

Let T be a G-torus with character module T̂ . A G-equivariant T -torsor over X consists

of a G-equivariant scheme P →X and a G-equivariant action

P ×T →P

https://doi.org/10.1017/nmj.2022.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.29


280 B. HASSETT AND YU. TSCHINKEL

over X that is a torsor on the underlying groups and varieties. Let

H1
G(X,T )

denote the group of isomorphism classes of G-equivariant S -torsors over X. We have an

exact sequence

0→H1(G,T )→H1
G(X,T )→HomG(T̂ ,Pic(X))

∂→H2(G,T ). (3.2)

The middle arrow may be understood as recording the line bundles arising from characters

of T.

3.5 Amitsur group

Restricting to G-invariant divisors

Pic(X)G ⊂ Pic(X),

we obtain

0→Hom(G,Gm)→ PicG(X)→ Pic(X)G →H2(G,Gm),

where PicG(X) is the group of G-linearized line bundles on X. The class

α= ∂([h]),

where h is G-invariant, is called the Schur multiplier. It vanishes if and only if the G-action

lifts to Γ(X,OX(mh)) for each m> 0. The subgroup

Am(X,G)⊆H2(G,Gm)

generated by all such classes is called the Amitsur group [BCD+, §6]; it is a stable G-

birational invariant [S, Thm. 2.14]. Note that when Am(X,G) = 0, there may be subgroups

H �G with Am(X,H) �= 0.

3.6 Lifting the G-action

Suppose that

P →X

is a universal torsor, that is, a torsor for T = TNS(X) whose class in Hom(T̂ ,Pic(X)) is the

identity. When does the G-action on X lift to P? This problem is analogous to the problem

of descending the universal torsor to the ground field, in the arithmetic context of §2.4.
Here are two sufficient conditions:

• X admits a G-fixed point.

• The cocycle

α= ∂(Id) ∈H2(G,TNS(X))

vanishes (whence all Schur multipliers are trivial).

The latter is necessary by the long exact sequence (3.2). The following proposition gives a

criterion for the vanishing of this cocycle.
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Proposition 4. Let X be a smooth projective G-variety. Assume that Pic(X) is a

free abelian group. Fix a G-invariant open subset ∅ �= U ⊂ X with Pic(U) = 0. The class

α ∈H2(G,TNS(X)) vanishes if and only if the exact sequence

1→ k× → k[U ]× → k[U ]×/k× → 1 (3.3)

has a G-equivariant splitting.

The proof is completely analogous to the proof of [CTS2, 2.2.8(v)] with group cohomology

replacing Galois cohomology.

3.7 Constructing the torsor

This approach can yield a construction for the universal torsor. Let D1, . . . ,Dr be a

G-invariant collection of effective divisors generating Pic(X). The complement

U =X \ (D1∪· · ·∪Dr)

has trivial Picard group. Consider the exact sequence

0→ R̂→⊕r
i=1ZDi → Pic(X)→ 0,

where R̂ is the module of relations among the Di, and its dual

0→ TNS(X) →M →R→ 0. (3.4)

There is a canonical G-homomorphism

R̂→ k[U ]×/k×

obtained by regarding the relations as rational functions that are invertible on U. The

existence of a splitting for (3.3) yields a lift

R̂→ k[U ]×,

whence a morphism

U →R.

The sequence (3.4) induces a TNS(X)-torsor over U, which extends to all of X as in [CTS2,

Thm. 2.3.1].

3.8 Properties of torsors

We also have the equivariant version of [BCS+, Prop. 3], an application of Hilbert

Theorem 90.

Proposition 5. Suppose NS(X) is stably permutation as a G-module. If P →X is a

universal torsor, then there exists a G-equivariant rational section X ��� P, whence

P ∼G TNS(X)×X.

Corollary 6. The existence of a G-equivariant universal torsor is a G-birational

property.

Proof. Indeed, if X and Y are G-equivariantly birational, then we can exhibit an affine

open subset common to both varieties for which Proposition 4 applies.

In parallel with [CTS2, Prop. 2.9.2], we have the following proposition.
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Proposition 7. The existence of a G-equivariant universal torsor is a stable

G-birational property.

Proof. Let W be a smooth projective G-variety, equivariantly birational to a linear

generically free action on projective space. Then Pic(W ) is stably a permutation module,

and each invariant line bundle on W admits a G linearization. Thus, the resulting torus

TNS(W ) admits a torsor Q→W , equivariant under the G action.

If X admits a universal torsor P →X, then the product

π∗
W Q×π∗

XP →W ×X

is a universal torsor for X×W .

Conversely, suppose that W ×X admits a universal torsor. Since the existence of a

universal torsor is a G-birational property, we may assume that W = Pn and G acts linearly

and faithfully on Pn. It therefore acts on the associated affine space Γ(OPn(1))∨ and the

universal subbundle OPn(−1). The No-Name Lemma implies G-birational equivalences

OPn(−1)×X
∼��� A1×W ×X

and

Γ(OPn(1))∨×X
∼��� An+1×X

with trivial actions on the affine space factors. Moreover, OPn(−1) is equal to the blowup

of Γ(OPn(1))∨ at the origin; thus, W ×X is stably birational to An+1×X.

We therefore reduce ourselves to the situation where Pn+1×X admits a universal torsor

V → Pn+1×X,

where G acts trivially on the first factor. The pullback homomorphism

π∗
X : Pic(X)→ Pic(X×Pn+1)

allows us to produce a TNS(X)-torsor R → Pn+1×X. Choose a section of Pn+1×X → X

and restrict R to this section to get the desired torsor on X.

3.9 Torsors and stable linearization

We record an equivariant version of Proposition 1.

Proposition 8. Let X be a smooth projective G-variety with Pic(X) =NS(X). Assume

that X admits a G-equivariant universal torsor P such that:

• the G-action on P is stably linearizable,

• the G-action on TNS(X) is stably linearizable,

• P →X admits a G-equivariant rational section.

Then the G-action on X is stably linearizable.

There is no harm in assuming merely that P is stably linearizable as our conclusion on

X is a stable property.

Corollary 9. Let X be a smooth projective G-variety with Pic(X) = NS(X); assume

that NS(X) is stably a permutation module. If X admits a G-equivariant universal torsor

P with stably linear G-action, then the G-action on X is stably linearizable as well.
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Indeed, the last two conditions of Proposition 8 follow if NS(X) is a stably permutation

module by Proposition 5.

3.10 Universal torsors and Cox rings

Suppose X is a smooth projective variety that has a universal torsor P → X. In some

cases, there is a natural embedding of P into affine space, realizing X is a subvariety of a

toric variety. Specifically, assume that the Cox ring

Cox(X) :=⊕L∈Pic(X)Γ(X,L),

graded by the Picard group and with multiplication induced by tensor product of line

bundles, is finitely generated (see, e.g., [ADH+] for definitions and properties). This is the

case for Fano varieties (e.g., [BCH+], [HK]). Then there is a natural open embedding

P ↪→ Spec(Cox(X)),

compatible with the actions of TNS(X) associated with the torsor structure and the grading,

respectively. Fixing a finite set {xσ}σ∈Σ of graded generators for Cox(X), we obtain an

embedding

Spec(Cox(X)) ↪→ AΣ.

Taking a quotient of the codomain by TNS(X) gives a toric variety (see §4.1); choosing a

quotient associated with a linearization of an ample line bundle L on X gives the desired

embedding

X ↪→ [AΣ/TNS(X)]L.

Our focus is the extent to which these constructions can be performed equivariantly

(when X comes with a G-action) or over nonclosed fields. We emphasize that the Cox-ring

formulation is equivalent to the universal torsor framework when the torsor exists.

3.11 General results on linearizable actions

For this last section, we return to the general question of characterizing group actions

that are birational or stably birational.

Proposition 10. Let X be a smooth projective variety, and let G be a finite group acting

regularly and generically freely on X. Given an automorphism a :G→G, let aX denote the

resulting twisted action of G on X. If the G-action on X is stably linearizable, then aX is

stably equivariantly birational to X, hence stably linearizable as well.

Proof. Our assumption implies the existence of linear representations

G×An → An, G×Ad+n → Ad+n,d= dim(X),

such that

X×An ∼G Ad+n.

Twisting by a, we find that

aX× aAn ∼G
aAd+n.
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It follows that

X× aAd+n ∼G
aX×Ad+n.

The No-Name Lemma implies that these are birational to

X×Ad+n,aX×Ad+n,

where the actions on the affine spaces are trivial. This gives the stable birational

equivalence.

§4. Stable linearization of actions on toric varieties

4.1 Toric varieties

Let X = XΣ be a T -equivariant compactification of T, where Σ is a fan, that is, a

collection Σ = {σ} of cones in the cocharacter group N := X∗(T ) of T (see, e.g., [F] for

terminology regarding toric varieties). Let Σ(i)⊂Σ be the collection of i -dimensional cones.

A complete determination of the automorphism group Aut(X) can be found in [SMS].

Conversely, given a finite group G⊂Aut(T ), there exists a smooth projective T -equivariant

compactification of T, with regular G action.

Suppose T is a G-torus. We say that X is a T-toric variety if there exists a G-equivariant

action X ×T → X such that X has a dense T -orbit with trivial generic stabilizer. Note

that X need not have G-fixed points but does admit a distinguished Zariski-open subset

that is a torsor for T.

We record a corollary of Proposition 10.

Corollary 11. Let X denote a T-toric variety that is stably linearizable. Given an

element a ∈Aut(X)G, the twist aX is stably linearizable as well and G-birational to X.

If the cocharacter module N of T is stably permutation, then a smooth projective

T -equivariant compactification T ⊂ X has Picard group Pic(X) that is also stably a

permutation module.

Indeed, we have an exact sequence

0→M → PicT (X)→ Pic(X)→ 0, (4.1)

where the central term is a permutation module indexed by vectors generating the one-

skeleton of the fan. The exact sequence (4.1) shows that M is stably permutation if and

only if Pic(X) is stably permutation.

4.2 Universal torsors for toric varieties

Let X ×T → X denote a T -toric variety, where X is smooth and projective. Ignoring

the action of G, Cox(X) is a polynomial ring k[xσ],σ ∈ Σ(1), indexed by the 1-skeleton,

that is, generators of the one-dimensional cones in the fan of X. Of course, the group G

permutes the elements of Σ(1) and if X admits a T -fixed point—invariant under G—then

Spec(Cox(X)) is the affine space AΣ(1) with the induced permutation action of G.

However, when the dense open orbit of X is a nontrivial principal homogeneous space

U ×T → U,
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it may not be possible to lift the G-action compatibly to Spec(Cox(X)). We can identify

the cohomology class governing the existence a lifting. Dualizing (4.1) gives

1→ TNS(X) →GΣ(1)
m → T → 1,

encoded by a class η ∈ Ext1G(T,TNS(X)). The principal homogeneous space is classified by

[U ] ∈H1(G,T ),

and its image under the connecting homomorphism

∂([U ]) = [U ]
η ∈H2(G,TNS(X))

is the obstruction to finding a cocycle in H1(G,G
Σ(1)
m ) lifting [U ].

4.3 Actions on P1

The presence of translations marks an essential discrepancy in the analogy between the

rationality problem over nonclosed fields and the linearizability problem of actions of finite

groups over closed fields, as can be seen from the following example.

Let

G= 〈ι1, ι2〉= C2×C2,

and let T be a one-dimensional torus with G action

ι1 · t= t−1, ι2 · t=−t.

Consider an action

T ×P1 → P1,

t · [x,y] �→ [tx,y].

Let G act on P1 by

ι1 · [x,y] = [y,x], ι2 · [x,y] = [−x,y],

which is well defined. However, this action does not lift to a linear action of G on A2 because
(
0 1

1 0

)(
1 0

0 −1

)
=−

(
1 0

0 −1

)(
0 1

1 0

)
.

The Amitsur invariant is

Am(P1,G) = Z/2,

so that this action is not stably linearizable. Alternatively, one may observe that G has no

fixed points on P1, which is also an obstruction to stable linearizability.

On the other hand, let

G :=
〈
ι,σ : ι2 = σ3 = 1, ισι= σ−1

〉
�S3.

We continue to have ι act as ι1 did above. Let

σ · [x,y] = [ωx,y], ω = e2πi/3.
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This does lift to a linear action of G on A2, for example, by expressing

σ · [x,y] = [ζx,ζ−1y], ζ = e2πi/6.

Again, G has no fixed points on P1, but this is not an obstruction to linearizability, for

nonabelian groups.

4.4 Linearizing actions with translations

Proposition 12. Let T be a G-equivariant torus, and let X × T → X be a smooth

projective T-toric variety. Assume that:

• M = T̂ is a stably permutation G-module and

• the obstruction α= ∂(Id) ∈H2(G,TNS(X)) vanishes.

Then the G-action on X is stably linearizable.

Proof. The vanishing assumption shows that X admits a universal torsor P →X with

G-action. Moreover, we have an open embedding

P ↪→ An,

where An is an affine space with permutation structure given by the action of G on the

1-skeleton of X.

By Proposition 5, we have P ∼G TNS(X) ×X; the first factor is stably linearizable by

Proposition 2. Since P is linearizable, we conclude that X is stably linearizable.

Question 13. Let G be a finite group, let T be a G-torus, and let X be a T -toric

variety. Consider the following conditions:

• The obstruction ∂(Id) ∈H2(TNS(X)) to the existence of a universal torsor vanishes.

• For each T -orbit closure Y ⊆X and subgroup H ⊆ G leaving Y invariant, the Amitsur

invariant Am(Y,H/K) vanishes, where K is the subgroup acting trivially on Y.

Are they equivalent?

Clearly, the first implies the second. Recall that the restriction

Pic(X)→ Pic(Y )

can be made to be surjective on a suitable G-equivariant smooth projective model of X,

with induced T -closure Y ⊂X. See, for example, §§2.3–2.5 of [KT2].

§5. Sextic del Pezzo surfaces

Here, we consider actions on the toric surface

X ⊂ P1×P1×P1,

given by

X1X2X3 =W1W2W3. (5.1)

It has distinguished loci

L1 = {X3 =W2 = 0}, L2 = {X1 =W3 = 0}, L3 = {X2 =W1 = 0},

E12 = {X1 =W2 = 0},E13 = {X3 =W1 = 0},E23 = {X2 =W3 = 0}.
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Recall that the universal torsor may be realized as an open subset of A6 with variables

λ1,λ2,λ3,η12,η13,η23,

where

X1 = λ2η12, W1 = λ3η13,

X2 = λ3η23, W2 = λ1η12,

X3 = λ1η13, W3 = λ2η23.

Write

Pic(X) = ZH+ZE1+ZE2+ZE3

with associated torus

Speck[s±1
0 , s±1

1 , s±1
2 , s±1

3 ]

acting via

λi �→ siλi, ηij �→ s0s
−1
i s−1

j ηij .

5.1 Action by toric automorphisms

Consider the automorphisms of X fixing the distinguished point

(1,1,1) = {X1 =X2 =X3 =W1 =W2 =W3 = 1}.

Equivalently, these are induced from automorphisms of the torus

T =X \ (L1∪E12∪L2∪E23∪L3∪E13).

These are isomorphic to S2×S3—we can exchange the X and W variables or permute the

indices {1,2,3}. The induced action on the six-cycle of (−1)-curves may be interpreted as

the dihedral group of order 12.

Note that the associated exact sequence of S2×S3-modules

0→M → Z{(−1)-curves}→ Pic(X)→ 0

splits.

Remark 14. If M and P are stably permutation G-modules, then Ext1G(P,M) = 0.

This is Lemma 1 in [CTS1], which says that if M is coflabby and P is permutation, then

Ext1G(P,M) = 0. However, stably permutation modules are flabby and coflabby [CTS1, p.

179].

The S2×S3 action lifts to the Cox ring: for example, let S3 act via permutation on the

indices and S2 by

λi �→ ηjk, ηjk �→ λi, {i, j,k}= {1,2,3}.

5.2 Sextic del Pezzo surface with an S4-action

Assume that G contains nontrivial translations of the torus T ⊂ X. In [S], it is shown

that, on minimal sextic Del Pezzo surfaces, such G-actions are not linearizable.

As an example, consider G :=S4 acting on X via S3-permutations of the factors

x1 :=X1/W1, x2 :=X2/W2, x3 :=X3/W3,
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and additional involutions (translations)

ι1 : (x1,x2,x3) �→ (−x1,x2,−x3), ι2 : (x1,x2,x3) �→ (−x1,−x2,x3).

Here, we have G∩G
dim(T )
m = C2×C2, with G acting on Aut(N) via S3. The six exceptional

curves form a single G-orbit, each curve has generic stabilizer C2 and a nontrivial C2-action.

Using the theory of versal G-covers, Bannai and Tokunaga [BT] showed that the

G-actions on P2 = P(V ), where V is the standard three-dimensional representation of S4,

and on (5.1), as described above, are not birational. Alternative proofs, using the equivariant

Minimal Model Program for surfaces (resp. the Burnside group formalism), can be found in

[S, §3.4] (resp. [KT3, §9]). These approaches cannot be used to study stable linearizability.

Proposition 15. The S4-action is stably linearizable.

Proof. We will apply Proposition 8, the equivariant version of Proposition 1.

We use the split sequence

1→ C2×C2 →S4 →S3 → 1

induced by (3.1) on the 2-torsion of T.

First, note the action of G on TNS(X)—which factors through the homomorphism S4 →
S3—is stably linearizable.

It suffices then to lift the G-action to the Cox ring. The action of S3 is clear by the

indexing of our variables. For the involutions ι1 and ι2, we take

ι1(λ2) =−λ2

and

ι2(λ3) =−λ3,

with trivial action on the remaining variables. The gives the desired lifting.

There is also an action of G=S3×S2 on X, with G∩G
dim(T )
m =1, that is not linearizable,

but is stably linearizable. We discuss it in §6.

§6. Weyl group of G2 actions

We start with an example presented in [LPR, §9] and motivated by the following question:

is the Weyl group action on a maximal torus in a Lie group equivariantly birational to the

induced action on the Lie algebra of the torus? The authors study the action of

G :=W (G2)�S3×S2,

the Weyl group of the exceptional Lie group G2: consider the torus

T = {(x1,x2,x3) : x1x2x3 = 1}

and its Lie algebra

t= {(y1,y2,y3) : y1+y2+y3 = 0},

with S3 acting on both varieties by permuting the coordinates, and S2 := 〈ε〉 acting via

ε · (x1,x2,x3) = (x−1
1 ,x−1

2 ,x−1
3 )
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and

ε · (y1,y2,y3) = (−y1,−y2,−y3).

We now describe good projective models of both varieties, that is, such that the complement

of the free locus is normal crossings so that all stabilizers are abelian.

6.1 Multiplicative action

This case builds on §5.1; we retain the notation introduced there.

While the sextic del Pezzo surface is a fine model for our group action, it is often most

natural to blow up to eliminate points with nonabelian stabilizers (cf. [KT4, §2]). Let S(1,1,1)

denote the blowup at (1,1,1). We identify distinguished loci in S(1,1,1) as proper transforms

of loci in the sextic del Pezzo surface. In addition to the six curves listed above, we have:

• Di from {(Xi−Wi)(−1)i+1 = 0}, for i= 1,2,3;

• E exceptional divisor over (1,1,1).

The nonzero intersections are

E12L1 = E12L2 = E23L2 = E23L3 = E13L3 = E13L1 = 1

and

D1L1 =D1E23 =D1E = 1,

D2L2 =D2E13 =D2E = 1,

D3L3 =D3E12 =D3E = 1.

All self-intersections are −1.

To compute the Cox ring, we introduce new variables δi and η associated with Di and

E. The resulting relations are

δ1η =X1−W1 = λ2η12−λ3η13,

δ2η =−X2+W2 =−λ3η23+λ1η12,

δ3η =X3−W3 = λ1η13−λ2η23.

Reassigning

λi = pi4,ηij = pk5, δi = pjk,η = p45,

we obtain three Plücker relations. The remaining relations

p12p34−p13p24+p14p23 = p12p35−p13p25+p15p23 = 0

are also valid.

The group S3×S2 may be interpreted as permutations of the sets {1,2,3} and {4,5}.
In the natural induced action,

(ij) ·pij =−pij , ε ·p45 =−p45,

but the actions on the original six variables are compatible.

The elements

(ζ,ζ,ζ), (ζ2, ζ2, ζ2) ∈ T, ζ = e2πi/3,
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are fixed by S3. The curves in the sextic del Pezzo surface

F12 = {X1W2−W1X2 = 0},

F13 = {X1W3−W1X3 = 0},

F23 = {X2W3−W2X3 = 0}

meet at the three diagonal points and have intersections

F 2
12 = F 2

13 = F 2
23 = 2, F12F13 = F12F23 = F13F23 = 3.

Let S× → S(1,1,1) denote the blowup at these points, a cubic surface.

Iskovskikh [I] presents an equivariant birational morphism

S(1,1,1) →Q= {3ŵ2 = xy+xz+yz} ⊂ P3

obtained by double projection of the sextic del Pezzo from (1,1,1). This blows down the

proper transforms of D1,D2, and D3. Here, S3 acts by permutation of {x,y,z} and ε ·w =

−w. Indeed, the proper transforms of L1,L2, and L3 are in one ruling; the proper transforms

of E23,E13, and E12 are in the other ruling.

This can be obtained as follows: choose a basis for the forms vanishing to order two at

(1,1,1):

x= (X1+W1)(X2−W2)(X3−W3),

y = (X1−W1)(X2+W2)(X3−W3),

z = (X1−W1)(X2−W2)(X3+W3),

w = (X1−W1)(X2−W2)(X3−W3),

so we have

xy+xz+yz = w(2(X1X2X3−W1W2W3)+w)≡ w2.

We use (5.1) to get the last equivalence on our degree-6 del Pezzo surface.

6.2 Additive action

We turn to the action on the Lie algebra: the representation of t is linear and admits a

compactification

t⊂ P(t⊕k).

Write y1 = Y1/Z and y2 = Y2/Z so that the induced action on P2 has fixed point [0,0,1]

and distinguished loci

A12 = {Y1 = Y2}, A13 = {Y1 =−Y1−Y2}, A23 = {Y2 =−Y1−Y2}

and

B12 = {Y2 =−Y1}, B13 = {Y2 = 0}, B23 = {Y1 = 0}.

Blowing up the origin Y1 = Y2 = 0 yields a smooth projective surface � F1 with abelian

stabilizers.
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The Cox ring is given by

k[ζ,β13,β23,η],

with Z = ζ, Y1 = ηβ23, and Y2 = ηβ13. One lift of the S3×S2-action has S3 acting with

the standard two-dimensional representation on β13,β23 and S2-action via ε ·η =−η. The

two-dimensional torus acts via

(η,β13,β23, ζ) �→ (tEη, tfβ13, tfβ23, tEtfζ).

6.3 On the Lemire–Popov–Reichstein stable equivalence [LPR]

Consider the rational map

t ��� P(t)

(Y,Z) �→ [Y,Z].

Taking Cartesian products, we obtain

t× t� A4 ��� P(t)×P(t)

(Y1,Z1,Y2,Z2) �→ ([Y1,Z1], [Y2,Z2]).

This induces a rank-two vector bundle

Bl{Y1=Z1=0}∪{Y2=Z2=0}(A
4)→ P(t)

2
.

We take the product as an S3×S2-variety, where the first factor acts diagonally and

the second factor interchanges the two factors. Thus, P(t)
2 �Q as S3×S2-varieties.

On the other hand, there is a morphism

A4 → t

(Y1,Z1,Y2,Z2) �→ (Y1−Y2,Z1−Z2),

which is also a rank-two vector bundle over t.

Applying the No-Name Lemma twice, we conclude that t×A2 and T ×A2—with trivial

actions on the A2 factors—are G-equivariantly birational to each other.

Question: Is the affine quadric threefold

w2 = xy+xy+yz

G-equivariantly birational equivalent to t×A1?

§7. Quadric surfaces

We are now in a position to settle the stable linearizability problem for quadric surfaces

X = P1×P1,

completing the results in [S, Th. 3.25], which identifies linearizable actions.

Let G act generically freely and minimally on P1×P1. In particular, there exist elements

exchanging the two factors. Let G0 be the intersection of G with the identity component of

Aut(P1)2 ⊂Aut(P1×P1),

so we have an exact sequence

1→G0 →G→S2 → 1.
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Each element ι ∈ G \G0 acts via conjugation on G0. Let D denote the intersection of G0

with the diagonal subgroup, and let Ai denote the image of G0 under the projection πi.

Conjugation by ι takes the kernel of G0 → A1 to the kernel of G0 → A2 and thus induces

an isomorphism

φι :A1
∼→A2

restricting to the identity on D.

Sarikyan [S, Lem. 3.24] shows that G is linearizable if and only if A � Cn, the cyclic

group. Moreover:

• the only linearizable actions of A on P1 are by Cn or Dn, the dihedral group of order 2n,

with n > 1 odd;

• the remaining group actions on P1 cannot be linearized due to the Amitsur obstruction.

Thus, the only possible candidate for stably linearizable but nonlinearizable actions on

P1×P1 are when A�Dn, n > 1 odd.

Proposition 16. Under the assumptions above, G-actions on P1 ×P1 with A � Dn,

with n > 1 odd, are always stably linearizable.

Proof. Suppose that P1×P1 = P(V1)×P(V2), where V1 and V2 are the representations

of A1 and A2, along with an isomorphism of D-representations

V1|D ∼→ V2|D.

Using the quotient G0 �A1, we can regard V1 as a representation of G0. Take the induced

representation

IndGG0
(V1),

which has dimension 4. Mackey’s induced character formula implies that the restriction of

this representation back down to G0 is of the form

V1⊕V2,

where V2 is regarded as a G0 representation via G0 �A2.

Now, V1⊕V2, as a variety, is the product V1×V2. The rational maps Vi ��� P(Vi) induce

V1×V2 ��� P(V1)×P(V2),

resolved by blowing up {0} × V2 and V1 × {0}. This has the structure of a rank-two

G-equivariant vector bundle. The No-Name Lemma implies that V1 ×V2 is birational to

A2×P(V1)×P(V2) where the first factor has trivial G-action. Hence, the G-action on

P(V1)×P(V2) is stably linearizable.

For G=W (G2) =S2×S3, this is precisely the result of [LPR, §9] presented in §6.3.

7.1 Generalizations

The same argument gives the following.

Proposition 17. Let G be a finite group acting generically freely on (Pm)r. Write G0 ⊂
G for the intersection of G with the identity component of Aut((Pm)r). Suppose that:
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• G acts transitively on the r factors;

• the image Ai of πi : G0 → Aut(Pm), the projection to the ith factor, has a linearizable

action on Pm.

Then the action of G on (Pm)r is stably linearizable.

Proposition 18. Let G be a finite group. Let G act generically freely on smooth

projective varieties X1 and X2 with Pic(Xi) =NS(Xi). Suppose there exist universal torsors

Pi →Xi with compatible G actions. Then

U := π∗
1P1×X1×X2 π

∗
2P2 →X1×X2

is a universal torsor as well.

If NS(X1)⊕NS(X2) is a stably permutation module, then X1×X2 is stably birational to

U .
Moreover, if the Xi are Ti-toric varieties, then X1×X2 is stably linearizable.

§8. Quotients of flag varieties by tori

8.1 Weyl group actions on Grassmannians

Consider the Grassmannian Gr(m,n) of m-dimensional subspaces of an n-dimensional

vector space. Once we fix a basis for the underlying vector space, the symmetric group Sn

acts naturally on Gr(m,n).

Every element of Gr(m,n) may be interpreted as the span of the rows of an m×n matrix

A with full rank. Let Amn denote the affine space parameterizing these and U ⊂ Amn the

open subset satisfying the rank condition. Then

Gr(m,n) = GLm\U,

where the linear group acts via multiplication from the left. Let

S →Gr(m,n)

denote the universal subbundle of rank m, End(S) = S∗ ⊗S, and GL(S) ⊂ End(S) the

associated frame/principal GLm bundle. We write the induced GLm-action on GL(S) from
the left. Note that

dimGL(S) = dimGr(m,n)+rk(S)2 =m(n−m)+m2;

indeed, we may identify GL(S) with U, equivariantly with respect to the natural left GLm

actions.

Returning to the Sn-action: It acts on the m×n matrices by permuting the columns,

which commutes with the GLm-action given above. In particular, the action is linear on

Amn. This action coincides with the natural induced action on S, End(S), and GL(S). The
No-Name Lemma says that the Sn-action on End(S)—regarded as a vector bundle over

Gr(m,n)—is equivalent to the action on Am2 ×Gr(m,n) with trivial action on the first

factor. We conclude the following proposition.

Proposition 19. The action of Sn on Gr(m,n) is stably linearizable.

8.2 Del Pezzo surface of degree 5

It is well known that a del Pezzo surface of degree 5 can be viewed as the moduli space

M0,5 of five points on P1 and thus carries a natural action of A5, induced from the action of
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S5 on the points (see, e.g., [S, §1]). It is also known that this A5-action is not linearizable

(see, e.g., [BT] or [CS, Th. 6.6.1]). Again, this should be contrasted with the situation over

nonclosed fields, where all degree 5 del Pezzo surfaces are rational.

Consider a three-dimensional irreducible faithful representation

� : A5 →GL(V ).

There are two such representations, which are dual to each other. This gives rise to a

generically free (linear!) action of A5 on P2. The two linear actions on P2 are not conjugated

in PGL3, but are equivariantly birational [CS, Rem. 6.3.9].

As an application of Proposition 19, we obtain the following proposition.

Proposition 20. The A5-actions on P2 and M0,5 are not birational but stably

birational.

Proof. It suffices to show that the action of A5 on M0,5 is stably linear. We have seen

already that the action on the Grassmannian Gr(2,5) is stably linear. We are using that

the Néron–Severi torus acts on the cone over Gr(2,5) with quotient M0,5. Proposition 5

gives the desired result once we check that NS(M0,5) is stably permutation. We may write

M := NS(M0,5) = ZL+ZE1+ZE2+ZE3+ZE4,

so that the S4-action is clear. The transposition (45) may be realized by the Cremona map

acting by

L �→ 2L−E1−E2−E3,

E1 �→ L−E2−E3,

E2 �→ L−E1−E3,

E3 �→ L−E1−E2,

E4 �→ E4.

Introducing the auxiliary Q-basis

L5 = L,

L4 = 2L−E1−E2−E3,

L3 = 2L−E1−E2−E4,

L2 = 2L−E1−E3−E4,

L1 = 2L−E2−E3−E4,

we see immediately that this submodule 〈L1,L2,L3,L4,L5〉 is a permutation module.

Consider the direct sum M⊕(ZF1⊕ZF2) where the action on the second factor is trivial.

This decomposes over Z into summands

〈L1−F1−F2,L2−F1−F2,L3−F1−F2,L4−F1−F2,L5−F1−F2〉

and

〈3L−E1−E2−E3−E4−F1−2F2,3L−E1−E2−E3−E4−2F1−F2〉 .

The first is a permutation module, and the second is trivial.
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8.3 Segre cubic threefold

There are two nonconjugate embeddings of A5 into S6, differing by the nontrivial outer

automorphism of S6 [HMS+, §1]. Thus, we obtain two actions of G :=A5 on the Segre cubic

threefold X3, hence on M0,6. It is known that one of the actions (the nonstandard one) is

G-equivariant to a linear action on P3 [CS, Exer. 1.3.4], and that the other is birationally

superrigid, in particular, not linearizable [A, Th. 4.8].

Regarding NS(M0,6) as a G-module for the nonstandard action, we see that it is stably

a permutation module—since this action is linearizable. However, for any finite group G

and automorphism a : G → G, precomposing by a yields an action on G-modules; this

respects permutation and stably permutation modules. It follows that the standard action

on NS(M0,6) is also a stably permutation module.

Consider the class group Cl(X3) and NS(M0,6) as S6-modules. These differ by a

permutation module, namely, partitions of {1,2,3,4,5,6} into unordered pairs of subsets

of size 3. Recall that X3 is a quotient of Gr(2,6) by the maximal torus T ⊂GL6. The torus

acting on the cone over Gr(2,6) is not the Néron–Severi torus for M0,6; it is the Néron–

Severi torus for small resolutions of X3—or even for X3 itself if we allow Weil divisors on

X3. The standard action of S6, and thus also of A5, on Gr(2,6) is stably linearizable by

Proposition 19. We conclude the following proposition.

Proposition 21. The standard and the nonstandard actions of A5 on the Segre cubic

threefold are not birational but stably birational.

Remark 22. Florence and Reichstein [FR] consider, over nonclosed fields, the ratio-

nality of twists of M0,n arising from automorphisms associated with permutations of the

marked points. These are always rational for odd n, but may be irrational when n is even.

Combining with [DR, Th. 1.1], we see that the S6-action on the Segre cubic is not stably

linearizable.
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