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The class of a nilpotent

wreath product

David Shield

Let G be a group with a normal subgroup H whose index is a

power of a prime p , and which is nilpotent with exponent a

power of p . Gilbert Baumslag (Proa. Cambridge Philos. Soe. 55

(1959), 22U-231) has shown that such a group is nilpotent; the

main result of this paper is an upper bound on its nilpotency

class in terms of parameters of H and G/H . It is shown that

this bound is attained whenever G is a wreath product and H

its base group.

A descending central series, here called the cpp-series, is

involved in these calculations more closely than is the lower

central series, and the class of the wreath product in terms of

this series is also found.

Two tools used to obtain the main result, namely a useful basis

for a finite p-group and a result about the augmentation ideal

of the integer group ring of a finite p-group, may have some

independent interest. The main result is applied to the

construction of some two-generator groups of large nilpotency

class with exponents 8 , 9 , and 25 •
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Introduction

0.1 BACKGROUND

Baumslag showed in §3 of f ] that a wreath product A wr B of two

groups is nilpotent if and only if for some prime p the "bottom group" A

is nilpotent with exponent a power of p and the "top group" B is a

finite p-group. The proof of the "if" part, in Lemma 3.8 of [I], applies

to group extensions in general, not only to wreath products. Although an

upper bound on the class of such extensions is implicit in the proof of

Lemma 3.8, it is not stated, and is extremely high.

Liebeck [9] found the exact nilpotency class of a nilpotent wreath

product A wr B in the special case where A and B are both abelian,

and observed that his result provides a lower bound to the class in the

general case. Since then, exact results in other special cases and

improved upper and lower bounds in general have been given by Scruton [16 ],

Meldrum [JO, J7], and Morley [73] and [143. Buckley [3] has pointed out

that earlier work by Jennings [7] gives the exact class when A is cyclic of

order p and B is an arbitrary finite p-group.

0.2 STATEMENT OF THE MAIN RESULT

The main results of this paper are an upper bound, in Theorem U.6, on

the class of those group extensions shown to be nilpotent by Baumslag, and

the proof in Corollary 5-5 that every nilpotent wreath product has a class

which attains this bound. A statement of the nilpotency class involves,

for the relevant prime p , the cpp-series

G = TL^GO 3 TT2(G) 2 ••• 2 \(G) 2 •••

of a group, which is defined in 1.1 of the present paper. In a finite

p-group B , this series is identical with the K-series of Jennings [7].

The cpp-series of a group reaches the trivial subgroup in finitely many

steps if and only if the group is nilpotent and has exponent a power of

p . Such a group is said to be cpp-nilpotent, and the integer used to

label the last non-trivial term of its cpp-series is called its cpp-class.

Baums lag's Lemma 3-8 may thus be restated: every extension of a cpp-

nilpotent group by a finite cpp-nilpotent group is cpp-nilpotent.

Suppose 5 is a finite p-group with cpp-class d , and for

1 2 v 2 d ,
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Let a = 1 + (p-1) Y. Mv) : 1 2 v £ d} and fc = (p-l)d .

If 4 has nilpotency class r and cpp-class t , and if for

1 S U £ r the maximum order of a commutator of weight w in A is

p , then the nilpotency class of A wr B is precisely

and the cpp-class of A wr B i s

at = max{awp : 1 £ w £ r} .

This result confirms the conjecture of Sandling [75] that for

arbitrary positive integer e and (non-trivial) finite p-group J , the

nilpotency class of C wr .7 is strictly less than that of C wr J .

p p

Thus the "equivalent statements" of Theorem 1.3 in [J5] all become

theorems.

0.3 OUTLINE

In Section 1 some weight functions and associated descending central

series of a group are defined. A standard basis for a finite p-group is

constructed in Section 2, and in terms of this some results about products

of elements in the augmentation ideal of the integer group ring are

obtained in Section 3. In Section 4, these are applied to obtain the

upper bounds on nilpotency class and cpp-class already described. In

Section 5, non-trivial elements of maximal commutator weight and cpp-weight

are constructed in a wreath product. In Section 6, it is shown that

certain nilpotent wreath products have two-generator subgroups with the

same nilpotency class as the whole group; hence two-generator groups of

exponent 8, 9 , and 25 are constructed with nilpotency classes 39. 18 ,

and 112W respectively.

0.4 NOTATION

As a general rule, lower case Greek letters are used for" elements of

groups and group rings, and lower case Roman letters for integers and

integer-valued functions. The symbols Z, N , and N respectively denote
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56 Davi d Shield

the sets of integers, non-negative integers, and positive integers. For I

in Z , the underlined symbol Z_ denotes the set

t_= {i (. N : 0 < i < 1} . Upper case Greek letters are used for index

sets; in particular, unless otherwise specified, T, A , and 0 are

finite index sets, ordered so that a product such as "] \ {6, : d € A} is

well-defined.

Each element, a , of a group is a commutator with one entry, a :

[a] = a .

If a and 3 are commutators in a group, then

[a, 6] = cfV-'-ae

is a commutator; the family of its entries is the disjoint union of the

families of entries of a and 3 • Left-normed notation is used; that

is,

[al5 a2, a3, ..., a j = [... [[o^, a2], c*3] , ..., a j ;

and a sequence of repeated entries is shown as follows:

[a , «3] = [a, 3 , . . - , 3] .
n entr ies

1. Weight subgroups

The definitions of this section are self-contained, but are equivalent

to corresponding definitions in a more abstract setting in [770. Some

results from that reference are quoted here for later use.

1.1 DEFINITIONS

Let G be an arbitrary group, and a, b , and e integers satisfying

a > £ > 5 0 , a > l , and e € {l, p} where p is a fixed prime. These

symbols will be used repeatedly with the same meaning.

A weight relation p(a, b, e) is defined to be the least subset of

G x N satisfying the conditions:

(i) for all a € G , (a, a) € p(a, b, e) ;

(ii) (a, u) € p(a, b, e) and (3, v) € p(a, b, e) only if

([a, 3], u+v) € p(a, b, e) ;
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( i i i ) (a) (a , u) e p(a, b, 1) only i f (aP, mb) € p(a, b , l )

and

(b) (a , u) £ p(a, b , p) only i f (ap, pw) € p(a, b , p) ;

(iv) (a, u) 6 p(a, b , e) and (3 , u) € p(a, b , e) only i f

(aB, min{u, u} ) € p(a, b , e) ; and

(v) (a, M) € p(a, b , e) only if (o~ , u) € p(a, b , e) .

A function w , from G to Z u {<»} is then defined by the
a,b

statement that for all cp in G ,

max{u : (cp, u) € p(<2, b, e)} if this maximum exists,

» if no such maximum exists.

The value u , (cp) is called the (a, b, e)-weight of <p .
a ,b

For arbitrary v in Z , the weight subgroup y ' ' (G) is defined

Y ( f f ) |«p € C :

This set is readily checked to be a fully invariant subgroup.

Two special cases merit particular attention. Let y.(G) = y.' ' (G)

and ir.(C) = Y^'°'P(ff) • Thea Y-(ff) i s "the ith term of the lower

central series of G , and TT .(G) is the ith term of the cpp-series
if

mentioned in the introduction. From the definition,

[ i r . (C), TT.(G)] c IT . AG)

and

and it is not hard to show, by induction, that

G = vx{G) 3 7T2(G) 2 ... 2 IK(G) 3 ...
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is the most rapidly-descending series with the properties.

If for some positive integer d ,

nd(G) 3 ird+1(G) = {1} ,

then G is said to be opp-nilpotent with opp-olass d . It is easy to

see that a group is cpp-nilpotent if and only if i t is nilpotent and has

exponent a power of p . In this case, each (a, b, e)-series reaches the

t r iv ia l subgroup in a finite number of steps, and the index of the last

non-trivial subgroup is called the (a, b, e)-class of the group.

Each of the next two results follows from the corresponding result in

[77] by application of Lemma 3.1* of [J7].

1.2 LEMMA ([J7], Theorem 6.6)

Every element ip of G may be expressed in the form

where each < is a commutator in G with
g

and h(g) is a non-negative integer such that for all a and b
described earlier,

wX
a b(<f) 5 aw(g) + bh(g)

and

«P>2>((p) £ aw(g)p
Hg) .

1.3 COROLLARY ([17], Corollary 6.7)

The weight subgroup ya.* 'e(G) is generated modulo Y^l1'
e(

h
elements of the form tc where K is a commutator of weight u in G
and, for e = 1 ,

au + bh = i ,
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or, for e = p ,

h
aup = ^ .

2. A basis fo r a f i n i t e p-group

This section leads up to the proof that every finite p-group has a

basis with certain desirable properties (Theorem 2.1+) •

2.1 DEFINITIONS AND NOTATION

Throughout Section 2, let p be an arbitrary prime and P a group of

p-power order with cpp-class ((l, 0, p)-classj d . For 1 5 v 5 d ,

define n{v) by the relation

I V P > I
 =pn{v) •

Further, let

a = 1 + (p-1) Y, Wv) : 1 S u < d}

and

b = (p-l)d .

A basis for P is a set {(T ., h(i)) : i € M} where M is a finite

ordered index set and for i in M , T. € P and h{i) d Z , such that
If

every element of P may be written uniquely in the form

with 0 5 e(i) < p for i in M . This will be called the standard

form of the element relative to the basis.

It was shown by Sylow [JS] (Theoreme III, p. 588) that every group of

order p , for n in Z , has a basis with |M| = n and h(i) = 1 for

i in M .

Let 2" = {(x., h(i)) : i € M} be a basis for P . For each •£ in

M , let

q(i) = p * ,
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and

u(i) be the integer such that T. Ey , .>(P)\y ,.> (P) .

Corresponding to a basis T of P and a term TT (P) of the cpp-series of

P , let m(v, T) be the cardinality of the set of ordered pairs

{(i, j) -.id M, 3 € h(i), and u(i)p3 2: u} .

(Note tha t for each pair (i, j) in th is s e t , T? € IT (P) .) From

the independence of the basis elements, m(v, 21) 5 n(v) . From th i s i t

follows tha t :

a = 1 + (p-1) J (n(u) : 1 5 u 5 d)

> 1 + (p-1) ^ {m(u, T) : 1 5 » 5 J}

= 1 + (p-1) X {v[m{v, T)-m(v+l, T)) : 1 S v < d]

= 1 + Y {(p-DuU)pj : i € M, j € ft(i)l

= 1 + 1 {w(i)(«7(i)-l) : i 6 M} .

A basis is said to be ir-respecting if the relation

T T { T J « > : i € M} € ,y(P)

implies that for all i in M , x^ € ir (P) . Such a basis can clearly

"V V

be constructed by combining coset representatives of bases for the factors

in the cpp-series.

A stronger property is defined as follows:

A basis T for P is ir-form-respecting if the relation

1 f j r . : i € M[ f ir (P) implies that for each i in M there exists
an integer s(i) such that p \e(i) and u(i)p 2 v .

Clearly a basis T for P is ir-form-respecting if and only if for

1 £ v 5 d , m(u, 21) = «(v) ; whence
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a = 1 + Y. {"(i) [q(i)-l) : i € M} .

Also, this definition requires that each basis element T. have

(1, 0, l)-weight equal to its (1, 0, p)-weight.

In general, a permutation of"a basis for a finite p-group is not"

necessarily a basis. For example, the dihedral group of order 8 ,

<a, b : ak = b2 = [ab)2 = 1>

2
has a basis with x. = ab , x = a , x. = a b , and h, = h„ = h_ = 1 ;

2
yet setting x = a , x? = ab , and x = a b does not give a basis. On

the other hand, though this will not be proved here, every permutation of a

ir-respecting basis is again a ir-respecting basis. In Section 5 the

following property will be used.

A basis is ordered if

i, Q (. M , i < 3 , only if u{i)q{i) 5 u(j)q{j) .

2.2 THE REFINED cpp-SERIES

In order to prove the existence of an ordered, ir-form-respecting

basis for an arbitrary finite p-group, it appears necessary to prove the

existence of a basis with an even stronger property. A refinement of the

cpp-series is defined by setting, in an arbitrary group G ,

X (C) = if ( ff : either h% .(cp) > y or i£ n((p) = u and u A(cp) > w\ .w jV [̂  i,u J-,u i,u j

This gives:

If v = up where p\u , then at most s distinct new subgroups can be

introduced between TT ((?) and IT +-,(G) , since Corollary 1.3 makes it

clear tha t for 0 S t 2 s , the subgroup X ^ (G) is generated modulo
up ,V

A (G) by the p th powers of commutators with (l, 0, l)-weight
up ,v

up . All subgroups X (G) with 1 5 u 5 w are equal to ir (G) , and
it? ji^ y
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for 1 5 t 5 s , a l l subgroups X with up < w S up are equal to

A (C) .
up ,v

A basis T for P will be called a standard basis if it has the

properties:

(a) it is ordered in the sense defined at the end of 2.1;

(b) each element T. is a commutator of weight u(i) in P ;

and

(c) the relation ~TT iT • ' : i € MS- € X (P) implies that

for each i in M there exists an integer s(i) such that

ps(i)|e(£) and either wU)p s ( i ) > y or u(i)pS<ki) = v

and u(i) 5 W .

Property (c) (which could be called being "X-form-respecting")

implies the property of being ir-form-respecting. Properties (a) and (b)

require negligible extra effort in the existence proof, and are convenient

to have.

A generalisation of Theorem 3.2 of Hal I [4] is required; a proof is

given in Lemma 3. 't of [ 7 7].

2.3 LEMMA

Let {cp. : i € P} be a set of elements of a group G , and h a

positive integer. Then

("IT Wi-.it r})P = T T f f : i € r} F T {^ •• * € A} ,

each 6, is a commutator wit

from the set {<p. : i € r} . O

where each 6, is a commutator with at least max{2, p ~ } entries

The main theorem of this section follows.
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2 . 4 THEOREM

Every finite p-group has a standard basis.

Proof. In the finite p-group, P , let

The proof proceeds by induction in the reverse direction along the refined

cpp-series of P to show that each term A (P) of that series has a

w ,v
basis T = ( ( T *

( u ' u ' i ) j h ( W j y, £ ) ] : £ € M 1 such thatw,v [y z J w,v)

(a) for all i in M > T. is a commutator of weight u{i)
W ,v T,

in P ;

(b) for all i in M , there exists a non-negative integer

w ,v
r(w, V, i) such that t(w, V, i) = pr(u'V '^ ;

(c) for all i in M , either

(i) v S u(i)t(w, v, i) < pv , or

(ii) u(i)t(w, v, i) = pv and u(i) < w , or

(iii) t(w, v, i) = 1 ;

(d) if i precedes j in M , then

w )V

u(i)t\w, v, -L)p £ uK3)t\w, v, o)p '" ;

and

(e) for all {y, x) such that X (P) c \ (P) ,

y ,x w,v

m^' *' Tw,v^ = niy' x) •

Here m{jy, x, T ) is defined to be the cardinality of the set of ordered

pairs:

\(i, j) : i € M , 3 € M u , u, i), and either u(i)t(u, u, i)p3 > x

or u{i)t{w, v, i)p3 = x and u{i) 5 y\ •

Conditions (b) and (c) show that for all i in M. ,
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i ( l , 1 , i) = 1 ; so t h a t by condition ( a ) , each bas i s element of T
1 s-L

may be written as a commutator of weight u(i) in P , as required.

Condition (d) shows that M, , is ordered in the way required of M .

Finally, condition (e) for the basis 7 is equivalent to the condition
1>J-

that T. , is A-form-respecting. Thus if T , is constructed with the
J- ,1 J. ,-L

properties claimed for it, then the choice M = M, , , h(i) = h(l, 1, i)
1 >l

for each i in M , and hence 7 = T , establishes the truth of the

theorem.

The inductive hypothesis is vacuously true for X, ,+, (P) = £ •

Let X (P) be an arbitrary non-trivial term of the refined cpp-
W ,V

series of P , and suppose the hypothesis established for all terms

X i i(P) of the series such that either v' > V or v' = v and

w' > w .

Consider first of all the case w = v + 1 , and recall that

( ) { ) ( ) • B y a s s u m P t i o n - x i u + i
( p ) h a s a b a s i s

T with appropriate properties. Let M +- = M, +, , and for i in

M . , let t(v+l, v, i) = t(l, y+1, -i) and ^(y+1, v, i) = h{l, v+1, i) .v+x ,y

Then T , i s i d e n t i c a l with T , , and so i s a bas i s for
y+l,u l , u+ l

X . (P) . Clear ly T . i nhe r i t s p rope r t i e s ( a ) , ( b ) , ( d ) , and (e)
v+x,y y+i ,y

from T ; t h a t i t a l so i nhe r i t s property (c) w i l l now be shown. All

ind ices i in M, , sa t i s fy ing condition (c) ( i i i ) for 21 s a t i s f y

the corresponding condit ion for T . N o index i can sa t i s fy

condi t ion (c) ( i i ) for T -. , since u{i) 2 1 for a l l i in M , •

J. sy+j. xsy+.L

So if t ( l , v+1, i ) # 1 , then u + 1 5 uii)t(l, v+1, i) < p(v+l) . Also

by condition (b) , p | t ( l , v+1, i) , whence
v + 1 S u(i)t(l, v+1, i) < p(y+l) - p = pv .

If w(i)t(l, v+1, i) < pv , then i satisfies condition (c) (i) for

(P) . Otherwise,
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u(i)t{l, v+1, i) = pv

and

u(i) = pv/t(l, v+1, i) 5 pv/p < v + 1 ,

so that condition (c) (ii) for T (P) is satisfied.

A step of the type considered involves only a change in notation.

Consider now the case 1 5 w 5 V , where a basis T , for X ., (P)

w+± ,v w+± ,v

is known to exist and to have appropriate properties. As the second

subscript on each symbol T, M, t, r, h , and m remains equal to v

throughout the following construction, it will be omitted for the sake of

reducing the notational complexity. The construction of T now takes
W

place in two stages.

In the first stage, let

r = {i € Mu+ 1 : u(i) = w, u(i)t{w, i) = pv}
and note that for i in T , t(w, i) > p since w 2 V . For i in r ,

let r(w, i) = Hw+1, i) - 1 and h(w, i) = h(w+l, i) + 1 , and for i in

M , \ r , l e t r(w, i) = r (u+l , i) and h(w, i) = 7z(w+l, i) • For a l l i
W+L

Wow definein M . , l e t t(w, i) = pr<"w^ .

Let X* (P) be the set of elements of P which may be written in
w ,y

the form J~[ L^w^e(i) . i g M 1 ̂  where fQr

0 5 e(i) < p"^w't''' . Then X* (P) contains X (P) and is a subgroup

of P ; in fact a normal subgroup, since X* (P) is contained in
W yV

X (P)/X . (P) is central in P/X . (P) .
w,v u+l,y w+l,y

If X* (P) were equal to X (P) , then M would be chosen equal

W, V W ,V W
to M , and the construction of T = T* would be complete. Otherwise,

w+1 w w
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the elementary abelian subgroup A (P)/\* (P) is generated by cosets
W9V W 9V

each having as a representative the p th power of a commutator of weight

W in P , where wp = v (Lemma 1.3). In the second stage of the

construction, a subset \T . : •£ € M \M ,> of these representatives is

\ % w w+lj

selected in such a way that the corresponding cosets constitute a basis for

X (P)/X* (P) . Here M is an ordered set such that all elements of
M \M ., precede all elements of M ,, . For i in M \M ,. , let
W W+J- W<-i- W W "1

u(i) = w (the weight of the commutator x. in P ) , let

t(w, i) = pr *V = pT , and let h(w, i) = 1 . Then the construction of

is complete.

The next stage of the proof is to show that T* is a basis for
W

X* (P) . For this , i t is sufficient to show that the elements
W }V

{T. ' : i € If are independent modulo A . (P) , that i s , to show
% ) u+1 ,u

that i f

to.iuu) . .€ r|

with 0 S e(i) < p for each i in T , then e{i) = 0 for each i in

T . Lemma 2.3 shows that

)e ( i ) : i €

where for d in A , tjj, € X (P) c X -, (P) . The same lemma gives:
a pw ,pv — u+1 ,pv

Hence from the relation (*) it follows that

T T f f iW'i)eU) = * 6 r} = TT {T^
+1'i)e(i) : i €

Now property (e) of T __ shows that for all i in F , ple(i) ; so if
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0 S e(i) < p , then e(i) = 0 , as required.

The fact that T is a basis for X (P) is now an immediate
w w ,y

consequence of the fact that

J : 0 5 e[i) < p for i € M

is a complete set of coset representatives for X* (P) in X (P) .

The final stage of the proof is a verification that the basis T has

the properties (a) to (e) listed at the start of this proof. It is clear

from the construction that (a), (b), and (d) are satisfied. For j in Y

or in M \M , it is clear that u[j)t(w, j) = V , so that condition
w w+±

(c) (i) is satisfied. Those j in M which satisfy condition (c) (i)
w+1

or (c) (iii) for T clearly satisfy the same condition for T , and
W+± W

those which satisfy condition (c) (ii) for T , either satisfy the same

condition for T or are contained in Y .
W

It is clear from the way in which the basis elements were constructed

that

m[w, v, T ) = n(w, v) ;

t(P) , then

= n(y, x) ,

so that condition (e) i s also sa t i s f ied . D

3. Some results in the integer group ring of a f i n i te p-group

A standard basis for a finite p-group, constructed in Section 2,

gives rise to standard sets of generators for the integer group ring of the

group, and for its augmentation ideal. Most of the following lemmas

discuss products of these generators, particularly products with repeated

factors.
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3.1 PRELIMINARIES

Again le t P be a group whose order i s a power of a prime, p , and

le t T = { ( T . , h(i)) : i ( M) be a standard basis for P . Let S be the

ordered set of "permissible powers" of basis elements

v
T? : i € M and r € Hi)}

with l e x i c o g r a p h i c a l o rder on the p a i r s ( £ , v) . For 1 £ u £ d , l e t S

r
be the sub-ordered-set of 5 containing those n(v) elements T . such

that u(i)p 5; v . Each element of 5 may be paired with the integer 1

to give a basis which is a "refinement" of T , say

' 2" = {(6 . , l ) : Q f n ]

where n = n(l) so that p is the order of P . Now every element of P

may be written uniquely in the form

je . 3' : j € n 1 where for j in n , O S e(j) < p .

The basis 2" is IT-respecting, but not ir-form-respecting.

In the integer group ring ZP , the augmentation ideal J is

generated additively by the set {tp-1 : <f> £ P] . It is well-known that if

{& . : i € A} is an arbitrary finite ordered set of elements in a ring,

then

(*) { V 1 : i € f} : F £ A} '
the sum on the right-hand side being over all sub-ordered-sets T of A .

Hence J is generated additively by the p - 1 non-trivial elements in

the set

(**) {rT { f ^ - 1 ) 6 ^ : i € wl : 0 5 e(i) < p for i in n| ;

in fact, these constitute a basis for J . If the element 1 is adjoined

to this set, s t i l l with 0 omitted, then i t constitutes a basis for Zp .

Thus J is generated as a ring by the set
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5* = {(6-1) : 9 € 5} .

A (possibly empty) product of elements of 5* without restriction on their

order will be called a monomial in I ; but it should be noted that the

empty product is, by convention, the element 1 which is not in J .

The weight of a monomial

is defined to be

The profile of the same monomial x is defined to be a function /

from the set {y € Z : 1 5 v 5 d] to N such that for 1 £ v S d there

f Vr{l) 1
are precisely f(v) factors T.,7v -1 in X such that

I i\ L) j
l) = V . Note that £ {/(y) : l < y S d} = m and

Y, {Vf(v) : 1 £ V £ d) = w(X) •

A profile / is heavier than profile /„ if there exists an integer

V such that 1 S v £ d and if y < v' 5 d , then fAv') = f?(v') and

The first result to be proved is quite trivial. It is given here for

easy reference in the proof of later lemmas.

3.2 LEMMA

Let X-i and Xp ^ e monomials in I and \p an arbitrary element of

IP . Then

= I {xg • 9 € r}

where for each g in Y , x is a monomial with weight at least

u(x-|) + u(x2)
 an<^ Vrof^e at least as heavy as the (pointwise) sum of the

profiles of xx
 an<^ X2 •

https://doi.org/10.1017/S000497270002548X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270002548X


7 0 D a v i d S h i e l d

Proof. The element if/ may be expressed as a linear combination of 1

and elements of the form if). - 1 where ty. € G . Each \f). may then be
1r 1r Is

expressed in standard form re la t ive to the basis T , and by the re la t ion

(*) in 3 .1 , each (I|J l ) i s expressed as a sum of monomials in J . When

the resul t ing expression for i|> i s substi tuted into Xn'I'Xo

dis t r ibu t ive laws immediately give the required resu l t .

3.3 LEMMA

Let 9 be an arbitrary element of ifAP) • Then

e - i = I hg •• 9 « r} ,

where each x is a monomial with profile f such that

/ (M) = 0 for 1 5 u 5 v ,
y

and

v - wixg) S a - 1 .

Proof. If 9 = 1 then V is empty. If 6 * 1 , then in the

standard expression for 6 in terms of the bases 2" , each factor 9 .
0

is such that the monomial (9 .-l) has weight at least v . The required

result follows immediately from the identity (*) in 3.1 above and the

definition of the integer a in 2.1. D

3.4 LEMMA

Let 9 and x be elements of S and S respectively. Then

(T-D(e-i) = (9-i)(x-i) + £ {Xg •• g e r} ,

where eaah x is a monomial, with profile f , and there exists an

integer x such that

x > u + v
g

and
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Consequently, the weight of x ^s ai least that of (x-l)(9-l) , and its
£7

•profile is heavier.

Proof. Note that [x, 6] € ?r + (G) . The well-known ident i ty

(x-D(e-i) = (e-D(x-i) + 6x([x, e]-D ,

together with Lemmas 3-2 and 3.3, gives the required result. D

3.5 COROLLARY

Let X = 1 f {(6 •( -i"1) • i i m} be a monomial, 6 a permutation of

m, and x ' = T T { ( Q ^ s ) " 1 ) • i ^ m] . Then

X = X ' + 1 i x g •• 9 € T} ,

where each xa ^
s a monomial such that w[\ ) > w(x) an<^ *̂ e profile of

X is heavier than the profile of \ .

Proof. The permutation S is equal to a product of transpositions of

adjacent integers in m_ . For each such transposition, Lemma 3.** and then

the distributive law is applied. D

Note that if the permutation has the purpose of gathering together

factors equal to (8-1) where 9 € 5 , then each transposition involves a

factor (9-1) , and the profile of each x differs from that of x on an
y

integer greater than u .

The next step is to consider powers of a monomial factor 6 - 1 in

the two succeeding lemmas. The first is not restricted to monomials.

3.6 LEMMA

For arbitrary 6 in IP , there exists ty in IP suah that

Proof. When p = 2 , the result holds with i|> = -1 . When p is

odd, the first and last terms in a binomial theorem expansion of the left-

hand side give Cr - 1 , and the coefficients of the intermediate terms are
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all divisible by p and have zero sum. Thus p and (8-1) are both

factors of the sum of the intermediate terms, as required. D

3.7 LEMMA

Let x be a monomial with. I > p factors equal to 9 - 1 , where
9 € 5 y . Then

X = I {x^ = ff i r} + p £ {Xd : <f € A} ,

where each \ is a monomial with a profile heavier than that of x i

differing from it on an integer greater than v , and w(x) - w(x ) i
y

and each XJ i-s a monomial with at least as many factors equal to cp - 1

as has x for each cp in S\{Q} , and with at least I - p + 1 factors
equal to (t?-l) , so that

w(X> - (p-Du 5 w[xd) .

Proof. By Lemma 3.5 and the comment following it, the factors of x

may be rearranged so that those equal to 6 - 1 are together, modulo a

sum of monomials satisfying the conditions required of monomials x
y

Lemma 3.6 is applied to a factor (0-1)^ , and the distributive law to the

resulting expression. Since 6" € TT (P) , Lemma 3.3 shows that the

monomial with 6 ^ - 1 as a factor satisfies the conditions required of

monomials \ . The remaining expression is a product of p with an

element \j) in P and a monomial which satisfies the conditions required

of XJ • Tile proof of Lemma 3.2 shows that this whole product may be

expressed in the required form. D

For the statement of the next lemma, recall that a and b are the

parameters for P defined in 2.1.

3.8 LEMMA

If x is a monomial with w(x) - o. } then X
 = P E {x^ • d (. k]

where each XJ ̂ S a monomial with

u(x) -b 5 w(xd) .
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P r o o f . S i n c e

u ( X ) > a = 1 + ( p - 1 ) £ {u{i)pV : i € M, r € M i ) j ,

t h e r e must b e a t l e a s t one p a i r (•£, r) s u c h t h a t x ^ a s mo*"e t h a n p - 1

(• r -i

factors equal to T. -1 . Let (£, i>) be such a pair, chosen so that
I * J

u(i)p is maximal.

Proceed by induction on the profile, / , of x • ^

/"(d) > (p-l)n(<i) , then u(i)p = d . When Lemma 3.7 is applied, since the

profile of each resulting x cannot differ on an integer greater than

d , the set Y must be empty; and the result follows immediately when it

is noted that b = (p-l)d .

If fid) 5 (p-l)n(d) , suppose the result already established for all

monomials with profiles heavier than f . Lemma 3.1, together with this

inductive hypothesis, gives the required result, since (p-l)u £ b . •

4. An upper bound on the nilpotency class and
cpp-class of some group extensions

The relevance of the integer group ring results of Section 3 to the

problem at hand is shown in Sub-section ^.1 and Lemma U.2. The restriction

there to splitting extensions is avoided in the main result, Lemma U.5, by

an appeal to an embedding theorem quoted here as Lemma k.k. Theorem h.6

restates the main result in more useful terms.

4.1 PRELIMINARIES

Let G be a group which splits over a normal subgroup H whose index

is a power of a prime p , and let J be a complement for H in G .

Elements of J act naturally on H ; in particular if p € H and x € J

then

r i -1+T[p, x] = p

However, if H is not abelian, these actions with the natural definitions

of addition and multiplication do not generate a ring; addition is not

commutative, and the distributive laws fail.
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Let a and b be the values taken on the finite p-group J by the

parameters described in 2.1. Since a > b 2: 0 , weight subgroups ya (H)

as described in 1.1 are defined. For arbitrary positive integer I ,

define

Note that

y(a) = H ,

, HI E [ Y ^ ' V ) , *] n j^'P^), #

and

cy(l+b) ,

since b < a and it may be assumed that a - I •

The factor Y U ) / Y U + O : ) is central in H/y{l+a) , and the integer

group ring U acts naturally on this factor. Thus if p d y{l) and

<p € 1J , the coset p^ytt+a) of y(l+a) in H is well-defined, though in

general the element p^ is not.

In the next lemma, an expression [C, a] where C is a coset and a

an element of a group, is to be interpreted simply as a set

{[<p, a] : <p € C} .

4.2 LEMMA

With the notation described in ^.1., let I be an arbitrary positive

integer. If, for 1 S i 5 I , a. = i|i -n • is an arbitrary element of G

with i(j. € J and r\. £ H , then

: 9
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where F7 is a finite ordered index set, each x ^s monomial in the
L 9

augmentation ideal I of 1J 3 with O s u ( x ) s a - 1 , and there exists

an integer m(g) such that p € y[m(g)) and m{g) + w(x ) - Z + a - 1 .

Proof. The lemma is clearly true when Z = 1 , since r) € y{a) .

Suppose I > 1 , and the result for I - 1 established. Then

which, by repeated application of commutator identities (for example, [6],

p. 253, Hilfssatz 1.2) is contained in

Note that p € y(^+l) f°r each g in F. ; and that every element of
£7 i—1

y(l+a-l) is automatically in a coset of y{l+a) with the required form,

with the empty monomial acting on it. In the last product above, the

second factor [ik , ..., ij),] is one specifically required. The first

factor is trivial if 1-1. > a ; otherwise 1 £ e+1 < a and the factor is
(-i+[* ,...,*])

the inverse of ru , which is shown by Lemma 3.3 to be,

modulo y(l+a-l) , a product of terms of the form r|7 where ru € y{a)

and l-l £ w(\) - <z-l » which satisfies the required conditions. The third

factor is treated similarly. Each factor in the product indexed by A, is

( X 1

a commutator with at least one entry from the set \p ° : g £ Tv -,} and at

least one equal to ru > an<i thus is contained in y(l+a-l) . Finally, for

g in T , Lemma 3.3 and the distributive law show that x {-^^T) is a

sum of monomials in I , each of weight at least w[x ) + 1 • Modulo terms
9

rx -i y
already discussed, p a, i|i7 is expressed as a product of terms pA

L-9 LI ?
which are of the required form provided that the weight of the monomial x

is less than a .
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y

If pA i s a term in th i s product such that w(x) - o. , then "by Lemma

3.8,

X = V 1 {Xd • d € 9} ,

where each XJ i s a monomial such tha t

w{xd) 2 u(x) - b > a - b .

Since (f 6 y(l-l+b) , this again gives an expression of the required form

provided w(x,) < a . If, for some d in G , W{XJ\ - a > then

application of Lemma 3.8 is repeated as often as necessary. The process

must terminate after at most r applications of the lemma where r is the

least integer such that rb > a , since then

pP € yU+a-1) .
y

The t r u t h of t h e lemma follows by i n d u c t i o n . •

4 . 3 COROLLARY

With the notation of h.X3 suppose that a is the nilpotenay alass of

G/H , and that I > a . Then every commutator in G with weight at least

I is contained in y(l) .

Proof. Every commutator in G with weight at least I is a product

of left-normed commutators in G with weight at least I . By Lemma k.2,

each of these may be expressed as the product of a commutator in J (which

is trivial for I > a ) with elements of y(!) , D

One further preliminary is needed before the main result.

4.4 LEMMA (Frobenius, Kaloujnine and Krasner).

Let M be an arbitrary group with a normal subgroup N . Then

N Wr M/N has a subgroup isomorphia with M . •

Here N Wr M/N is the unrestricted standard wreath product of the two

groups, as defined by Huppert [6], Kapitel I, 15.6 (p. 97) and by Neumann

[7 4] at the beginning of Section 2.2 (p. 1*5). The result stated above is

Theorem 22.21 (pp. h6-hj) in the latter reference; a simple proof and
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further references are given there .

An upper bound for the nilpotency class and cpp-class of an extension

of a cpp-nilpotent group by a f in i t e p-group may now be s ta ted .

4.5 LEMMA

If G is a group with a normal subgroup E such that for some p ,

the index of H is a power of p and H is cpp-nilpotent, then G is

nilpotent (and hence cpp-nilpotent). If a and b are the values for

G/H of the invariants defined in 2.\, then the nilpotency class of G is

bounded above by the (.a, b, 1)-class of H , and the cpp-class of G is

bounded above by the {a, b, p)-class of H .

Proof. Let K be the base group of the wreath product W = H wr G/H .

Then K is a direct power of H , and for e in {l, p} , has the same

(a, b, e)-class as H ; and W/K ̂  G/H . Further, since W splits over

K , Lemma k.3 shows that if c is the nilpotency class of G/H and

I > c , then

ytW = Y^'V) cY(l) cy^'V) ,

and the p th power of a commutator of weight I in K is contained in

[y(l))P e y a ' ^ ' P U ) , whence, by Corollary 1.3 with v = lpV ,
Ip

Thus the nilpotency class and cpp-class of W are bounded above by the

(a, b, l ) - c l a s s and (a, b, p)-class respectively of K , and hence of H

By Lemma h.k, G i s isomorphic with a subgroup of W , so the same upper

bounds apply to the nilpotency class and cpp-class of G . D

Lemma 1.2 may be used to re-state this result in terms that avoid

reference to {a, b, e)-classes:

4.6 THEOREM

Let G be a group with a normal subgroup H whose index is a power

of p , such that H is nilpotent of class r and for 1 5 w 1 r , every
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commutator of weight w in E has order dividing p . Let a and

b be the values for the finite p-group G/H of the invariants defined in

2.1. Then G is nilpotent, with class bounded above by

max{aw+fc(s(w)-l] : 1 S w 5 r) ,

and is cpp-nilpotent, with cpp-olass bounded above by

max{awpS : 1 £ w 5 r} = at ,

where t is the cpp-olass of H . O

The simplicity of the expression comparing cpp-classes of H and G ,

as well as the fact that the cpp-series of the "top group" was involved in

al l the calculations, make i t appear that the cpp-series is a more useful

tool than the lower central series in the present context.

5. The c lasses of a wreath product

In Lemma 5-U, lower bounds on the nilpotency class and cpp-class of a

wreath product are obtained. Since they are equal to the corresponding

upper bounds given by Theorem U.6, they show that the result is best

possible, and give (Corollary 5.5) the exact nilpotency class and cpp-class

of a wreath product.

5.1 COEFFICIENTS

Let h be a positive integer, q = p (where of course p is the

same prime already being considered), and q* = p . Let C be the

cyclic group of order q generated by T , and ZC the integer group ring

of C .

Define R(q, x, k) to be the coefficient of T in the standard

expression for ( -1+T) X in ZC ; that i s ,

(-1+T)X = £ {R(q, x, k)Tk : k € q] .

This coefficient is, apart from sign, the same as the integer X ,

defined by Liebeck in [9], h.1 and h.2; note that the choice of sign is

not consistently maintained between U.I and h.2. Liebeck1 s Theorem h.3 is

still valid, and is quoted now in the notation of the present paper.
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5.2 LEMMA (Liebeck, [9], Theorem It.3).

Let s be a positive integer.

(a) If x > q + (s-l)(q-q*) , then

p | R(q, x, k) for all k in g_ .

(b) If x = q + s(q-q*) - 1 , then

p K R(q, x, k) for all k in g_ . •

5.3 LEMMA

Let W = H wr J be the wreath product of two groups, and let

p € fl(l) , the first coordinate subgroup in the base group K of W .

Then for arbitrary x ^n T-J , the element p in K is well-defined.

Proof. Since p is contained in one coordinate subgroup of K , its

conjugates by distinct elements of J are in distinct coordinate

subgroups, and commute. C

This contrasts with the general situation where, if

p € Y7' ' (K) n Y ' {%•) , then the expression p can be given a well-

defined meaning only as a coset of Yi' ' (#) n Y ' (K) in X or W ,
L •& 171 >(X

not as an element of the group.

5.4 THEOREM

Let J be a group with order a power of a prime p , on which the

invariants defined in 2.1 take values a and b . Let H be a cpp-

nilpotent group, with (a, b, l)-class I and {a, b, p)-class m . Then

in the wreath product H Wr J there exist

(a) a non-trivial commutator of weight I , and

r
(b) a non-trivial element of the form X" where X is a

commutator of weight m' , and m'pr = m .

Proof. The construction used here is an adaptation of that used by

Scruton [76], Theorem 3.5-

(a) By hypothesis, there exists in H a non-trivial element of the
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s
form K^ , where K = [a , . . . , a 1 i s a left-normed commutator of weight

w in H , and where

aw + bs = I .

Use the same symbols K and a. , 1 5 i 5 w , to denote the corresponding

elements in the first coordinate subgroup ff(l) of the base group K of

W = H Wr J .

Let T = {(x., h(i)) : i Z M} be an ordered, w-form-respecting basis

for J , and adopt the associated notation from Section 2. Let z be the

last element of the ordered set M , and M* the sub-ordered-set of M

with this element removed. Let OJ and w* be the elements of the integer

group ring ZJ given by

and

to* =

Note that if p € #(l) , then pW and pw are elements of K whose

components in the first coordinate subgroup are either p or p

The commutator in W ,

has weight precisely a > and is equal to a • Hence

[<V X» «2] = \fv a2j

has component a, , aA , where t € {+1, -1} , in the first coordinate

subgroup of K , and t r iv ia l component in each other subgroup. This
process is repeated to show that the commutator

a2, . . . X, •••>aJ has [;•• fcl* a 2 j ' •"' a J =
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as its component in the first coordinate subgroup, and trivial component in

each other coordinate subgroup. If x* represents the sequence of

commutator entries

then

Let r = q{z) + s[q(z)-q*(z)) - 1 , and recall that the ordering of M has

been chosen so that u{z)q*{z) = d and so T ^ = 1 . Wow

x = [ai, x, v •••' V
 x

2

s
Now the (a, i>, l)-weight of 6^ in H is maximal, so for some t' in

8 , , 8
{-1, 1} , gP = K P . Lemma 5.2 shows that for all k in q{z) ,

pS | R[q{z), r, k)) and p S + 1 \ R[q(z), r, k) ;

and the coefficient of 1 in the element

W* 2, \R[q(.z), r, k)j : k 6 q(:

is ±if(c?(2), r, 0) ; so the component of X in #(l) is xT l^3'»r» J ^

which is non-trivial. Thus the element X is itself non-trivial, but X

is a commutator of weight

aw + su(z) [q(z)-q*(z)) = can + bs = I

in W .

(b) Similarly, from the hypothesis, there exists in H a non-trivial

s
element of the form tc where K = [a, , ..., a ] is a left-normed

commutator of weight w in H and coup = m . As in the proof of part
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( a ) , t h e commutator

X = [ a x , x , <* 2 , x . • • • > %, x ]

of weight aw in W has as its component in the first coordinate subgroup

of K ,

I:- Lai'ad • •••'aJ •
PS s

Hence X^ , which has cpp-weight awp = m in W , has

P

which is non-trivial, as its component in the first coordinate subgroup of

K , and so is itself non-trivial, as required. D

5.5 COROLLARY

Let J be a group whose order is a power of a prime p , with

invariants as described in 2.1 taking values a and b ; and let H be a

nilpotent p-group of class r , such that for 1 5 w s r the maximum

order of a commutator of weight w is p . Then H wr J is

nilpotent, with class precisely majs.{aw+b(s(w)-l) : 1 S w 5 r] . The

cpp-alass of H wr J is precisely maxfawp : 1 5 w 5 r } , which is a

times the cpp-alass of H . D

6 . An a p p l i c a t i o n

The results of this paper make a small contribution to understanding

the restricted Burnside problem by showing (Corollary 6.3) the existence of

two-generator groups of exponents 8, 9 , and 25 with nilpotency classes

39» 18 , and 112^U respectively. If there exists a largest finite two-

generator group with one of these exponents, its nilpotency class is

bounded below by that of the corresponding group described here. There is

no reason to suppose that these bounds are "good" - in fact there is

considerable reason to suspect the contrary - but they appear to be the

best available at present.

The first sub-section simply applies Corollary 5-5 to some examples.
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Lemma 6.2 shows the existence of appropriate two-generator subgroups of

these wreath products.

Notation for varieties and product varieties is taken from Hanna

Neumann's book [14]. In particular, B and A denote the varieties of

all groups and all abelian groups of exponent dividing n ; and when p

is a prime, K denotes the Kostrikin variety of all locally finite groups

of exponent p .

6.1 EXAMPLES OF NILPOTENT WREATH PRODUCTS

(a) Let 5(2, k) be the free group on two generators with exponent

12
k . This group has order 2 ; relevant details about it are easily

deduced from the presentation for 5(3, h) given by Bayes, Kautsky, and

Warns ley [2], If it has generators a and 3 , then a standard basis is

given by:

Ml) = 2 ,

7i(2) = 2 ,

M3) = 1 ,

Hk) = l ,

7z(5) = 1 ,

h(6) = l ,

7z(7) = 2 ,

, 3] fc(8) = 2 .

From t h i s i t can be seen that

n{l) = 12 , n(2) = 10 , M(3) = 7 ,

n(k) = 5 , M(5) = 2 , M(6) = 2 ;

whence

a = 1 + (12+10+7+5+2+2) = 39

and

b = 6 .

Consider two wreath products,

Tl

T2

T3

T5
T6

x7

T

= a

= S

= [3, a]

= [3, a, a,

= [3, a, a,

= [3, a, 3,

= [3, a, a]

= [3, a, 3]

a]

3]

3]
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W1 = [C2 x C2) w r 3 ( 2 , k) and W2 = 3 ( 2 , k) wr 3 ( 2 , U) .

The nilpotency class of the former is equal to the (39, 6, 1)-class of

C2 * C2 ' w h i c h i s 3 9 ' t h a t o f t h e latter is equal to the (39, 6, 1)-

class of B(2, k) , which is 195 since B(2, h) has a non-trivial

commutator of weight 5 •

(b) Let 3(2, 3) be the free group on two generators with exponent

3 . This group has order 3 , and a standard basis given by

Tl = a ' T2 = e ' T3 = t̂ > «J » \ = h2
 = h

3
 = 1 •

Clearly, m(l) = 3 , m{2) = 1 ,

a = 1 + (p-l)(3+D = 9 ,

and

b = (p-l)2 = i* .

The nilpotency class of B(2, 3) wr B(2, 3) is equal to the

(9, k, l)-class of 3(2, 3) , which is 18 .

(The free group F2&&0
 i n t h e Produc't variety B̂ B̂̂  has a normal

subgroup of exponent 3 and nilpotency class 3 , and the quotient to this

normal subgroup is isomorphic with 3(2, 3) . Theorem k:6 gives an upper

bound of 27 for the nilpotency class of ^(jUgg) •)

(c) Let if(2, 5) be the largest finite group of exponent 5 on two

generators (shown to exist by Kostrikin, [£]). From the presentation for

this group given by Havas, Wall, and Warns ley [5], it can be calculated that

n(l) = 3i* , n(2) = 32 , n(3) = 31 ,

n(k) = 29 , n(5) = 26 , w(6) = 2k ,

n(l) = 20 , rc(8) = 16 , n(9) = 12 ,

n(lO) = 6 , w(ll) = 3 , «(12) = 1 .

Hence

a = 1 + k x 23** = 937 ,

and

b = k x 12 = k8 .

The nilpotency class of K{2, 5) wr K{2, 5) is equal to the
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(937, U8, l ) - c l a s s of K{2, 5) , namely 12 x 937 =

6.2 LEMMA

Let p be a prime, m a positive integer, and J a finite two- •

generator group of exponent p with a standard basis

T = { ( T ^ , h(i)) : i € M} such that, where p and o generate J ,

T l = P ' T 2 = a '

and for each i in U , x. is a commutator with u(i) entries from the

set {p, a} . Let H be a nilpotent two-generator group of exponent p .

Then the standard wreath product W = H wr J has a two-generator subgroup

whose nilpotency class is the same as that of W .

Proof. Let E be generated by a and £5 , and have nilpotency class

r . Let a and b be the parameters for J defined in 2 . 1 . The

nilpotency class and cpp-class of W are both equal to ar ; and from the

proof of Theorem 5-^, with the sequence of commutator entr ies x defined

as i t was there , i t can be seen that there exis ts a non-tr ivial commutator

v = [g, i p ^ - l ) ^ ^(2)-l)x2, ..., (P*(2)-I)T3, a, .

= [8, x» «» X. •••> X]

of weight ar in W . The goal of this proof is the construction of a

non-trivial commutator of the same weight ar in a two-generator subgroup

of W .

Let X be the subgroup of W generated by the elements pa and

a£ . Let y be the element of X obtained by substituting for each entry

of v equal to either a or p the entry pa and for each entry of v

equal to either B or o the entry a& . For example, if T- = [a, p] ,

then

u = [aS, (pMl)-l)p«, (pM2)-l)a6, {pM3)-l)[o&, pa], ..., pa, ...] .

Since V has maximal c-weight and cpp-weight in W ,

u = T l {vg • g « r} ,

where |r| = 2 and each \i is a commutator with the same bracketing
y
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arrangement as v and p , and precisely ar entries: either a or p

in each position where v has either a or p , and either 8 or o in

each position where v has either 3 or a . One such commutator y is
3

equal to v , and so is non-trivial; it will be shown that all the others

are trivial.

If a commutator u has among the entries in its first segment of
y

weight a (corresponding to the first [g, x] in V ) two entries from

the set {a, g} , then this segment is contained in y(2a) in the notation

defined in 4.1. Hence, by a similar procedure to that in the proof of

Lemma 4.2 and Corollary 4.3,

u € y(ar+l) = {1} .
y

A similar argument shows that if, for some integer w such that

1 5 w - v , the initial segment by y with weight can contains w + 1
y

entries from {a, $} , then \i = 1 .

On the other hand, if p has an initial segment of weight greater
y

than a with no entry from the set {a, 3) , it is clearly again equal to

the identity.

Hence the initial segment of weight a in each non-trivial commutator

u must contain one and only one entry from the set {a, 3) • Let r) be
9

the entry in the left-normed bracketting of u fcorresponding to a T .
g v i>

entry of V ) which has, as an entry of its own, a or 3 • If 1 is not

the first entry in \i , then
y

vi = [a, e n , ..., e 7 n, n9 £-1' '" ul+l'

= [Yi, fa, e,, •••, 6-, -,1, 9, ,, 1
L1' L ' 2. Z— 1 i+1

If Z = 2 , this is

-1

which has q(2) = p entries equal to a and, for i, in M\{l, 2} ,

has qd) - 1 entries equal to T . in its initial segment of weight a .

Lemma 5-3 shows that this commutator may be interpreted directly in terms
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of the corresponding element of ~LJ , and by repeated application of Lemma

3.7 this is seen to have a factor of p ; hence y is t r iv ia l . If
y

I > 2 , then Lemma 3.3 must first be applied to the element

[a, 9 , ..., By ] - 1 of ~LJ , and then Lemma 3.7 is used to give the

same result as before.

Hence, if u is non-trivial, then its first entry must be 3 » and

this must be followed by the sequence x °? entries. However, by Lemmas

5.3 and 3.8, u cannot have a sequence of consecutive entries all

belonging to J with total weight a . Thus the first entry in each of

the v segments of weight a must be from the set {a, (5} , and every

other entry must be from {p, a} ; that is, y = \> . Q

6.3 COROLLARY

There exist in the product varieties B̂ |U.> A O S L •> an<^ ==£* iwo~

generator groups of nilpotenay classes 18, 39 , and lV2.kk respectively.

Proof. This is immediate from the examples in 6.1 and Lemma 6.2. •

The significance of this Corollary has been discussed in the

introduction to Section 6.
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