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Throughout the following note R will denote an associative ring with unit element 1.
We shall denote by .R-mod [resp. mod-i?] the category of all unitary left [resp. right] R-
modules. Morphisms in these categories will be written as acting on the side opposite scalar
multiplication. All other functions will be written as acting on the left. If W is a category,
we shall abuse notation and write " AeW when we mean " A is an object of # ".

We can define an equivalence relation on the class R-'mj of all injective objects of /?-mod
by calling two modules equivalent if and only if each of them can be embedded in a direct
product of copies of the other. An equivalence class on R-'mj is called a torsion theory on
.R-mod. With each torsion theory T on .R-mod we associate a class yx of i-torsion modules
and a class 1FZ of x-torsionfree modules defined respectively by

3TX= {Me R-mod | Hom^M, E) = 0 for any Ee T}

and
^ t = {Me .R-mod | M is embeddable in some element of T}.

This definition can easily be seen to be equivalent to the definition of a hereditary torsion
theory in the sense of Dickson [2]. For an introduction to such theories consult [2, 5, 8].
If E is an element of i?-inj we denote the torsion theory on R-mod containing E by x(E).

We can partially order the set of all torsion theories on jR-mod by setting T ^ T' if and
only if £Tt s ^"t,. For any left jR-module M with injective hull E, x(E) is then the unique
largest torsion theory relative to which M is torsionfree. Note too that there is a minimal
torsion theory £, on .R-mod, namely the equivalence class of injective cogenerators of .R-mod.

We can dually define an equivalence relation on the class i?-proj of all projective objects
of i?-mod by calling two modules equivalent if and only if each of them is an epimorphic
image of a direct sum of copies of the other. An equivalence class on .R-proj is called a
colorsion theory on .R-mod. Such theories are introduced and studied in [6]. With each
cotorsion theory K on .R-mod we associate a class 2T* of K-cotorsion modules and a class 2F*
of K-cotorsionfree modules defined respectively by

Ft = {MeR-mod\ HomR(P, M) = 0 for any PEK}

and

3F* = {Me.R-mod| M is an epimorphic image of some element of K}.

If P is an element of .R-proj we denote the cotorsion theory on i?-mod containing P by >/(/*).
If K = t\{P) for some finitely-generated projective left .R-module P we say that K is finitary.

We define torsion and cotorsion theories on mod-i? in a manner similar to the above.
If U is a left /{-module then the trace of U in R is defined to be

Mj6 U and ateiiomR(U, R)}.
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This is clearly a two-sided ideal of R. If P is a projective left i?-module then the trace I of P
is idempotent and IP = P. Moreover, / = R if and only if P is a generator of .R-mod. The
reader can easily verify that for any left J?-module M, IM = I,{PPi\^eHomR(P, M)} from
which one deduces directly that two members of i?-proj are equivalent if and only if their
traces are equal. We can therefore define the trace of a cotorsion theory K, denoted by IK,
to be the trace of any one of its members. Again an easy proof which will be left to the reader
shows that

,T * = {Me R-mod \ IKM = 0}
and

& * = {M e R-mod | IKM = M}.

If / is an idempotent two-sided ideal of R then there is a torsion theory 8(1) on .R-mod
satisfying &~lin = {MeR-mod\lM = 0}. Indeed, 8 is a bijection between the set of idem-
potent two-sided ideals of R and a family of torsion theories which we will call jansian.
(See [4], where such theories are called TTF-theories; these theories are interesting in their
own right and have been extensively studied in the literature.) As a result, 5 induces an
embedding A of the set of all cotorsion theories on .R-mod into the set of all torsion theories
on /?-mod defined by A : K t-> <5(/K). We then have ST* = &~&M for all cotorsion theories K
on .R-mod. In particular, ^ = A(^*), where <£* is the cotorsion theory of all projective
generators of /?-mod.

Similarly, the function 8 induces an embedding A° of the set of all cotorsion theories
on mod-/? into the set of all cotorsion theories on R-mod denned ,by A0: X H> <5(A)> where Ix

is the trace of the cotorsion theory X. Then &~&°w = {Mei?-mod | P®RM = 0 for any PeX).
It is natural to ask when are the functions A and A° surjections. This is far from being

always true; indeed, being jansian is a strong condition for a torsion theory to satisfy.
Theorem A of [3] suggests that the proper place to look is over right perfect rings and indeed
we have

THEOREM. The following conditions on a ring R are equivalent:

(1) R is right perfect.
(2) Every torsion theory on .R-mod is of the form A(K) where K is a finitary cotorsion

theory on J?-mod.
(3) A is a bijection.

Proof. (1)=>(2): By [1, Theorem P], a right perfect ring R is left semiartinian; that is
to say, every nonzero left .R-module has a nonzero socle. (The socle of a module is the sum
of its simple submodules.) Therefore the socle of any nonzero left /?-module is large in it.
Assume then that R is left perfect and let T be a torsion theory on .R-mod. Pick an element
£ofx.

Since R is right perfect, it is in particular semiperfect and so there are only finitely many
distinct isomorphism classes of simple left .R-modules. In particular, we can select a set
{Mu ...,Mk} of nonisomorphic simple left .R-modules such that every simple submodule
of E is isomorphic to one of them. Let M = ©M,. Since R is semiperfect, M has a finitely-
generated projective cover fi: ?->M. Set K = r\(P). Then we have M = Pp = IKPfi = IKM,
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and so M is x-cotorsionfree. This implies that IKx^0 for any xeM,(1 £i£k) and so
IKx± 0 for any element x of the socle of E. Since the socle of E is large in E, this implies
that IKx^ 0 for any xeE and so E is A(jc)-torsionfree. Thus T = %{E) ^ A(K).

Now let U be a left .R-module, that does not belong to 2TA(K). Then there exists a non-
zero i?-homomorphism P-*U and so there is a proper submodule N of P such that P/N
is isomorphic to a nonzero submodule of U. Since ker(/x) is a small submodule of
.P, N' = iV+ker(/i) is also a proper submodule of/*, and so P/N' is a nonzero homomorphic
image of M. Since M is a completely-reducible module, it contains an isomorphic copy of
each of its homomorphic images and so PjN' is isomorphic to a nonzero submodule of M.
Therefore we have a nonzero homomorphism from PIN into the socle of E which, by
injectivity, extends to a nonzero homomorphism U-* E. Therefore U$$~z and so T ̂  A(K),
proving equality.

(2)=>(3): Trivial.
(3)=>(1): Assume that A is a bijection. Then every torsion theory on /{-mod is jansian.

Let M be a nonzero left /{-module with injective hull E. Then /(£) = A(K) for some cotorsion
theory K on /{-mod. If Pe K then by [1, Proposition 2.7] P has a simple homomorphic image N.
Since Hom^-P, iV) # 0, N$ &~* = &~X(E) an<i s o there exists a nonzero iJ-homomorphism
N-*E. Since iV is simple, this means that N is isomorphic to a submodule of E. Since M is
large in E, this means that N is isomorphic to a submodule of M. Thus M has a nonzero
socle.

We have thus shown that R is left semiartinian. This implies in particular that every
torsion theory on i?-mod is of the form %{E) where E is the injective hull of a completely
reducible left i?-module. Since each of these is jansian, RIJ(R) is completely reducible by
[3, Theorem B]. Therefore R has no infinite sets of orthogonal idempotents and so by [1,
Theorem P], R is right perfect.

COROLLARY. The following conditions on a ring R are equivalent:

(1) Ris right perfect.
(2) Every torsion theory on J?-mod is of the form A°(A) where X is a finitary cotorsion

theory on mod-i?.

Proof. This follows from the theorem and the fact [7] that if P is a finitely-generated
projective left [resp. right] iJ-module then P* = Hom^/*, R) is a finitely-generated right
[resp. left] /{-module which has the same trace in R as P.
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