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Executive Summary

Since AR5, climate-change impacts have become more frequent, 
intense and have affected many millions of people from every 
region and sector across North America (Canada, USA and 
Mexico). Accelerating climate-change hazards pose significant 
risks to the well-being of North American populations and the 
natural, managed and human systems on which they depend 
(high confidence1). Addressing these risks has been made more 
urgent by delays due to misinformation about climate science 
that has sowed uncertainty and impeded recognition of risk 
(high confidence). {14.2, 14.3}

Without limiting warming to 1.5°C, key risks to North America 
are expected to intensify rapidly by mid-century (high 
confidence). These risks will result in irreversible changes to 
ecosystems, mounting damages to infrastructure and housing, 
stress on economic sectors, disruption of livelihoods, and issues 
with mental and physical health, leisure and safety. Immediate, 
widespread and coordinated implementation of adaptation 
measures aimed at reducing risks and focused on equity have 
the greatest potential to maintain and improve the quality of 
life for North Americans, ensure sustainable livelihoods and 
protect the long-term biodiversity, and ecological and economic 
productivity, in North America (high confidence). Enhanced 
sharing of resources and tools for adaptation across economic, 
social, cultural and national entities enables more effective 
short- and long-term responses to climate change. {14.2, 14.4, 
14.5, 14.6, 14.7}

Past and Current Impacts and Adaptation

Over the past 20  years, climate-change impacts across North 
America have become more frequent, intense and affect more 
of the population (high confidence). Despite scientific certainty 
of the anthropogenic influence on climate change, misinformation 
and politicisation of climate-change science has created polarisation 
in public and policy domains in North America, particularly in the 
USA, limiting climate action (high confidence). Vested interests have 
generated rhetoric and misinformation that undermines climate science 
and disregards risk and urgency (medium confidence). Resultant public 
misperception of climate risks and polarised public support for climate 
actions is delaying urgent adaptation planning and implementation 
(high confidence). Drawing upon Indigenous knowledge, enhancing 
communication and outreach and undertaking collaborations to co-
create equitable solutions are critical for successful climate action. 
{Box 14.1, 14.3, 14.7}

Climate change has negatively impacted human health and well-
being in North America (very high confidence). High temperatures 
have increased mortality and morbidity (very high confidence), with 
impacts that vary by age, gender, location and socioeconomic conditions 
(very high confidence). Changes in temperature and precipitation have 

1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement: low, medium, or high. A level of confidence is 
expressed using five qualifiers: very low, low, medium, high and very high, and is typeset in italics (e.g., medium confidence). For a given evidence and agreement statement, different confidence levels 
can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence.

increased risk of vector-borne (very high confidence), water-borne 
(high confidence) and food-borne diseases (very high confidence). 
Changes in climate and extreme events have been linked to wide-
ranging negative mental health outcomes (high confidence). The loss 
of access to marine and terrestrial sources of protein has impacted the 
nutrition of subsistence-dependent communities across North America 
(high confidence). Climate change has increased the extent of warmer 
and drier conditions favourable for wildfires (medium confidence) 
that increase respiratory distress from smoke (very high confidence). 
{14.5.2, 14.5.6, Box 14.2}

North American food production is increasingly affected by 
climate change (high confidence), with immediate impacts 
on the food and nutritional security of Indigenous Peoples. 
Climate change and extreme weather events have impacted North 
American agroecosystems (high confidence), with crop-specific effects 
that vary in direction and magnitude by event and location. Climate 
change has generally reduced agricultural productivity by 12.5% since 
1961, with progressively greater losses moving south from Canada to 
Mexico and in drought-prone rain-fed systems (high confidence) while 
favourable conditions increased yields of maize, soybeans in regions 
like the USA Great Plains. Loss of availability and access to marine and 
terrestrial sources of protein has impaired food security and nutrition 
of subsistence-dependent Indigenous Peoples across North America 
(high confidence). Climate change has impacted aquaculture (high 
confidence) and induced rapid redistribution of species (very high 
confidence), and population declines of multiple key fisheries (high 
confidence). {14.5.4, 14.5.6, 14.7}

Climate change has impaired North American freshwater re-
sources and reduced supply security (high confidence). Reduced 
snowpack and earlier runoff (high confidence) have adversely affected 
aquatic ecosystems and freshwater availability for human uses (medi-
um confidence). Recent severe droughts, floods and harmful algal and 
pathogen events have caused harm to large populations and key eco-
nomic sectors (high confidence). Heavy exploitation of limited water 
supplies, especially in the western USA and northern Mexico, and 
deteriorating freshwater management infrastructure, have heightened 
the risks (high confidence). Effective examples of freshwater resource 
adaptation planning are already underway, but coordinated adapta-
tion implementation across multiple conflicting interests and users is 
complicated and time-consuming (high confidence). {14.5.1, 14.5.2, 
14.5.3}

Extreme events and climate hazards are adversely affecting 
economic activities across North America and have disrupted 
supply chain infrastructure and trade (high confidence). Larger losses 
and adaptation costs are observed for sectors with high climate exposures, 
including tourism, fisheries, and agriculture (high confidence) and outdoor 
labour (medium confidence). Disaster planning and spending, insurance, 
markets, and individual and household-level adaptation have acted to 
moderate effects to date (medium confidence). Entrenched socioeconomic 
vulnerabilities have amplified climate impacts for marginalised groups, 
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including Indigenous Peoples, due to the impact of colonialism and 
discrimination (medium confidence). {14.5.4, 14.5.5, 14.5.6, 14.5.7, 14.5.9, 
Box 14.1, Box 14.5, Box 14.6}

North American cities and settlements have been affected 
by increasing severity and frequency of climate hazards and 
extreme events (high confidence), which has contributed to 
infrastructure damage, livelihood losses, damage to heritage 
resources and safety concerns. Impacts are particularly apparent for 
Indigenous Peoples for whom culture, identity, commerce, health and 
well-being are closely connected to a resilient environment (very high 
confidence). Higher temperatures have been associated with violent 
and property crime in the USA (medium confidence), yet the overall 
effects of climate change on crime and violence in North America are 
not well understood. {14.4, 14.5.5, 14.5.6, 14.5.8, 14.5.9, Box 14.1}

Terrestrial, marine and freshwater ecosystems are being 
profoundly altered by climate change across North America (very 
high confidence). Rising air, water, ocean and ground temperatures 
have restructured ecosystems and contributed to the redistribution 
(very high confidence) and mortality (high confidence) of fish, bird 
and mammal species. Extreme heat and precipitation trends on land 
have increased vegetation stress and mortality, reduced soil quality 
and altered ecosystem processes including carbon and freshwater 
cycling (very high confidence). Warm and dry conditions associated 
with climate change have led to tree die-offs (high confidence) and 
increased prevalence of catastrophic wildfire (medium confidence) 
with an increase in the size of severely burned areas in western 
North America (medium confidence). Nature-based Solutions (NbS) 
and ecosystem-based management have been effective adaptation 
approaches in the past but are increasingly exceeded by climate 
extremes (medium confidence). {14.5.1–3, Box 14.7}

Climate-driven changes are particularly pronounced within 
Arctic ecosystems and are unprecedented based on observations 
from multiple knowledge systems (very high confidence). 
Climate change has contributed to cascading environmental and 
sociocultural impacts in the Arctic (high to very high confidence) that 
have adversely, and often irreversibly, altered Northern livelihoods, 
cultural activities, essential services, health, food and nutritional 
security, community connectivity and well-being (high confidence). 
{14.5.2, 14.5.4, 14.5.6, 14.5.7, 14.5.8, Box 14.6}

Future Risks and Adaptation

Climate hazards are projected to intensify further across North America 
(very high confidence). Heatwaves over land and in the ocean, as well as 
wildfire activity, will intensify; subarctic snowpack, glacial mass and sea ice 
will decline (virtually certain); and sea level rise will increase at geographically 
differential rates (virtually certain). Humidity-enhanced heat stress, aridification 
and extreme precipitation events that lead to severe flooding, erosion, debris 
flows and ultimately loss of ecosystem function, life and property are projected 
to intensify (high confidence). {14.2}

Health risks are projected to increase this century under all future 
emissions scenarios (very high confidence), but the magnitude 
and severity of impacts depends on the implementation and 

effectiveness of adaptation strategies (very high confidence). 
Warming is projected to increase heat-related mortality (very high 
confidence) and morbidity (medium confidence). Vector-borne disease 
transmission, water-borne disease risks, food safety risks and mental 
health outcomes are projected to increase this century (high confidence). 
Available adaptation options will be less effective or unable to protect 
human health under high-emission scenarios (high confidence). {14.5.6, 
Box 14.2}

Climate-induced redistribution and declines in North American 
food production are a risk to future food and nutritional 
security (very high confidence). Climate change will continue 
to shift North American agricultural and fishery suitability ranges 
(high confidence) and intensify production losses of key crops (high 
confidence), livestock (medium confidence), fisheries (high confidence) 
and aquaculture products (medium confidence). In the absence of 
mitigation, incremental adaptation measures may not be sufficient to 
address rapidly changing conditions and extreme events, increasing the 
need for cross-sectoral coordination in implementation of mitigation 
and adaptation measures (high confidence). Combining sustainable 
intensification, approaches based on Indigenous knowledge and local 
knowledge, and ecosystem-based methods with inclusive and self-
determined decision making, will result in more equitable food and 
nutritional security (high confidence). {14.5.1–4, 14.5.6, 14.7, Cross-
Chapter Box INDIG in Chapter 18, Cross-Chapter Box MOVING PLATE 
in Chapter 5}

Escalating climate-change impacts on marine, freshwater and 
terrestrial ecosystems (high confidence) will alter ecological 
processes (high confidence) and amplify other anthropogenic 
threats to protected and iconic species and habitats (high 
confidence). Hotter droughts and progressive loss of seasonal water 
storage in snow and ice will tend to reduce summer season stream 
flows in much of western North America, while population growth, 
extensive irrigated agriculture and the needs of threatened and 
endangered aquatic species will continue to place high demands on 
those flows (high confidence). {14.2.2, 14.5.1, 14.5.2, 14.5.3, 14.5.4, 
14.5.6, Box 14.7.1}

Market and non-market economic damages are projected 
to increase to the end of the century from climate impacts 
(high confidence). Estimates for the costs of climate inaction are 
substantial across economic sectors, infrastructure, human health and 
disaster management. Hard limits to adaptation may be reached for 
outdoor labour (medium confidence) and nature-based winter tourism 
activities (very high confidence). At higher levels of warming, climate 
impacts may pose systemic risks to financial markets through impacts 
on transportation systems, supply chains and major infrastructure, as 
well as global-scale challenges to trade (medium confidence). {14.2.2, 
14.5.4, 14.5.8, 14.5.7, 14.5.9, 14.5.5, Box 14.5, Box 14.6}

Solution Space and Governance

Self-determination for Indigenous Peoples is critical for effective 
adaptation in Indigenous communities (very high confidence). 
Throughout North America, Indigenous Peoples are actively addressing 
the compound impacts of climate change, and historical and ongoing 
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forms of colonialism (very high confidence). Indigenous knowledge 
underpins successful understanding of, responses to, and governance of 
climate-change risks. Western scientific practices and technology may 
not be sufficient in addressing future natural resource management 
challenges. Supporting Indigenous self-determination, recognising 
Indigenous Peoples’ Rights, and supporting adaptation underpinned by 
Indigenous knowledge are critical to reducing climate-change risks to 
achieve adaptation success (very high confidence). {14.7.3, Box 14.1}

Equitable, inclusive and participatory approaches that integrate 
climate-impact projections into near- and long-term decision 
making reduce future risks (high confidence). Government and 
private investment are increasingly focusing on early warning and 
rapid response systems, climate and ecological forecasting tools, and 
integrated climate scenario planning methods. Widespread adoption 
of these practices and tools for infrastructure planning, disaster risk 
reduction, ecosystem management, budgeting practices, insurance, 
and climate risk reporting supports planning for a future with more 
climate risks (high confidence). Increased capacity to support the 
equitable resolution of existing and emerging resource disputes 
(local to international) will reduce climate impacts on livelihoods and 
improve the effectiveness of resource management (high confidence). 
{14.5.5, 14.5.10, 14.7}

Near- and long-term adaptation planning, implementation and 
coordination across sectors and jurisdictions supports equitable 
and effective climate solutions (high confidence). Recognition of 
the need for adaptation across North America is increasing, but action 
has been mostly gradual, incremental and reactive (high confidence). 
Current practices will be increasingly insufficient without coordination 
and integration of efforts through equitable policy focused on 
modifying land-use impacts, consumption patterns, economic activities 
and emphasising NbS (high confidence). Transformational, long-term 
adaptation action that reduces risk and increases resilience can address 
rapidly escalating impacts in the long-term, especially if coupled with 
moderate to high mitigation measures (high confidence). {14.7}
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14.1 Introduction and Point of Departure

Earth’s climate is currently changing in significant ways as a result 
of human activities, and future projections indicate continued and 
possibly accelerating change without reductions in greenhouse 
gas (GHG) emissions (Gutiérrez et  al., 2021; IPCC, 2021). Climate 
change affects human and natural systems; this chapter provides an 
assessment of present and future climate-change impacts, risks and 
adaptation for North America, including Mexico, Canada, the USA and 
coastal waters within the 370-km exclusive economic zone. We do not 
consider Hawaii and other island territories of the USA in depth as 
they are assessed in Chapter 15. Chapter 14 assesses evidence from 
Arctic Canada and Alaska, which is synthesised in Cross-Chapter Paper 
6 Polar Regions (CCP6).

Evidence from Indigenous knowledge (IK) systems is included in this 
chapter to assess climate-change risks and solutions in North America 
following the framing provided in Chapter 1 Special Report on the Ocean 
and Cryosphere in a Changing Climate (SROCC) (Abram et  al., 2019) 
and Special Report on Climate Change and Land (SRCCL) (IPCC, 2019a). 
Indigenous contributing authors provided this assessment, reflecting the 
importance of meaningfully including IK in assessment processes (Ford, 
2012; Ford et  al., 2016; Hill et  al., 2020). This addition represents an 
important advancement since AR5 (IPCC, 2013; IPCC, 2014).

Our main point of departure was the Fifth Assessment Report (AR5) for 
WGII (IPCC, 2014). Key findings drawn from the Executive Summary for 
the North America chapter are summarised in Table 14.1. Subsequent 
IPCC reports, such as Special Report on Global Warming of 1.5°C 
(SR1.5) (Hoegh-Guldberg et  al., 2018; IPCC, 2018), SROCC (IPCC, 
2019b) and SRCCL (IPCC, 2019a), also informed the assessment. We 
additionally incorporated recent national climate assessments of the 
USA (USGCRP, 2018) and Canada (Bush and Lemmen, 2019; Warren 
and Lulham, 2021) as well as the Sixth National Communication of 
Mexico to the United Nations Framework Convention on Climate 
Change (SEMARNAT and INECC, 2018).

Chapter 14 sections are organised to address themes and content as 
contained in the IPCC-approved outline for regions. Regional climate 
changes assessed within North America are keyed to Figure 14.1 using 
four-letter abbreviations (e.g., CA-ON, US-SE, MX-NW). The assessment 
addresses recent and future climate for North America, the impacts, risks 
and adaptations within sectors, key risksacross sectors (KR), the nature 
of adaptation and sustainable development pathways as well as two 
additional sections on Indigenous Peoples and perceptions of climate 
change. Seven boxes are used to highlight topics of interdisciplinary 
nature while four frequently asked questions (FAQ) were produced in 
plain language for communication to the public. The chapter utilises 
the framework as well as designated terms in the standardised 
process for evaluating and characterising the degree of certainty in 
assessment findings developed through the expert judgement process 
(Section  1.3.4; Mach et  al., 2017). The Glossary [Annex II] provides 
definitions for terms and concepts used across the report.

14.1.1 Context

With a 2019 total population of over 494 million people (USA 329 million, 
Mexico 128 million and Canada 37 million), North America comprises 
6.4% of the global population. Relative to other countries, North 
American countries have low population densities per square kilometre 
(Mexico 64 people, USA 35 people and Canada 4 people) (United 
Nations, 2019). Population projections indicate a steady growth in the 
three countries, which will exert pressure on consumption and increase 
risks under climate change (United Nations, 2019). North America is 
also responsible for about a quarter of global greenhouse gas (GHG) 
emissions. Since 1990, North American GHG emissions have increased 
by almost 18% (Ritchie and Roser, 2020), and in 2019 the region was 
responsible for 5.9 MtCO2 emissions worldwide (Friedlingstein et  al., 
2020). In terms of annual CO2 emissions per capita, in 2019 Canada 
had 15 metric tons of CO2 per person (tCO2 per person), the USA had 
16 tCO2 per person and Mexico had 3.4 tCO2 per person (Friedlingstein 
et al., 2020).

Table 14.1 |  Key findings from AR5 North America chapter (Romero-Lankao et al., 2014b)

General topic AR5 finding

Climate hazards

Climate has changed in North America, with some changes attributed to human activities.

Climate hazards, especially related to heatwaves, heavy precipitation and snowpack, are expected to change in ways that are adverse to natural and human 
systems.

Natural ecosystems Warming, increasing carbon dioxide (CO2) concentrations, sea level rise (SLR) and climate extremes are stressing ecosystems.

Human systems

Water resources that are already stressed in many parts of North America are expected to become further stressed by climate change. Current adaptation options 
can address water supply deficits, but responses to flooding and water quality concerns are more limited.

Climate change has affected yields of major crops, and projections indicate continued declines, although with variability.

Extreme climate events have affected human health, although climate-change-related trends and attribution to climate change have not been confirmed.

Multiple aspects of climate change have affected livelihoods, economic activities, infrastructure and access to services.

Much infrastructure is vulnerable to extreme weather events, and unless adaptation investments are made, vulnerability to future climate change will persist and 
increase.

Most sectors of the North American economy have been affected by and have responded to extreme weather, including hurricanes, flooding and intense rainfall.

Adaptation

Technological innovation, institutional capacity-building, economic diversification and infrastructure design are adaptations for reducing current climate impacts as 
well as future risks due to a changing climate.

North American governments predominantly have undertaken incremental adaptation assessment and planning at the municipal level. Limited proactive, 
anticipatory adaptation is directed at long-term investment for energy and public infrastructure.
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North American regions and subregions

US Midwest
US Northwest
US Northern Great Plains
US Northeast
US Southwest
US Southern Great Plains
US Arctic
US Southeast
US Hawaii

US-MW
US-NW
US-NP
US-NE
US-SW
US-SP
US-AK
US-SE
US-HI

CA-ON
CA-BC
CA-PR
CA-QC
CA-NW
CA-NE
CA-AT

Canada Ontario 
Canada British Columbia
Canada Prairies
Canada Québec
Canada Western Arctic
Canada Eastern Arctic
Canada Atlantic

North America Sub-Regions

Beaufort Sea
Canadian Arctic Archipelago
Caribbean Sea
Chukchi Sea
Eastern Bering Sea
Gulf of Alaska
Gulf of California
Gulf of Maine
Gulf of Mexico
Hudson Bay
Northern California Current
British Columbia coast
Southern California Current

BS
CAA
CAS
CS
EBS
GOA
GOC
GOM
GOMX
HB
N-CC
P-BC
S-CC

North America Marine Basins

Mexico Northwest
Mexico North
Mexico Northeast
Mexico Southeast
Mexico Southwest
Mexico Veracruz
Mexico Centre

MX-NW
MX-N
MX-NE
MX-SE
MX-SW
MX-VC
MX-CE

300km

Canada
USA

EEZ
Sub-regions

Mexico

Figure 14.1 |  North American regions and sub-regions, adapted from national climate assessments, and city names, referred to in discussion of local and 
regional climate-change impacts and adaptation. White dashed line denotes the southern boundary across North America of the Arctic region defined in Cross-Chapter 
Paper 6.
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14.2 Current and Future Climate in North 
America

Trends in observed and projected physical climate variables, and 
changes in extreme weather and climate events, are summarised in 
this section. Many of the assessments here are adapted from AR6 WGI 
(IPCC, 2021), especially Chapters 11 (Seneviratne et al., 2021) and 12 
(Ranasinghe et  al., 2021), and the Atlas (Gutiérrez et  al., 2021a, b). 
Ranasinghe et  al., 2021, Section  12.4.6, assesses North American 
climatic impact drivers without assessing their impacts or associated 
risks. The WGI assessments are augmented in this section with 
regionally specific support from recent national climate assessments 
or original literature.

14.2.1 Observed Changes in North American Climate

Climate changes directly related to increasing mean and extreme 
temperature, including reduced snowpack, sea and lake ice and glacier 
extent, and marine heatwaves (MHWs), can be attributed to human 
activity and are affecting most of North America (high confidence). 
Upward trends in annual mean temperature across North America 
since 1960 are widespread (Gutiérrez et al., 2021a) but non-uniform 
(Figure 14.2A). Pronounced polar amplification of warming is observed 
in high latitudes (Figure 14.2A), particularly in winter (Gutiérrez et al., 
2021a; Vose et al., 2017; Zhang et al., 2019a). As average temperature 
rises, extreme high temperature records across North America are being 
set more frequently than extreme cold records (Meehl et  al., 2016) 
and the probability of cold extreme events is reduced (WGI Chapter 
11 [Seneviratne et al., 2021]). Trends in daily maximum and minimum 
temperature are significant in high latitudes (US-AK, CA-NW, CA-NE). 
Summer daily maximum temperature is increasing in southwest desert 
regions (US-SW, MX-NW) (Martinez-Austria et  al., 2016; Martinez-
Austria and Bandala, 2017; Navarro-Estupinan et al., 2018).

Annual precipitation has increased in recent decades in northern and 
eastern areas (CA-PR, CA-QU, US-NP, US-SP, US-MW, US-NE, US-AK) 
(high confidence), and has decreased across the western part of the 
continent (CA-BC, US-SW, US-NW, MX-NW) (medium confidence), 
with considerable spatial variability within these regions (Zhang 
et  al., 2019a; Gutiérrez et  al., 2021a). Elsewhere across North 
America there is limited evidence and low agreement on detection 
of observed trends in total precipitation and river flood hazards. The 
intensity and frequency of 1-day heavy precipitation events have 
very likely2 increased since the mid-20th Century across most of 
the USA (US-NP, US-MW, US-NE, but not in US-SE) and in Mexico, 
but no detectable trend is reported in Canada (Seneviratne et  al., 
2021; Zhang et al., 2019a). Recent flooding events along the mid-
latitude Pacific Coast have been attributed to increasingly intense 
atmospheric river events ( Douville et  al., 2021; Gershunov et  al., 
2019; Vano et  al., 2019), but there is low confidence in detecting 
trends in atmospheric river activity.

2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100% probability, very likely 90–100%, likely 66–100%, about 
as likely as not 33–66%, unlikely 0–33%, very unlikely 0–10% and exceptionally unlikely 0–1%. Additional terms (extremely likely: 95–100%, more likely than not >50–100% and extremely unlikely 
0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics (e.g., very likely). This Report also uses the term ‘likely range’ to indicate that the assessed likelihood of an outcome 
lies within the 17–83% probability range.

Snowpack and snow extent across much of Canada and the western 
USA have declined as temperatures have increased (very high 
confidence) (Ranasinghe et al., 2021; Gutierrez et al., 2021a; Kunkel 
et al., 2016; Mote et al., 2018; Mudryk et al., 2018; Derksen et al., 2019). 
Warm ‘snow droughts’ describing a deficit of snowpack available for 
runoff, even in the absence of a winter precipitation deficit (Cooper 
et al., 2016; Harpold et al., 2017), have become more common in North 
American mountains (Sproles et al., 2016; Nicholls et al., 2018; Pershing 
et al., 2018). Glaciers have retreated over the past half-century at high 
elevation across North America (Frans et al., 2018; Zemp et al., 2019) 
and in the Arctic (Burgess, 2017; Box et al., 2019; Derksen et al., 2019). 
Lake ice in Canada, south of the Arctic region delineated in Figure 14.1, 
has declined (Alexeev et al., 2016; Derksen et al., 2019).

There is limited evidence of trends in meteorological or hydrological 
droughts over the historical record (see Douville et  al. (2021) and 
Seneviratne et al. (2021) for multiple perspectives on drought; Wehner 
et al., 2017), but there is medium confidence in increasing atmospheric 
evaporative demand acting to intensify surface aridity during recent 
droughts (e.g., US-SW) (Seneviratne et al., 2021; Williams et al., 2020). 
The ongoing multi-decadal dry period in the Colorado River basin is as 
extreme as any drought in the past 1000 years (Murphy and Ellis, 2019; 
Williams et al., 2020).

The proportion of hurricanes in stronger categories has likely increased 
globally over the past 40  years, with medium confidence that the 
onshore propagation speed of hurricanes making landfall in the USA 
has slowed detectably since 1900 (Seneviratne et  al., 2021; Kossin, 
2018), contributing to detectable increases in local rainfall and coastal 
flooding associated with these storms. There is high confidence 
(Seneviratne et  al., 2021) that anthropogenic climate change has 
contributed to extreme precipitation associated with recent intense 
hurricanes, such as Harvey in 2017.

North American sea ice extent and volume (thickness) have declined 
up to 10% per decade since 1981 (Fox-Kemper et  al., 2021; Ding 
et al., 2017; Mudryk et al., 2018; Derksen et al., 2019; IPCC, 2019b), 
with changes accelerating during this time (robust evidence, high 
agreement) (Schweiger et  al., 2019), resulting in longer and larger 
periods of open water (Wang et  al., 2018a). Recent (2018) sea ice 
extent in the Bering Sea was the lowest in a 5500-year record and 
appears to lag atmospheric CO2 by about two decades (Jones et al. 
2021). High Arctic sea ice retreat since 1971 and increases in open-
water duration in the most recent decade are unprecedented (Box 
et al., 2019) and most pronounced in the Chukchi, Bering and Beaufort 
seas (US-AK, CA-NW) (high confidence) (Wang and Overland, 2015; 
Jones et al., 2020).

Warming of North American offshore waters is significant and 
attributable to human activities, particularly along the Atlantic coast, 
contributing to sea level rise (SLR) through thermal expansion (very 
high confidence) (Fox-Kemper et al., 2021; IPCC, 2019b). Rates of SLR 
have accelerated along most North American coasts during the past 

https://doi.org/10.1017/9781009325844.016
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 09 Jul 2024 at 02:37:57, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.016
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


14

1937

North America  Chapter 14

Observed and projected climate changes across North America
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Figure 14.2 |  Observed and projected climate changes across North America. Black boundary lines delineate North American sub-regions (Figure 14.1). Data were 
extracted from Gutiérrezet al. 2021a via http://interactive-atlas.ipcc.ch/ (WGI Interactive Atlas) (Gutiérrez et al., 2021b), where dataset details can be found. (A) Recent observations; 
(B) to (G) are from an ensemble of CMIP6 projections. 

(A) Observed annual mean temperature trend over land for 1980–2015.

(B,C) Projected change in annual mean temperature over land relative to the 1986–2005 average, associated with 2°C or 4°C global warming. 

(D,E) Like (B,C) but for projected percentage change in annual precipitation.

(F,G) Like (B,C) but for projected change in number of days per year with maximum temperature >40°C (‘TX40’).

three decades, excepting coastlines in southern Alaska (US-AK) and 
northeastern Canada (CA-QC, CA-NE) where land is rising (Ranasinghe 
et  al., 2021; Greenan et  al., 2018). Tidal flooding frequency has 
increased in the North Pacific from once every 1–3  years to every 
6–12 months (Sweet et al., 2014).

Acidification of North American coastal waters has occurred in 
conjunction with increased atmospheric CO2 concentration (Mathis 
et al., 2015; Jewett and Romanou, 2017; Claret et al., 2018) combined 
with other local acidifying inputs such as nitrogen and sulphur 
deposition (Doney et  al., 2007) and freshwater nutrient input (very 
high confidence) (Strong et al., 2014; IPCC, 2019b). Oxygen minimum 
zones, particularly in the North Pacific south of US-AK, have expanded 
in volume and O2 has declined since 1970 (IPCC, 2019b).

14.2.2 Projected Changes in North American Climate

Climate changes related to warming temperature, including more 
intense heatwaves over land and in the ocean, diminished snowpack, 
sea ice reduction and SLR, are projected with high confidence and 

are strongly sensitive to future GHG concentrations (Figure  14.2). 
Climatic hazards affected by hydrological change, including humidity-
inclusive heat stress, extreme precipitation and more intense storms, 
are projected to intensify.

Pronounced amplification of warming across the Arctic and continental 
intensification of warming (Figure  14.2B,C) is projected with high 
confidence (Doney et al., 2007; Vose et al., 2017). Extreme heatwaves 
are projected to intensify, particularly in MX-NW, MX-N, MX-NE, US-
SW, US-NP and US-SP (Figure  14.2F,G) and become more frequent 
and longer in duration as average temperature rises across North 
America (Seneviratne et al., 2021). Extreme cold events are projected 
to decrease in severity (Ranasinghe et al., 2021; Wuebbles et al., 2014).

Total precipitation is projected to increase across the northern half 
of North America (very high confidence) and decrease in southwest 
North America (MX-SW, MX-NW, US-SW) (medium confidence) 
(Figure  14.2D,E; Gutiérrez et  al., 2021b). Further increases in the 
intensity of locally heavy precipitation are very likely across the 
continent, as a greater fraction of precipitation falls in intense events 
(Easterling et al., 2017; Prein et al., 2017a; Zhang et al., 2019a).
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High-humidity hazards are projected to increase (medium confidence) 
in regions around the Gulf of Mexico and southeast North America 
(US-SE, US-SP, MX-NE, MX-SE) (Zhao et  al., 2015). In subtropical 
regions that are less influenced by moisture from the Gulf of Mexico 
(including US-SW, US-SP, MX-NW and MX-N), the combination of 
higher temperature and less total precipitation leads to projections of 
increased aridity: drier surface conditions, higher evaporative demand 
by plants and more intense droughts (Ranasinghe et al., 2021; Jones 
and Gutzler, 2016; Easterling et  al., 2017; Escalante-Sandoval and 
Nuñez-Garcia, 2017).

As temperatures rise, snow extent, duration of snow cover and 
accumulated snowpack are virtually certain to decline in subarctic 
regions of North America (Gutierrez et al., 2021a; McCrary and Mearns, 
2019; Mudryk et  al., 2021), with corresponding effects on snow-
related hydrological changes (high confidence). These changes include 
declines in snowmelt runoff (Li et  al., 2017), increased evaporative 
losses during snow ablation (Foster et  al., 2016; Milly and Dunne, 
2020), as well as increases in the frequency of rain-on-snow events 
(Jeong and Sushama, 2018a) and consecutive snow drought years in 
western North America (Marshall et al., 2019a).

Climate change is projected to magnify the impact of tropical cyclones 
in US-NE, MX-NE, US-SP, and US-SE by increasing rainfall (Patricola and 
Wehner, 2018) and extreme wind speed (high confidence) and slowing 
the speed of land-falling storms (limited evidence, low confidence) 
(Seneviratne et al., 2021; Kossin, 2018). The coastal region at severe 
risk from tropical storms is projected to expand northward within US-
NE (medium confidence) (Kossin et al., 2017).

Additional reduction in polar sea ice is virtually certain (Ranasinghe et al., 
2021; Mudryk et  al., 2021), with the North American Arctic projected 
to be seasonally ice free at least once per decade under 2°C of global 
warming (high confidence) (IPCC, 2019b; Mioduszewski et  al., 2019; 
Mudryk et al., 2018). Duration of freshwater lake ice across the northern 
USA and southern Canada is projected to diminish (high confidence) 
(Ranasinghe et al., 2021; Dibike et al., 2012; Mudryk et al., 2018; Sharma 
et al., 2019).

Ocean surface temperature is very likely to increase in future decades 
in waters around North America (Jewett and Romanou, 2017; Greenan 
et  al., 2018), but at a slower rate than air temperature over the 
continent. Rates of change are projected to be relatively higher in 
northern latitudes, with most rapid warming in summer in the Arctic 
and Bering Sea (US-AK, CA-NW) (Wang and Overland, 2015; Wang 
et al., 2018a; Hermann et al., 2019).

Sea level rise is virtually certain to continue along North American 
coastlines except for parts of US-AK and around Hudson Bay (HB) 
with geographically variable rates of rise (Fox-Kemper et  al., 2021; 
Ranasinghe et  al., 2021; see Box  14.4). Relatively greater SLR is 
projected along the US-SE and MX-SW coastlines and relatively less 
along CA-BC and US-NW (Fox-Kemper et al., 2021; Ranasinghe et al., 
2021; see Box 14.4) (Fasullo and Nerem, 2018; Greenan et al., 2018 
IPCC, 2019b).

Ocean acidification (OA) along North American coastlines is projected 
to increase (very high confidence) (Jewett and Romanou, 2017). The 
frequency and extent of oxygen minimum and hypoxic zones are 

Frequently Asked Questions

FAQ 14.1 | How has climate change contributed to recent extreme events in North America and their impacts?

Multiple lines of evidence indicate that climate change is already contributing to more intense and more frequent extreme events across North 
America. The impacts resulting from extreme events represent a huge challenge for adapting to future climate change.

Extreme events are a fundamental part of how we experience weather and climate. Exceptionally hot days, torrential 
rainfall and other extreme weather events have a direct impact on people, communities and ecosystems. Extreme 
weather can lead to other impactful events such as droughts, floods or wildfires. In a changing climate, people 
frequently ask whether extreme events are generally becoming more severe or more frequent, and whether an 
actual extreme event was caused by climate change.

Because really extreme events occur rarely (by definition), it can be very difficult to assess whether the overall severity 
or frequency of such events has been affected by changing climate. Nevertheless, careful statistical analysis shows that 
record-setting hot temperatures in North America are occurring more often than record-setting cold temperatures 
as the overall climate has gotten warmer in recent decades. The area burned by large wildfires in the western USA 
has increased in recent decades. Observed trends in extreme precipitation events are more difficult to detect with 
confidence, because the natural variability of precipitation is so large and the observational database is limited.

Our understanding of how individual extreme weather events have been influenced by climate change has improved 
greatly in recent years. Climate scientists have developed a formal technique (‘event attribution’, described in WGI 
FAQ 11.3) for assessing how climate change affects the severity or frequency of a particular extreme event, such 
as a record-breaking rainfall event or a marine heatwave. This is a challenging task, because any particular event 
can be caused by a combination of natural variability and climate change. Event attribution is typically carried out 
using models to compare the probability of a specific event occurring in today’s climatic environment relative to 
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the probability that the same event might have occurred in a modelled climate in which atmospheric GHGs have 
not risen due to human activities. Using this strategy, multiple studies have estimated that the historically extreme 
rainfall amount that fell across the Houston area from Hurricane Harvey (2017) was three to ten times more likely as 
the result of climate change.

The impacts from extreme events depend not just on physical climate system hazards (temperature, precipitation, 
wind, etc.), but also on the exposure and vulnerability of humans or ecosystems to these events. For example, 
damage from land-falling hurricanes along the coast of the Gulf of Mexico is expected to increase as very strong 
hurricanes become more frequent and intense due to climate change. But damage would also increase with 
additional construction along the shoreline, because coastal development increases exposure to hurricanes. And if 
some structures are constructed to poor building standards, as was the case when hurricane Andrew made landfall 
in Florida in 1992, then vulnerability to hurricane-caused impacts is increased.

Climate change also contributes to impacts from extreme events by making some building codes and zoning restrictions 
inadequate or obsolete. Many North American communities limit development in areas known to be flood-prone, 
to minimise exposure to flooding. But as climate change expands the areas at risk of exposure to flooding beyond 
historical floodplains, the impacts of potential flooding are increased, as Hurricane Harvey demonstrated. Adapting to 
climate change may require retrofits for existing structures and revised zoning for new construction. Some structures 
and neighbourhoods may need to be abandoned altogether to accommodate expanded flooding risk.

Climate change can be an added stress that increases impacts from extreme events, combined with other non-climatic 
stressors. For example, climate change in western North America has contributed to more extreme fire weather. 
The devastating impacts of recent wildfire outbreaks, such as occurred across western Canada in 2016 and 2017, the 
western United States in 2018 and 2020, and both countries in 2021, are to some extent associated with expanded 
development and forest management practices (such as policies to suppress low-intensity fires, allowing fuel to 
accumulate). The effects of development and forest management have dramatically increased the exposure and 
vulnerability of communities to intense wildfires. Climate change has added to these stressors: warming temperature 
leads to more extreme weather conditions that are conducive to increasingly severe wildfires.

Biodiversity is affected by climate change in this way too. For example, numerous bird populations across North 
America are estimated to have declined by up to 30% over the past half-century. Multiple human-related factors, 
including habitat loss and agricultural intensification, contribute to these declines, with climate change as an added 
stressor. Increasingly extreme events, such as severe storms and wildfires, can decimate local populations of birds, 
adding to existing ecological threats.

Box FAQ 14.1 (continued)

projected to increase, with less confidence, exacerbated by climate-
driven eutrophication and increasing stratification (Altieri and Gedan, 
2015; IPCC, 2019b).

14.3 Perception of Climate-Change Hazards, 
Risks and Adaptation in North America

14.3.1 Climate Change as a Salient Issue

The majority of the climate science community has reached consensus 
that mean global temperature has increased and human activity is a 
major cause (Oreskes, 2004; Anderegg et al., 2010; Cook et al., 2013; 
Cook et al., 2016; IPCC, 2021), setting the context for public policy 
action. Despite expert scientific consensus on anthropogenic climate 
change, there is polarisation and an ongoing debate over the reality of 
anthropogenic climate change in the public and policy domains, with 
attendant risks to society (high confidence) (Doran and Zimmerman, 
2009; Ballew et al., 2019; Druckman and McGrath, 2019; Hornsey and 

Fielding, 2020; Wong-Parodi and Feygina, 2020). Public perception 
of consensus regarding anthropogenic climate change can be an 
important gateway belief, which establishes a crucial precondition 
for public policy action (van der Linden et al., 2015; van der Linden 
et  al., 2019) by influencing the assessment of climate-change risks 
and opportunities, and formulation of appropriate mitigation and 
adaptation responses (Ding et  al., 2011; Bolsen et  al., 2015; Drews 
and Van den Bergh, 2016; Doll et al., 2017; Mase et al., 2017; Morton 
et al., 2017). Trust in experts, institutions and environmental groups 
is also important (Cologna and Siegrist, 2020; Termini and Kalafatis, 
2021).

Rhetoric and misinformation on climate change and the deliberate 
undermining of science have contributed to misperceptions of the 
scientific consensus, uncertainty, disregarded risk and urgency, and 
dissent (high confidence) (Ding et  al., 2011; Oreskes and Conway, 
2011; Aklin and Urpelainen, 2014; Cook et al., 2017; van der Linden 
et al., 2017). Additionally, strong party affiliation and partisan opinion 
polarisation contribute to delayed mitigation and adaptation action, 
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most notably in the USA (high confidence) (van der Linden et  al., 
2015; Cook and Lewandowsky, 2016; Bolsen and Druckman, 2018; 
Chinn et  al., 2020) but with similar patterns in Canada (medium 
confidence) (Lachapelle et al., 2012; Kevins and Soroka, 2018). Vocal 
groups can affect public discourse and weaken public support for 
climate mitigation and adaptation policies (medium confidence) 
(Aklin and Urpelainen, 2014; Lewandowsky et  al., 2019). Vested 
economic and political interests have organised and financed 
misinformation and ‘contrarian’ climate-change communication 
(Brulle, 2014; Farrell, 2016a; Farrell, 2016b; Supran and Oreskes, 2017; 
Bolsen and Druckman, 2018; Brulle, 2018). Traditional media–print 
and broadcast–frame and transmit climate-change information and 
play a crucial role in shaping public perceptions, understanding and 
willingness to act (Happer and Philo, 2013; Schmidt et  al., 2013; 
Hmielowski et al., 2014; Bolsen and Shapiro, 2018; King et al., 2019; 
Chinn et al., 2020). The journalistic norm of ‘balance’ (giving equal 
weight to climate scientists and contrarians in climate-change 
reporting) biases coverage by unevenly amplifying certain messages 
that are not supported by science, contributing to politicisation of 
science, spreading of misinformation and reducing public consensus 
on action (Boykoff and Boykoff, 2004; Boykoff and Boykoff, 2007; Cook 
et al., 2017). Much online social media discussion of climate change 
takes place in ‘echo chambers’–a social network among like-minded 
people in communities dominated by a single view that contributes to 
polarisation (Williams et al., 2015; Pearce et al., 2019) and the spread 
of misinformation (Treen et al., 2020).

14.3.2 Public Perceptions, Opinions and Understanding of 
Climate Change

In a 2018 survey across 26 nations, people in Canada and Mexico 
ranked climate change as the top global threat, whereas in the USA 
climate change ranked third (Poushter and Huang, 2019). The public’s 
responses to the causes of climate change and risk perceptions in 
Canada (Mildenberger et al., 2016) and the USA (Howe et al., 2015) 
have revealed variations among regions (Figure  14.3) and less 
acceptance of climate change in rural regions than in urban areas. 
Canadian regions have higher acceptance of climate change (e.g., 
recognise it is happening and attributable to human activity) than the 
most liberal areas in the USA (Lachapelle et al., 2012; Mildenberger 
et  al., 2016). Western Canadian regions with high carbon intensity 
economies had lower acceptance of climate change than the rest of 
Canada, whereas in the USA perceptions were more stable across 
regions (Lachapelle et al., 2012). A recent survey in Mexico found that 
for 73% of respondents climate change represents a major economic, 
environmental and social threat, and in the most vulnerable states 
(MX-SE), the perception is that climate-change impacts and 
extreme events have considerable implications for the way of life in 
communities (Zamora Saenz, 2018). In a 2017 survey, Azócar et al. 
(2021) found that 85% of respondents from Mexico acknowledged 
anthropogenic climate change. Peoples’ experience with extreme 
events (e.g., hurricanes, high temperatures), socio-demographic 
characteristics, level of marginalisation and economic and social 
exclusion, as well as education levels, were important factors 
influencing perception of climate change in Mexico (Corona-Jimenez, 
2018; Alfie and Cruz-Bello, 2021; Azócar et al., 2021). Drawing upon 

Indigenous knowledge (see Box 14.1) as well as lived experience of 
recent changes in ice, weather patterns, and species’ phenology and 
distribution, Indigenous Peoples recognise that change is occurring in 
their communities and have effective solutions that are grounded in 
Indigenous world views (Harrington, 2006; Turner and Clifton, 2009; 
Norton-Smith et al., 2016a; Savo et al., 2016; Maldonado et al., 2017; 
Chisholm Hatfield et al., 2018).

14.3.3 Building Consensus on Climate Change

Building consensus for action on climate change is influenced by 
individual factors (e.g., ideology, world view, trust, partisan identity, 
religion, education, age) and the broader societal context (e.g., 
culture, media coverage and content, political climate, economic 
conditions) (high confidence) (McCright and Dunlap, 2011; Brulle 
et  al., 2012; Hornsey et  al., 2016; Arbuckle, 2017; Pearson et  al., 
2017; Bolsen and Shapiro, 2018; Ballew et  al., 2020; Cologna and 
Siegrist, 2020; Goldberg et al., 2020). In a multi-country assessment 
of acceptance of global warming influenced by ideology (e.g., 
conspiratorial ideation, individualism, hierarchy, and left–right and 
liberal–conservative political orientation), the USA uniquely had 
the strongest link to doubt out of 25 countries for all factors, while 
Canada’s dominant influence on non-acceptance was conservative 
political ideology, and for Mexico, there were no ideological effects 
(Hornsey et al., 2018).

Political affiliation and partisan group identity contribute to polarisation 
on the causes and state of climate change, most notably in the USA 
(medium confidence). Fewer US republicans hold the belief that human 
activity causes climate change than democrats (Bolsen and Druckman, 
2018; Druckman and McGrath, 2019). Partisanship in the USA with 
respect to climate change has evolved over the period 1997–2016; 
initially, it was limited, but since 2008, there has been a widening, 
more entrenched partisan ‘divide’ (Dunlap et al., 2016). The millennial 
generation (born in the 1980s and 1990s), emerging as the largest 
US population cohort, has a potentially important political influence–
reduction in polarisation–as they show relatively higher levels of concern 
and acceptance of climate-change science than older age groups. 
Political affiliation does not have as strong an effect on their climate 
change beliefs (Corner et al., 2015; Ross et al., 2019).

Communicating to educate or enhance knowledge on climate-change 
science or consensus can, but does not necessarily lead individuals 
to revise their beliefs (medium confidence) (Bolsen et  al., 2015; 
Druckman and McGrath, 2019). People may reject new information 
that conflicts with their beliefs or not consider it credible, as political 
ideology and partisan affiliation are strong influences (Arbuckle, 
2017). The climate-change issue may create resistance from 
individuals with conservative political ideologies and hierarchical, 
individualistic world views because it ascribes responsibility to 
developed, industrialised countries for emissions and brings about 
more environmental regulation (Stevenson et al., 2015). Lack of trust 
in scientific consensus on climate change may actually originate 
from opposition by US conservatives to the perceived advocacy for 
different climate-change policy approaches that challenge their world 
views (Bolsen and Druckman, 2018).
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Figure 14.3 |  Regional distribution of public perception that ‘the Earth is getting warmer’ as a surrogate for public acceptance that climate change is 
happening (percent of population). Scale is the Canadian federal electoral district or riding level and US congressional district. The three northern territories and Labrador, in 
Canada, did not meet population thresholds for modelling. The figure updates Mildenberger et al. (2016) and is based on equivalent public surveys in both countries: Canadian 
‘Earth is getting warmer’ and US ‘global warming is happening’ undertaken in 2019. Equivalent surveys and modelling for Mexico are not available at the time of writing.

14.3.4 Factors Influencing Perceptions of Climate-Change 
Risks and Adaptation Action

Projected climate-change risk, urgency and necessary adaptations 
are perceived and understood differently by the public, communities, 
professional groups, climate scientists and public policy makers (high 
confidence) (Bolsen et  al., 2015; Drews and Van den Bergh, 2016; 
Morton et  al., 2017; Treuer et  al., 2018). People can engage with 
climate change across three dimensions: cognitive (knowledge), 
affective (feelings) and behavioural (responses and actions) (Galway, 
2019; Brosch, 2021). Risk assessment can be influenced by values 
regarding the subject under evaluation (Allison and Bassett, 2015; 
Stevenson et al., 2015) and can interact with other risks and change 
over time (Mach et  al., 2016). Communities and practitioners (e.g., 
farmers, foresters, water managers) are influenced in their willingness 
to modify current practices and adopt new measures based on how 
they perceive, understand and experience climate-change uncertainty, 
risk and urgency as well as political and social norms (van Putten 

et al., 2015; Doll et al., 2017; Mase et al., 2017; Morton et al., 2017; 
Zanocco et  al., 2018). Place-based and local-focused assessments 
allow individuals to more readily assess and adapt to risks as well as 
identify roles and responsibilities in the face of multiple, interacting 
and often unequally distributed climate-change impacts (Khan et al., 
2018; Galway, 2019). Interest in preserving local archaeological 
sites threatened by SLR initiated collaboration and co-production of 
knowledge among disparate US communities: citizens, archaeologists, 
preservationists, planners, land managers and Indigenous Peoples 
(Fatorić and Seekamp, 2019; Dawson et al., 2020).

Psychological distancing–the perception that the greatest impacts 
occur sometime in the distant future and to people and places far 
away–can lead to discounting of risk and the need for adaptation 
(medium confidence) (Leviston et al., 2014; Mildenberger et al., 2019). 
Communication directed at local and personal framing of climate-
change impact and risk information is one option for addressing low 
salience (Bolsen et al., 2019) particularly related to established risks 
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such as SLR, flooding and wildfires in North America (Mildenberger 
et  al., 2019). ‘Personalised’ risk communications have had mixed 
results creating behavioural change and policy support, and even 
caused resistance (Schoenefeld and McCauley, 2016). Communication 
focused extensively on risks and dangers of climate change can 
produce fear or dread, lessen agency and create fatalism that hinders 
action (Giddens, 2015; Mayer and Smith, 2019); it also can be labelled 
alarmist (Leiserowitz, 2005). Detailed SLR flooding maps for the 
San Francisco Bay area did not increase climate risk assessment but 
lessened personal risk perception of those with a strong belief in 
climate change, although policy preferences and support for adaptation 
did not change (Mildenberger et al., 2019). Defining coherent groups 
based on variations in beliefs, risk perceptions and policy preferences 
offers opportunities for effectively engaging with segments of the 
population instead of using the same approach for everyone (low 
confidence) (Maibach et al., 2011; Chryst et al., 2018). As an example, 
the US population was segmented into a continuum ranging from 
the ‘Alarmed’, the dominant group who were ‘Concerned’, then the 
Cautious, Disengaged, Doubtful, and least prevalent, the Dismissive 
(Chryst et al., 2018).

14.4 Indigenous Peoples and Climate Change

Indigenous knowledge and science are resources for understanding 
climate-change impacts and adaptive strategies (very high confidence) 
(SM14.1; Table SM14.1). The Indigenous Peoples of North America have 
contributed substantially to, and continue to contribute to, the growing 
literature, scholarship and research on climate change (Barreiro, 1999; 
Houser et al., 2001; Mustonen, 2005; Bennett et al., 2014; Maynard, 
2014; Merculieff et al., 2017; FAQI, 2019; Ijaz, 2019; BIA, 2021). For 
thousands of years, Indigenous Peoples have developed and relied 
on their own knowledge systems for sustaining their health, cultures 
and arts, livelihoods and political security (Battiste and Henderson, 
2000; Colombi, 2012; Nelson and Shilling, 2018). Diverse IK systems in 
North America consider weather and climate as major dimensions of 
understanding the relationship between society and the environment. 
Indigenous Peoples have distinct knowledge of climate change, over 
extensive temporal measures (Trosper, 2002; Barrera-Bassols and 
Toledo, 2005; Gearheard et  al., 2013). The basis of this knowledge 
is often Indigenous Peoples’ long and profound relationships with 
the environment, that is, to the ecosystems, waters, ice, lands, 
territories and resources in their homelands. The relationships have 
been forged by adaptation to a particular environment and involve 
systematic activities. Indigenous harvesters, including hunters, 
fishers, agriculturalists and plant gatherers, observe and monitor 
environmental change, and engage in systematic reflection with one 
another about trends over short- and long-term periods (Sakakibara, 
2010; Sánchez-Cortés and Chavero, 2011; Kermoal and Altamirano-
Jiménez, 2016; Metcalfe et al., 2020b). The holistic perspective of the 
interrelated and interdependent nature of ecosystems is a distinct 
characteristic of IK and often contrasts with findings and results of 
science alone. Indigenous harvesters, agriculturalists, leaders, culture 
bearers, educators and government employees develop theoretical 
and practical knowledge of seasonal and climate change that seeks 
to furnish the best available knowledge and information to inform 
climate-change policy and decisions (Barrera-Bassols and Toledo, 2005; 

McNeeley and Shulski, 2011). Examples of theoretical knowledge 
systems include Indigenous calendars of seasonal change and systems 
of laws and protocols for environmental stewardship (see Box 14.1) 
(Kootenai Culture Committee, 2015; Donatuto et al., 2020).

The practice and use of IK systems is recognised and affirmed by 
the United Nations Declaration on the Rights of Indigenous Peoples 
(UNDRIP) (UNGA, 2007), and consistent with reports and guidance 
from UN bodies including the High Commissioner for Human Rights 
(Bachelet, 2019), Expert Mechanism on the Rights of Indigenous Peoples 
(UNGA, 2015; UNGA, 2018), the Permanent Forum of Indigenous Issues 
(Dodson, 2007; Cunningham Kain et al., 2013; Sena and UNPFII, 2013; 
Sena, 2014; Quispe and UNPFII, 2015) and the Special Rapporteur on 
the Rights of Indigenous Peoples (Cross-Chapter Box INDIG in Chapter 
18; Toledo, 2013; UNGA, 2017). The right to self-determination, control 
over territorial development and cultural integrity make it important 
that climate scientists practise equitable engagement of IK and IK 
holders. There is a growing literature of success and lessons learned 
from co-production of knowledge between IK systems and diverse 
scientific traditions relating to climate change (Behe et  al., 2018; 
Latulippe and Klenk, 2020; Camacho-Villa et al., 2021).

Current and projected climate-change impacts disproportionately harm 
Indigenous Peoples’ livelihoods and economies (very high confidence). 
Indigenous Peoples’ livelihoods in North America include a range of 
activities closely tied to traditional lands, waters and territories. These 
activities support a core economic base and an array of sustenance, 
including financial stability, food security, health and nutrition, safety, 
and adequate provisions and reserves of important supplies and 
resources, as well as the passing down of traditional knowledge. 
Indigenous lives and livelihoods are at risk in the following ways: 
Indigenous persons are more at risk of losing their lives due to factors 
that are exacerbated by climate-change impacts (Ford et  al., 2006; 
Barbaras, 2014; Khalafzai et al., 2019). Indigenous Peoples’ livelihood 
practices are being distressed, interrupted and, in some cases, made 
entirely inaccessible. Livelihood activities known and anticipated to be 
impacted by climate change are food security (Meakin and Kurtvits, 
2009; Wesche and Chan, 2010; Nyland et al., 2017), harvesting of fish, 
plants and wildlife (Dittmer, 2013; Parlee et  al., 2014; Jantarasami 
et al., 2018b; ICC Alaska, 2020), agriculture (St Regis Mohawk Tribe, 
2013; Shinbrot et al., 2019; Settee, 2020), transportation (Swinomish 
Indian Tribe Community, 2010; Hori et al., 2018a; Hori et al., 2018b), 
and tourism and recreation (ICC Canada, 2008). Indigenous Peoples 
have been active in gathering to assess the impacts of climate 
change on their livelihoods, one example being the Bering Sea Elders 
Advisory Group (Bering Sea Elders Advisory Group and Alaska Marine 
Conservation Council, 2011; Bering Sea Elders Group, 2016).

Climate-change impacts have harmful effects on Indigenous Peoples’ 
public health, physical health and mental health, including harmful 
effects connected to the cultural and community foundations of 
health (very high confidence). Health and climate change is a major 
issue for Indigenous Peoples (Section 14.5.6; Ford, 2012; Ford et al., 
2014; Gamble et al., 2016; Jantarasami et al., 2018b; Middleton et al., 
2020a; Donatuto et al., 2021). Climate-change impacts and risks affect 
Indigenous Peoples’ health negatively in different ways. Indigenous 
health, as tied to nutrition and exercise, is threatened when local foods 
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Box 14.1 | Integrating Indigenous ‘Responsibility-Based Thinking’ into Climate-Change 
Adaptation and Mitigation Strategies

Indigenous Peoples throughout North America have experienced five centuries of territorial expropriation, loss of access to natural 
resources and, in many cases, barriers to the use of their sacred sites (Gabbert, 2004; Louis, 2007). The history of Indigenous struggles to 
preserve distinct cultural knowledge and assert autonomy in the face of colonialism has shaped land-use patterns and relationships with 
traditional territories (Cross-Chapter Box INDIG in Chapter 18; Alfred and Corntassel, 2005; Tuhiwai Smith, 2021). Climate change is now 
creating additional challenges for Indigenous Peoples. For example, increased water scarcity due to higher temperatures and diminished 
precipitation have led to reduced crop yields for Maya farmers in Yucatan (Sioui, 2019). Thawing permafrost in subarctic Canada (Quinton 
et al., 2019) has interfered with the land-based livelihoods of the Indigenous Dene Peoples (CCP6).

Recent climate-related changes represent cultural threats similar to the ones that occurred when European settlement began in the 
Americas over 500 years ago (Whyte, 2016; Whyte, 2017). Thus, for Indigenous Peoples, who often disproportionately bear the impacts 
of climate change, such changes are not novel, but seen as déjà vu (Whyte, 2016). Since livelihoods and subsistence are often directly 
dependent on the land and water, Indigenous Peoples have direct insights into the localised impacts of global environmental change. 
Indeed, Indigenous Peoples consider themselves stewards of the land (and water), and have a spiritual duty to care for the land and its 
flora, fauna and aquatic community, or ‘Circle’ of beings. Indigenous knowledge (IK) has gained recognition for its potential to bolster 
Western scientific research about climate change. Many recent examples demonstrate the scientific value of IK for resource management 
in climate-change adaptation and mitigation (e.g., Kronik and Verner, 2010; Maldonado et al., 2013; Wildcat, 2013; Etchart, 2017; Nursey-
Bray et al., 2019). For example, Indigenous practices have not only contributed to the present understanding of North American forest 
fires, but also that the practice of frequent small-scale anthropogenic fires, also called cultural burns, is a key method to prevent large-
scale destructive fires (Section 14.7.1). The growing interest and recognised value in these practices, particularly in California, has led to 
formal agreements with state and federal agencies (Long et al., 2020a; Lake, 2021).

Indigenous relationships with the land are commonly informed and guided by a cultural ethic of ‘responsibility-based thinking’ (Sioui 
and McLeman, 2014). The Indigenous cultural ethic informs and mediates personal and collective conduct with a sense of duty or 
responsibility towards human and other-than-human relations (see Sioui, 2020). The Indigenous responsibility-based outlook stems from 
a cultural paradigm that understands that it is human beings who must learn to live with the land (Cajete, 1999; Pierotti and Wildcat, 
2000; McGregor et al., 2010a; McGregor, 2014). This way of thinking instils in its adherents an inherent awareness that the other-than-
human realm is capable of existing and thriving without humans. Thus, it is for our own sake (as humans) that we learn to live according 
to certain ever-shifting parameters, requiring us to remain acutely attuned to our physical surroundings. This Indigenous cultural precept 
is perhaps among the most significant contributions of Indigenous Peoples to the rest of humanity in the face of climate change.

Indigenous relationships with natural systems continue to be mediated by cultural orders of governance and legal systems that pre-
date, by several millennia, European traditions in North America. Napolean (2012) describes Indigenous legal orders as dynamic and 
encompassing knowledge that is simultaneously legal, religious, philosophical, social and scientific. Customary Indigenous legal orders 
(e.g., Borrows, 2002; Napolean, 2012) stand in contrast to Eurocentric understandings of law, which are closely related to, and founded 
on, the Western principles of rights. Indigenous legal orders are based on duties, obligations and responsibilities to the land and all beings, 
including humans, animals, plants, future generations and the departed/ancestors (Borrows, 2002; Borrows, 2010a; Borrows, 2010b; 
Borrows, 2016). Indigenous spiritual laws are centred on the values of responsibility and accountability to the land, and how these differ, 
in theory and in practice, from Western law, which is based on ‘universal’ principles, with little consideration for the local environmental 
context (Craft, 2014). Research has elucidated these Indigenous understandings about how their land-based responsibilities act as the 
foundation of how humans must operate according to the land on which they live and depend.

With increasing climate-change threats to land-based subsistence and cultural practices, Indigenous Peoples are increasingly taking their 
rightful leadership roles in resource co-management arrangements and other stewardship activities (Section 14.5.2.2). Indeed, Indigenous 
Peoples are increasingly assuming leadership positions with regard to land governance and climate-change action, as the stewards of 
their traditional territories since time immemorial. Therefore, it is imperative for Indigenous scholars, Elders and knowledge holders to 
occupy leadership roles in climate-change adaptation and mitigation, especially when their territories are concerned (Section 14.7; CCP6). 
For instance, Indigenous ‘resurgence’ paradigms draw on the strengths of traditional land-based culture and knowledge with regard to 
Indigenous leadership in land governance and stewardship (Alfred and Corntassel, 2005; Alfred, 2009; Simpson, 2011; Corntassel and 
Bryce, 2012; Coulthard, 2014; Alfred, 2015). Indigenous leadership in climate-change policy, therefore, can ensure that Indigenous right 
to self-determination is respected and upheld to allow Indigenous Peoples to continue to carry out their cultural responsibilities to the 
land, for the benefit of all North Americans (Powless, 2012; Etchart, 2017).
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In northern Canada, a fusion of leading-edge Western science and IK on permafrost informed the co-development of predictive decision-
support tools and risk management strategies to inventory and manage permafrost and adapt to permafrost thaw (CCP6). Permafrost 
thaw in the Dehcho region of Canada is widespread and occurring at unprecedented rates (WGI). The Dehcho Collaborative on Permafrost 
(DCoP) aims to improve the understanding of and ability to predict and adapt to permafrost thaw3. DCoP’s collaborative approach, 
which places Indigenous Peoples in leadership positions, generates the new knowledge, predictive capacity and decision-support tools to 
manage natural resources that support Indigenous Dene Peoples’ ways of life. Indigenous–academic partnerships can enhance climate-
change adaptation and mitigation capacity, and provide openings for more holistic co-management approaches that recognise and 
affirm the central role of Indigenous Peoples as stewards of their ancestral territories, especially as they face accelerating climate-change 
impacts. Academic researchers and their Indigenous partners can support climate-change resilience via mobilising IK in stewardship 
and adaptation; researching governance arrangements, economic relationships and other factors that hinder Indigenous efforts in these 
areas; proposing evidence-based policy solutions at international and national scales; and outlining culturally relevant tools for assessing 
vulnerability and building capacity will also support climate-change resilience. Such IK underpins successful climate-change adaptation 
and mitigation (very high confidence) (see Green and Raygorodetsky, 2010; Kronik and Verner, 2010; Alexander et al., 2011; Powless, 
2012; Ford et al., 2016; Nakashima et al., 2018). The inclusion of IK in adaptation and mitigation not only supports Indigenous cultural 
survival but also enables governments to recognise the territorial sovereignty of Indigenous Peoples.

Responsibility-based philosophies of Indigenous Peoples from across the continent support the development of climate-change adaptation 
and mitigation strategies that promote responsible and respectful relationships with the environment over the long term. Adapting to 
change, in all its forms, has since time immemorial been one of the defining characteristics of Indigenous cultures on Turtle Island (the 
American continent). In Yucatan, one Elder explained that with regards to climate-change impacts in the region, the Maya have always 
dealt with k’ech, or change, and that accepting and responding to change is part of the Maya identity and responsibility (Sioui, 2020). 
Given successive failures in adequately and effectively responding to climate change, it has become urgent for the rest of the human 
collective to (re)learn from Indigenous cultures to (re)consider our responsibility/ies to the land—the world over—and to reorient our 
societal imperatives to better respond and react to change. Such a process of learning from IK could foster the development of climate-
change policies that promote responsible and respectful relationships with the environment over the long term, and prove to be more 
effective and holistic. Although most inhabitants of North America are non-Indigenous, it is possible and beneficial for our societies to 
learn to think and act in a more responsibility-based way about our relations to the land, and, by extension, about climate-change policy. 
A collective commitment to protecting and advancing Indigenous territorial rights, so Indigenous Peoples can continue to reassert their 
spiritual duty and role as stewards of their traditional territories, benefits all human and other-than-human ‘Peoples’.

3 See http://scottycreek.com/DCoP

Box 14.1 (continued)

are less available and harvesting activities are less possible to practise 
(Norton-Smith et al., 2016b; Rosol et al., 2016; Gonzalez et al., 2018). 
Indigenous Peoples experience widespread public health concerns from 
severe droughts (Stewart et  al., 2020; Schlinger et  al., 2021; Wiecks 
et  al., 2021), extreme heat (Doyle et  al., 2013; Campo Caap, 2018; 
Kloesel et al., 2018a; Meadow et al., 2018; ITK, 2019; Ute Mountain 
Ute Tribe and Wood Environment Infrastructure Solutions Inc, 2019; 
Whyte et  al., 2021), unpredictable precipitation patterns (Chavarria 
and Gutzler, 2018; Tom et al., 2018; Tlingit and Haida, 2019; Schlinger 
et al., 2021), flooding and coastal erosion (Jamestown S’klallam Tribe, 
2016; Norton-Smith et  al., 2016b; Puyallup Tribe of Indians, 2016; 
Marks-Marino, 2019; Ristroph, 2019; Marks-Marino, 2020b; Schlinger 
et al., 2021), wildfires and wildfire smoke (Edwin and Mölders, 2018; 
USEPA, 2018; Christianson et  al., 2019a; ITK, 2019; Marks-Marino, 
2020a; Mottershead et al., 2020; Woo et al., 2020; Wiecks et al., 2021), 
algal blooms (Peacock et al., 2018; Gobler, 2020; Donatuto et al., 2021; 
Preece et al., 2021; Schlinger et al., 2021), storms and hurricanes (Rioja-
Rodríguez et al., 2018), influxes of invasive species (Pfeiffer and Huerta 
Ortiz, 2007; Pfeiffer and Voeks, 2008; Voggesser et al., 2013; Bad River 
Band of Lake Superior Tribe of Chippewa Indians and Abt Associates 

Inc., 2016; Scott et al., 2017; Reo and Ogden, 2018; Middleton et al., 
2020a) and changing production systems (Rioja-Rodríguez et  al., 
2018). Indigenous Peoples’ mental health is at risk and has already 
been affected negatively by climate change (Donatuto et  al., 2021). 
Water security is one of the most serious concerns to Indigenous 
Peoples’ health and well-being (Vanderslice, 2011; Cozzetto et  al., 
2013a; Redsteer et al., 2013; Hanrahan et al., 2014; Chief et al., 2016; 
Gamble et al., 2016; Jantarasami et al., 2018b; Kloesel et al., 2018a; 
Tom et al., 2018; Martin et al., 2020a; Arsenault, 2021). When some 
people are less able to practise traditional, cultural, social and family 
activities, they can become alienated, compounding the negative 
effects of traumas Indigenous persons already experience. Traumas 
include historic and continuing land dispossession, assimilation, social 
marginalisation and discrimination, and food and financial insecurities. 
The practise of cultural traditions are associated with education, 
harvesting and agriculture, exercise, positive social relationships 
and family life, which play foundational roles in the achievement of 
physical, public and mental health (Bell et  al., 2010; Cunsolo Willox 
et al., 2015; Jantarasami et al., 2018b; Norgaard and Tripp, 2019; Billiot 
et al., 2020b; Adams et al., 2021; Donatuto et al., 2021).
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Indigenous Peoples are affected dramatically by climate-related 
disasters and other climate-related extreme environmental events (very 
high confidence). Indigenous Peoples face numerous threats and have 
already been harmed by, and are planning for, extreme weather events 
with associations to climate change, including hurricanes and tornadoes 
(Oneida Nation Pre-Disaster Mitigation Plan Steering Committee 
and Bay-Lake Regional Planning Commission, 2016; Emanuel, 2019; 
Cooley, 2021; Marks-Marino, 2021; Zambrano et al., 2021), heatwaves 
(Confederated Tribes of the Umatilla Indian Reservation, 2016; Wall, 
2017; La Jolla Band of Luiseno Indians, 2019; Mashpee Wampanoag, 
2019; Wiecks et  al., 2021), ocean warming and MHWs (Hoh Indian 
Tribe, 2016; Port Gamble S’klallam Tribe, 2016; Port Gamble S’klallam 
Tribe, 2020; State of Alaska, 2020; Muckleshoot Tribal Council, 2021; 
Port Gamble S’klallam Tribe, 2021), wildfires (Voggesser et  al., 2013; 
Billiot et  al., 2020a; Cozzetto et  al., 2021b; Gaughen et  al., 2021; 
Morales et  al., 2021; National Tribal Air Association, 2021; Zambrano 
et al., 2021), permafrost thaw (Haynes et al., 2018; Low, 2020), flooding 
(Riley et al., 2011; Ballard and Thompson, 2013; Brubaker et al., 2014; 
Thompson et  al., 2014; Burkett et  al., 2017; Quinault Indian Nation, 
2017; Ristroph, 2019; Sharp, 2019; Thistlethwaite et  al., 2020) and 
drought (Knutson et al., 2007; Chief et al., 2016; Redsteer et al., 2018; 
Sioui, 2019; Bamford et al., 2020; Sauchyn et al., 2020). Some Indigenous 
Peoples are facing climate-change impacts that generate community-
led permanent relocation and resettlement as an adaptation option 
(Maldonado et al., 2021). Coastal erosion is one climate-change issue 
that is often connected to Indigenous Peoples planning to resettle, 
including vulnerability connected to higher sea levels and storm surges 
(Quinault Indian Nation, 2017; Bronen et al., 2018; Affiliated Tribes of 
Northwest Indians, 2020). Adapting to new settlement areas threatens 
the continuity of communities. In a number of cases, Indigenous Peoples’ 
having less access to adequate infrastructure is a driver of vulnerability 
to climate-related disasters and extreme weather events (Doyle et al., 
2018; Patrick, 2018; Cozzetto et al., 2021a; Indigenous Climate Action 
et al., 2021). Disasters and extreme events are particularly severe when 
their impacts are compounded by inadequate infrastructure. Lack of 
flood protection infrastructure on Indigenous reserve communities leads 
to displacement, loss of homes and perpetuates disproportionate levels 
of risk to extreme weather events (Cunsolo et al., 2020; Fayazi et al., 
2020; Yellow Old Woman-Munro et al., 2021).

Indigenous self-determination and self-governance are the foundations 
of adaptive strategies that improve understanding and research on 
climate change, develop actionable community plans and policies 
on climate change, and have demonstrable influence in improving 
the design and allocation of national, regional and international 
programmes relating to climate change (very high confidence). Historical 
and contemporary developments have crystallised international norms 
recognising the distinct status, role and rights of Indigenous Peoples in 
the form of significant international human rights instruments. Premier 
among them is the UNDRIP (UNGA A/RES/61/295), which has received 
universal consensus since its adoption by the UN General Assembly. 
The UN member States have affirmed the right of self-determination 
(Article 3, UNDRIP) regarded as the prerequisite to the exercise and 
enjoyment of all other human rights.

The integrity of the environment is impacting all of humanity, including 
Indigenous Peoples, their lands, territories, resources and their 

communities. Through self-determination, durable, sustainable and 
robust contributions from those with close, symbiotic relationships with 
the environment can be revealed in favour of all humanity. Indigenous 
Peoples of North America have been engaged in wide-ranging activities 
to address climate change (Doolittle, 2010; Parker and Grossman, 
2012; Abate and Kronk, 2013; STACCWG, 2021). They include actions 
in the spheres of education (Donatuto et  al., 2020; McClain, 2021; 
Morales et al., 2021), development of IK and science (Maldonado et al., 
2016; AFN, 2020; Ferguson and Weaselboy, 2020; Huntington et  al., 
2021a; Jones et al., 2021; Sawatzky et al., 2021), adaptation planning 
and implementation (Angel et  al., 2018a; Tribal Climate Adaptation 
Guidebook Writing Team et al., 2018; Hepler and Kronk Warner, 2019; 
Tribal Adaptation Menu Team, 2019; Metcalfe et al., 2020b), and political 
action and diplomacy (including treaty-based diplomacy) (Grossman, 
2008; Kronk Warner and Abate, 2013; Callison, 2015).

14.5 Observed Impacts, Projected Risks and 
Adaptation by Sector

14.5.1 Terrestrial and Freshwater Ecosystems and  
Communities

14.5.1.1 Terrestrial Ecosystems: Observed Impacts 
 and Projected Risks

Evidence continues to mount about the impacts of recent climate change 
on species and ecosystems (very high confidence) (Table 14.2; Weiskopf 
et  al., 2020). Ranges and abundances of species continue to shift in 
response to warming throughout North America (very high confidence) 
(Cross-Chapter Box MOVING PLATE in Chapter 5; Cavanaugh et al., 2014; 
Molina-Martínez et al., 2016; Tape et al., 2016; Miller et al., 2017; Pecl 
et al., 2017; Zhang et al., 2018a). Future climate change will continue 
to affect species and ecosystems (high confidence) (IPBES, 2018), with 
differential responses related to species characteristics and ecology 
(D’Orangeville et  al., 2016; Weiskopf et  al., 2019). Climate change is 
projected to adversely affect the range, migration and habitat of caribou, 
an important food and cultural resource in the Arctic (CCP6; Leblond 
et al., 2016; Masood et al., 2017; Barber et al., 2018b; Borish, 2022).

Climate-induced shifts in the timing of biological events (phenology) 
continue to be a well-documented ecological response (very high 
confidence) (Table 14.2; Vose et al., 2017; Lipton et al., 2018; Vose et al., 
2018; Molnar et al., 2021). Reduced snow season length may potentially 
lead to adverse camouflage effects on animals that change coat colour 
(Mills et al., 2013; Mills et al., 2018). Human conflicts with bears are 
expected to increase in response to shifts in hibernation patterns 
(Johnson et al., 2018) and food resources (Wilder et al., 2017; Wilson 
et al., 2017).

Severe ecosystem consequences of warming and drying are well 
documented (very high confidence) (Table 14.2). Significant ecosystem 
changes are expected from projected climate change (high confidence), 
such as in Mexican cloud forests (Helmer et al., 2019), North American 
rangelands (Polley et al., 2013; Reeves et al., 2014) and montane forests 
(Stewart et al., 2021; Wright et al., 2021). Permafrost thaw is projected to 
increase in Alaska and Canada (DeBeer et al., 2016; see also Ranasinghe 
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et al., 2021), accelerating carbon release (CCP6, see also Canadell et al., 
2021) and affecting hydrology. Predicting which species or ecosystems 
are vulnerable is challenging (Stephenson et al., 2019), although palaeo-
ecological data (e.g., pollen, tree rings) provide context from past events 
to better understand current and future transformations (Nolan et al., 
2018).

Climate-change impacts on natural disturbances have affected 
ecosystems (very high confidence) (Table  14.2; see Box  14.2), and 
these impacts will increase with future climate change (medium 
confidence). Facilitated by warm, dry conditions, ‘mega-disturbances’ 
and synergies between disturbances that include wildfires, insect 
and disease outbreaks, and drought-induced tree mortality continue 
to affect large areas of North America (Cohen et  al., 2016; Young 
et al., 2017a; Hicke et al., 2020), overwhelming adaptive capacities 
of species and degrading ecosystem services (Millar and Stephenson, 
2015; Stewart et al., 2021). This era of mega-disturbances is expected 
to become more widespread and severe in coming decades (Cook 
et al., 2015; Seidl et al., 2017; Buotte et al., 2019), with potentially 
significant impacts on ecosystems (Allen et al., 2015; Crausbay et al., 
2017; Schwalm et  al., 2017; Coop et  al., 2020; Dove et  al., 2020 
Thompson et al. 2020, Stewart et al. 2021). Effects include widespread 
tree mortality (Allen et  al., 2015; Kane et  al., 2017; van Mantgem 
et  al., 2018) and accelerated ecosystem transformation (medium 
confidence) (Guiterman et al., 2018; Crausbay et al., 2020; Munson 
et al., 2020).

14.5.1.2 Freshwater Ecosystems: Observed Impacts and  
Projected Risks

Climate change, either directly (warming water) or indirectly (glacier 
and snow inputs), has affected biogeochemical cycling and species 
composition in North American aquatic ecosystems (very high 
confidence) (Table 14.2; Moser et al., 2005; Saros et al., 2010; Preston 
et al., 2016), possibly amplifying other human-caused stresses on these 
systems (Richter et  al., 2016). Excess nutrients associated with high 
farm animal density can be transported during intense rainfall events 
(expected to increase with climate change) causing algal blooms, fish 
kills and other detrimental ecological effects (Huisman et  al., 2017; 
Coffey et al., 2019).

Projected climate change will cause habitat loss, alter physical and bio-
logical processes, and decrease water quality in freshwater ecosystems 
(high confidence) (Poesch et al., 2016; Crozier et al., 2019). Projected 
river warming of 1°C–3°C is expected to reduce thermal habitat for 
important salmon and trout species in the northwest USA by 5–31% 
(Isaak et  al., 2018) and in Mexico (Meza-Matty et  al., 2021), and for 
multiple fish species in Canada (Poesch et al., 2016). Cold-water streams 
at higher elevations will warm less and therefore may become climate 
refugia (Isaak et al., 2016). Projected warming of mountain lake eco-
systems (Roberts et al., 2017b; Redmond, 2018) will affect ecosystem 
processes (Preston et al., 2016; Redmond, 2018; Moser et al., 2019). Loss 
of cold-water inputs from retreating glaciers are expected to adversely 
affect alpine stream ecosystems (Fell et al., 2017; Giersch et al., 2017). 
For anadromous fish species (e.g., Chinook salmon), future warming 
will reduce habitat suitability from river headwaters to oceans (Crozier 
et al., 2021).

Freshwater ecosystems across North America are increasingly at risk 
from extreme drought, compounded by human demands for water 
(Section  14.5.3; Kovach et  al., 2019). Implications for aquatic and 
riparian species can vary, but it is widely agreed that these systems 
are highly sensitive to fluctuations in the hydrological cycle, which can 
increase competition by invasive species and compromise connectivity 
between potential cold-water refugia (Melis et al., 2016; Poff, 2019).

14.5.1.3 Adaptation in Terrestrial and Freshwater Ecosystems

Adaptation efforts to assess vulnerability of species and ecosystems, 
predict adaptive capacity and identify conservation-oriented options 
have increased markedly across North America (e.g., Hagerman and 
Pelai, 2018; Keeley et  al., 2018; Thurman et  al., 2020; Peterson St-
Laurent et al., 2021; Thompson et al., 2021). Scenario-based planning, 
an approach for addressing uncertainty, continues to gain traction and 
is regularly applied by the US National Park Service (Star et al., 2016). 
Nonetheless, barriers to implementation of specific actions often exist 
(e.g., inflexible policies, lack of resources and stakeholder buy-in, 
political will), hampering progress (Stein et al., 2013; Shi and Moser, 
2021). Efforts to evaluate the efficacy of implemented adaptation 
actions are also lacking (Prober et  al., 2019), but some cases show 
progress. For example, ongoing efforts are quantifying how variable 
water releases from the Colorado River’s Glen Canyon Dam affect 
endangered fish species (Melis et al., 2016). Nature-based Solutions 
(NbS) for adaptation (see Box 14.7) are increasingly being evaluated, 
especially at larger scales.

Effective climate-informed ecosystem management requires a well-
coordinated suite of adaptation efforts (e.g., assessment, planning, 
funding, implementation and evaluation) that is co-produced among 
stakeholders, Indigenous Peoples and across sectors (high confidence) 
(Millar and Stephenson, 2015; Dilling et al., 2019). New applications 
of conventional strategies can be modified to achieve conservation 
goals under climate change (USGCRP, 2019). For example, mechanical 
thinning and prescribed burning (to reduce fuel loads and benefit 
ecosystems) could be used in combination with planting species better 
suited to new conditions to build resilience in western US forests to 
longer and hotter drought conditions (Bradford and Bell, 2017; Vernon 
et al., 2018). Protection of buffer areas, such as riparian strips in arid 
regions and boreal ecosystems, reduces water temperature, builds 
resistance to invasive species, increases suitable habitat (Johnson and 
Almlof, 2016) and facilitates protection of freshwater systems from 
runoff during and after intense rain events (National Research Council, 
2002).

Innovative approaches may facilitate species’ responses to climate 
change, particularly when vulnerability is exacerbated by habitat loss 
and fragmentation. Strategies include improved landscape connectivity 
for species dispersal (Carroll et al., 2018; Littlefield et al., 2019; Lawler 
et al., 2020; Thomas, 2020) or assisted migration (also called managed 
relocation) to climatically suitable locations (Schwartz et  al., 2012; 
Dobrowski et al., 2015). Examples include translocation of salmon in 
the Columbia River (Holsman et al., 2012), genetic rescue (i.e., assisted 
gene flow increases genetic diversity to address local maladaptation) 
(Aitken and Whitlock, 2013) and locating and conserving climate 
refugia, such as in alpine meadows of the Sierra Nevada (Javeline et al., 
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Table 14.2 |  Examples of observed climate-change impacts on terrestrial and freshwater ecosystems

Impact References

Local extinctions Pomara et al. (2014); Wiens (2016)

Greening and increased productivity of North American vegetation from CO2 fertilisation Smith et al. (2016b); Zhu et al. (2016); Huang et al. (2018)

Changes in phenology, including migration as well as mismatches between species and with 
human visitation

Mayor et al. (2017); Zaifman et al. (2017); Breckheimer et al. (2020)

Vegetation conversions, including

 – shifts to denser forests with smaller trees
 – trees to savannas and grasslands
 – woody plant encroachment into grasslands
 – changes in tundra plant phenology and abundance
 – expansion of boreal and subalpine forests into tundra, meadows
 – reduced or lack of recovery following severe fire

McIntyre et al. (2015)
Bendixsen et al. (2015)
Archer et al. (2017)
Myers-Smith et al. (2019)
Juday et al. (2015); Lubetkin et al. (2017)
Coop et al. (2020); O’Connor et al. (2020); see Box 14.2

Warmer droughts reducing plant productivity and carbon sequestration Mekonnen et al. (2017); Gampe et al. (2021)

Slowing ecosystem function recovery of vegetation to pre-disturbance conditions following 
droughts

Schwalm et al. (2017); Crausbay et al. (2020)

Warming streams and lakes, and changes in seasonal flows that have affected freshwater 
fish distributions and populations

O’Reilly et al. (2015); Lynch et al. (2016); Poesch et al. (2016); Roberts et al. (2017b); Isaak 
et al. (2018); Christianson et al. (2019b); Zhong et al. (2019)

Upstream expansion of human-mediated invasive hybridisation and enhanced risk of 
extinction of native salmonid species

Muhlfeld et al. (2014)

Declining wetlands in western North America important for bird migrations Donnelly et al. (2020)

Increases in harmful freshwater algal blooms See Section 14.5.3

2015; Morelli et al., 2016). Maintaining diverse spawning habitats and 
salmon runs can increase resilience of salmonid populations to climate 
change (Schoen et  al., 2017; Crozier et  al., 2021). Newer modelling 
approaches can facilitate the visualisation of future management 
scenarios, per a recent study of fires in the southwest USA (Loehman 
et al., 2018), in addition to technologies in genomics for monitoring 
species and modifying adaptive traits (Phelps, 2019).

Adaptation actions have important limitations (Dow et  al., 2013), 
particularly in the context of biodiversity conservation goals. ‘Hard’ limits 
include species extinctions and vegetation mortality events, despite 
conservation action (i.e., besides significant emissions reductions to 
mitigate warming, few if any interventions could have prevented these 
losses). In contrast, ‘soft’ adaptation limits exist primarily as a function 
of the social–ecological value systems of local communities and 
government entities that are reflected as goals and objectives in their 
management plans for ecosystems and species across North America. 
Soft limits are often mutable or can be removed altogether (Dow et al., 
2013). In contrast, human modifications of landscapes that change or 
irreparably damage can limit adaptation by reducing connectivity and 
therefore range shifts (Parks and Abatzoglou, 2020).

14.5.2 Ocean and Coastal Social–Ecological Systems

14.5.2.1 Observed Impacts and Projected Risks of Climate 
Change

Warming of surface and subsurface ocean waters has been broadly 
observed across all North American marine ecosystems from the polar 
Arctic to the subtropics of Mexico (virtually certain) (Hobday et  al., 
2016; Jewett and Romanou, 2017; Pershing et al., 2018; Smale et al., 

2019). Higher ocean temperatures have directly affected food-web 
structure (Gibert, 2019) and altered physiological rates, distribution, 
phenology and behaviour of marine species with cascading effects 
on food-web dynamics (very high confidence) (Gattuso et  al., 2015; 
Pinsky and Byler, 2015; Sydeman et al., 2015; Poloczanska et al., 2016; 
Frölicher et al., 2018; Le Bris et al., 2018; Free et al., 2019; Stevenson 
and Lauth, 2019; Barbeaux et  al., 2020; Dahlke et  al., 2020). Pacific 
coastal waters from Mexico to Canada and US mid-Atlantic coastal 
waters have a high proportion of species (>5% of all marine species) 
near their upper thermal limit, representing hotspots of risk from MHWs 
(medium confidence) (Smale et  al., 2019; Dahlke et  al., 2020). Kelp, 
a macroalgae, forms important habitat for other marine species, and 
its biomass has decreased 85–99% in the past 40–60 years off Nova 
Scotia, Canada, replaced by invasive and turf algae; this is associated 
directly with warming waters (Filbee-Dexter et al., 2016).

Climate change has induced phenological and spatial shifts in primary 
productivity with cascading impacts on food webs (high confidence) 
(Siddon et al., 2013; Stortini et al., 2015; Sydeman et al., 2015; Stanley 
et al., 2018). This includes widespread starvation events of fish, birds 
(e.g., tufted puffins in Bering Sea in 2016–2017 and Cassin’s Auklets 
in British Columbia in 2014–2015) and marine mammals (grey whales 
along both coasts of North America) (Sydeman et  al., 2015; Duffy-
Anderson et al., 2019; Jones et al., 2019b; Cheung and Frölicher, 2020; 
Piatt et  al., 2020), which challenge protected species and fisheries 
management (Section 14.5.4; Chasco et al., 2017; Wilson et al., 2018; 
Barbeaux et al., 2020; Free et al., 2020; Fisher et al., 2021; Cheung and 
Frölicher, 2020). Climate change has altered foraging behaviour and 
distribution of North Atlantic right whales and their target copepod 
prey (Record et  al., 2019) increasing entanglement rates in lobster 
and snow crab fishing gear on the east coast of the USA and Canada 
as lobster and crab distributions also shift due to changing water 
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Box 14.2 | Wildfire in North America

Recent Observations, Attribution to Climate Change and Projections
Anthropogenic climate change has led to warmer and drier conditions (i.e., fire weather) that favour wildland fires in North America 
(high confidence) (see AR6, WGI, Chapter 12, Ranasinghe et al., 2021). In response, increased burned area in recent decades in western 
North America has been facilitated by anthropogenic climate change (medium confidence). Annual numbers of large wildland fires and 
area burned have risen in the past several decades in the western USA (USGCRP, 2017; USGCRP, 2018), and area burned has increased 
in Canada (although the number of large fires has declined slightly recently) (Gauthier et al., 2014; Natural Resources Canada, 2018; 
Hanes et al., 2019). Attribution studies have reported that climate change increased burned area in Canada (1959–1999) (Gillett et al., 
2004) as well as the western USA (1984–2015) (Abatzoglou and Williams, 2016) and California (1972–2018) (Williams et al., 2019a). 
Decreased precipitation was the primary climate-change cause of increased burned area in the western USA, with warming a secondary 
influence (Holden et al. 2018), whereas warming (through aridity) was most important in a California study (Williams et al., 2019a). A 
drier atmosphere (including reduced precipitation) has been linked to climate change through altered large-scale atmospheric circulation, 
which then facilitated greater burned area in the western USA (Zhang et al., 2019c). Through anomalous warm and dry conditions, 
anthropogenic climate change contributed to the extreme fires of 2016 (Kirchmeier-Young et  al., 2019; Tan et  al., 2019) in western 
Canada and the extreme fire season in 2015 in Alaska (Partain et al., 2017). These studies did not include human activities that influence 
fire–climate relationships (Syphard et al., 2017).

Warming has led to longer fire seasons (Westerling, 2016) and drier fuels (Williams et al., 2019a). Warmer and drier fire seasons in the 
western USA during 1985–2017 have contributed to greater burned area of severe fires (Parks and Abatzoglou, 2020). Simultaneity in 
fires increased during 1984–2015 (Podschwit and Cullen, 2020), challenging firefighting effectiveness and resource sharing. In Mexico, 
fires have been correlated with dry conditions (Kent et al., 2017; Marin et al., 2018; Zuniga-Vasquez et al., 2019). Wildland fire activity 
in the grasslands of the US Great Plains has increased during the past several decades (Donovan et al., 2017) related to antecedent 
precipitation or aridity that affected fuel quantity (Littell et al., 2009).

Climate change is projected to increase fire activity in many places in North America during the coming decades (see also AR6, WGI, 
Chapter 12, Ranasinghe et al., 2021) (Boulanger et al., 2014; Williams et al., 2016; Halofsky et al., 2020), via longer fire seasons (Wotton 
and Flannigan, 1993; USGCRP, 2017), long-term warming (Villarreal et al., 2019; Wahl et al., 2019) and increased lightning frequency in 
some areas of the USA and Canada (medium confidence) (Romps et al., 2014; Finney et al., 2018; Chen et al., 2021). Unusually extensive 
and severe fires have occurred in the Arctic tundra during recent extremely warm and dry years, suggesting that continued warming may 
increase the probability of such fires in the future (Hu et al., 2015). In drier non-forest ecosystems in the western USA, fires are limited 
by fuel availability and vegetation productivity; warming will decrease productivity, leading to lower burned area (Littell et al., 2018).

Impacts on Natural Systems
Although fire is a natural process in many North American ecosystems, increases in burned area and severity of wildland fires have had 
significant impacts on natural ecosystems (medium confidence). The length of streams and rivers impacted by fire has increased in the 
USA along with burned area (Ball et al. 2021). Mega-fires can cause major changes in the structure and composition of ecosystems, 
particularly where human alterations are significant (Stephens et al., 2014; Loehman et al., 2020). Unusually severe fires may have led to 
the conversion of forest to grassland in the southwest USA (Haffey et al., 2018). Recent warming and drying have limited post-fire tree 
seedling and shrub establishment, limiting ecosystem recovery (Davis et al., 2019; O’Connor et al., 2020; Rodman et al., 2020). In boreal 
forests, soil carbon is being lost through increasingly severe or frequent fires (Walker et al., 2019).

Projected future fire activity will continue to affect ecosystems and alter their structure and function (medium confidence) (Coop et al., 
2020; Loehman et al., 2020). Increased fire activity (Stevens-Rumann et al., 2018; Stevens-Rumann and Morgan, 2019; Turner et al., 
2019a; Cadieux et al., 2020), further warming and drying that stresses tree seedlings, and model projections of stand-replacing fires 
at the forest–non-forest boundary in the western USA (Parks et al., 2019) have raised the possibility of shifts in species composition 
or vegetation type (Halofsky et al., 2020). These projections suggest high variability in ecosystem responses depending on interactions 
between vegetation type, moisture stress, disturbances regimes and human alterations (Hurteau et al., 2008; Kitzberger et al., 2017; Littell 
et al., 2018; Hurteau et al., 2019; Loehman et al., 2020; O’Connor et al., 2020).

Impacts on Human Systems
Increased fire activity, partly attributable to anthropogenic climate change, has had direct and indirect effects on mortality and morbidity, 
economic losses and costs, key infrastructure, cultural resources and water resources (medium confidence), although other factors, such 
as increasing populations in the wildland–urban interface, have also contributed. During 2000–2018, significant fire events claimed 
315 lives in the USA (NOAA, 2019); the economic impacts (e.g., capital, health, indirect losses from economic disruption) from the 2018 
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California fires were 149 billion USD (Wang et al., 2021). Poor air quality from fires caused increased respiratory distress (very high 
confidence); exposure extends long distances from the fire source (Section 14.5.6.3). In addition to public and private property damage 
and loss, fires have caused irretrievable losses from archaeological and historical sites (Ryan et al., 2012). Post-fire conditions have 
created unanticipated challenges for communities’ water supply operations (Bladon et al., 2014; Návar, 2015; Martin, 2016) by altering 
water quality and availability (Smith et al., 2011; Bladon et al., 2014; Robinne et al., 2020) or public safety by increasing exposure to mass 
wasting events after extreme rainfall events (Cui et al., 2019; Kean et al., 2019). California utilities have proactively shut down parts of 
their electricity grid to reduce risk of fire during extreme weather, and substantial numbers of people will be increasingly vulnerable to 
this action in the coming decades (Abatzoglou et al., 2020).

In the USA, annual costs of federal wildland fire suppression have increased by a factor of 4 since 1985 (USGCRP, 2018) and were 
1.5–3 billion USD during 2016–2020 (NIFC, 2021). Annual costs of fire protection in Canada have risen two- to threefold from 1970 
to 2017, to $1.0–1.4 billion CAD during 2015–2017 (considering the 2017 CAD value) (Natural Resources Canada, 2021). In one of its 
worst fire seasons, British Columbia expended over 500 million CAD in 2017 for fire suppression (Natural Resources Canada, 2018). The 
number of days of synchronous fire danger is expected to double in the western USA by 2051–2080, thereby increasing demands on fire 
suppression resources (Abatzoglou et al., 2021).

The 2016 Fort McMurray fire ranks as the costliest natural disaster in Canada to date (3 billion CAD in insured damages) (Mamuji and 
Rozdilsky, 2018; IBC, 2020). More than 88,000 people were evacuated; many were not aware of the high pre-existing fire risk and had 
limited warning to prepare and leave (McGee, 2019). The community subsequently required extensive social support and experienced 
mental health challenges (Government of Alberta, 2016; Cherry and Haynes, 2017; Mamuji and Rozdilsky, 2018; Brown et al., 2019a; 
McGee, 2019). Although a broad recovery plan was developed (Regional Municipality of Wood Buffalo, 2016), reconstruction and 
economic recovery has been slow (Mamuji and Rozdilsky, 2018).

Wildland fire was identified as a top climate-change risk facing Canada (Council of Canadian Academies, 2019) and poses a challenge to 
communities and fire management (Coogan et al., 2019). Projected area burned in Canada using RCP2.6 will increase annual fire suppression 
costs to 1 billion CAD the by end of century (60% increase relative to 1980–2009) and to 1.4 billion CAD using RCP8.5 (119% increase) (Hope 
et al., 2016). In the USA, cumulative costs of fire response through 2100 are projected to be 23 billion USD (considering the 2015 USD value) 
yr−1 under RCP8.5 (EPA, 2017). Lower-emissions scenarios reduce these future cumulative costs by 55 million USD (EPA, 2017) to 7–9 billion 
USD (considering the 2005 USD value) (Mills et al., 2015a). Fire increases from future warming will reduce timber supply in eastern Canada 
(Gauthier et al., 2015; Chaste et al., 2019) and increase post-fire sedimentation in watersheds of the western USA (Sankey et al., 2017).

Adaptation
Wildland fire risks are not equitably distributed as they intersect with exposure and socioeconomic attributes (e.g., age, income, ethnicity) 
to influence vulnerability and adaptive capacity (medium confidence) (Wigtil et al., 2016; Davies et al., 2018; Palaiologou et al., 2019). 
Individuals in rural areas, low-income neighbourhoods and immigrant communities, as well as renters in California, had less capacity to 
prepare for and recover from fire (Davies et al., 2018). In the USA, 29 million people live in areas with significant potential for wildfires 
and 12 million are socially vulnerable (Davies et al., 2018). In Canada, there are 117 million ha (14% of total land area) of wildland–
human interface, and 96% of populated places have some wildland–urban interface within 5 km (Johnston and Flannigan, 2018).

There is growing recognition of the need to shift fire management and suppression activities to co-exist with more fire on the landscape. 
This includes widespread use of prescribed fire across landscapes to increase ecological and community-based resilience (high agreement, 
medium evidence) (Schoennagel et al., 2017; McWethy et al., 2019; Tymstra et al., 2020). Otherwise, the unprecedented combination of 
increased human exposure and size of recent mega-fires creates community risks that may exceed conventional operational and forest 
management response capacity and budgets (Podur and Wotton, 2010; Wotton et al., 2017; Loehman et al., 2020; Moreira et al., 2020; 
Parisien et al., 2020) particularly with ongoing population and infrastructure expansion into the wildland–urban interface (Canadian 
Council of Forest Ministers, 2016; Coogan et al., 2019).

Climate-informed post-fire ecosystem recovery measures (e.g., strategic seeding, planting, natural regeneration), restoration of habitat 
connectivity and managing for carbon sequestration (e.g., soil conservation through erosion control, preservation of old growth forests, 
sustainable agroforestry) are critical to maximise long-term adaptation potential and reduces future risk through co-benefits with carbon 
mitigation (Davis et al., 2019; Hurteau et al., 2019; Coop et al., 2020; Stewart et al., 2021). Innovation in and scaling up the use of 
prescribed fire and thinning approaches are contributing to pre- and post-fire resilience goals, including use of Indigenous Peoples 
burning practices that are receiving a new level of awareness (see Box 14.1; Kolden, 2019; Marks-Block et al., 2019; Long et al., 2020b).

Box 14.2 (continued)
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The tools FireSmart Canada1, Firewise USA2 and Think-Hazard Mexico3 were devised to reduce fire risks and create fire-resilient communities. 
They provide design guidance at building, lot, subdivision and community scales, and instruct citizens on creating defensible space 
(National Fire Protection Association, 2013; Firesmart Canada, 2018). Implementation has been fragmented and variable as it depends 
on voluntary uptake by individuals, businesses and communities across a range of adaptive capacities and fire-exposed landscapes (Smith 
et al., 2016a). Many vulnerable groups do not have access to financial or physical resources to reduce fire risk (Collins and Bolin, 2009; 
Palaiologou et al., 2019).

Although innovative, holistic approaches to wildland fire management are becoming more common across North America, broader 
application is necessary to address the growing risks (medium confidence). A social–ecological perspective blends ecosystem complexity, 
scale and processes into land-use planning along with community values, perception and capacities as well as institutional arrangements 
(Smith et al., 2016a; Spies et al., 2018). A risk assessment perspective expands from short-term, reactive fire response to landscape-scale, 
long-term prevention, mitigation, and preparedness with community and practitioner engagement (Coogan et al., 2019; Sherry et al., 
2019; Johnston et al., 2020; Tymstra et al., 2020).

4 See www.firesmartcanada.ca

5 See www.nfpa.org

6 See https://thinkhazard.org

Box 14.2 (continued)

temperatures (Meyer-Gutbrod et al., 2018; Davies and Brillant, 2019). 
Similarly, whale entanglements in fishing gear along the Pacific coast 
has increased twentyfold (Hazen et al., 2018). Projected shifts in the 
North Pacific Transition Zone by up to 1000 km northward (by the 
end of the century under RCP8.5) combined with changes in coastal 
upwelling (Polovina et al., 2011; Hazen et al., 2013; Rykaczewski et al., 
2015) could alter up to 35% of elephant seal and bluefin tuna foraging 
habitat (Robinson et al., 2009; Kappes et al., 2010).

In North American Arctic marine systems, rapid warming is significant, 
with cascading impacts beyond polar regions (CCP6), and presents 
limited opportunities (tourism, shipping, extractive) but high risks 
(shipping, fishing industries, Indigenous subsistence and cultural 
activities) (high confidence) (Sections  14.5.4, 14.5.9, 14.5.11; CCP6 
Gaines et  al., 2018; IPCC, 2019b; Samhouri et  al., 2019; Free et  al., 
2020; Holsman et al., 2020). Both direct hazards and indirect food-web 
alterations from sea ice loss have imperilled seabirds, marine mammals, 
small-boat operators, subsistence hunters and coastal communities 
(CCP6; Sigler et al., 2014; Allison and Bassett, 2015; Huntington et al., 
2015; Hauser et  al., 2018; Raymond-Yakoubian and Daniel, 2018; 
Dezutter et al., 2019). Increasingly favourable environmental conditions 
due to warming combined with shipping and other activities has raised 
the rate of invasive species movement into the Arctic (Mueter et al., 
2011). Sea ice loss due to climate change is expected to accelerate over 
the next century (Section 14.2, Fox-Kemper et al., 2021).

Coral reefs in the Gulf of Mexico and along the coasts of Florida and the 
Yucatan Peninsula are facing increasing risk of bleaching and mortality 
from warming ocean waters interacting with non-climate stressors 
(very high confidence) (Cinner et al., 2016; Hughes et al., 2018; Sully 
et  al., 2019; Williams et  al., 2019b). Coral reefs are contracting in 
equatorial regions and expanding poleward (Lluch-Cota et  al., 2010; 
Jones et al., 2019a). Loss of coral habitat leads to loss of ecosystem 
structure, fish habitat, food for coastal communities and impacts tourism 

opportunities (Section 14.5.7; Weijerman et al., 2015a; Weijerman et al., 
2015b). Without mitigation to keep surface temperatures below a 2°C 
increase by the end of the century, up to 99% of coral reefs will be lost; 
however, 95% of reefs will still be lost even if warming is kept below 
1.5°C (high confidence) (Hoegh-Guldberg et al., 2018; Hoegh-Guldberg 
et al., 2018). In Florida, by 2100, an estimated 24–55 billion USD may 
be lost in recreational use and value derived by people knowing the reef 
exists and is healthy (Lane et al., 2013; Hoegh-Guldberg et al., 2019b) as 
coral reefs decline (Section 14.5.9).

Sea level rise has led to flooding, erosion and damage to infrastructure 
along the western Gulf of Mexico, the southeast US coasts and the 
southern coast of the Gulf of St Lawrence (very high confidence) 
(Section  14.2; Daigle, 2006; Lemmen et  al., 2016; Frederikse et  al., 
2020). Mangroves, important nurseries for fish and climate refugia for 
corals (Yates et al., 2014), are under threat from climate change along 
the east coast of Mexico (Pedrozo Acuña, 2012). This SLR, storm surge 
and attendant erosion of coastlines and barrier habitats are projected 
to have large impacts on coastal ecosystems, maritime industries 
(Section 14.5.9), urban centres and cities (Section 14.5.5) along the 
Gulf of Mexico, Caribbean Sea, southeast USA, southern Gulf of St 
Lawrence and Pacific Coast of Mexico (see Box 14.4; Semarnat, 2014; 
Sweet et  al., 2017; Vousdoukas et  al., 2020). Coastal archaeological 
and historical sites are especially vulnerable to SLR (Anderson et al., 
2017; Hestetune et al., 2018; Hollesen et al., 2018).

Future seawater CO2 levels have been shown in laboratory studies 
to negatively impact Pacific and Atlantic squid, bivalve, crab and fish 
species (Pacific cod), and indirectly alter food-web dynamics (high 
confidence) (Kaplan et al., 2013; Long et al., 2013b; Gledhill et al., 2015; 
Seung et al., 2015; Punt et al., 2016; Swiney et al., 2017; Hurst et al., 
2019; Wilson et  al., 2020). Long-term exposure to CO2 has reduced 
growth of Atlantic halibut (Gräns et al., 2014), whereas some cultured 
oysters (Fitzer et al., 2019) and key Alaskan commercial fish species 
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show tolerance for high CO2 waters (i.e., juvenile walleye pollock) 
(Hurst et al., 2012). Ocean acidification has already caused shellfish 
growers in the USA and Canada to modify hatchery procedures and 
farming locations to protect the most vulnerable life stages (Cross 
et al., 2016) and is projected to increasingly impact shellfish resources 
in the central and northeast Pacific and Atlantic coasts (Section 14.5.4; 
Seung et al., 2015; Punt et al., 2016).

Open ocean oxygen minimum zones (OMZ) are expanding in the North 
Atlantic, the North Pacific California Current and tropical oceans due to 
warming waters, stratification and changes in precipitation (medium 
confidence) (WGI Section  3.6.2; Deutsch et  al., 2015b; Breitburg 
et al., 2018; Claret et al., 2018; Ito et al., 2019). Hypoxic events along 
coasts, which are partially influenced by climate change, have been 
documented for all three countries, with events more prevalent 
on the east coast and around the Gulf of Mexico due to a regional 
oceanography dominated by rivers and estuaries carrying land-based 
nutrients (Breitburg et  al., 2018). Hypoxia has directly caused large 
mortality events for fish and crabs in US estuaries in the Northwest 
Atlantic (Chesapeake Bay), Northeast Pacific (Puget Sound) and the 
Gulf of Mexico (Froehlich et al., 2015; Rakocinski and Menke, 2016; 
Sato et al., 2016; Kolesar et al., 2017). The OMZs and hypoxic events 
are projected to increase over the next century and may limit where 
fish can move (medium confidence) (Deutsch et  al., 2015b; Stortini 
et al., 2015; Bianucci et al., 2016; Li et al., 2016).

Favourable conditions for harmful algal blooms (HABs) have expanded 
due to warming, more frequent extreme weather events (Gobler 
et al., 2017; Pershing et al., 2018; Trainer et al., 2019) and increased 

stratification, CO2 concentration and nutrient inputs (high confidence) 
(Wells et  al., 2015; Gobler et  al., 2017; Griffith and Gobler, 2019). 
Increased occurrence of HABs (McCabe et al., 2016; Yang et al., 2016; 
Gobler et  al., 2017; USGCRP, 2018) has induced ecological impacts 
and societal costs (see Section 14.5.4 for fishery closures). During the 
2013–2016 Pacific MHW (see Box  14.3), a Pseudo-nitzschia diatom 
bloom off the west coast of the USA caused extensive closures of 
crab and razor clam fisheries (Fisher et al. 2021), with economic and 
sociocultural impacts beyond those in the fisheries sector (Ritzman 
et al., 2018).

Beaching of massive Sargassum seaweed mats (Sargassum natans 
and S. fluitans) have been reported across the Caribbean and Gulf of 
Mexico from 2011 to the present, affecting US and Mexico nearshore 
ecosystems, human health and the tourism industry (Franks et  al., 
2016; Resiere et al., 2018; Wang et al., 2019). Costs of beach clean-up 
is high, with Texas spending over 2.9 million USD annually (Webster 
and Linton, 2013). Attribution of Sargassum blooms to climate 
change is still tenuous and complicated by multiple drivers and few 
observational data sources (low confidence) (Wang et al., 2019).

14.5.2.2 Adaptation: Current State, Barriers and Opportunities

Emerging technologies and cooperative marine management are 
approaches to facilitate adaptation but require coordination and 
investment for implementation (high confidence) (Gattuso et  al., 
2018; Miller et  al., 2018; Holsman et  al., 2019; Karp et  al., 2019). 
Advancements in oceanographic and ecological nowcasting and 
forecasting tools (i.e., O2, pH, temperature, aragonite saturation state, 

Box 14.3 | Marine Heatwaves

Marine heatwaves are periods of discrete anomalously high (compared with a 30-year history) sea surface temperatures that persist for 
a minimum 5 d but up to several months (Hobday et al., 2016; Frölicher et al., 2018; Holbrook et al., 2019; Laufkötter et al., 2020). There 
have been MHWs attributed to climate change in every marine system of North America including large areas of the Northwest Atlantic 
(2012), Caribbean Sea (2015), Bering Sea (2016–2018) and central through Northeast Pacific (2013–2016) (NOAA, 2018; Holbrook et al., 
2019; Smale et al., 2019). Such MHW events have affected kelp forests (Arafeh-Dalmau et al., 2019), corals (Eakin et al., 2018), seagrasses, 
bottom-dwelling organisms, marine birds (Loredo et al., 2019; Smale et al., 2019), mammals (Suryan et al., 2021), fish and shellfish, and 
marine-dependent human communities (Huntington et  al., 2020; Fisher et  al., 2021; Suryan et  al., 2021). Increased sea temperatures 
directly increase metabolic demand and change productivity and behaviour of fish species (Stock et al., 2017; Free et al., 2019) as well as 
induce rapid redistribution of species poleward and to deeper, colder waters (Pecl et al., 2017; Rheuban et al., 2017; Crozier et al., 2019; 
Stevenson and Lauth, 2019; Yang et al., 2019; Barbeaux et al., 2020; Cheung and Frölicher, 2020). In the Pacific, from the Baja Peninsula 
to the Bering Sea, there is evidence of widespread shifts in coastal biota and multi-trophic-level starvation of seabirds and whales from 
combined metabolic demand and reduced prey quality associated with protracted MHWs across multiple regions ((CCP6); Sydeman et al., 
2015; Duffy-Anderson et  al., 2019; Sanford et  al., 2019; Smale et  al., 2019; Suryan et  al. 2021). The distribution of two economically 
important North American species, Bering Sea Pacific cod (Pinsky et al., 2013b; Stevenson and Lauth, 2019; Barbeaux et al., 2020; Spies 
et al., 2020) and American lobster (Rheuban et al., 2017), have shifted north. The MHW-induced loss of coral reefs across tropical North 
American waters has varied in severity regionally. For instance, in 2015 and 2016, extensive, severe bleaching affected more than 30% 
of corals off the southeast USA and a large proportion of US Hawaiian Islands, but had moderate to no impact off the Mexican Yucatan 
Peninsula (Frieler et al., 2013; Weijerman et al., 2015a; Weijerman et al., 2015b; Cinner et al., 2016; van Hooidonk et al., 2016; Hughes 
et al., 2018; Sully et al., 2019; Williams et al., 2019b). Some reefs are exhibiting recovery following efforts focused at reducing non-climate 
stressors (e.g., overfishing, nutrient pollution and tourism use). Such MHWs are increasing in intensity and frequency (Hobday et al., 2016; 
Smale et al., 2019) with the largest increases in frequency and spatial coverage projected for the Gulf of Mexico, US southern east coast 
and US Pacific Northwest (Ranasinghe et al., 2021) and pose a key risk to marine systems in North America (Section 14.5.2; Chapters 3, 16).
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sea ice conditions) can reduce climate impacts by supporting fisheries 
and aquaculture adaptation along US coasts (Section 14.5.4; Cooley 
et  al., 2015; Irby et  al., 2015; Siedlecki et  al., 2015; Siedlecki et  al., 
2016; Siddon and Zador, 2017). Forecasts and warnings reduce human 
exposure to HAB toxins in the Great Lakes, the west coast of Florida, 
east coast of Texas and the Gulf of Maine (Anderson et al., 2019).

Ocean management that utilises a portfolio of nested, multi-scale, 
climate-informed and ecosystem-based management approaches 
in North American waters can increase the resilience of marine 
ecosystems by addressing multiple stressors simultaneously (high 
confidence) (Marshall et al., 2018; Holsman et al., 2019; Smale et al., 
2019; Holsman et al., 2020). Integrated ecosystem assessments (Foley 
et al., 2013; Levin et al., 2014) are increasingly used to provide strategic 
advice and context for harvest allocations and bycatch avoidance 
(Zador et al., 2017) as well as early warnings of ecosystem-wide change 
(e.g., sentinel species, ecological indicators) (Cavole et al., 2016; Hazen 
et  al., 2019; Moore and Kuletz, 2019). Dynamic ocean management 
policies may improve resilience of marine species and ecosystems 
to climate (medium confidence) (Hyrenbach et  al., 2000; Maxwell 
et al., 2015; Dunn et al., 2016; Tommasi et al., 2017a; Tommasi et al., 
2017b; Hazen et al., 2018; Wilson et al., 2018; Holsman et al., 2019; 
Karp et al., 2019). New proactive and rapid management approaches 
have been developed to minimise impacts of increasingly frequent 
entanglements of protected species, caused by climate-driven changes 
in prey and fishery activities (Corkeron et  al., 2018; Meyer-Gutbrod 
et al., 2018). Dynamic closure areas are being used to address these 
issues and reduce loggerhead turtle bycatch in Hawaiian shallow-set 
longline fisheries (Howell et al., 2015; Lewison et al., 2015), blue whale 
ship-strike risk in near-real time (Hazen et al., 2017; Abrahms et al., 
2019b) and bycatch of multiple top predator species in a west coast 
drift gillnet fishery (Hazen et al., 2018).

Improved coordination and planning at multiple scales will be important 
for marine species conservation and recovery as species redistribute 
across fishery areas, marine protected zones, and international and 
jurisdictional boundaries (Section 14.5.4; Cross-Chapter Box MOVING 
PLATE in Chapter 5; Pinsky et al., 2018; Karp et al., 2019). Indigenous 
Peoples’ co-management with federal and state partners of 
marine resources and protected species is an important approach 
(Section 14.5.4; Chapters 5 and 6; CCP6; Galappaththi et al., 2019).

Securing broodstocks for rebuilding and supplementation can 
be challenging for marine populations already in decline (e.g., 
blue king crab in Alaska, steelhead salmon in Puget Sound, white 
abalone in California, groundfish in the northeast USA and Canada) 
(Section 14.5.4; Table SM14.8). Marine protected areas can attenuate 
climate impacts through trophic redundancy, preserving ecological 
processes, biodiversity and climate refugia (Roberts et  al., 2017a; 
Schoen et  al., 2017), although benefits decrease after mid-century 
(or sooner for high-latitude marine protected areas) as species reach 
their thermal limit, unless coupled with GHG mitigation (Bruno et al., 
2018). Transport, relocation and cultivation of resistant breeds of 
salmon, oysters, corals, marine mammals and other keystone species, 
as well as hatchery supplementation of impaired populations of fish 
and shellfish, are species conservation and recovery methods that will 
be in greater demand under climate change, although unintended 

environmental impacts must be considered. Options for protecting 
and restoring coral reefs to prevent loss of ecosystem function are 
under development with Florida reef species (Gattuso et al., 2018; 
National Academies of Sciences, 2019). An emerging approach for 
financing the protection of reefs involves re-categorising reefs as 
‘natural infrastructure’ which has allowed for use of insurance to 
rebuild lost reefs (Storlazzi et al., 2019).

14.5.3 Water Resources

Climate change poses increasing threats to North American aquatic 
ecology, water quality, water availability for human uses, and flood 
exposure, through reductions in snow and ice, increases in extreme 
precipitation and hotter droughts. Adaptation will be impeded in cases 
where there are conflicts over competing interests or unintended 
consequences of uncoordinated efforts, heightening the importance of 
cooperative, scenario-based water resource planning and governance 
(high confidence).

14.5.3.1 Observed Impacts

North American water resources continue to be affected by ongoing 
warming, with impacts driven by reductions in snow and ice, increases 
in extreme precipitation and hotter droughts (high confidence) 
(Section 14.2; Fleming and Dahlke, 2014; Mortsch et al., 2015; Dudley 
et  al., 2017; Fyfe et  al., 2017; McCabe et  al., 2017; Chavarria and 
Gutzler, 2018; Lall et al., 2018; Bonsal et al., 2019; USGCRP, 2019). The 
cascading effects of severe droughts, floods, sediment mobilisation, 
HABs and pathogen contamination episodes have revealed the 
vulnerability and exposure of large numbers of people and economic 
activities to those hazards.

North America’s dams, levees, wastewater-management and water 
conveyance facilities have improved water supply safety and have 
reduced flood and drought risks, but a substantial portion of that 
infrastructure is ageing and inadequate for modern conditions (Ho 
et  al., 2017; Tellman et  al., 2018; Carlisle et  al., 2019; FEMA, 2019; 
ASCE, 2021). Increasingly heavy precipitation from a variety of 
storm types has affected parts of North America (Feng et  al., 2016; 
Prein et al., 2017a; Kunkel and Champion, 2019; Kunkel et al., 2020), 
contributing to contamination from combined sewer overflows (Olds 
et al., 2018) and increased flood damages that are partially attributed 
to anthropogenic climate change (van der Wiel et al., 2017; Davenport, 
2021). Extreme precipitation events have overwhelmed water control 
infrastructure, imperilling public safety and contributing to extensive 
damages in parts of North America (Kytomaa et al., 2019; Vano et al., 
2019; White et al., 2019). Damages stem from extremity of the event 
and prior land-use and infrastructure decisions (high confidence).

In South Carolina, 5 days of heavy rainfall in October 2015 caused the 
failure of more than 50 dams and some levees, significantly magnifying 
destruction from the floodwaters (FEMA, 2016). Slow-moving, 
destructive storms like hurricanes Harvey (2017) and Florence (2018) 
have caused significant flooding (van Oldenborgh et al., 2017; Paul et al., 
2019b). In those cases, urban sprawl may have altered storm dynamics 
(Zhang et al., 2018b), while increased asset exposure to the flood hazard 
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amplified the multi-billion-dollar losses (Klotzbach et al., 2018; Trenberth 
et  al., 2018). A substantial fraction of the damage from hurricane 
Harvey’s extreme rainfall has been attributed to anthropogenic climate 
change (see Box 14.5; Emanuel, 2017; Risser and Wehner, 2017). A near 
disaster at California’s Oroville dam in 2017 was caused by inadequate 
infrastructure design and maintenance together with an unusually large 
number of atmospheric river (AR) storms. The event required emergency 
reservoir spills while the state was beginning recovery from the extreme 
2012–2016 drought (Vano et al., 2019; White et al., 2019).

In Mexico, some poor neighbourhoods and informal settlements are 
located in areas exposed to recurrent flooding. Residents often lack 
access to public services and technical resources for risk reduction, 
which heightens their vulnerability (Castro and De Robles, 2019).

Population growth and urban development have increased the 
exposure and vulnerability of Canadian communities to flood damages, 
with cumulative damages (including uninsured losses) exceeding 
10  billion USD in the past decade (The Geneva Association et  al., 
2020). Recurring floods are particularly costly (e.g., New Brunswick) 
(Beltaos and Burrell, 2015; Kovachis et al., 2017). Floods in High River, 
AB (2013) and Gatineau, QC (2017, 2019) initiated considerations of 
building flood resilience including planned retreat (Saunders-Hastings 
et al., 2020).

Extended and severe droughts in the western USA, northern Mexico 
and Canadian Prairies, exacerbated by higher temperatures, have 
caused economic and environmental damage (Williams et  al., 2013; 
Agha Kouchak et  al., 2015; Diaz et  al., 2016; Bain and Acker, 2018; 
Lopez-Perez et  al., 2018; Ortega-Gaucin et  al., 2018; Xiao et  al., 
2018; Martinez-Austria et al., 2019; Bonsal et al., 2020; Martin et al., 
2020b; Milly and Dunne, 2020; Overpeck and Udall, 2020). Droughts 
have intensified tensions among competing water-use interests and 
accelerated depletion of groundwater resources (high confidence) 
(Section 14.5.4; Pauloo et al., 2020).

Climate trends are affecting riverine, lake and reservoir water quality 
(medium confidence). Droughts and increased evapotranspiration have 
impaired water quality by concentrating pollutants in diminished water 
volumes (Paul et  al., 2019a). Cyanobacterial blooms and pathogen 
exposure events are increasing in frequency, intensity and duration in 
North America (Taranu et al., 2015). They are closely associated with 
observed changes in precipitation intensity and associated nutrient 
loading (e.g., agricultural runoff, sanitary sewer overflows), elevated 
water temperatures and eutrophication (Michalak et  al., 2013; 
Michalak, 2016; Trtanj et al., 2016; Chapra et al., 2017; IBWC, 2017; 
Williamson et al., 2017; Olds et al., 2018; Coffey et al., 2019). These 
events endanger human and animal health, recreational and drinking 
water uses and aquatic ecosystem functioning, and cause economic 
losses (Michalak et  al., 2013; Bullerjahn et  al., 2016; Chapra et  al., 
2017; Huisman et al., 2018). Households and communities dependent 
on substandard wells, unimproved water sources or deficient water 
provision systems are more exposed than others to experience climate-
related impairment of drinking water quality (Section 14.5.6.5; Allaire 
et  al., 2018; Baeza et  al., 2018; California State Water Resources 
Control Board, 2021; Navarro-Espinoza et al., 2021; Water and Tribes 
Initiative, 2021).

14.5.3.2 Projected Impacts and Risks

Climate change is projected to amplify current trends in water resource 
impacts, potentially reducing water supply security, impairing water 
quality and increasing flood hazards to varying degrees across North 
America (high confidence). Examples are presented in Table 14.3.

Projected long-term reduction in water availability in the southwest 
US and northern Mexico (e.g., from the Colorado and Rio Grande 
rivers) will have substantial ecological and economic impacts given 
the region’s heavy water demands (high confidence) (Lall et al., 2018; 
Paredes-Tavares et al., 2018; Martinez-Austria et al., 2019; Milly and 
Dunne, 2020; Williams et  al., 2020). Increased water scarcity will 
intensify the need to address competing interests across state and 
national boundaries, including honouring commitments to Indigenous 
Peoples who have long struggled with inadequate access to their water 
entitlements and marginalisation in water resource planning (Mumme, 
1999; Cozzetto et al., 2013b; Mumme, 2016; McNeeley, 2017; Radonic, 
2017; Robison et al., 2018; Curley, 2019; Water and Tribes Initiative, 
2020; Wilder et al., 2020).

Increased scarcity of renewable water relative to legally allocated 
or desired uses may develop in many parts of North America. A 
detailed analysis of projected water demands (consumptive uses) and 
availability found increasingly frequent shortages in several watersheds 
across the USA (Brown et al., 2019b). This might lead to maladaptive 
increased groundwater mining, or alternatively to policies promoting 
sustainable balancing of water consumption with renewable supplies, 
for example, by facilitating voluntary water transfers or improving 
enforcement of groundwater rights (Colorado River Basin Stakeholders, 
2015; California Natural Resources Agency et al., 2020; Colorado Water 
Conservation Board, 2020; Pauloo et al., 2020).

Climate change is projected to reduce groundwater recharge in 
major southwest US aquifers (e.g., Southern High Plains, San Pedro 
and Wasatch Front), exacerbating their ongoing depletion due to 
unsustainable pumping. Other aquifers, especially those farther north, 
face uncertain or possibly increasing recharge (medium confidence) 
(Meixner et al., 2016).

Projected changes in temperature and precipitation present direct risks 
to North American water quality, varying with regional and watershed 
contexts (Chapra et al., 2017; Coffey et al., 2019; Paul et al., 2019a), 
and related to streamflow, population growth (Duran-Encalada et al., 
2017) and land-use practices (medium confidence) (Mehdi et al., 2015). 
Harmful algal blooms increase in frequency across the USA (Wells 
et al., 2015) with the highest risk projected for the Great Plains and 
Northeast USA, and greatest economic impacts from lost recreation 
value in the southeast USA (Chapra et al., 2017).

The diversity of climate regimes across North America results in regional 
differences in water-related climate-change risks (Figure 14.4).

14.5.3.3 Adaptation

North American water planners and policy makers have abandoned 
stationarity assumptions (Milly et al., 2015) to address climate change. 
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Table 14.3 |  Selected projected water resource impacts in North America

Climate drivers and 
processes

Examples of future risks and impacts
Location  

(see Figure 14.1)
References

Warming-induced reductions 
in mountain snow and 
glacial mass

Projected decreases in annual and late-summer streamflow 
from high-elevation reaches of snow-fed rivers, affecting 
stream ecology and water supplies (high confidence)

US-NW, US-SW, CA-BC, 
CA-PR

Jost et al. (2012); Solander et al. (2018); Bonsal et al. (2019); 
Milly and Dunne (2020)

Earlier seasonal snowmelt 
runoff

Greater winter/early spring flooding risks and reduced 
summer surface water availability, intensifying seasonal 
mismatch with water demands (high confidence);
increased challenges for balancing multi-purpose reservoir 
objectives (e.g., flood management, water supply, ecological 
protection and hydropower) (high confidence)

US-NW, US-SW, CA-BC, 
CA-PR

Cohen et al. (2015); Dettinger et al. (2015); Bonsal et al. 
(2019); Bonsal et al. (2020); RMJOC (2020); Bureau of 
Reclamation (2021d)

Earlier seasonal snowmelt 
runoff

Possible reductions in water supply security (medium 
confidence); reduced viability of some small-scale irrigation 
systems (medium confidence)

US-SW

Medellin-Azuara et al. (2015); Ullrich et al. (2018); Bai et al. 
(2019); Milly and Dunne (2020); Ray et al. (2020); Bureau 
of Reclamation (2021b); Bureau of Reclamation (2021a); 
Bureau of Reclamation (2021c)

Changes in seasonal timing 
and/or total annual runoff

Impacts on electric power generation (medium confidence) 
varying by location and type of generation

US-SW, US-NW, CA-QC
Haguma et al. (2014); Bartos and Chester (2015); Guay 
et al. (2015); Turner et al. (2019b); RMJOC (2020); Bureau of 
Reclamation (2021d)

Changes in seasonal timing 
and/or total annual runoff

Impacts on urban water supplies CA-QC Foulon and Rousseau (2019)

Warming-related increased 
imbalance between 
renewable surface water 
supplies and consumptive 
water demands

Greater pressures on groundwater resources, possible 
increased aquifer depletion, reduced baseflow into surface 
streams and reduced long-term water supply sustainability 
(medium confidence)

US-SW, US-SP, US-SE, 
MX-N, MX-NW

Bauer et al. (2015); Molina-Navarro et al. (2016); Russo and 
Lall (2017); Brown et al. (2019b); Nielsen-Gammon et al. 
(2020); Bureau of Reclamation (2021b)

Warming-related drought 
amplification

Reduced water availability for human uses and ecological 
functioning (medium to high confidence) varying by location; 
increased evaporative losses from reservoirs

Widespread especially:
US-SW, US-NP, US-SP, 
CA-PR, MX-NW, MX-N

Prein et al. (2016); Dibike et al. (2017); Lall et al. (2018); 
Paredes-Tavares et al. (2018); Martinez-Austria et al. (2019); 
Tam et al. (2019); Martin et al. (2020b); Milly and Dunne 
(2020); Overpeck and Udall (2020); Williams et al. (2020); 
Bureau of Reclamation (2021b)

Heavier and/or prolonged 
rainfall events

Flooding, infrastructure and property damage (medium 
to high confidence) varying by location; increased erosion 
and debris flows with impacts on public safety, reservoir 
sedimentation and stream ecology (hazards amplified in 
watersheds affected by wildfires)

Widespread especially:
US-SE, US-NE, US-NP, 
US-SP, US-SW, CA-BC, 
MX-CE, MX-NE, MX-SE

Feng et al. (2016); Emanuel (2017); Prein et al. (2017a); Prein 
et al. (2017b); Haer et al. (2018); Kossin (2018); Mahoney 
et al. (2018); Thistlethwaite et al. (2018); Curry et al. (2019); 
Larrauri and Lall (2019); Wobus et al. (2019); Ball et al. (2021)

Heavier and/or prolonged 
rainfall events

Water quality impairment, increasing HAB events due to 
increased sediment and nutrient loading together with 
warming; greatest impacts in humid areas with extensive 
agriculture (medium to high confidence) varying by location

US-MW, US-NE, US-SE, 
US-NP, US-SP, CA-ON, 
CA-AT, MX-NE, MX-NW

Alam et al. (2017); Chapra et al. (2017); Sinha et al. (2017); 
Ballard et al. (2019)

Increasingly variable 
precipitation

Highly variable precipitation poses challenges for water 
management, worsening water supply and flooding 
risks; atmospheric river events are projected to increase 
variability by dominating future North American west coast 
precipitation (medium confidence)

US-SW, US-NW, CA-BC Gershunov et al. (2019); Huang et al. (2020)

Hotter summer season
Evaporative losses from reservoirs are projected to increase 
significantly (very high confidence)

US-SW, US-NW, US-NP Bureau of Reclamation (2021b)

Transboundary institutions, government agencies and professional or-
ganisations are taking the lead on adaptation planning and implemen-
tation (ASCE, 2018b; Clamen and Macfarlane, 2018; International Joint 
Commission, 2018). Major water agencies are using climate scenarios 
to identify vulnerabilities and evaluate adaptation options (Yates et al., 
2015; Vogel et  al., 2016; California Department of Water Resources, 
2019; Ray et al., 2020; Bureau of Reclamation, 2021d).

The Water Utility Climate Alliance advises municipal water providers 
to address uncertainty by considering a wide range of plausible 
future climate conditions (WUCA, 2010). In some areas, the impacts 

of wildfires on water supply resiliency are being considered (Martin, 
2016). Many North American Indigenous Peoples are engaged in 
climate-change adaptation planning, although these efforts may be 
hampered by the complicated legal and administrative setting in which 
they must operate (Norton-Smith et al., 2016a; McNeeley, 2017).

Recent climate extremes have heightened governmental attention 
to climate-change impacts (e.g., California Natural Resources 
Agency et al., 2020). Droughts have exposed shortcomings in water 
management and governance (Gray et  al., 2015; Xiao et  al., 2017b; 
Lopez-Perez et  al., 2018) spurring legislation and administrative 
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changes to improve groundwater regulation and documentation of 
water rights (California Department of Food and Agriculture, 2017; 
Miller, 2017; Lund et al., 2018; Hanak et al., 2019). Water allocation 
policies are being reassessed to enhance equity, sustainability and 
flexibility through shortage sharing agreements, improved groundwater 
regulation and voluntary water transfers. Developments include an 
interstate drought management agreement for the Colorado River (US 
Law, 2019), and agreements between the USA and Mexico to provide 
pulse flows to benefit the ecology of the Colorado River Delta (Pitt and 
Kendy, 2017). Statewide water planning in Colorado has emphasised 
building drought resilience (e.g., by facilitating temporary water 
transfers) (Colorado State Government, 2015; Yates et  al., 2015). At 
local scales, there have been innovations in cooperative watershed 
protection and water resource planning (Cantú, 2016). Indigenous 
Peoples are playing an increasing role in identifying equitable and 
resilient options for adaptation by contributing their knowledge and 
voicing their perspectives on the importance of healthy water bodies 
for human and environmental well-being (Norton-Smith et al., 2016a; 
Water and Tribes Initiative, 2020). Collaboration between stakeholders, 
policymakers and scientists is increasingly common in water resources 
adaptation planning and assessment.

Examples of adaptation include increasing adoption of water-saving 
irrigation methods in California (Cooley, 2016), experimentation with 
using flood waters to enhance groundwater recharge (Kocis and Dahlke, 
2017; California Department of Water Resources, 2018) and agricultural 
land management programmes, including developing riparian buffers to 
protect water quality (Section 14.5.4; Mehdi et al., 2015; Schoeneberger 
et al., 2017). Indigenous Peoples are building upon traditional practices 
to adapt to the effects of climate change, for example, by working 
jointly to recharge local aquifers (Basel et al., 2020).

Water-right laws, interstate compacts and international treaties 
regarding transboundary water shape the context for climate-change 
adaptation, but the possibility of long-term climate change typically 
was not contemplated at their inception. Gaps in coverage and vaguely 

defined terms can lead to tensions and disputes, especially in areas 
facing increased aridity, creating difficulties for adaptation. For example, 
unregulated pumping of groundwater for irrigation during short-term 
droughts can serve as an adaptation to acute conditions (Section 14.5.4), 
but if persisting in the long term, it can deplete finite groundwater 
resources and de-water hydrologically connected rivers. Such outcomes 
have engendered bitter and costly interstate conflicts in the USA, some 
even reaching the US Supreme Court including Texas v. New Mexico (Rio 
Grande) and Florida v. Georgia (Apalachicola-Chattahoochee-Flint).

Transboundary rivers that exemplify the need to address climate impacts 
include the Colorado (Gerlak et al., 2013), Columbia (Cosens et al., 2016) 
and Rio Grande/Rio Bravo (Mumme, 1999; Mumme, 2016; Garrick et al., 
2018; Payne, 2020). Drought emergencies can open opportunities for 
progress on collaborative adaptive governance, but such windows may 
quickly close when wetter conditions return (Sullivan, (2019).

Water serves a wide variety of environmental functions and human 
uses as it moves through North America’s river basins, so the impacts 
of climate change are expected to be widespread and multifaceted. 
This increases the importance of collaborative adaptation efforts 
that are equitable, transparent and give voice to differing values, 
perspectives and entitlements across a broad socioeconomic spectrum 
of urban and rural, Indigenous and non-Indigenous participants 
(Miller et  al., 2016; Cosens et  al., 2018). Adaptation planning may 
be hampered by conflicting interests, jurisdictional boundaries and 
inherent interconnections between actions and impacts at different 
points throughout a watershed or river basin. Differential power 
relationships, decision-making authority and access to information 
also can interfere with effective adaptive governance, while equitable 
processes for decision making bolstered by reliable shared information 
can help to overcome those impediments (Cosens et al., 2016; Arnold 
et al., 2017; Cosens et al., 2018; Porter and Birdi, 2018).

Across North America, there are growing signs of progress towards 
adaptive water governance and implementation of climate-resilient, 
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sensitivities are based on references cited in Table 14.3 (SM14.4).
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and ecosystem-based, water management solutions (Colorado River 
Basin Stakeholders, 2015). California’s approach to groundwater 
sustainability regulation intends to foster such collaborative problem-
solving by giving local Groundwater Sustainability Agencies the 
authority to design locally appropriate plans to meet state-defined 
sustainability goals (State of California, 2014; Miller, 2017). As 
evidenced by the US interstate disputes, the greatest difficulties arise 
in cases where stark upstream–downstream differences in interests 
leave little room for mutual benefit. Severe aridification may test the 
limits of adaptive capacity.

Research on water diplomacy recommends broadening negotiations 
beyond a narrow focus on zero-sum issues, like rigid water allocations, 
to embrace a more diverse set of shared interests including the need 
for flexibility to respond to changing conditions. A process for ongoing 
inclusive engagement of a watershed’s stakeholders in mutual social, 
policy and science learning is important. Such mutual learning can build 
trust and establish a common platform of credible information for co-
creation of adaptation solutions. In addition, better understanding of 
the policy positions and constraints of others can help stakeholders to 
identify workable solutions to contentious water management issues 
(Payne, 2020; Wilder et al., 2020). Cooperation between Mexico and 
the USA on mapping and assessment of transboundary aquifers is a 
product of such ongoing engagement (Callegary et al., 2018; Sanchez 
et al., 2018). Other examples of the benefits of sustained engagement 
are provided by a set of co-management arrangements between 
state, federal and Indigenous authorities on water management for 
fishery restoration in the US Pacific Northwest (Tsatsaros et al., 2018) 
and Indigenous involvement in multi-level co-management of water 
resources in Canada’s Northwest Territories (Latta, 2018).

14.5.4 Food, Fibre and Other Ecosystem Products

14.5.4.1 Observed Impacts and Projected Risks: Agriculture, 
livestock and forestry

Climate change has affected crops across North America through 
changes in growing seasons and regions, extreme heat, precipitation, 
water stress and soil quality (Table 14.1; Figure 14.5; Section 5.4.1; 
Figure 5.3) (Mann and Gleick, 2015; Galloza et al., 2017; Otkin et al., 
2018). These changes directly influence crop productivity, quality 
and market price (high confidence) (Kistner et  al., 2018; Reyes and 
Elias, 2019). Effects of historical climate change on maize, soybean, 
barley and wheat crop yields vary from strong increases to strong 
decreases (e.g., > −0.5 to > +0.5 t ha−1 yr−1 for maize) within North 
America’s agroecological regions, even for the same crop (Ray et al., 
2019). Across North America, climate change has generally reduced 
agricultural productivity by 12.5% since 1961, with progressively 
greater losses moving south from Canada to Mexico (Ortiz-Bobea 
et  al., 2021), yet responses are highly differential across regions 
and crops. Some crop loss events are partially attributed to climate 
change (high confidence) such as the 2012 Midwest and Great Plains 
drought, which cost agriculture 30 billion USD (Smith and Matthews, 
2015; Rupp et al., 2017). Aridity is extending northward, altering crop 
suitability ranges (Figure 14.4); up to 50% of distributional shifts in 
growing regions for US crops between 1970 and 2010 may be related 

to climate change (Lant et al., 2016; Cho and McCarl, 2017). Irrigation 
is expanding to areas formerly largely dependent on rainfall (Wang 
et al., 2018b).

Without adaptation, climate change is projected to reduce overall 
yields of important North American crops (e.g., wheat, maize, 
soybeans) (high confidence) (Tables SM14.3, SM14.4; Chen et  al., 
2017; Levis et al., 2018). For example, projected heat stress (RCP8.5) 
reduced mid-century (2040–2069) maize and cotton yields by 12–
15% of historical yields (1950–2005), with the US-SW suffering the 
largest impacts (Table SM14.5; Elias et al., 2018). Warming and heat 
extremes will delay or prevent chill accumulation, affecting perennial 
crop development (e.g., fruit set failure), yield (e.g., walnuts, pistachios, 
stone fruit) and quality (e.g., grapes) (medium confidence) (Parker 
et al., 2020). Warming will alter the length of growing seasons of cold-
season crops (e.g., broccoli, lettuce) and will shift suitability ranges 
of warm-season California crops (e.g., tomatoes) (medium confidence) 
(Marklein et al., 2020). Increasing atmospheric CO2 will enhance yields 
yet reduce nutrient content of many crops (high confidence); a CO2 
concentration of 541 ppm (seen by 2050 in RCP8.5) would reduce 
per-capita nutrient availability in North American diets by 2.5–4.0% 
(Beach et al., 2019). Crop pest and pathogen outbreaks are expected to 
worsen under climate change (high confidence) (Deutsch et al., 2018; 
Wolfe et al., 2018; Zhang et al., 2019a).

Climate change is anticipated to cause declines in livestock production 
across North America (high confidence) (Table 14.4; SM14.6; Havstad 
et  al., 2018; Murray-Tortarolo et  al., 2018). Increases in extreme 
temperature raise the risk of livestock heat stress, disease and pest 
impacts (Rojas-Downing et al., 2017). Projected aridification reduces 
forage production in the southwest USA and northern Mexico (high 
confidence) (Polley et  al., 2013; Reeves et  al., 2014; Cooley, 2016; 
Bradford et al., 2020) and transforms grasslands into woody shrublands 
(Briske et al., 2015; Murray-Tortarolo et al., 2018), while warmer and 
wetter conditions in the northern regions (CA-PR, US-NW, US-NP) may 
enhance rangeland production by extending growing seasons (high 
confidence) (Hufkens et  al., 2016; Derner et  al., 2018; Zhang et  al., 
2019a). Increased CO2 will enhance production (medium confidence) 
but reduce forage quality (high confidence) in US-NP and US-NW 
(Table SM14.6; Derner et al., 2018).

Climate-change impacts on forests (Section  14.5.1; see Box  14.2) 
may affect timber production by altering tree species distributions, 
productivity, and wildfire and insect disturbances (medium confidence). 
Southern or drier locations may shift from forests to other vegetation 
types, whereas higher-latitude areas may experience forest expansion 
(Brecka et al., 2018). Tree species composition is projected to change 
with climate change (Wang et al., 2015; Bose et al., 2017). Tree growth 
may increase or decrease from changes in temperature or moisture 
depending on location, with lower growth expected from warming 
in water-limited areas (Littell et  al., 2010). Increased productivity 
associated with more favourable climate conditions is projected for 
boreal forests (Brecka et al., 2018), although in some regions, growth 
will reverse and decline with additional warming (D’Orangeville et al., 
2018; Chaste et al., 2019). As a result of these changes, timber yields 
in North America either may increase in the future (Beach et al., 2015; 
EPA, 2015a) or decrease (Boulanger et al., 2014; McKenney et al., 2016; 
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Crop A: yield & more variable
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Crop D: climate now suitable

Gradual climate change
long-term warming
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Increased water demand
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Indirect effects of climate change
weeds, pests, pathogens, pollinators
infrastructure (e.g., planting, harvesting, processing)
ozone exposure

Crop type
water, energy requirements
seasonal timing of crop
winter chill units
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Future plant hardiness zones

Mean climate
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Climate change
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Crop responses to climate change will depend on existing mean climate, the type of climate change,
and characteristics of crop types

Adaptation actions (examples)
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Figure 14.5 |  Crop responses to climate change will depend on existing mean climate, type of climate change and characteristics of crop types. Hypothesised 
responses for Crop Types A, B, C and D include changing crop yields or changing crop area. Adaptation actions may alter hypothesised responses. (Maps from Matthews et al., 2019.)

D’Orangeville et  al., 2018; Thorne et  al., 2018; Chaste et  al., 2019) 
depending on location and the mechanisms included. Wildfires and 
insect outbreaks are projected to increase with future climate change, 
thereby limiting biomass (Gauthier et  al., 2015; Bentz et  al., 2019; 
Chaste et al., 2019).

14.5.4.2 Observed Impacts and Projected Risks: Fisheries and 
Aquaculture

Climate impacts outlined in Section 14.5.2 have induced yield losses 
for multiple subsistence, recreational and commercial fisheries 
(very high confidence), and contributed to commercial fishery 
closures across North America (Sections 14.5.1, 14.5.3; Figure 14.6; 
Table SM14.7; Lynn et al., 2014; Barbeaux et al., 2020; Fisher et al., 
2021). Climate-driven declines in productivity are widespread (high 
confidence) (Figure 14.6), although a few increases are observed in 
northern regions (medium confidence) (Cunningham et  al., 2018; 
Crozier et al., 2019; Zhang et al., 2019b). Redistribution of species 
has increased travel distance to fishing grounds, shifted stocks across 
regulatory and international boundaries, and increased interactions 
with protected species (very high confidence) (Figure  14.6; 
Table  SM14.7; Cross-Chapter Box  MOVING PLATE in Chapter 5; 
Morley et  al., 2018; Free et  al., 2019; IPCC, 2019b; Rogers et  al., 
2019; Stevenson and Lauth, 2019; Young et al., 2019). Climate shocks 

have reduced yield and increased instability in fishery revenue (high 
confidence) (Fisher et al., 2021).

Declines in yield and poleward stock redistributions (an average 
of ~20.6 km per decade) are expected to continue under climate 
change and increase in magnitude with atmospheric carbon (high 
confidence) (Table 14.4; Hare et al., 2016; Pecl et al., 2017; Rheuban 
et al., 2017; Morley et al., 2018; Smale et al., 2019; Szuwalski et al., 
2021). For example, without adaptation, end-of-century losses of 
Bering Sea pollock yield (relative to persistence scenarios) is likely to 
reach 50% under moderate (RCP4.5) and 80% under low (RCP8.5) 
mitigation scenarios, respectively (Holsman et  al., 2020). Expanding 
HABs, pathogens and altered ocean chemistry (OA and dissolved 
oxygen) will reduce yields and increase closures of fisheries along all 
North American coasts (medium confidence) (Section 14.5.2; Deutsch 
et al., 2015a; Ekstrom et al., 2015; Seung et al., 2015; Punt et al., 2016; 
Howard et al., 2020). For fisheries that represent 56% of current US 
fishing revenue, projected annual net losses under high-emission 
scenarios (RCP8.5, 2021–2100) may reach double that of low-emission 
scenarios (RCP2.6) (Moore et al., 2021).

Warming waters and OA have impacted aquaculture production in North 
America (high confidence) (Figure  14.6; Clements and Chopin, 2017; 
Reid et  al., 2019; Stewart-Sinclair et  al., 2020). Under climate change 
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(RCP8.5), declines in marine finfish and bivalve aquaculture become 
likely by mid-century (Froehlich et al., 2018; Stewart-Sinclair et al., 2020). 
Adaptation is possible but uncertain (Bitter et al., 2019; Fitzer et al., 2019; 
Reid et  al., 2019), especially with increasing extreme events. Nature-
based aquaculture solutions (e.g., conservation aquaculture, restorative 
aquaculture) could aid carbon mitigation and local-level adaptation, 
especially for seaweed and bivalve culture (see Box 14.7; Froehlich et al., 
2017; Froehlich et al., 2019; Reid et al., 2019; Theuerkauf et al., 2019).

14.5.4.3  Food and Fibre Adaptation: Cross-Cutting Themes

Across food and fibre systems, climate resilience is enhanced through 
diversifying income and harvest portfolios as well as increasing local 
biodiversity and functional redundancy (high confidence) (Messier 
et  al., 2019; Rogers et  al., 2019; Young et  al., 2019; Aquilué et  al., 
2020; Fisher et al., 2021). Ecosystem-based practices and sustainable 
intensification (increasing yields while minimising resource demand 
and ecosystem impacts) (Cassman and Grassini, 2020; Rockström 
et al., 2021) will help the sector meet food production demands under 
climate change (medium confidence), but effectiveness generally 
declines and is less certain after 2050 in scenarios without carbon 
mitigation (high confidence) (Bermeo et al., 2014; Gaines et al., 2018; 
Costello et al., 2020; Free et al., 2020; Holsman et al., 2020). Across 

the sector, successful adaptation is underpinned by approaches that 
meaningfully consider the coupled social–ecological networks around 
food and fibre production and value IK (very high confidence) (see 
Box 14.1; FAO, 2018; Steele et al., 2018; Calliari et al., 2019). Integrated 
modelling, participatory planning and inclusive decision making 
promote effective and equitable adaptation responses (very high 
confidence) (Figure 14.7, Section 14.7) Toledo-Hernández et al., 2017; 
Eakin et al., 2018; Monterroso and Conde, 2018; Alexander et al., 2019; 
Hodgson and Halpern, 2019; Holsman et  al., 2019; Samhouri et  al., 
2019; Barbeaux et al., 2020; Hollowed et al., 2020), while a paucity 
of high-resolution and locally tailored climate change information 
remains a barrier to adaptation (Ekstrom et al., 2015; Donatti et al., 
2017; Young et al., 2019).

14.5.4.4  Food and Fibre Adaptation: Agriculture, Livestock and 
Forestry

Land management and horticulture approaches that preserve and 
improve soil structure and organic matter can reduce erosion (high 
confidence) (Sections  14.5.1, 14.5.3; Lal et  al., 2011; Bisbis et  al., 
2018). Preserving biodiversity and water, changing planting dates and 
double cropping are also effective climate adaptation strategies (Bisbis 
et  al., 2018; Hernandez-Ochoa et  al., 2018; Monterroso-Rivas et  al., 

Froehlich et al 2018 (RCP 8.5 2100 
ensemble model) negative
Bivalves high probability of declines 
due to changes in temp. CHLa, & OA.

Clements & Chopin et al 2018, Reid 2019, 
Stewart‐Sinclair et al (2020) negative Bivalves 
impacted  by OA & temp. across Pacific coast.

Filgueira 2013 (field/BACI) positive 
Storm increased turnover (thus food) for 
mussels in an inlet. “Dramatic increases 
in mussel production occurred in the year 
following the opening of the new inlet.”

Arnold et al 2012 (experiments) negative Region shown 
where most catfish farming is located. Found “high 
temperatures decrease growth in Channel Catfish, 
largely due to reduced food consumption & feed 
conversion & increased levels of activity.”

Gibble et al 2016 
(field/experiment) negative 
Drought then rain events 
following periods of higher HAB 
activity may increase dispersal of 
toxins to oysters/mussels.

Linan-Cabello et al 2012 (social 
case-study) likely negative
Tilapia production likely vulnerable, 
but more research is needed. 

Barbeaux et al 2020, Cheung & 
Frölicher 2020 negative Climate 
change attributed marine heatwave driven 
declines in Pacific cod fishery. Declines in 
AK fish biomass & shifts in distribution were 
4 times higher during MHWs.

Jardine et al 2020; Fisher et al 
2021;Cheung & Frölicher 
2020 negative Fishery 
closures during the 2013-2016 
MHW & HAB event, closed 
multiple crab fisheries along 
the west coast (US-NW, 
US-SW), differentially 
impacted small & large 
vessels; pelagic fish had large 
declines in biomass, as did 
sockeye salmon & California 
anchovy.

Poloczanska et al 2016; Miller et al 2018, Morley et al 2018 
positive/negative Species distributions have shifted poleward & 
phenology has shifted earlier with strongest effects on bony fish.

Spies et al 2020; Stevenson et al 2019  negative 
Northward shifts > 1000 km observed for groundfish 
(e.g.,Pacific cod) associated with record high bottom 
temperatures & record low sea ice in the EBS. (N

 A
m

. w
ide

)

(N
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m
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Weatherdon et al. 2016 negative (projected) CA-BC, 
projected declines in abundance of key Indigenous 
subsistence resources (e.g., salmon, halibut, herring, 
rockfish & shellfish) are greater for RCP8.5 than RCP 2.6.

Le Bris et al 2018 (modeling/observations) 
positive/negative  American Lobster abundances declined 
(78%) in South New England and have increased (515%) in 
the Gulf of Maine due to water temperature changes and 
differing conservation measures (1985-2014 for GOM and 
1997-2014 for Southern New England). 

Climate change impacts on North American fisheries and aquaculture

Free et al 2019 (positive/negative) Changes in mean MSY of fisheries in multiple regions are 
associated with warming temperatures over the last century (2001-2010) -(1930-1939) including 
declines along the entire west coast of North America that range from -14% in the EBS to -29% in 
the S-CC. Along the east coast, declines of -3% to -9% were observed in the GOMX & US-SE, 
while increases of 8-15% were observed in the US-NE & CA-QC.

Guyondet et al 2015 (model 2050) positive/negative 
Possible 30% increase in blue mussel production 
largely due to greater spring bloom (CHLa), but 
temperature could negatively impact growth.

Figure 14.6 |  Case studies of climate-change impacts on North American fisheries (blue text) and aquaculture (gray text).
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Adaptation in North American food sectors

Figure 14.7 |  Adaptation in North American food sectors is shown, modified from Cottrell et al. (2019).

2018; Wolfe et  al., 2018). Traditional agriculture inherently includes 
climate adaptive practices that enhance biodiversity, soil quality and 
agricultural production (e.g., multiple cultivars, heat-tolerant heritage 
cattle breeds) (Bermeo et  al., 2014; Gomez-Aiza et  al., 2017; Ortiz-
Colón et  al., 2018). Agroecology and agroforestry (see Box  14.7) in 
North America has expanded from (but not replaced) traditional and 
rural practices in Mexico (Metcalfe et al., 2020a) as a sustainable and 
climate-resilient alternative to industrial agriculture (Schoeneberger 
et  al., 2017) that increases productivity (by 6–65% depending on 
the crop), enhances microclimates and provides co-benefits for GHG 
mitigation (Abbas et al., 2017; Cardinael et al., 2017; Schoeneberger 
et al., 2017; Snapp et al., 2021). Irrigation is an effective adaptation 
strategy in key agricultural areas (Miller, 2017; Lund et al., 2018) and 
could stabilise food security in rain-fed regions (e.g., southeast Mexico) 
(Spring, 2014); water allocation must balance multiple needs and rights 
(medium confidence) (Section 14.5.3; Brown et al., 2015b; Levis et al., 
2018; Gomez Diaz et  al., 2019). Heritage livestock breeds, changing 
species and precision-ranching technology may promote ranch and 

rangeland resilience (Zhao et al., 2013). In loblolly pine plantations in 
the southern USA, effective adaptation includes reducing tree density 
and, less effectively, shifting to slash pine (Susaeta et  al., 2014). 
Salvage logging following forest disturbances (e.g., insect outbreaks) 
can increase timber harvest (Bogdanski et al., 2011; USDA Forst Service, 
2011; Han et al., 2018; Morris et al., 2018a).

14.5.4.5  Food and Fibre Adaptation: Fisheries and Aquaculture

Proactive and ecosystem-based management increases climate 
resilience in fisheries (high confidence), but effectiveness after 2050 
may be limited without global carbon mitigation (medium confidence) 
(Gaichas et al., 2017; Gaines et al., 2018; Kritzer et al., 2019; Barbeaux 
et al., 2020; Free et al., 2020; Holsman et al., 2020). Flexibility (e.g., 
mobility, diverse incomes or harvest portfolios) underpins climate 
resilience across regions, management policies and fisheries, although 
small-scale fisheries have less scope for adaptation (Aguilera et  al., 
2015; Young et al., 2019). Climate-informed and dynamic management 
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Table 14.4 |  Observed and projected impacts to food and fibre resources

Climate driver Observed changea References Projected change References

Agriculture and livestock (Tables SM14.2–SM14.5)

Extreme events

Estimates of yield reduction from heat 
stress for both maize and cotton indicate 
that historically, US-SW heat stress reduced 
cotton yield by 26% and maize yield by 18% 
compared with potential yield. Extreme heat 
was associated with increased crop failure in 
MX-CE, US-SW. Hailstorm increased frequency 
observed in MX coinciding with the most 
vulnerable stage or flowering period of 
maize. Extreme precipitation damages to soil, 
increased erosion, and reduced crop yields 
observed in Mexico and US-MW.

Altieri and 
Nicholls (2009); 
Mastachi-Loza et al. 
(2016); Elias et al. 
(2018); Kistner et al. 
(2018); Reyes and 
Elias (2019)

Heat stress (RCP8.5) reduces mid-century (2040–2069) 
maize and cotton yields by 12–15% of historical yields 
(1950–2005) with largest impacts in US-SW, and additional 
drought-related stress in US-MW could reduce maize and 
soybean yields by ~5 and ~10%, respectively, by late 
century under RCP4.5. Warming and extreme heat (>35%) 
will delay (or prevent) chill accumulation, impacting 
perennial crop development, yields and quality (US-SW). 
Increases in extreme temperature raise the risk of livestock 
heat stress, disease and pest impacts.

Jin et al. (2017); 
Rojas-Downing et al. (2017); 
Elias et al. (2018); Parker 
et al. (2020)

Mean growing 
season 
precipitation 
decline, mean 
temperature 
increase, drought

Across the US Great Plains (US-SP, US-NP) 
between 1968 and 2013 climate change 
induced 3.55, −0.55 and 0.94% change 
in yield for (irrigated and non-irrigated) 
maize, sorghum and soybeans, respectively. 
Droughts and increasing temperatures 
reduced soil fertility in Mexico and 
contributed to soil erosion and degradation, 
and suitability loss of 18–22%. Experimental 
and simulated reductions in water supply of 
25–50% result in similar-magnitude declines 
in yield for multiple food and forage crops 
(e.g., wheat, maize).

Frisvold and Konyar 
(2012); Leskovar 
et al. (2012); 
Aladenola and 
Madramootoo 
(2014); Galloza et al. 
(2017); Havstad et al. 
(2018); Kukal and 
Irmak (2018)

Warming alters the length of growing seasons of 
cold-season crops and shifts suitability ranges of 
warm-season California crops. Aridification reduces forage 
production in US-SW and MX-N. Warming is associated 
with reduced livestock growth and fertility, increased 
pathogens in US-SE, US-SP, US-MW and US-NE, and 
reduced milk production in US-MW.

St-Pierre et al. (2003); 
Polley et al. (2013); Key and 
Sneeringer (2014); Reeves 
et al. (2014); Cooley (2016); 
Hufkens et al. (2016); Derner 
et al. (2018); Hristov et al. 
(2018); Ortiz-Colón et al. 
(2018); Zhang et al. (2019b); 
Bowling et al. (2020); 
Bradford et al. (2020); 
Marklein et al. (2020)

Multiple drivers

Climate change reduced total factor 
productivity of agriculture and livestock 
in North America by 12.5% (ranging from 
approximately −35 to 8%) between 2016 
and 2015. Losses have been greatest in 
Mexico (−30 to −25%) (Figure 14.5), and 
lowest in Canada (>0%). Reduced yield in 
Mexico and the USA; increased weed and 
pest pressure in US-NE, US-MW, US-NP and 
US-NW.

Garruña-Hernández 
et al. (2012); Loreto 
et al. (2017); Wolfe 
et al. (2018); Torres 
Castillo et al. (2020; 
Ortiz-Bobea et al. 
(2021)

Declines in yield and changes in suitability ranges for maize 
(−18 to 5%), sorghum (−16 to 12%) and wheat (−38 to 
−15%) in Mexico (RCP4.5, 8.5; 2040–2099); northward 
shifts in the suitable area for six crops from the central 
USA (2100). Warming accompanied by increased CO2 
may benefit crop production of small grains in southern 
Canada up to 3°C global warming level (GWL), although 
benefits decline after 2.5°C GWL. Increased CO2 enhances 
production but reduces forage quality in US-NP and US-NW. 
Without adaptation, 2°C GWL increases insect-caused 
production losses ~36 and ~44% for maize and wheat, 
respectively.

Calderón-García et al. 
(2015); Herrera-Pantoja 
and Hiscock (2015); Lant 
et al. (2016); Chen et al. 
(2017); Montiel-González 
et al. (2017); Reyer et al. 
(2017); Derner et al. 
(2018); Deutsch et al. 
(2018); Levis et al. (2018); 
López-Blanco et al. (2018); 
Murray-Tortarolo et al. 
(2018); Wolfe et al. (2018); 
Gomez Diaz et al. (2019); 
Qian et al. (2019); Zhang 
et al. (2019b); Arce Romero 
et al. (2020)

Aquaculture and fisheries (Tables SM14.6, SM14.8)

Extreme events

MHW and HAB events of 2014–2016 
resulted in multiple fishery closures along 
the west coast (US-NW, US-SW); disparate 
impacts observed between small and large 
vessels with greatest impacts on small vessel 
revenue and fishery participation; impacts 
highest for ports in the N-CC and least for 
fishing communities with diverse livelihoods 
and harvest portfolios. In the EBS, GOA and 
N-CC, declines in fish biomass and shifts 
in distribution were four times higher and 
greater during MHWs than that of general 
warming over the same period. Pelagic fish 
showed largest decrease in biomass (7%), as 
did Sockeye salmon and California anchovy; 
increased risk to hatcheries and low-lying 
pond systems from severe storms. Extreme 
heat is associated with reduced productivity 
of aquaculture species.

Handisyde et al. 
(2017); Food 
Agriculture 
Organization of 
the United Nations 
(2019); Froehlich 
et al. (2019); Reid 
et al. (2019); 
Bertrand et al. 
(2020); Cheung and 
Frölicher (2020); 
Jardine et al. (2020); 
Sippel et al. (2020); 
Fisher et al. (2021)

Doubling of MHW impact levels by 2050 among the most 
important fisheries species (over previous assessments that 
focus only on long-term climate change).

Cheung and Frölicher (2020)
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Climate driver Observed changea References Projected change References

Multiple drivers

Climate shocks reduce catch, revenue 
and county-level wages and employment 
among commercial harvesters in US-NE. 
Climate variability during 1996–2017 is 
responsible for a 16% (95% CI: 10–22%) 
decline in county-level fishing employment 
in New England; impacts mediated by local 
biology and institutions. Seafood is an 
important source of nutrients and protein 
for Indigenous Peoples in CA-BC. Polices 
that incorporate nutrition in fisheries 
management are limited in North America.

Marushka et al. 
(2019); Oremus 
(2019); also see 
Section 14.5.6

Declines in North American catch potential of flatfish 
under RCP8.5 for the EBS, GOA, GOMX, US-SE and US-NE; 
declines in productivity for multiple species in Mexico, with 
the largest declines in productivity (>35%) for abalone and 
Pacific sardine. Impacts are greatest for artisanal species; 
declines in fish community biomass for all North American 
coasts except US-SW and the Canadian Arctic; declines are 
greater under RCP8.5 than RCP2.6. Modest increases (up 
to 10%) in landings of CA-QC and CA-AT surf clams and 
shrimp are projected under RCP2.6 by 2100 and declines in 
snow crab up to 16% are expected (RCP2.6, 8.5). Mussel 
landings increase 21%, while declines in shellfish and lobster 
landings (2090) are twice as high under RCP8.5 (42–54%) as 
RCP2.6. Shellfish and snow crab landings decline in CA-QC 
and CA-QT; declines under RCP8.5 are double those of 
RCP2.6. Climate change reduces EBS blue king crab recovery 
in simulations. Relative to the USA and Canada, Mexico has 
the strongest benefits in net catch under RCP2.6 relative 
to RCP8.5 ( >30% increase in catch); increases of 70% in 
catch potential projected for the Canadian Arctic (CA-NE, 
CA-NW) under RCP8.5 (versus minimal changes under 
RCP2.6). High-resolution and size-spectrum models project 
declines in groundfish catch and biomass in S-EBS. Shifting 
transboundary stocks may increase challenges.

Weatherdon et al. (2016); 
Cheung (2018); Carozza 
et al. (2019); Cisneros-Mata 
et al. (2019); Reum et al. 
(2019); Tai et al. (2019); 
Mendenhall et al. (2020); 
Wilson et al. (2020)

Ocean and lake 
acidification

Ocean acidification (OA) reduced maximum 
sustainable yield, catch and profits of EBS 
Tanner crab in simulations. Survival of 
larval and juvenile red king crab in the 
lab decreased 97–100% with decreasing 
pH; no appreciable effects of pH on larval 
growth of walleye pollock in the lab (Hurst, 
2013); mixed evidence of impacts of 
changes in pH on freshwater or saltwater 
finfish aquaculture; OA reduced growth, 
calcification, attachment and increased 
mortality in calcifying molluscs and 
seaweeds in the USA and Canada; OA may 
benefit non-calcifying seaweeds.

Long et al. (2013a); 
Seung et al. (2015); 
Punt et al. (2016); 
Clements and Chopin 
(2017); Handisyde 
et al. (2017); Swiney 
et al. (2017); 
Food Agriculture 
Organization of 
the United Nations 
(2019); Froehlich 
et al. (2019); Reid 
et al. (2019); 
Stewart-Sinclair et al. 
(2020)

Declines for some shellfisheries and flatfish due to OA and 
temperature. OA conditions under RCP8.5 reach critical 
risk thresholds for mollusc harvests earlier in northern 
regions than southern areas. OA risk to shellfisheries is 
highest in N-CC. OA causes 1% additional decline in Arctic 
cod populations by 2100 under RCP8.5. OA influences 
management reference points of Northern Rock sole. 
OA and temperature reduce probability of recovery in 
simulations of EBS blue king crab.

Ekstrom et al. (2015); Reum 
et al. (2019); Steiner et al. 
(2019); Wilson et al. (2020); 
Punt et al. (2021)

Mean 
temperature 
increase

Species distributions have shifted poleward 
and phenology has shifted earlier with the 
strongest effects on bony fish. Warming over 
the past century (2001–2010 to 1930–1939) 
is associated with declines in maximum 
sustainable yield along the entire west coast 
of North America that range from −14% in 
the EBS to −29% in the CC-S. Along the east 
coast, declines of −3 to −9% were observed 
in the GOMX and US-SE, while increases 
of 8–15% were observed in the US-NE and 
CA-CQ; mixed positive and negative growth 
and mortality responses for aquaculture 
species in North America. Juvenile red king 
crab survival decreases as temperatures 
increase in lab experiments. American 
Lobster abundances declined (78%) in South 
New England and have increased (515%) in 
the Gulf of Maine due to water temperature 
changes and differing conservation measures 
(between 1985 and 2014 for the GOM, 
and 1997 and 2014 for southern New 
England).

Poloczanska et al. 
(2016); McCoy et al. 
(2017); Swiney 
et al. (2017); Le 
Bris et al. (2018); 
Miller et al. (2018); 
Food Agriculture 
Organization of 
the United Nations 
(2019); Free et al. 
(2019); Reid et al. 
(2019); Weiskerger 
et al. (2019); 
Bertrand et al. 
(2020); Le et al. 
(2020)

By end of century, North American fish biomass, catch 
potential and revenue are ~9% higher under RCP2.6 than 
RCP8.5 and differences are greatest for US fisheries (relative 
to Canada and Mexico; poleward redistributions (reported 
ranges of 10.3–39.1 km per decade) and to depth decrease 
access to shellfisheries in CA-QC and subsistence species in 
CA-BC (−28% by 2100), with impacts increasing north to 
south and under RCP8.5 as compared with RCP2.6. Climate 
change (RCP8.5) shifts the relative percentage of catch and 
profits for the USA–Canada transboundary stocks under 
RCP8.5 (but not RCP2.6); decreases in biomass of historically 
large fisheries in US-NA and CA-QC, and US-AK and 
important subsistence species in CA-WA and CA-BC, while 
some increases in the North Atlantic. Declines are greater 
under RCP8.5 relative to RCP2.6. In EBS (US-AK), community 
biomass, catches and mean body size decreases by 36, 61 
and 38%, respectively, under RCP8.5 (2100). Climate change 
causes declines in global marine aquaculture production 
under RCP8.5 with impacts greater for bivalve than finfish 
and with significant disparities among regions in direction 
and magnitude of changes; greatest declines for finfish 
aquaculture expected in northern regions (GOA, CA-BC, 
CA-CQ), and large declines for bivalve production (declines 
of 20–100%) for Canada. Declines become more probable 
by 2050–2070.

Weatherdon et al. (2016); 
Cheung (2018); Froehlich 
et al. (2018); Morley et al. 
(2018); Greenan et al. 
(2018); Steiner et al. (2019); 
Sumaila et al. (2019); 
Bryndum-Buchholz et al. 
(2020); Holsman et al. 
(2020); Palacios-Abrantes 
et al. (2020); Reum et al. 
(2020); Sumaila and Zwaag 
(2020); Whitehouse and 
Aydin (2020); Wilson et al. 
(2020)

Notes: See Figure 14.1 for region acronym definitions. (a)
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(Hazen et al., 2018) improves modelled fishery performance (medium 
confidence) (Section  14.5.2; Froehlich et  al., 2017; Tommasi et  al., 
2017a; Tommasi et al., 2017b; Karp et al., 2019; Barbeaux et al., 2020), 
yet planning and policies that directly incorporate climate-change 
information remain limited (Skern-Mauritzen et  al., 2015; Marshall 
et al., 2019b). Expanding aquaculture across North America will likely 
address deficits in nutritional and protein yields (Gentry et al., 2019; 
Costello et al., 2020), yet aquaculture initiatives have largely progressed 
without explicitly considering climate impacts (FAO, 2018; Froehlich 
et al., 2019), and critical elements for climate adaptation (e.g., climate-
informed zoning, monitoring, insurance) are not widely implemented 
(Liñan-Cabello et al., 2016; FAO, 2018; Stewart-Sinclair et al., 2020). 
Climate-informed and standardised aquaculture governance, and 
increased coordination with fishery and coastal management, is 
needed for climate resilience (high confidence) (Brugère et al., 2019; 
Froehlich et al., 2019; Free et al., 2020; Galparsoro et al., 2020).

14.5.5 Cities, Settlements and Infrastructure

Cities are complex social–ecological systems with large populations, 
concentrated wealth, ageing infrastructure, reliance on extrinsic and 
increasingly stressed natural systems, social inequality, differential 
institutional capacities and impervious, heat-retaining surfaces 
(Maxwell et  al., 2018a; Schell et  al., 2020). These factors interact 
with location (e.g., proximity to coast, in a floodplain) to create 
city-specific vulnerabilities to climate change and requirements for 
resilience initiatives (Mercer Clarke et al., 2016). Cities are home to 
diverse cultural and social communities, including large Indigenous 
populations who can be uniquely affected by climate change yet who 
bring valuable IK and leadership to urban adaptation efforts (Statistics 
Canada, 2020; Brown et al., 2021). The rural and remote settlements of 
North America also experience similar hazards and risks; however, such 
challenges are due to different factors such as geographic isolation, 
dependence on local food resources and socioeconomic conditions 
(Kearney and Bell, 2019; Vodden and Cunsolo, 2021).

14.5.5.1 Observed Impacts

14.5.5.1.1 Rising temperatures and extreme heat

Extreme heat events are affecting natural assets and built infrastructure 
as well as individuals in cities and rural settlements across North 
America (high confidence) (Maria Raquel et  al., 2016; Amec Foster 
Wheeler and Credit Valley Conservation, 2017; Howell and Brady, 
2019; Martinich and Crimmins, 2019). Key urban infrastructure systems 
(e.g., services in buildings, energy distribution) are interdependent and 
susceptible to cascading impacts (e.g., electricity supply disruption 
during a heatwave compromising another system like water delivery, 
high-rise cooling) (Brown et  al., 2021). Urban social inequality and 
systemic racism has led to disproportionately higher exposure to urban 
heat island effects in low-income and minority neighbourhoods in US 
cities, due in part, to less green space and tree cover to offset heat 
retained in the built environment (Hoffman et al., 2020; Schell et al., 
2020; Hsu et al., 2021). In the rural context, extreme heat contributes 
to migration out of small communities; for example, see cases reported 
in Mexico (Nawrotzki et  al., 2015a). Extreme heat events pose a 

significant risk to residents of small towns across North America due 
to limited resources to address heat impacts and attendant increased 
morbidity and mortality (Section 14.5.6.1; McDonald et al., 2016; Guo 
et al., 2018; D’ulisse, 2019).

Hot and dry conditions increase risk of wildfires close to human 
settlements through collateral impacts on properties, economic 
activity and human health (see Box  14.2; Section  14.5.6.3). These 
environmental conditions also stress natural assets (e.g., urban forests, 
wetlands, household gardens, green walls) and performance of green 
infrastructure leading to higher operation and maintenance costs (high 
confidence) (Kabisch et al., 2017; Terton, 2017).

14.5.5.1.2 Storms and flooding

Short-duration, high-intensity rainfall and other extreme events (e.g., 
hurricanes, atmospheric river events) create significant flooding risks 
and impacts for cities in North America and negatively affect the 
lives, livelihoods, economic activities, infrastructure and access to 
services (high confidence) (Amec Foster Wheeler and Credit Valley 
Conservation, 2017; Curry et al., 2019). In 2016, US flooding events 
caused 126 fatalities and 11 billion USD (considering the 2016 USD 
value) in damages (NOAA, 2019). In Canada, flooding accounts for 
40% of the costs associated with weather-related disasters recorded 
since 1970 (Canadian Institute for Climate Choices, 2020); the most 
costly event was the 2013 Calgary flood (CA-PR) (1.8 billion CAD in 
catastrophic insurance losses and 6 billion CAD in direct costs such 
as uninsured losses) (Office of the Auditor General of Canada, 2016). 
Mexico City is seasonally impacted by high-intensity rainfall events 
that generate local flooding (de Alba and Castillo, 2014). Rural and 
remote settlements are also threatened by floods; Indigenous lands in 
Canada are disproportionately exposed to flooding, with almost 22% 
of residential properties at risk of a 1-in-100-year flood (Thistlethwaite 
et al., 2020; Yumagulova, 2020).

Wind storms and hurricanes are significant climate hazards for North 
American cities and settlements, affecting urban forests, electricity 
distribution and service delivery, and damaging buildings and trans-
portation infrastructure (Amec Foster Wheeler Environment and Infra-
structure, 2017; British Columbia Hydro, 2019; Smith, 2020), with 
enduring impacts on small villages due to lost livelihoods and limited 
recovery capacity (e.g., Rio Lagartos and Las Coloradas in MX-SE after 
Hurricane Isidore) (Audefroy and Cabrera Sánchez, 2017). The Pacific 
coast of Mexico is also experiencing hurricanes such as Patricia (cate-
gory IV) in 2015 and Newton (category I) in 2016 (CONAGUA, 2015; 
CONAGUA, 2016); hurricane Patricia affected 56 municipalities in the 
states of Colima, Nayarit and Jalisco (MX-CE, MX-NW) (Calleja-Reina, 
2016).

14.5.5.1.3 Sea level rise

Sea level rise interacts with shoreline erosion, storm surge and 
wave action, saline intrusion and coastal flooding to directly 
threaten coastal cities and small communities in North America with 
impacts to public and private buildings and infrastructure, port and 
transportation facilities, water resources (high confidence) (NOAA 
National Weather Service, 2017; Boretti, 2019) and cultural heritage 
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sites (see Box 14.4; Dawson et al., 2020). Sea level rise is creating 
conditions where considerable financial investments are needed 
and, in many cases, are being raised to address adaptation needs 
(see Box 14.4; CCP6, Fatorić and Seekamp, 2017; Hinkel et al., 2018; 
Greenan et al., 2018). Across North America, high population density 
and concentrated development along the coast generates exposure 
to SLR impacts.

14.5.5.2 Projected Impacts and Risks

Evidence since the AR5 highlights increased risk to quality of life in 
cities and rural communities as a result of exposure to intensifying 
climate-change hazards, and the compounding and interacting effects 
of climate and non-climate factors (medium confidence).

14.5.5.2.1 Rising temperatures and extreme heat

Extreme heat events are projected to increase in frequency and 
intensity across North America in the coming decades (Section 14.2.2; 
Figure 14.2F,G). Inland urban areas in the southern and eastern USA 
are susceptible to urban heat island effects, particularly the Midwest/
Great Lakes regions (Krayenhoff et  al., 2018) and also Mexico City 
and many other cities in Mexico (Vargas and Magaña, 2020). Climate 
change (RCP8.5) interacting with urban form, development and 
systemic racism (Schell et  al., 2020; Hsu et  al., 2021) could worsen 
risks from extreme heat in North American cities, especially where 
there is limited adaptation (high confidence) (Krayenhoff et al., 2018). 
Impacts from extreme heat will be exacerbated when multiple hazards 
occur simultaneously (e.g., heatwaves concurrent with droughts) 
(Mora et  al., 2018; Zscheischler et  al., 2018). Extreme heat events 
increase energy demand for space cooling in buildings, especially 
during peak demand periods and heatwaves (IEA, 2018a). This can 
decrease cooling efficiency, increase emissions of GHG from electricity 
generation, increase refrigerant loads and associated emissions, and 
negatively affect air quality (IEA, 2018a). Major electrical grid failure 
(i.e., blackouts) have increased across the USA and will continue to 
be particularly dangerous for human health when they coincide with 
extreme heat events (Stone et al., 2021). Efforts to increase resilience 
of the infrastructure that cities rely on are increasing (Climate-Safe 
Infrastructure Working Group, 2018).

Warmer and/or drier conditions may reduce water supply reliability 
for cities and small communities that rely on surface water sources 
fed by rain or snowmelt runoff, for example, Victoria and Vancouver, 
Canada (CA-BC) (Metro Vancouver, 2016; Vadeboncoeur, 2016; Islam 
et  al., 2017); San Pedro, Hermosillo and Los Pargas, Aguascalientes, 
México (MX-NW, MX-CE) (Vadeboncoeur, 2016; Soto-Montes-de-Oca 
and Alfie-Cohen, 2019); New York City (US-NE) (NYC Department of 
Environmental Protection, 2014); and Washington State (US-NW) 
(Section 14.5.3.2; Fosu et al., 2017).

14.5.5.2.2 Storms and flooding

Annual and winter precipitation is expected to increase for most of 
Canada (Section  14.2; Figure  14.2D,E) and will increase flooding in 
cities and settlements (high confidence) (Bonsal et al., 2019). Although 
there is more geographic variation across the continental USA (e.g., 

between high-latitude and subtropical zones), extreme precipitation 
events are projected to increase in frequency and intensity with 
impacts on flood hazards (Section  14.5.3.2; Easterling et  al., 2017). 
Winter (snow and ice) storms are expected to increase in northern 
North America and decrease in southern North America under RCP8.5 
(Jeong and Sushama, 2018b). Projected increases in wind-driven rain 
exposure is an emerging consideration for moisture-resilient design 
and management of buildings, especially in western and northern 
Canada (Jeong and Cannon, 2020).

14.5.5.2.3 Sea level rise

In the USA, many people are projected to be at risk of flooding 
from SLR (high confidence) (see Box 14.4). A projected SLR of 0.9 m 
by 2100 could place 4.2  million people at risk of inundation in US 
coastal counties, whereas a 1.8-m SLR exposes 13.1  million people 
(Hauer et al., 2016). In California, under an extreme 2-m SLR by 2100, 
150  billion USD (2010) of property or more than 6% of the state’s 
GDP and 600,000 people could be affected by flooding (Barnard 
et  al., 2019). A 1-m SLR would inundate 42% of the Albemarle-
Pamlico Peninsula in North Carolina and incur property losses of up 
to 14 billion USD (considering the 2016 USD value) (Bhattachan et al., 
2018). In nine southeast US states, a 1-m SLR would result in the loss 
of more than13,000 recorded historical and archaeological sites with 
over 1000 eligible for inclusion in the National Register for Historic 
Places (Anderson et al., 2017). This SLR raises groundwater levels by 
impeding drainage and enhancing runoff during rain events (Hoover 
et al., 2017); coastal flooding enhances saltwater intrusion affecting 
drinking water supply in settlements (e.g., coast of Texas) (Anderson 
and Al-Thani, 2016).

In Canada, SLR is expected to increase the frequency and magnitude 
of extreme high-water-level events (Greenan et al., 2018) and to create 
widespread impacts on natural and human systems (high confidence) 
(see Box  14.4; Lemmen et  al., 2016). Although coastal sensitivity is 
high in the Arctic, Canada’s more populated regions are also sensitive 
to the impacts of SLR (Manson et al., 2019). The Mi’kmaq community 
of Lennox Island First Nation is exploring relocation options because of 
erosion from SLR (Savard et al., 2016).

In Mexico, crucial coastal tourism cities, such as Cancun, Isla Mujeres, 
Playa del Carmen, Puerto Morelos and Cozumel (MX-SE), are at risk 
of SLR with an estimated economic impact of 1.4–2.3  billion USD 
(Section  14.5.7; Ruiz-Ramírez et  al., 2019). Negative effects of the 
‘coastal squeeze’ phenomena (generated by SLR, land subsidence, 
sediment deficit and current urbanisation processes) have been 
documented on tourist destinations along the coasts of the Mexican 
Gulf of Mexico and Mexican Caribbean. Zoning, limiting urbanisation 
along the coastline and using NbS (see Box  14.7) are alternatives 
that could be applied to improve the adaptation of these destinations 
(Martínez et  al., 2014; Salgado and Luisa Martinez, 2017; Lithgow 
et al., 2019).

Rural low-lying coastal areas are at risk from SLR where natural 
barriers or shoreline infrastructure are deteriorating and this interacts 
with remoteness, resource-dependent economies and socioeconomic 
challenges to adaptive capacity (Bhattachan et  al., 2018; Manson 
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et al., 2019). The Northeast Atlantic region of North America (CA-AT, 
US-NE) is exposed to high risk by combined effects of land subsidence 
and climate-driven SLR (see Box  14.4; Lemmen et  al., 2016; Sweet 
et al., 2017; Fleming et al., 2018; Greenan et al., 2018).

14.5.5.3 Adaptation

In North American cities, present-day adaptation responses extend 
beyond the traditional focus on infrastructure to include measures 
aimed to protect people, property and ecosystems (medium confidence). 
Barriers to adaptation include challenges related to the local physical 
and environmental setting, effects of colonialism and racism, 
socioeconomic attributes of the population, institutional frameworks 
and competing interests of city stakeholders (medium confidence). 
The current scale of adaptation is generally not commensurate with 
reducing risks from projected climatic hazards, although resources exist 
that provide guidance and examples of effective adaptation (medium 
confidence). Some remote Canadian communities have demonstrated 
strengths (e.g., strong social networks) that support resilience to 
climate change (Kipp et  al., 2020; Vodden and Cunsolo, 2021). In 
some US cities with political resistance to action on climate change, 
adaptation measures focused on addressing extreme events (rather 
than climate-change impacts) have been able to make progress (Hamin 
et  al., 2014). Enhanced public awareness of the risks from extreme 
events associated with climate change is important for motivating 
adaptation (Section 14.3; Howe et al., 2019) and developing a climate-
change agenda (Aragón-Durand, 2020).

Community-level planning tailors adaptation responses and disaster 
preparedness to the local context but misalignment of policies within 
and between levels of government can prevent implementation 
(Oulahen et al., 2018). Coordination, planning and national support 
are needed to provide sufficient financial resources to implement 
climate-resilient policies and infrastructure (Section 14.7.3; USGCRP, 
2018).

Public health measures to address extreme heat events are more 
common across North America, with a focus on vulnerable populations 
(e.g., City of Toronto, 2019) and innovative approaches for reaching 
at-risk populations with an overarching intent of prevention (medium 
confidence) (Section  14.4.6.1; Guilbault et  al., 2016). The heatwave 

plan for Montreal includes visits to vulnerable populations, cooling 
shelters, monitoring of heat-related illness and extended hours for 
public pools (Lesnikowski et al., 2017); efforts have reduced heatwave-
related mortalities (Benmarhnia et al., 2016).

Other adaptation responses to reduce temperature effects include 
modifying structures (roofs, engineered materials) and the urban 
landscape through green infrastructure (e.g., urban trees, wetlands, 
green roofs), which increases climate resilience and quality of life 
by reducing urban heat island effects, while additionally improving 
air quality, capturing stormwater and delivering other co-benefits 
to the community (e.g., access to food, connection to nature, social 
connectivity) (high confidence) (see Box 14.7; Ballinas and Barradas, 
2016; Emilsson and Sang, 2017; Kabisch et al., 2017; Krayenhoff et al., 
2018; Petrovic et al., 2019; Schell et al., 2020). Green infrastructure can 
be flexible and cost-effective (Ballinas and Barradas, 2016; Emilsson 
and Sang, 2017; Kabisch et al., 2017). Initiatives can be ‘bottom-up’ 
community-led adaptation with support from municipal governments 
(e.g., East Harlem in New York City) (Petrovic et  al., 2019). Valuing 
municipal natural assets (e.g., assigning economic value to cooling 
from urban forests or stormwater retention by urban wetlands) is 
becoming increasingly common in Canada and the USA (Wamsler, 
2015; Roberts et  al., 2017a; Municipal Natural Assets Initiative, 
2018). Guidance assists municipalities to identify, value and account 
for natural assets in their financial planning and asset management 
programmes (O’Neil and Cairns, 2017) and consider future climate 
(Municipal Natural Assets Initiative, 2018).

Meeting increasing demand for indoor space cooling with equitable 
access requires new approaches to providing cooling (e.g., equipment 
efficiencies, refrigerants with lower global warming potential) and 
electricity production and transmission innovation (Shah et al., 2015; 
IEA, 2018a). While energy efficiency and building code standards are 
not directly established by local governments, they can encourage 
behaviour change via incentives (e.g., rebates on efficient equipment) 
or disincentives (e.g., more onerous permit approvals).

Experience with droughts, heatwaves and other weather extremes 
has led many municipal water managers to accept the importance 
of building resilience to the risks of future water shortages and costs 
posed by climate change (Metro Vancouver, 2016; Misra et al., 2021; 

Box 14.4 | Sea Level Rise Risks and Adaptation Responses for Selected North American Cities 
and Settlements

Approximately 95 million Americans lived in coastal communities in 2017 (US Census Bureau, 2019) and in 2013, Canada had roughly 
6.5 million coastal residents (Lemmen et al., 2016), while Mexico had 19 million people living in coastal municipalities in 2015 (Azuz-
Adeath et al., 2018). Sea level rise around North American coastlines (Figure Box 14.4.1) is projected to be greatest along the coasts of 
Atlantic Canada, northern Gulf of Mexico for the USA and the Pacific coast of Mexico (IPCC, 2021). Sections 14.5.2.1, 14.5.5.1.3 and 
14.5.5.2.3 describe SLR impacts. The status of adaptation to SLR by local governments is variable (see Table Box 14.4.1, where progress 
is indicated by colour coding) and ranges from financed implementation to preliminary, preparatory or scoping studies and workshops. 
Adaptation planning and implementation to address SLR and coastal flooding have been initiated across many cities and settlements in 
North America, but preparedness varies (high confidence).
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Sea Level Rise projections for selected North American cities
Projection changes relative to 2005
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Figure Box 14.4.1 |  Sea level rise projections for 2050, 2100 and 2150 for selected North American cities. Projections changes are relative to 2005, which 
is the central year for the 1994–2014 reference period. Horizontal lines in the boxes represent the median projection, boxes represent 25th to 75th percentile and whiskers 
the 10th to 90th percentile of SLR projections from all CMIP6 models as well as other lines of evidence (see Fox-Kemper et al., 2021 Table 9.7 for more details). Two SLR 
scenarios are provided for lower (SSP126) and higher emissions (SSP585), and are consistent with the WGI AR6 Interactive Atlas (Gutiérrez et al., 2021b. Numbers and 
colours (see Table Box 14.4.1 for detailed readiness definitions) on the map and in the projections represent the sites and status of SLR adaptation progress. Information 
supporting SLR adaptation status is summarised in Table Box 14.4.1.

Box 14.4 (continued)
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Table Box 14.4.1 |  Status of adaptation actions for locations on the SLR map above according to level of SLR preparedness through adaptation (as discoverable on 
government websites)

Ocean 
basin

Site 
no.

Area/city Exposure (not exhaustive)
Adaptation 
readiness 1

Does the area/city have an adaptation plan for SLR? If so, are 
they taking actions to implement it? (Status)

Arctic 1
Tuktoyuktuk, 
CA

Infrastructure, municipal services, 
transportation, homes, 900 people

Tuktoyaktuk Coastal Erosion Study completed March 2019. Additional 
investments in both planning and actual adaptation measures have occurred. 
Limited financial resources remain a barrier (Government of Canada, 2020).

Atlantic 2

Prince 
Edward 
Island
with Lennox 
Island, CA

PEI: residential, industrial and 
commercial infrastructure;
Lennox Island: 10 of 79 homes, 
causeway to the island, sacred 
grounds, sewage treatment systems

Prince Edward Island government released a 5-year climate change action plan 
in 2018 which includes both adaptation and mitigation (Prince Edward Island 
Government, 2018). Biennial progress reports were issued (Prince Edward Island 
Government, 2019). The Mi’kmaq community of Lennox Island First Nation has 
explored relocation options (Daigle et al., 2015).

3 Truro, CA
A regional centre of 12,000 residents, 
which has been vulnerable to 
repeated floods for decades

Town of Truro, County of Colchester and Millbrook First Nations, commissioned 
a flood risk study 2014–2017 (CBCL, 2017; Sherren et al., 2019) triggered by the 
2012 flooding. The outcome was Truro-Onslow dyke project–a voluntary retreat 
with realignment of dyke infrastructure and habitat restoration by conversion of 
agricultural land into salt marsh habitat (Saunders-Hastings et al., 2020).

4 Halifax, CA
Transportation causeways and 
bridges, marine facilities, municipal 
infrastructure

HalifACT 2050 is a comprehensive plan adopted as of 2020 by the Halifax 
regional council which includes reducing GHGs and adapting to climate change 
including a section on coastal preparedness (Halifax Regional Council, 2020).

5
New York, 
USA

20 million people at risk by 2050; 
40% of water treatment plans will 
be compromised by flooding, 60% 
of power plants will need to be 
relocated, transportation systems will 
need to be upgraded to avoid flooding

New York City has developed many adaptation plans for sustaining NYC in light 
of SLR and other climate hazards and impacts, especially since Hurricane Sandy 
affected the city in 2012. It is unclear how much of the planning has moved 
forward into implementation (NYC, 2013; New York City, 2015; NYC Mayor’s 
Office of Resiliency, 2020).

6 Norfolk, USA
Homes, massive US naval base, 
shipyards, active waterfront and 
deep-water ports

City of Norfolk published a very specific Coastal Resilience Strategy in 2014. 
Capital improvement projects highlighted in this strategy have been funded 
(City of Norfolk Virginia, 2014). A plan for protecting Naval base and shipyard 
is not evident.

7 Miami, USA
Homes, port, transportation 
infrastructure, tourism (hotels, 
restaurants, beaches)

Miami Dade County released a specific SLR Strategy in 2021. Actions in the 
plan include elevating roads and other infrastructure, designing ways to 
accommodate more water in and around buildings, building on higher ground 
and expanding waterfront parks and canals. The plan includes a map with 
current and planned adaptation projects in the county (Miami-Dade County, 
2021).

8 Cancun, MX
Tourism infrastructure (hotels, 
restaurants, beaches), homes, markets, 
service industry, transportation

The 2013 Climate Change Plan assigns adaptation in general to different 
government levels. There is no evidence of specific adaptation plan for SLR 
(Government of Quintana Roo, 2013).

Gulf of 
Mexico

9
New 
Orleans, 
USA

Entire city, especially low-lying, 
low-income areas, vulnerable as 
evidenced by Hurricane Katrina in 
2005

City of New Orleans adaptation is incorporated in the broader Louisiana coastal 
climate-change adaptation plan (CPRA, 2023). The process includes very specific 
projects with updates on risk-based implementation.

10
Ciudad del 
Carmen, MX

Freshwater access, 11,000 homes, 
aquaculture

The Campeche State Climate Change Plan was released in 2013 (Government of 
Campeche, 2013). The plan does not include any specific recommended actions 
to adapt to SLR in Cuidad del Carmen. Flood-risk maps for Ciudad del Carmen 
were created in 2011 (Audefroy, 2019).

11
Veracruz, 
MX

Freshwater access, sewage treatment 
systems, electrical and petrochemical 
industries

State of Veracruz published a climate-change plan in 2008 (Government 
of Veracruz, 2008). The plan includes specific tables of actions needed to 
monitor and adapt to SLR. The World Bank funded coastal adaptation in 
Veracruz focused on mangroves to dissipate storm surge but no investments in 
infrastructure to mitigate SLR.

Pacific 12
Unalaska, 
USA

Loss of cultural resources, salinisation 
of rivers and lakes

Climate Change Adaptation and Vulnerability Assessment workshops have been 
held with discussion of coastal erosion. SLR is not viewed to be as important as 
impacts from sea ice and permafrost loss (Poe et al., 2016).

13

Surrey 
(Greater 
Vancouver 
Area), CA

Disruption in flow of goods in 
and out of Port of Vancouver, 
communication facilities, road, rail 
and air transportation infrastructure, 
businesses and agriculture

Surrey has a Coastal Flood Adaptation Strategy (CFAS) approved by the council 
(City of Surrey, 2019) with 46 actions (policy and programme, local area 
infrastructure). Some local area infrastructure improvements have received 
capital funding.

Box 14.4 (continued)
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Ocean 
basin

Site 
no.

Area/city Exposure (not exhaustive)
Adaptation 
readiness 1

Does the area/city have an adaptation plan for SLR? If so, are 
they taking actions to implement it? (Status)

14 Seattle, USA

Low-lying areas, near-shore habitats, 
stormwater drains, roads, homes, 
businesses, socially vulnerable 
communities

Seattle released a Climate Change Response Plan in 2017 which includes 
general approaches including development of risk maps for SLR which are also 
available online (City of Seattle, 2017).

15

Quinault 
Indian 
Reservation 
(Tahola), 
USA

650 residents and buildings
Quinault Indian Reservation has a plan to move Tahola to higher ground, 0.5 
miles from the existing village (EPA, 2021).

16
San 
Francisco, 
USA

37,200 residents, 17,200 businesses 
and 167,300 jobs vulnerable to 
inundation by 2100 at upper bounds 
of SLR, mostly along the bay side of 
the city

SF has an active, SLR planning process as well as an iterative Sea Level 
Rise Action Plan (City of San Francisco, 2016), planning tools and iterative 
assessment (City and County of San Francisco, 2020).The process specifically 
addresses wastewater, water, transportation, power, public safety, open space, 
port, neighbourhoods and changing shoreline.

17
Los Angeles, 
USA

Power plants, wastewater treatment 
plants, Port of Los Angeles, beaches, 
tourism

Los Angeles has commissioned a projected SLR impact report but not an action 
plan. The Port of Los Angeles is particularly vulnerable and, as of 2019, has an 
SLR Adaptation Plan (Newbold et al., 2019).

18
Acapulco, 
MX

Tourism infrastructure (hotels, 
restaurants beaches), homes, markets, 
service industry, transportation

No climate-change plan exists, although the Mexican Tourism Sector conducted 
a climate-change vulnerability assessment covering Acapulco (Guerrero, 2017).

Sea Level Rise Adaptation Readiness Levels 
 Specific plan, progress on actions - specific plan for SLR with evidence of progress on taking actions including allocating funding for projects
 Specific plan, no evidence of actions taken - specific plan for SLR with concrete actions identified but no evidence of actions taken to date
 Specific plan, no actions specified - specific plan for SLR but does not include specific actions
 General Climate Change plan, mentions sea level rise - general climate-change adaptation action plan, which mentions SLR as a risk, issue or impact but no concrete actions, developed
 No Climate Change plan, but processes underway - No climate-change adaptation action plan but processes underway such as workshops, studies and vulnerability assessments

Box 14.2 (continued)

WUCA, 2021). In the southwest USA, water utilities have introduced 
demand-management programmes to encourage water conservation 
(e.g., tiered pricing, incentives for water-efficient appliances and 
fixtures, and rewards for replacing water-guzzling lawns with water-
thrifty native vegetation) (Section 14.5.3.3; Luthy et al., 2020; Baker, 
2021). Water providers also have increased their adaptive capacity by 
diversifying water sources (Hanak et al., 2015).

Adaptation to the risks of wildland–urban interface fire is underway 
(see Box 14.2; Kovacs et al., 2020), but the scope of adaptation required 
to sufficiently minimise wildfire risks for cities and settlements across 
North America has not been assessed (medium confidence). Leadership 
at the local level is increasingly supported by federal resources that 
provide guidance on hazard and exposure assessment, property 
protection, community resilience and emergency planning (National 
Research Council of Canada, 2021).

Cities and settlements in North America can be susceptible to multiple 
flooding hazards (i.e., coastal SLR, pluvial or fluvial flooding); each 
presents unique adaptation challenges that can be addressed through 
structural (e.g., armouring coastlines, reservoirs, levees, floodgates; New 
York City commuter tunnels) and non-structural approaches (e.g., land-
use planning and zoning, expanding green infrastructure; Chetumal, 
Mexico) (high confidence) (Hardoy et al., 2014). Green infrastructure 
practices (e.g., open-space preservation, floodplain restoration, urban 
forestry, de-channelisation of streams) (see Box  14.7) can reduce 

urban flooding, erosion and harmful runoff (Kovacs et al., 2014; Angel 
et al., 2018b; Government of Canada, 2021c). Structural approaches 
have limitations and require trade-offs that could be addressed with 
a focus on social–ecological solutions and stronger institutional 
coordination (e.g., flood risk management in Mexico City) (Aragón-
Durand, 2020). In response to high-intensity rainfall events, Mexico 
City invested in stormwater infrastructure, although additional benefits 
could have been realised if water supply needs had been incorporated 
(de Alba and Castillo, 2014). Some programmes exist to facilitate 
stormwater and wastewater infrastructure updating to accommodate 
increased precipitation across North America. The US federal Clean 
Water State Revolving Fund provides low-interest loans for states 
to upgrade infrastructure for climate change, with 42  billion USD 
provided since 1987 (ASCE, 2019). In Canada, local governments are 
important leaders in managing engineered and green infrastructure 
decisions, incentivising property-level flood protection and ensuring 
service delivery (Government of Canada, 2021c). The civil engineering 
profession is playing an active role in facilitating an understanding 
of risks and prioritisation of adaptation investments in communities 
(Tye and Giovannettone, 2021).The high concentration of valuable 
assets in cities requires mechanisms to facilitate replacement of 
assets including use of existing and proposed insurance mechanisms 
(medium confidence) (Section 14.7).

Adaptation planning and implementation to address SLR and coastal 
flooding has been initiated across cities and settlements in North America 
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but varies in preparedness (high confidence) (see Box 14.4). Efforts are 
supported by SLR design guidelines. In Canada, the Government of 
British Columbia provided SLR projections for 2050 (i.e., +0.5 m) and 
2100 (i.e., +1 m) in order to initiate community vulnerability and risk 
assessment, and adaptation planning (The Arlington Group Planning 
+ Architecture Inc et al., 2013). Based on recent hurricane impacts in 
Yucatan, Mexico, recommendations to enhance the rules governing the 
Mexican Recovery Program included incorporating local knowledge and 
IK when rebuilding houses and other structures on coasts (Audefroy 
and Cabrera Sánchez, 2017). Where in-place adaptation is insufficient, 
planned retreat is being considered as a sustainable option for reducing 
future risks (Saunders-Hastings et al., 2020).

14.5.6 Health and Well-being

Research examining climate-change impacts on human health in North 
America has increased substantially since AR5 (Harper et al., 2021a). 
Using a systematic approach (Harper et  al., 2021b), the assessment 
focused on advancements since AR5.

14.5.6.1 Heat-Related Mortality and Morbidity

High temperatures currently increase mortality and morbidity in North 
America (very high confidence), with impacts that vary by age, gender, 
location and socioeconomic factors (very high confidence). Observed 
increases in heat-related mortality have been attributed to climate 
change in North America (Vicedo-Cabrera et  al., 2021). Temperature 
effects on health vary based on how unusual the temperature is for that 
time and location (medium evidence, high agreement), highlighting 
the important role that temperature extremes and variability play in 

mortality and morbidity (Li et al., 2013; Lee et al., 2014; Barreca et al., 
2016; Allen and Sheridan, 2018). Adaptation has played an important 
role in reducing observed heat-related deaths (Vicedo-Cabrera et al., 
2018b).

Rising temperatures are projected to increase heat-related mortality 
across emission scenarios this century in North America (very high 
confidence), although the magnitude of increase varies geographically 
(Isaksen et al., 2014; Petkova et al., 2014; Wu et al., 2014; Weinberger 
et al., 2017; Anderson et al., 2018a; Limaye et al., 2018; Marsha et al., 2018; 
Morefield et al., 2018). Elderly people (Isaksen et al., 2014; Limaye et al., 
2018) and urban areas (Limaye et al., 2018) are projected to experience 
the greatest increase in heat-related mortality this century. Warming 
temperatures are also projected to increase heat-related morbidity 
(medium confidence). For instance, the incidence and treatment costs of 
asthma attributed to warmer temperatures are projected to increase in 
Texas by 2040–2050 (A1B) (McDonald et al., 2015).

While heat-related mortality is projected to increase across emissions 
scenarios and shared socioeconomic pathways, fewer deaths are 
projected under both lower-emissions scenarios and higher-adaptation 
scenarios in North America (very high confidence). Heat-related 
mortality was projected to be 50% less under RCP4.5 compared with 
RCP8.5 in the USA for SSP3 and SSP5 (Table  14.5; Wu et  al., 2014; 
Marsha et al., 2018).

14.5.6.2 Cold-Related Mortality

Winter season mortality rates are generally high in high-income regions 
such as North America, with most of that mortality due to cardiovascular 
diseases (Ebi and Mills, 2013). It is important to differentiate between 

Table 14.5 |  A summary of adaptation options for different health outcomes in North America

Health outcome Adaptation options

Heat-related mortality and 
morbidity

Future temperature-related health impacts can be reduced by adaptation measures (Petkova et al., 2014; Wu et al., 2014; Mills et al., 2015b; Kingsley et al., 
2016; Anderson et al., 2018b; Marsha et al., 2018; Morefield et al., 2018), including more effective warning and response systems and building designs, 
enhanced pollution controls, urban planning strategies and resilient health infrastructure (very high confidence) (Figure Box 14.7.1).

Wildfire-related mortality

Air quality indices are correlated with many respiratory conditions (Yao et al., 2013; Hutchinson et al., 2018), suggesting that providing air quality information 
to the public could reduce smoke-related health impacts (Yao et al., 2013; Rappold et al., 2017). Enhanced coordination between the health sector and fire 
suppression agencies can also reduce the health impacts of wildfire smoke via improving communication, weather forecasting, mapping, fire shelters and 
coordinated decision making (Withen, 2015), including transnational and cross-jurisdictional actions.

Vector-borne disease

Prevention of vector-borne disease currently involves surveillance, reducing environmental risks and promoting individual behaviours to reduce human–vector 
contact. Top-ranked Canadian West Nile interventions include individual protection (i.e., window screens, wearing lightly coloured clothing), and regional 
management and mosquito-targeting interventions (i.e., larvicides, vaccination of animal reservoirs, modification of human-made larval sites) (Hongoh et al., 
2016).

Water-borne disease

Climate change is projected to increase water-borne disease risks (medium confidence), particularly in areas with ageing water and wastewater infrastructure 
in North America (high confidence). In Wisconsin, USA, precipitation changes are projected to increase gastrointestinal illness in children this century (A1B, A2, 
B1) (Uejio et al., 2017). Slight reductions in precipitation-associated gastrointestinal illness is projected if water treatment infrastructure is upgraded slowly 
over time; however, if water treatment infrastructure is installed more rapidly, large decreases in precipitation-associated gastrointestinal illness incidence are 
projected (Uejio et al., 2017), highlighting the benefits of rapidly implementing adaptation actions.

Food-borne disease

Food safety programmes play important roles in reducing the risk of climate-related food-borne disease (high confidence). Integrated health surveillance, more 
stringent refrigeration temperature controls to limit pathogen growth, targeted communication to the public and food sector, and enhanced coordination 
between the health and food sectors can reduce risk (Hueffer et al., 2013; Jones et al., 2013; Fillion et al., 2014; Doyle et al., 2015). In Mexico, the projected 
risk of Vibrio parahaemolyticus in oysters was 11 times higher in a high-emissions scenario compared with a low-emissions scenario by the end of the century; 
however, this risk could be substantially lowered with adaptation measures, including improving temperature control (Ortiz-Jiménez, 2018).

Mental health
Effectiveness of individual and/or group therapy, and place-specific mental health infrastructure, to treat mental health challenges is well proven; yet, there is 
limited evidence evaluating these interventions within the context of climate change (e.g., Tschakert et al., 2017; Young et al., 2017b; Cunsolo and Ellis, 2018).
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mortality related to cold temperatures and mortality due to other 
factors that vary with season (Ebi and Mills, 2013; Ebi, 2015). Warmer 
temperatures do not always equate to lower winter mortality: many 
cold-related deaths do not occur during the coldest times of year or in 
the coldest places (high confidence) but occur during the beginning or 
end of the winter season (Barnett et al., 2012; Lee et al., 2014; Schwartz 
et al., 2015; Sarofim et al., 2016b; Smith and Sheridan, 2019). Warmer 
US cities generally experience more mortality from extreme cold events 
and cold temperatures than colder cities in the USA and Canada (Lee 
et al., 2014; Gasparrini et al., 2015; Schwartz et al., 2015; Wang et al., 
2016; Smith and Sheridan, 2019). While mortality rates linked to direct 
cold exposure (e.g., hypothermia, falls and fractures) is generally low, 
the relatively higher mortality during milder temperatures is thought to 
be largely due to respiratory infections and cardiovascular impacts (Lee 
et al., 2014; Gasparrini et al., 2015), which, although correlated with 
temperature, may not be caused by cold temperatures (Ebi and Mills, 
2013; Ebi, 2015; Sarofim et al., 2016a). When separating the effects 
of cold temperatures from the effects of the winter season, one study 
found that cold temperature did not drive mortality and suggested that 
winter season excess mortality was due to seasonal factors other than 
temperature (e.g., influenza, seasonal gatherings) (Kinney et al., 2015).

Mortality attributed to cold temperatures has increased in the USA 
and remained stable in Canada from 1985 to 2012 despite increasing 
winter temperatures (Vicedo-Cabrera et al., 2018b). Some attenuation 
in cold-related mortality in Mexico and warmer US states is projected 
under climate change, but less so in colder climates in northeast USA 
and Canada, with statistically insignificant trends in some regions 
and increasing cold-related mortality in other regions (Li et al., 2013; 
Mills et al., 2015b; Schwartz et al., 2015; Sarofim et al., 2016a; Wang 
et al., 2016; Gasparrini et al., 2017; Vicedo-Cabrera et al., 2018a; Lee 
et al., 2019). These reductions in cold-related mortality are generally 
considered relatively small.

Observed and projected trends in winter mortality highlight that non-
climate factors may have a greater role in driving winter mortality than 
cold temperature, and that these deaths are expected to occur with or 
without climate change (Ebi and Mills, 2013; Ebi, 2015; Sarofim et al., 
2016a). This challenges the assumption that warmer winters due to 
climate change would dramatically lower winter season mortality 
(medium evidence, medium agreement).

14.5.6.3 Wildfire-Related Morbidity

Smoke from intensified wildfire activity in North America is associated 
with respiratory distress (very high confidence), and persists long 
distances from the wildfire and beyond the initial high-exposure time 
(see Box  14.2; Hutchinson et  al., 2018). Exposure to wildfire smoke 
increases hospital admissions (McLean et  al., 2015; Alman et  al., 
2016; Reid et al., 2016; Yao et al., 2016; Rojas-Downing et al., 2017). 
Increased wildfire smoke from climate change is projected to result 
in more respiratory hospital admissions in the western USA by 2046–
2051 (A1B) (Liu et al., 2016; Rojas-Downing et al., 2017).

The magnitude of health risks varies by age (Le et al., 2014; Reid et al., 
2016; Liu et al., 2017a; Liu et al., 2017b), gender (Delfino et al., 2009; 
Rojas-Downing et  al., 2017), socioeconomic conditions (Henderson 

et  al., 2011; Rappold et  al., 2012; Reid et  al., 2016) and underlying 
medical conditions (Liu et  al., 2015). The intersectionality of these 
subgroups plays an important role in health-related vulnerability 
to wildfire smoke. Among the elderly in the western USA, risks of 
respiratory admissions from wildfire smoke was significantly higher for 
African American women in lower-education counties (Liu et al., 2017b). 
For Indigenous Peoples, medical visits for respiratory distress, heart 
disease and headaches increased during a wildfire in California (Lee 
et al., 2009). In northern Canada, Indigenous livelihoods were disrupted 
during a wildfire, which negatively impacted mental, emotional and 
physical health (Dodd et al., 2018a; Howard et al., 2021).

14.5.6.4  Vector-Borne Disease

Climate change creates conditions that enable earlier seasonal 
activity and general northern expansion of ticks (Ogden et al., 2014), 
increasing human exposure to tick-borne diseases in North America 
(very high confidence). Lyme disease incidence and geographic extent 
has already increased in Canada and the USA (Eisen et  al., 2016), 
which has been associated with climate change (Ogden et al., 2014), 
including warmer temperatures (Cheng et al., 2017; Lin et al., 2019). 
Climate change is projected to increase disease spread into new 
geographic regions, lengthen the season of disease transmission and 
increase tick-borne disease risk in North America across emissions 
scenarios throughout this century (very high confidence), with regional 
variability (Roy-Dufresne et  al., 2013; Feria-Arroyo et  al., 2014; 
Monaghan et al., 2015; Robinson et al., 2015; McPherson et al., 2017). 
Chagas disease is transmitted by triatomines, and most of the Mexican 
population (88.9%) already reside in areas with at least one infected 
vector species in both rural and urban populations (Carmona-Castro 
et al., 2018). Chagas has already extended its range into the southern 
USA, and the triatomines’ niche is projected to expand northward this 
century (Garza et al., 2014; Carmona-Castro et al., 2018) in both rural 
and urban areas (Carmona-Castro et al., 2018).

Climate change is projected to impact the distribution, abundance 
and infection rates of mosquitoes in North America (high confidence), 
which will increase risk of mosquito-borne diseases including West Nile 
virus, chikungunya and dengue (medium confidence). The geographic 
distribution of West Nile virus is projected to expand in North America 
this century (A1B) (Harrigan et  al., 2014). In the USA and Canada, 
mosquitoes are projected to emerge earlier in the year and remain 
active longer into the fall; however, mosquito population dynamics 
vary by location with northern locations projected to have an increased 
vector abundance, and currently hot areas may become too hot, thus 
negatively affecting mosquito survival (A2, A1B, B1) (Chen et al., 2013; 
Morin and Comrie, 2013; Brown et al., 2015a).

Local transmission of chikungunya virus has emerged in Mexico and 
the USA since AR5, and areas suitable for transmission are projected 
to expand (RCP4.5 and RCP8.5) (Tjaden et  al., 2017). Although 
chikungunya virus is not currently in Canada, climate change is 
projected to make southern British Columbia suitable for virus 
transmission this century, particularly under RCP8.5 (Ng et al., 2017).

The dengue mosquito vector is well established in Mexico and the 
southeast USA. In northwest Mexico, incidence of dengue cases is 
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associated with minimum monthly temperature (Diaz-Castro et al., 2017), 
and the geographic range of the vector in the USA is restricted, in part, 
by low temperatures. Thus, a northward range expansion is projected; 
however, future dengue risk also depends on built environments and 
competition with other mosquito species (Colón-González et al., 2013a; 
Eisen and Moore, 2013). Climate change is projected to increase the 
geographic range and extend the seasonal activity of the dengue vector 
in the southern USA by 2045–2065 (A1B); however, transmission is 
projected to be limited by low winter temperatures in the mainland 
USA, potentially preventing its permanent establishment (Butterworth 
et  al., 2017). In Mexico, increased dengue cases are projected this 
century (A1B, A2, B1) (Colón-González et al., 2013b).

14.5.6.5 Water-Borne Disease

Heavy precipitation events are associated with contaminated 
drinking water and water-borne disease in North America (high 
confidence). Acute gastrointestinal illnesses increase with many 
hydro-climatological variables, including precipitation, streamflow 
and snowmelt (Harper et al., 2011; Wade et al., 2014; Galway et al., 
2015). Extreme precipitation is associated with Campylobacter and 
Salmonella infections in the USA, particularly in counties characterised 
by farms and private well water (Soneja et  al., 2016). In Canada, 
human Giardia infections are associated with increased temperature, 
precipitation, pathogen presence in livestock manure, and river water 
level and flow (Brunn et al., 2019). Land-use patterns and aquifer-types 
are associated with water-borne disease, and ecological zones with 
higher water-borne rates are projected to expand in range in Canada 
by 2080 (Brubacher et al., 2020).

In North America, stormwater and water treatment infrastructure 
play important roles in reducing water-borne disease risk during 
precipitation events (high confidence). In the USA, heavy precipitation 
events are associated with higher rates of childhood gastrointestinal 
illness in municipalities with untreated drinking water, but not in 
municipalities with treated drinking water (Uejio et  al., 2014). In 
Mexico, disparities in access to treated water are a key determinant of 
morbidity in children under age 5 years (Jiménez-Moleón and Gómez-
Albores, 2011; Romero-Lankao et al., 2014a). In remote communities 
in Alaska and Northern Canada, challenges in water service provision 
and maintenance can increase risk of water-borne disease during high-
impact weather events (Harper et al., 2011; Bressler and Hennessy, 2018; 
Harper et al., 2020). In older sections of many North American cities, 
sewage treatment plant capacity is exceeded by overflow of combined 
sanitary and storm sewer systems during heavy precipitation events, 
resulting in bypass of untreated and microbiologically contaminated 
wastewater discharge into drinking water sources (Jagai et al., 2017; 
Olds et al., 2018; Staley et al., 2018). These sewer overflow events are 
associated with increased gastrointestinal illness across age groups 
(Jagai et al., 2017).

14.5.6.6  Food-Borne Disease

Warmer air temperature, changes in precipitation, extreme weather 
events and ocean warming can increase microbial pathogen loads 
in food (very high confidence). Indeed, temperature and extreme 
weather are top factors influencing food safety in Canada (Charlebois 

and Summan, 2015). Outbreaks of Vibrio parahaemolyticus have been 
associated with the consumption of raw oysters harvested from higher-
than-usual ocean temperatures in Canada and Alaska (McLaughlin 
et  al., 2005; Taylor et  al., 2018). Warmer air temperature increases 
Campylobacter, Salmonella and E. coli prevalence in Canadian meat 
products (Smith et al., 2019), higher microbial load in American produce 
(Ward et al., 2015) and increased Campylobacter spp., pathogenic E. 
coli and Salmonella spp. infections in humans (Akil et al., 2014; Valcour 
et al., 2016; Uejio, 2017).

Climate change is projected to increase food safety risks (medium 
confidence); however, the actual burden of food-borne disease will 
depend on the efficacy of public health interventions (high confidence). 
Increased ciguatera fish poisoning is associated with increased 
sea surface temperatures (SSTs) and tropical storm frequency, and 
this risk is projected to increase this century (Gingold et  al., 2014). 
Campylobacter infection in humans due to food contamination from 
flies is projected to increase this century in Canada (Cousins et  al., 
2019), and increased housefly populations are projected this century 
in Mexico (Meraz Jimenez et al., 2019). Climate change may also lead 
to new emerging food-borne disease risks. For instance, V. cholerae is 
a pathogen previously restricted to tropical regions; however, due to 
warming ocean temperatures, its detection has significantly increased 
along Canadian coasts (Banerjee et al., 2018).

Climate change is projected to increase human food-borne exposure 
to chemical contaminants (medium confidence). Increases in SST have 
been associated with greater accumulation of mercury in seafood, 
marine mammals and fish (Ziska et al., 2016). This particularly increases 
food safety risks in the Arctic, with methylmercury and polychlorinated 
biphenyl concentrations in high trophic animals projected to increase 
under high-emission scenarios by 2100 (Alava et al., 2017; Alava et al., 
2018).

Climate-related food-borne disease risks vary temporally, and are 
influenced, in part, by food availability, accessibility, preparation and 
preferences (medium confidence). For example, seafood risks are 
more pronounced in coastal regions due to high seafood consumption 
(Radke et  al., 2015). In Alaska and northern Canada, where locally 
harvested foods are critical to diet, climate change may introduce 
new pathogens to local food sources through wildlife range changes, 
warming temperatures affecting safe fermentation and drying 
preparation methods, and food temperature control in below-ground 
cold storage in or near permafrost (King and Furgal, 2014; Harper 
et al., 2015; Rapinski et al., 2018).

14.5.6.7 Nutrition

Agricultural productivity declines due to climate change (Section 14.5.4) 
are projected to lower caloric availability and increase the prevalence 
of underweight people and climate-related deaths in North America by 
2050 (IMPAACT) (Springmann et al., 2016a; Springmann et al., 2016b; 
Springmann et al., 2018); however, this lower caloric availability could 
also reduce obesity, which could result in deaths avoided (Springmann 
et al., 2016a; Springmann et al., 2016b). The climate-related deaths per 
capita due to reduced fruit and vegetable consumption is projected to 
exceed the mortality due to reduced caloric intake in North America 
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by 2050, particularly in Canada and the USA (Springmann et  al., 
2016a; Springmann et  al., 2016b). These climate-change projections 
underscore the importance of focusing on nutritional security in North 
America, instead of only considering caloric intake.

Shifting to a more sustainable diet can have adaptation and mitigation 
co-benefits while simultaneously improving health outcomes for 
North Americans. Transitioning to more plant-based diets is projected 
to reduce climate-related deaths in Canada, the USA and Mexico by 
2050 (Springmann et  al., 2016a; Springmann et  al., 2016b), while 
simultaneously reducing food-related GHG emissions per capita in 
North America by 2050 (Springmann et al., 2018).

Nutrition impacts will not be experienced uniformly within countries 
(Shannon et  al., 2015; Zeuli et  al., 2018). In Alaska and Canada, IK 
has documented how climate change has already impacted locally 
harvested foods and challenged nutrition security (CCP6; Lynn et  al., 
2013; Petrasek MacDonald et al., 2013; Harper et al., 2015; Hupp et al., 
2015; Bunce et  al., 2016). For First Nations coastal communities in 
western Canada, decreased access to traditionally harvested seafood 
is projected to reduce nutritional status by 2050 (RCP2.5, RCP8.5), with 
higher nutritional impacts for men and older adults (Marushka et al., 
2019). Substitution of seafood with non-traditional foods (e.g., chicken, 
canned tuna) would not replace the projected nutrients lost (Marushka 
et al., 2019), challenging assumptions that market food substitutions 
could be effective adaptation strategies for Indigenous Peoples

14.5.6.8 Mental Health and Wellness

Climate change has had, and will continue to have, negative impacts 
on mental health in North America (high confidence) (Figure  14.8). 
Climate change impacts mental health through multiple direct and 
indirect pathways stemming from extreme weather events, slower, 
cumulative events, and vicarious or anticipatory events (Cunsolo Willox 
et  al., 2013; Cunsolo Willox et  al., 2014; Durkalec et  al., 2015; Yusa 
et al., 2015; Schwartz et al., 2017; Trombley et al., 2017; Burke et al., 
2018b; Cunsolo and Ellis, 2018; Dodd et al., 2018b; Hayes et al., 2018; 
Middleton et al., 2020b). Climate-change disruptions to infrastructure, 
underlying determinants of health and changing-place attachment are 
also stressors on mental health (Vida et al., 2012; Cunsolo Willox et al., 
2013; Burke et al., 2018b; Obradovich et al., 2018).

In North America, climate change has been linked to strong emotional 
reactions; depression and generalised anxiety; ecological grief and loss; 
increased drug and alcohol usage, family stress and domestic violence; 
increased suicide and suicide ideation; and loss of cultural knowledge 
and place-based identities and connections (Cunsolo Willox et  al., 
2013; Durkalec et  al., 2015; Harper et  al., 2015; Fernández-Arteaga 
et al., 2016; Schwartz et al., 2017; Trombley et al., 2017; Burke et al., 
2018b; Cunsolo and Ellis, 2018; Clayton, 2020; Dumont et al., 2020).

Suicide is projected to increase in Mexico and the USA by 2050 due to 
rising temperatures (RCP8.5) (limited evidence) (Burke et al., 2018b). 
Literature on climate change and mental health in North America is 
increasing; however, few population-level quantitative studies exist, 
although they are increasing (e.g., Burke et al., 2018b; Kim et al., 2019; 
Dumont et al., 2020; Middleton et al., 2021).

14.5.7 Tourism and Recreation

Tourism is one of the largest and fastest-growing industries in North 
America, contributing 2.5 trillion USD to North America’s GDP in 2019 
(WTTC, 2018; Duro and Turrión-Prats, 2019). The USA is the world’s 
largest tourism economy (with a 1.839 trillion USD contribution to the 
global GDP in 2019), Mexico is ranked ninth (196  billion USD) and 
Canada thirteenth (108 billion USD) (WTTC, 2018). The tourism industry 
is both impacted by climate change and significantly contributes to it 
through the emission of GHGs from travel and activities (Becken and 
Hay, 2007). By 2060, under RCP8.5, Canada and the USA are projected 
to benefit from climate-induced changes in tourism expenditures of up 
to 92 and 21%, respectively, whereas Mexico could experience a 25% 
decrease (OECD, 2015; Scott et al., 2019a).

14.5.7.1 Observed Impacts and Projected Risks of Climate 
Change

14.5.7.1.1 Alpine and Nordic skiing, snowmobiling and other winter 
sports

Winter tourism activities with hard limits to adaptation, particularly 
those that occur at sea level where less precipitation is expected to 
fall as snow (i.e., Nordic skiing, snowmobiling, snowshoeing), are at 
the highest risk from climate change and may experience irreversible 
impacts well before 2°C of warming above pre-industrial levels (high 
confidence) (Figure  14.9). During record warm winters, alpine ski 
resorts in eastern Canada experienced reductions in ski season lengths 
of between 11 and 17 d (Rutty et al., 2017) and resorts in the northeast 
USA (US-NE) experienced decreased skier visits by 11.6% and 
reductions in operational profits of 33% amounting to 40–52 million 
USD (Dawson et  al., 2009). Even with advanced snowmaking as an 
adaptation to warmer temperatures, average ski season lengths are 
projected to decrease 8% (RCP2.6, 2050s) to 73% (RCP8.5, 2080s) in 
Ontario, Canada (CA-ON) (Scott et al., 2019b), 12% (RCP4.5, 2050s) to 
22% (RCP8.5, 2080s) in Quebec, Canada (CA-QC), and 13% (RCP4.5, 
2050s) to 45% (RCP8.5, 2080s) in the northeast USA (US-NE) (Wobus 
et al., 2017; Scott et al., 2020). Season length for snowmobiling and 
cross-country skiing is projected to decrease more dramatically (high 
confidence), that is, by 80% (RCP4.5) to 100% (RCP8.5) by mid-century 
(CCP5; Wobus et al., 2017). The number of outdoor skating days may 
decrease by 34% in Toronto and Montreal, and 19% in Calgary, by 
2090 under RCP8.5 (Robertson et al., 2015). The skating season length 
for the Rideau Canal in Ottawa, Canada, a UNESCO World Heritage Site 
attracting 1.3 million visitors annually, may decrease by 3.8±2.0 d per 
decade with later opening dates of 2.6±1.5 d per decade (Jahanandish 
and Alireza, 2019).

14.5.7.1.2 Beach, coral reef and protected areas tourism

Sea level rise, increased storm surge, wave action, algae blooms, 
extreme air temperatures, and changes in wind and precipitation 
patterns threaten coastal tourism infrastructure, submerge beaches, 
erode walking paths on coasts, and impact destination attractiveness, 
tourism demand and recreation economies (very high confidence). Warm 
weather tourism activities, including beach tourism, snorkelling and 
national park visitation, will have more time to implement adaptation 
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Climate change impacts on mental health
and adaptation responses in North America
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Vulnerability

Socio-economic inequities

Indigenous identity

Pre-existing health conditions 
(e.g., chronic physical and mental 

health conditions)

Occupation (e.g., farmers, 
Indigenous livelihoods, fishers)

Gender (genders differentially 
affected)

Age (e.g., youth and seniors 
particularly at risk)

Exposure

Direct exposure(s) (e.g., experiencing 
acute or chronic hazard events)

Indirect exposure(s) 
(e.g., displacement, relocation, 

disruptions to food systems, cultural 
activities, place-based knowledge 

sharing and livelihoods)

Vicarious exposure(s) 
(e.g., seeing friends and family suffer, 

mediated experiences of climate 
change, anticipating future changes)

Key adaptation responses

Scale of adaptation

Institutional
State and state-level actors: 
Enhanced locally-based and 

culturally-relevant mental health services, 
informed policies, early interventions
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Figure 14.8 |  Pathways through which climate change impacts mental health risk in North America
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strategies to reduce climate risks as significant and widespread 
impacts are not expected until 3°C–4°C of warming (Figure  14.9; 
Rutty and Scott, 2015; Atzori et al., 2018; Santos-Lacueva et al., 2018; 
Duro and Turrión-Prats, 2019). Thirty percent of hotels along the Gulf 
of Mexico and Caribbean Sea are exposed to flooding and 66% are 
located on eroding beaches (Lithgow et al., 2019). Coral reef cover in 
Akumal Bay, Mexico, decreased by 79% between 2011 and 2014 (Gil 
et al., 2015; Manuel-Navarrete and Pelling, 2015). The recreation value 
of coral reef tourism in Florida, Puerto Rico, and Hawaii is expected to 
decrease by 90% by mid-century under RCP8.5 (Section 14.4.2; EPA, 
2017). Wildfires and insect outbreaks have contributed to reduced 
desirability for tourism across forest and mountain regions (Bawa, 
2017; Hestetune et  al., 2018; White et  al., 2020). Visitors to Utah’s 
National Parks declined 0.5–1.5% during wildfire years between 
1993 and 2015, resulting in 2.7–4.5 million USD in lost revenue (see 
Box 14.2; Kim and Jakus, 2019). Trees damaged by insects have caused 
campground and hiking trail closures in the western USA and Alaska 
(Arnberger et  al., 2018). Seal level rise, flooding, coastal erosion, 
changing air and sea temperatures, changing humidity and extreme 
weather events are putting cultural heritage sites at risk (Fatorić and 
Seekamp, 2017; Hollesen et al., 2018; Tetu et al., 2019).

14.5.7.1.3 Arctic tourism

Cruise and yacht tourism in the North American Arctic have increased 
rapidly over the past decade as changes in sea ice has expanded open-
water areas and season length (Johnston et al., 2016; Pizzolato et al., 
2016; Dawson et al., 2018). The risk of a major accident or incident 
among Arctic-going yachts and some expedition passenger vessels is 
very high relative to other ships (high confidence) due to the combined 
increases in mobile ice, especially along the Northwest Passage (Barber 
et al., 2018a; Howell and Brady, 2019; Copland et al., 2021; Lemmen 
et al., 2021), limited regulation for private yachts (Dawson et al., 2014; 
Dawson et al., 2017), the propensity for cruise ships to travel into newly 
ice-free and poorly charted areas, and the increasing number of non-
ice-strengthened vessels operating in the region (Dawson et al., 2018; 
Copland et al., 2019; Copland et al., 2021). Compounding risks include 
a lack of hydrographic charting and the lack of emergency response 
infrastructure (e.g., spill response, search and rescue, salvage) (Amap, 
2017). Tourism demand for polar bear viewing in Churchill, Manitoba, 
Canada, may change due to climate-related declines in polar bear 
health (Gil et  al., 2015; Manuel-Navarrete and Pelling, 2015), but 
may be offset by ‘Last Chance Tourism’ (LCT), a niche tourism market 
of individuals who explicitly seek to visit vanishing landscapes and/
or disappearing flora and fauna (Lemelin et al., 2010). The ethics of 
promoting LCT has been questioned considering that more visitation 
to sensitive sites increases local impacts as well as travel-related 
emissions (Groulx et al., 2016; Groulx et al., 2019).

14.5.7.2 Emerging Responses and Adaptation

Compared with other economic sectors (Section 14.5.8), the tourism 
industry has high adaptive capacity (high confidence) (Figure  14.9). 
Investments in climate-resilient infrastructure within Canadian 
National Parks have increased visitation rates during the shoulder 
seasons (Fisichelli et  al., 2015; Lemieux et  al., 2017; Wilkins et  al., 
2018), regional collaboration among US and Canadian park agencies 

has enhanced adaptive capacity through integrated planning and 
management (Lemieux et al., 2015), and technological advancements 
have reduced the vulnerability of alpine winter sports from warming 
temperatures (e.g., snowmaking, refrigerated surfaces, chemical 
additives) (Rutty and Scott, 2015; Scott et al., 2019b; Scott et al., 2020). 
Snowmaking as an adaptation strategy affects mitigation efforts by 
increasing the need for energy and fuel (Scott et al., 2019b).

Tourists are also highly adaptable and, depending on their levels of 
place attachment, location loyalty and socio-demographics, are very 
likely to substitute the timing or location of their travel activity based 
on climate and climatic-driven environmental changes (Rutty and Scott, 
2015; Atzori et al., 2018). Lemieux (2017) found that if the state of the 
Athabasca Glacier (CA-PR) (Figure 14.1) were to change negatively as 
a result of climate change, 83% would travel elsewhere, and if large 
infrastructure were built as an adaptive measure for viewing receding 
glaciers at Jasper National Park, 40% of tourists would no longer visit.

Hard and soft limits to adaptation exist in the tourism sector (Manuel-
Navarrete and Pelling, 2015). For example, machine-made snow, without 
the use of environmentally harmful chemical additives that are banned 
in most jurisdictions, can only be made efficiently in temperatures 
below −2°C, but projections indicate warming temperatures above this 
threshold (Wobus et al., 2017; Scott et al., 2019a). Multi-jurisdictional 
adaptation planning for parks and protected areas in the USA has 
been hindered by a lack of funding and communication, and funding 
trade-offs that could be remedied through coordination (Lemieux 
et al., 2015). Social inequalities generated by the tourism development 
process must also be considered by climate-related interventions to 
prevent the perpetuation of inequalities that may exist, particularly in 
less developed regions and rapidly developing regions. For example, 
new developments in Hawaii, Florida, Quebec and popular resort areas 
in Mexico have led to social inequalities through increased property 
taxes leading to the marginalisation of local residents away from these 
areas in favour of wealthy tourists (Section 14.5.9; Manuel-Navarrete 
and Pelling, 2015).

14.5.8 Economic Activities and Sectors in North America

Economic sectors highly reliant on climate, such as agriculture, tourism, 
fisheries and forestry, have higher levels of exposure and sensitivity 
(high confidence) and greater overall risk to climate change compared 
with other economic sectors such as mining, construction and 
manufacturing (medium confidence). However, the cascading nature 
of climate impacts related to trade (see Box 14.5), labour productivity 
(Section 14.5.8.1.5) and infrastructure (Section 14.5.8.1.2) means that 
there is no economic sector in North America that will be unaffected by 
climate change (very high confidence) (Figure 14.10). For Canada, this 
assessment is further supported by the Canadian Climate Assessment 
(Lemmen et al., 2021). The combined economies of Canada, Mexico 
and the USA represented ~28% of the global GDP in 2019, with the 
USA accounting for almost 90% of the total activity for North America 
(World Bank, 2020a). The risks posed at different global warming 
levels (GWLs) for any given economic activity or sector are presented 
in Figure  14.10. By combining expert judgement with a systematic 
review of the literature for each sector, the information in Figure 14.10 
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represents a broader synthesis, especially for sectors with a smaller 
literature base and at higher GWLs. The assessment of the risks of 
climate change on tourism (Section  14.5.7) and the interactions 
between sectors through trade (see Box 14.5) are discussed separately.

14.5.8.1 Observed Impacts and Projected Risks of Climate 
Change

14.5.8.1.1 Agriculture, fisheries and forestry

The wide range of observed and projected impacts of climate hazards 
on food and fibre in North America are documented in Section 14.5.4 
(also see Chapter 5). Agriculture (US-NW: corn and soybeans), fisheries 
(cod and pollock) and forestry (Boreal Forest timber yield) are expected 
to experience substantial and widespread risks by 2°C of global 
warming above pre-industrial levels (medium to high confidence) 
(Figure 14.10). Economic models generally show economic losses in 
the agricultural sector across North America, especially at higher GWL 
(Section  14.5.4; EPA, 2017; Boyd and Markandya, 2021), although 
the effects in local economies, especially rural areas of the USA that 
are highly dependent on agriculture, will be substantial even at lower 
GWLs (Gowda et al., 2018). Full evaluations of climate risks for forestry 
and fisheries are presented in Sections  14.5.1 and 14.5.4 (also see 
Section 14.6), respectively.

14.5.8.1.2 Transportation

Transportation infrastructure, including roads, bridges, rail, air, sea and 
pipelines, are highly vulnerable to rising temperatures, SLR, weather 
extremes, changing ice conditions, permafrost degradation and flooding 
(high confidence), resulting in damage, disruption to operations, unsafe 
conditions and supply chain impacts (see Box 14.5; Board and Council, 
2008; Natural Resources Conservation Service; Andrey and Palko, 
2017; Jacobs et al., 2018; Lemmen et al., 2021). In the Mexican states 
of Veracruz, Tabasco, San Luis Potosí, Chiapas and Oaxaca, 105,000 
infrastructure sites, mostly major connecting roads, were found to be 

at risk of flooding from tropical storms (De la Peña et al. 2018). Low 
water levels in the Great Lakes has severely impacted US grain transport 
(Attavanich et al., 2013). High-intensity rain events destroyed 1000 km 
of roads and washed out hundreds of bridges and culverts in 2013 
resulting in an estimated 6 billion CAD (considering the 2013 CAD value) 
in damages and recovery costs in Alberta, Canada (Palko and Lemmen, 
2017). In 2019, the rail line from Winnipeg to Churchill Manitoba, which 
is the only ground transportation to the community and to Canada’s only 
deep-water Arctic port, was reopened after being closed for over 2 years 
due to the cumulative effects of flooding, permafrost degradation and 
political challenges (Lin et al., 2020). In the USA, the number of heat-
related train delays has increased (Bruzek et al., 2013; Chinowsky et al., 
2019) and, by the end of the century, may cause economic losses of 25–
45 billion USD (RCP4.5) or 35–60 billion USD (RCP8.5) (Chinowsky et al., 
2019). Sea ice reduction in the North American Arctic has led to a rapid 
increase in ship traffic (Huntington et al., 2015; Phillips, 2016; Pizzolato 
et  al., 2016; Huntington et  al., 2021b; Li et  al., 2021) with cascading 
risks related to invasive species introduction, accident rates, black carbon 
emissions, underwater noise pollution for marine mammals and risks to 
subsistence harvesting activities in Indigenous communities (Ware et al., 
2014; Council of Canadian Academies, 2016; Huntington, 2021; Verna 
et al., 2016; Chan et al., 2019).

14.5.8.1.3 Energy, oil and gas, and mining

Climate change is increasing the demand for electric power for cooling 
and threatens existing power supply (high confidence) (Section 14.5.5). 
Increased energy demand often occurs during peak energy usage and 
especially during heatwaves (Cruz and Krausmann, 2013; Leong and 
Donner, 2015). Cooling represented 74% of peak electricity demand in 
Philadelphia on a particularly hot day in July 2011 (Waite et al., 2017; IEA, 
2018b). In Canada, warming temperatures are expected to reduce demand 
for heating by 18–33% and increase demand for cooling by 14–126% 
by 2070 compared with 1959–1989 and 1998–2014 baseline periods, 
respectively (Berardi and Jafarpur, 2020). The effects on hydropower are 
uneven across the region with the potential for increases in capacity in 
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Figure 14.9 |  Burning ember of the relative risks to select tourism activities in North America with and without adaptation as a function of global mean 
surface temperature increase since pre-industrial times. Risks to tourism activities include: (a) season length reductions from warming temperatures for Nordic skiing and 
snowmobiling, (b) season length reductions from warming temperatures and precipitation changes for alpine skiing, (c) visitor-experience changes as a result of warming surface 
and ocean temperatures for beach tourism and degrading coral reef systems for snorkelling and (d) visitor-experience changes related to warming temperatures and changing 
landscape aesthetic for Parks and Protected Areas. Risks assessed cover all of North America (c,d), or are specific to certain regions (a,b) . The supporting literature and methods 
are provided in Supplementary Material (SM14.4).
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Canada but declines of over 20% in Mexico (RCP4.5 and RCP8.5) (Turner 
et  al., 2017). Electricity demand in the USA is projected to increase by 
5.3% per degree Celsius rise in temperature (Hsiang et al., 2017). Energy 
infrastructure, such as drilling platforms, refineries and pipelines, and 
evacuation routes, are also increasingly vulnerable to higher sea levels, 
hurricanes, storm surges, mobile multi-year sea ice, erosion, inland flooding, 
wildfires and other climate-related changes (Zamuda et al., 2018).

Operational efficiency and human safety at mining and energy production 
sites is expected to be adversely affected by increases in extreme 
events (Section  14.2), including storms, heavy rains, riverine flooding 
and wildfires (high confidence). General remoteness of many mining 
sites (especially in the North American Arctic) exacerbates risks related 
to emergency responses to extreme events such as wildfire (medium 
confidence). The 2016 Fort McMurray wildfire in Alberta, Canada, forced 
the evacuation of 88,000 people and the shutdown of mine operations. 
Damages were minimal because companies had undertaken proactive 
FireSmart interventions specifically developed for the industry (see 
Box  14.1; Council of Canadian Academies, 2019). Onshore oil field 
production in Tabasco, Mexico, which accounts for 16% of the country’s 
daily output, was interrupted by extensive flooding (Cruz and Krausmann, 
2013). Two-thirds of mine operators globally, including major operators 
in North America, have experienced production challenges related to 
water shortages and flooding (Carbon Disclosure Project, 2013). Water 
availability stress due to climate change is lower in Canada than in the 
USA and Mexico, and mines in Canada may be less exposed to this risk 
(World Resourcs Institute, 2012) with some exceptions, that is, water-
intensive oil sands mining in the Athabasca River basin in Canada 
(Section 14.5.3; Leong and Donner, 2016).Warming temperatures also 
have the potential to alter the nature, characteristics and quality of 
mineral resources such as kaolin or limestone (Phillips, 2016).

14.5.8.1.4 Construction

In the USA, construction workers comprise 6% of the total workforce but 
accounted for 36% of all occupational heat-related deaths from 1992 to 
2016 (Dong et al., 2019). It is expected that total labour hours among 
outdoor construction workers will decrease by 0.53% (±0.01%) per 
degree Celsius based on existing warming trends (Hsiang et al., 2017; also 
see EPA, 2017). Risks are expected to be exacerbated as SLR and storm 
surge expands the risk zone for coastal flooding exposing more property 
to inundation and enhancing construction demand (see Box  14.4; 
Section 14.5.5.1.3; EPA, 2017). Meeting existing and projected demand 
for water in affected regions could also require building new desalination 
plants. For example, Texas has constructed over 44 desalination plants 
across the state because of a lack of freshwater to meet potable water 
demand and due to climate-driven droughts (Kloesel et al., 2018b). Other 
infrastructure damaged by floods and SLR will need to be reassessed and 
perhaps relocated away from the coast. Relocation requires availability of 
land that frequently does not exist within urban areas (Lithogow, 2019). 
Some US tribes and Indigenous groups in Canada lack the financial 
resources to build climate-resilient infrastructure, such as housing and 
sewage treatment facilities, to assure clean drinking water (Martínez 
et al., 2014; Salgado and Luisa Martinez, 2017; Lithgow et al., 2019).

Permafrost thaw in northern North America will result in increased 
construction and reconstruction needs (medium confidence) related to 

direct damage to buildings, roads, airport runways and other critical 
infrastructure including decreased bearing capacities of building and 
pipeline foundations, damage to road surfaces, and deterioration 
of reservoirs and impoundments used for wastewater and mine 
tailings containment (Pendakur, 2017; Meredith et  al., 2019). Ice 
roads have become less safe due to warming, pavement damage has 
increased related to seasonal thaw–freeze cycles and there have been 
interruptions in airport operations, water and sewage service, and 
school operations in the Canadian territories of Yukon and Nunavut 
(Canadian Western and Eastern Arctic, i.e., CA-WA and CA-EA in 
Figure 14.1) (Council of Canadian Academies, 2019). By the end of the 
century, the economic impact of projected reconstruction of Alaska’s 
public infrastructure due to climate change (mainly from permafrost 
thaw) is estimated to range from 4.2 billion USD (RCP4.5) to 5.5 billion 
USD (RCP8.5) (Melvin et al., 2017; Markon et al., 2018).

14.5.8.1.5 Manufacturing

Twelve million Americans (Bureau of Labor Statistics, 2015), 1.5 million 
Canadians (Statistics Canada, 2020) and 9 million Mexicans (Statistics 
Mexico, 2021) are employed in manufacturing. The southeast USA and 
Texas have the highest manufacturing output, with 34% of total US output 
(700 billion USD yr–1). The impact of climate change on manufacturing 
varies greatly by region. Vulnerability of the sector to climate change 
stems from exposure of workers to increasing temperatures and humidity, 
exposure of facilities to SLR and flooding, and changes in water supply 
and quality required in many manufacturing processes (Lall et al., 2018).

14.5.8.1.6 Labour Productivity

Climate change is negatively affecting working conditions and labour 
productivity in North America (medium confidence) (Section 14.5.6.1; 
see Box  14.5). Working conditions in temperatures above a heat 
index of 85°F (29.4°C) are correlated with potentially hazardous 
health conditions (Tustin et  al., 2018), and for every degree Celsius 
increase in temperature, labour productivity is estimated to be reduced 
by 0.11% for low-risk workers and 0.53% for high-risk workers (i.e., 
construction, mining, agriculture and manufacturing) (Hsiang et  al., 
2017). By mid-century (RCP8.5), temperature increase, changing water 
availability and SLR are projected to result in a 0.6% drop in labour 
productivity in auto, timber, textile and chemical manufacturing in the 
southeast and Texas regions (Kinniburgh et  al., 2015; Hsiang et  al., 
2017). Labour productivity in the US automobile industry decreases by 
8% for every six or more days of consecutive unusually hot weather 
(above 90°F/32.2°C) (Cachon et al., 2012). Thirty percent of California 
workers are employed in high-risk industries, such as agriculture, with 
exposure to high temperature leading to loss in productivity (Rogers 
et al., 2015). Under RCP8.5 increases in extreme temperatures, labour 
productivity in the USA is projected to decrease, costing 190 billion 
USD in lost wages by 2090 (EPA, 2017; Kjellstrom et al., 2019; also see 
Gubernot et al., 2014; Kiefer et al., 2016; Carter et al., 2018).

14.5.8.2 Current and Potential Adaptation

Adaptation options are highly diverse and sector specific (EPA, 2017). 
Regardless of economic sector, companies that implement effective 
and rapid response options that address climate change stressors 
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will have a competitive advantage (Gasbarro et  al., 2016, Lemmen, 
2021). Most companies focus on short-term risk management and, 
consequently, short-term adaptation is often favoured over long-term 
approaches particularly in the private sector, which will be ineffective 
for climate-change risk reduction over the long term (Gasbarro et al., 
2016).

Investment and coordination of climate services (forecasting) can 
support many economic sectors across North America. In 2017, 15% 
of Standard and Poor’s (S&P, US industry credit rating agency) 500 
companies publicly disclosed an effect on earnings from weather 
events, reflecting a growing trend (Williams et  al., 2018). Existing US 
federal-sponsored planning tools provide guidance to states and to 
plan for SLR and flooding with large threats to commercial sectors (US 
Department of Transportation, 2015). The NOAA Coastal Services Center 
SLR and coastal inundation viewer7, the Army Corps of Engineers Sea 
Level Change Curve simulator, and Climate Central’s interactive portal 
(Ocean at the Door) all provide access to visualisations of future SLR 
that are available to US coastal cities and towns for commercial planning 
purposes. Similar resources are being developed and are available for 
Canada including Canada’s Climate Atlas8.

Adaptation options for transportation and related infrastructure in-
clude engineering and technological solutions, as well as innovative 
policy, planning, management and maintenance approaches (Natural 
Resources Conservation Service, 2008; Jacobs et al., 2018). For north-
ern transportation, new technologies and infrastructure adaptations 
can be employed to facilitate heat extraction (e.g., air convection em-
bankments, heat drains, thermosyphons, high albedo surfacing, gentle 
embankment slopes) (McGregor et al., 2010b; United Nations, 2020) 
Adaptation options for roads include changing pavement mixes to be 
more tolerant to heat or frost heaving, expanding drainage capacity, 

7 See https://coast.noaa.gov/digitalcoast/tools/slr.html

8 See https://climateatlas.ca

9 See https://living-future.org/basics

reducing flood risks, enhancing travel advisories and alerts, elevating 
or relocating new infrastructure where feasible and changing infra-
structure design requirements to include climate-change considera-
tions or to introduce new flood event thresholds (Natural Resources 
Conservation Service, 2008; EPA, 2017; Pendakur, 2017). Railroads are 
testing temperature sensors on rail tracks to provide early warning of 
buckling. Sensors that signal when tracks are approaching dangerous 
temperatures may help to avoid accidents (Hodge et  al., 2014; Chi-
nowsky et al., 2019).

Adapting building codes more uniformly to changing climate conditions, 
such as SLR, storms, winds and wildfires, reduces risk (Olsen, 2015; 
Maxwell et al., 2018b). North America has not, on the whole, adapted 
its building code regulations to consider the dynamic challenges 
of climate change, although some specific efforts have been made, 
including the addition of requirements for wildfire within California’s 
building codes and Canada’s climate-resilient building and core public 
infrastructure initiative, which involves updating building codes and 
standards to improve climate resiliency (see Box 14.4; Lacasse et al., 
2020). To enhance safety, some outdoor workers have been fitted with 
heat sensors to analyse or assess how warming may affect productivity 
and well-being (Runkle et al., 2019). Other options include raising public 
roads and seawalls, initiating buy-outs of property owners in flood risk 
areas and improving storm water drainage. Adopting approaches like 
the International Future Living Institute’s Living Building Challenge 
(LBC) may inform future regulatory processes (Eisenberg, 2016). The 
LBC9 has seven thematic areas that inform building design, although 
only a subset of those are relevant for climate change including water, 
energy and materials considerations.
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Figure 14.10 |  Burning ember of the relative risks to economic sectors in North America as a function of projected global mean surface temperature increase 
since pre-industrial times. Impacts on economic sectors include: (a) changing crop yield leading to economic loss for agriculture, (b) changes in the quality and quantity of timber 
yields, (c) reductions in season length and economic viability for tourism activities, (d) increased maintenance and reconstruction costs to transportation infrastructure, (e) changes 
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or species (a: corn and soybean, e: cod and pollock). The supporting literature and methods are provided in Supplementary Material (SM14.4).
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Box 14.5 | Climate-Change Impacts on Trade Affecting North America

Trade, defined as the sum of exports and imports, accounts for 30% of North American GDP. Trade flows within North America are valued 
at $1.3 trillion USD annually (2019 dollars). Variations within the region are notable: Mexico relies on trade for 80% of its GDP and 
Canada for 66% (World Bank, 2020a). Canada and the USA traded over 55.2 billion USD worth of products related to the agriculture 
industry between 2015 and 2018 (Government of Canada, 2019). Canada, the USA and Mexico have the longest-running trade pacts 
globally and these agreements have played a major role in supporting economic and social development in the region (see (Frankel and 
Rose, 2005; Eaton et al., 2016; World Bank, 2020b); however, recent changes to the North American Free Trade agreement do not clearly 
address climate change (Lucatello, 2019).

Climate risks may create shocks to the trade system by damaging infrastructure and disrupting supply chains in North 
America (medium confidence). Sea level rise, flooding, permafrost thaw, landslides and increased frequency and magnitude of extreme 
weather events are projected to impact transportation infrastructure which will pose challenges to the movement of goods, especially in 
coastal areas (Lantuit et al., 2012; Doré et al., 2016; Hjort et al., 2018; Koks et al., 2019; Lemmen et al., 2021). Maritime ports are at the 
greatest risk from climate hazards (Messner et al., 2013; Slack and Comtois, 2016), followed by roads, rail and airports (Anarde et al., 
2017). Due to the transnational nature of trade, extreme weather disruptions in one region are likely to lead to cascading effects in other 
regions (high confidence) (Lemmen et al., 2021). For example, climate change will have negative impacts for global food and energy 
trade where reductions in crop production and fish stocks in some regions could cause food and fish price spikes elsewhere (Figure 14.10; 
Sections 14.5.4 and 5.11.8; Beaugrand et al., 2015; Lam et al., 2016; IPCC, 2019a).

Climate-change impacts may alter current trade practices and patterns with implications for regional economic development 
in North America, especially in the Arctic (medium confidence). Climate change is causing modal shifts in cargo shipping. For 
example, lower water levels in lakes and rivers (e.g., Mackenzie River, Mississippi River) impact freight transport and may cause a shift 
from marine transport to more GHG-intensive rail, road or air transport (Koetse and Rietveld, 2009; Du et al., 2017; Pendakur, 2017). 
Sea ice change is creating new Arctic marine trade corridors (Melia et al., 2016; Pizzolato et al., 2016; Ng et al., 2018; Bennett et al., 
2020; Mudryk et al., 2021), including shorter and potentially more economical routes such as the Northwest Passages (see Box CCP6.1). 
Warming temperatures have also reduced the season length for ice roads, which are heavily relied upon to service remote communities 
and remote industries including forestry and mining (Section 14.5.8.1.2; Pendakur, 2017).

Effective and equitable trade policies can act as important adaptation strategies (medium confidence). Higher temperatures 
have had no direct effect on developed countries’ exports, but have significantly reduced growth in exports among developing countries, 
which in turn can increase the price of goods that developed countries then import (Costinot et al., 2016; Constant and Davin, 2019). 
Schenker (2013) estimated that the climate impacts on trade from developing to developed countries could be responsible for 16.4% 
of the total expected cost of climate change in the USA in 2100 and, thus, North America would benefit from increased investment in 
effective and equitable trade policies and adaptation in developing regions. Under an RCP8.5 scenario (~2.6–4.8°C warming) and within 
current trade integration, climate change could lead to up to 55 million undernourished people by 2050. These projections decrease 
by 64% (20 million people) with the introduction of reduced trade tariffs and the lessening of institutional and infrastructure barriers 
(Janssens et al., 2020). Although most studies focus on global food security (i.e., agriculture), it is likely that the same challenges exist for 
other commodities and manufactured goods.

14.5.9 Livelihoods

Exposure and vulnerability to climate hazards have varied across North 
America by region and population (high confidence). These differences 
have been often underpinned by social and economic inequalities and 
have been observed between households, social groups, rural and 
urban communities, and Indigenous Peoples (high confidence). These 
vulnerabilities have also been observed to contribute to maladaptation 
(medium confidence) (Section 14.5.9.1). Social and economic trends 
and development will determine near-term impacts on livelihoods from 
projected climate hazards; livelihoods will also adapt to the risks and 
opportunities (high confidence) (Section 14.5.9.2). Actions to enhance 
the livelihoods of the most vulnerable social groups in North America 
will lessen the impacts of climate hazards on them (high confidence) 
(Section 14.5.9.3).

14.5.9.1 Observed Impacts

Livelihoods are ‘the resources used and the activities undertaken in 
order to live. Livelihoods are usually determined by the entitlements and 
assets to which people have access’ (Section 8.1.1; IPCC, 2018). While 
often understood as subsistence or traditional ways of life (Oswal, 1991), 
livelihoods are often conceptualised more broadly as encompassing 
the economic, cultural, and social capitals or assets, capabilities, and 
activities that individuals, households and social groups use as the 
means to make a living (DFID, 1999; Obrist et al., 2010).

Past and current patterns of development in North America have 
propagated and perpetuated vulnerabilities that have created 
differential impacts on livelihoods from climate hazards (high 
confidence). Predatory and extractive economies have underpinned 
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Box 14.6 | The Costs and Economic Consequences of Climate Change in North America

Observed Impacts
Extreme weather events, including hurricanes, droughts and flooding, and wildfires, have been partly attributed to anthropogenic climate 
change (high confidence) (Table SM 16.21; e.g., Rupp et al., 2015; Emanuel, 2017). Direct, indirect and non-market economic damages 
from extreme events have increased in some parts of North America (high confidence). The number of extreme events with inflation-
adjusted damages totalling more than 1 billion USD has risen in the USA over the past decades (NOAA, 2020; Smith, 2020), and similar 
increases have been observed in Canada (Boyd and Markandya, 2021). Factors other than climate change, including increases in exposure 
and the value of the assets at risk, also explain increasing damage amounts (Freeman and Ashley, 2017; Vano et al., 2018). Climate 
change explains a portion of long-term increases in economic damages of hurricanes (limited evidence, low agreement). Studies of US 
hurricanes since 1900 have found increasing economic losses that are consistent with an influence from climate change (Estrada et al., 
2015; Grinsted et al., 2019), although another study found no increase (Weinkle et al., 2018).

Formal attribution of economic damages from individual extreme events to anthropogenic climate change has been limited, but climate 
change could account for a substantial fraction of the damages (limited evidence, medium agreement). Two recent studies have shown 
approaches for how damages may be attributed for individual events in the USA. Assuming a direct proportionality between attributable 
risk of the event to the attributable economic damages, one study suggested that 30–75% of the direct damages from Hurricane Harvey 
was caused by climate change, with a best estimate of 67 billion USD out of an estimated 90 billion USD total of attributable damages 
(Frame et al., 2020). Another study modelled the component of the flooding from Hurricane Sandy due to rising SLR and mapped that to 
coastal damages. That study estimated that 8.1 billion USD (13% of the total) was attributable to the climate influence on SLR (Strauss 
et al., 2021).

The effect of climate change has been identified in aggregate measures of economic performance, such as GDP, in North America and 
globally (medium confidence), although the magnitude of these changes is difficult to constrain (medium confidence). Climate change 
has been observed to affect national GDP level and economic growth (low confidence). The extent to which climate has affected GDP 
may be challenging to identify statistically (Cross-Working Group Box ECONOMIC in Chapter 16). Observed GDP effects are generally 
slightly negative in the USA, higher and negative for Mexico, and the directionality of the effects in Canada varies by study and modelling 
approach (Burke et al., 2015; Colacito et al., 2018; Kahn et al., 2019).

Projected Risks
Projections of market and non-market economic damages demonstrate the substantial economic risks of climate impacts associated 
with high-temperature pathways (RCP8.5) (high confidence). Since AR5, a wide range of estimates of the costs of climate change have 
been developed for the USA (EPA, 2015a; Houser et  al., 2015; EPA, 2017; Hsiang et  al., 2017; Martinich and Crimmins, 2019), with 
ongoing processes to update national estimates for Canada and Mexico (Semarnat, 2009; NRTEE, 2011; Estrada et al., 2013; Sawyer 
et al., 2020). While the magnitudes of the estimates depend on approach and assumptions in the methods and expectations of future 
socioeconomic conditions, these studies show substantial projected economic damages across North America by the end of the century, 
especially for warming greater than 4°C (high evidence, high agreement). Whether these damages translate into GDP effects is not clear for 
Canada. Some modelling approaches show modest GDP increases in 2050 and 2100, while others suggest modest decreases although it 
is anticipated that the economic effects for Canada will be large and negative (Boyd and Markandya, 2021). Large costs and risks, such as 
those associated with extreme events such as wildfires (Hope et al., 2016) and the increased need for infrastructure replacement (Neumann 
et al., 2015; Maxwell et al., 2018a), will have compounding effects in the markets by disrupting economic activities (see Box 14.5).

Market and non-market risks and costs will not be experienced equally across countries, sectors and regions in North America (high 
confidence). For the USA, energy expenditures and improvements in agricultural yields are projected to result in net gains in the north 
and Pacific Northwest whereas in the south, higher heat-related mortality, increases in energy expenditures, SLR and storm surge are 
projected to result in economic losses by the end of century (Hsiang et al., 2017). No region in the USA is expected to avoid some level of 
adverse effects (medium evidence, high agreement) (EPA, 2017; Martinich and Crimmins, 2019). Economic models generally show losses 
in the agricultural sector across North America, especially at higher GWL (Boyd and Markandya, 2021; EPA 2017). Some models show 
large gains in parts of Canada, although these models do not capture the full range of climate hazards including change in precipitation 
or extreme events (Boyd and Markandya, 2021).

Economics of Adaptation Opportunities
Economic analysis can help reveal where the avoided economic damages are greater than the costs of adaptation, improving decision 
making for adaptation planning and efforts in North America (high confidence). Detailed assessment of total needs and costs of climate 
adaptation are limited (Sussman et al., 2014), but estimates suggest that the costs are large (low evidence, high agreement). Cost–benefit 
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economic activity in North America historically and currently. While 
generating substantial wealth, these patterns have also driven social 
and economic inequality (medium evidence, high agreement) (Jasanof, 
2010; Shove, 2010; Klinsky et  al., 2016; Robinson and Shine, 2018). 
Patterns of development that reinforce these structures remain a large 
contributor to current social–environmental risks and have affected all 
kinds of contemporary livelihoods (Chapter 18; Cannon and Müller-
Mahn, 2010; Koch et al., 2019).

Climate impacts have damaged livelihoods across North America, 
especially those of marginalised people (high confidence) and 
deepened inequalities for these groups (medium confidence). Across 
North America, climate change has affected livelihoods with larger 
effects on individuals, households and communities that are already 
more vulnerable due to a range of pre-existing social and environmental 
stressors (Olsson et al., 2014; Hickel, 2017; Koch et al., 2019) such as 
Indigenous Peoples, urban ethnic minorities and immigrants (Guyot 
et al., 2006; Gronlund, 2014; Klinenberg, 2015). These impacts have 
also contributed to a deepening of inequalities for marginalised groups 
(medium evidence, high agreement) (Audefroy and Cabrera Sánchez, 
2017; García et  al., 2018). As climate hazards further degrade their 
livelihoods, these groups have faced additional challenges to avoiding 
or escaping poverty (Ruiz Meza, 2014). Furthermore, these groups 
have needed to use their more limited resources to manage present 
challenges, restricting their future capacities to adapt (Tolentino-
Arévalo et al., 2019). Climate impacts have also affected the livelihoods 
of the middle classes (Domínguez et al., 2020) who have become more 
vulnerable due to changes in their social and economic security (Garza-
Lopez et al., 2018). Gender has also been recognised as a determinant 
of differential vulnerability with implications for women’s livelihoods 
(Cross-Chapter Box GENDER in Chapter 18).

Migration and mobility have been an important part of livelihoods in 
North America (high confidence). Movement across North America has 
been reinforced by social, cultural and economic ties (see Box 14.5). 
For example, middle class retirees from Canada and the USA engage 

from temporary, seasonal to permanent migration to the warmer 
climates of the southern USA and Mexico, often benefiting from the 
lower cost of living (Domínguez et  al., 2018). Temporary or semi-
permanent labour migration, generally followed by remittances, has 
been an important part of livelihoods for rural areas in Mexico (high 
confidence) and has been employed as a response to climate hazards 
(low evidence). Drought in rural areas which are highly dependent on 
subsistence agriculture have observed migration to urban areas in 
Mexico (Nawrotzki et al., 2017). Evidence of international migration 
in response to climate hazards is sparse with difficulties in identifying 
a climate signal due to the multi-causal nature of migration decision 
making (Cross-Chapter Box MIGRATE in Chapter 7). There is limited 
evidence of extreme weather events or climate hazards on migration 
from Mexico to the USA (Nawrotzki et  al., 2015b; Nawrotzki et  al., 
2015c; Nawrotzki et al., 2016; Murray-Tortarolo and Salgado, 2021).

Pre-existing social vulnerabilities have also led to forced displacement 
from extreme weather events (low confidence). In the USA, 
compounding effects of SLR and storm surge interacted with pre-
existing social vulnerabilities of local communities to generate large-
scale displacement after the effects of Hurricane Katrina on New Orleans 
in 2005 (Jessoe et al., 2018). The processes of relocation and recovery in 
New Orleans was further shaped by vulnerability where out-migration 
was more likely to be minorities and economically disadvantaged, 
while the recovery was predominantly in neighbourhoods that were 
wealthier prior to the disaster (Fussell et al., 2014; Fussell, 2015). Newer 
evidence from Hurricane Maria in Puerto Rico in 2017 has shown an 
initial spike in displacement with slower recovery with more vulnerable 
communities returning at higher rates (DeWaard et al., 2020); however, 
overall out-migration trends have been consistent with long-term 
economic migration (Santos-Lozada et  al., 2020). Interactions of 
slower onset climate hazards with displacement, such as observed 
in Shishmaref, Alaska, have revealed the challenges in attribution of 
migration to climate as it intersects with socioeconomic conditions and 
lived experiences (Marino and Lazrus, 2015).

and other economic analyses that incorporate damage estimates are expanding for adaptation decision making (Li et al., 2014), especially 
for technical options in areas with high exposure such as coastal areas in Mexico (Haer et al., 2018) and Alaskan infrastructure (Melvin 
et al., 2017). Cost–benefit analysis has also been applied to coordinating planning across jurisdictions in North America for SLR and flood 
control (Adeel et al., 2020). Adaptation costs in the USA are lower on RCP4.5 compared with RCP8.5 emission pathways (Martinich and 
Crimmins, 2019). Adaptation, however, cannot be based solely on the cost–benefit analysis due to the high level of uncertainty related to 
climate risks (Cross-Chapter Box DEEP in Chapter 17).

Improving projections of future economic risk and damages facilitates the development of tools that can be used for economic analysis of 
climate policies (high confidence). Monetised estimates of the damages from climate change have been developed and refined since AR5, 
motivated in part by efforts to estimate the Social Cost of Carbon (SCC) (National Academies of Sciences, 2017). Support for these efforts 
and the use of SCC in regulatory analysis of mitigation and adaptation efforts have been pledged across the national and subnational 
governments of Canada, the USA and Mexico. Harmonising SCC and consistent use can further enhance coordination of mitigation and 
adaptation decision making (Auffhammer, 2018; Aldy et al., 2021). Using these damages estimates can also inform other policy and 
tools that improve the consideration of climate impacts in markets and decision making (Report of the Climate-Related Market Risk 
Subcommittee, 2020).

Box 14.6 (continued)

https://doi.org/10.1017/9781009325844.016
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 09 Jul 2024 at 02:37:57, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.016
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


14

1980

Chapter 14 North America

Maladaptation has also been occurring in livelihoods, especially as it 
relates to agricultural practices that are less resilient to climate hazards and 
competition for land use (limited evidence, high agreement). Focusing on 
examples in Mexico (see Section 14.5.4.3 for US and Canada examples), 
for some Mexican Indigenous Peoples, the replacement of ancestral 
farming practices with technological adaptations like transgenic crops 
has reduced their resilience by making them more dependent on external 
inputs and more expensive supplies while increasing putting their health 
at risk with herbicide and insecticide use (Mercer et al., 2012). Existing 
power structures have also interacted with climate hazards to generate 
maladaptive outcomes (Quintana, 2013). Mennonite communities in 
the northern state of Chihuahua, Mexico, have pursued commercial 
agricultural markets that lead them to shift to transgenic crops and to 
overexploit local groundwater resources in a region experiencing multi-
year droughts. These actions have led to conflict with other local farming 
groups with less economic capital to access groundwater (Quintana, 
2013). Climate mitigation measures may also have adverse effects on 
local livelihoods with implications for adaptive capacity. The Reducing 
Emissions from Deforestation and Forest Degradation in Developing 
Countries (REDD+) mitigation programme has been highlighted as a 
trade-off between an international/national carbon mitigation strategy 
and the ability of some Mexican rural communities to improve their food 
security (Section 5.6.3.3; Barbier, 2014).

14.5.9.2 Projected Risks

Livelihoods will evolve as a result of both challenges presented directly 
or indirectly from climate impacts as well as socioeconomic changes 
and technological developments (high confidence). Livelihoods, 
however, can be undermined by many of the projected climate risks 
with the impacts depending on adaptive capacity and adaptation 
limits (high confidence) (Section  8.4.5.1). Real areas in Mexico and 
the southern USA with agriculture-based livelihoods and projected 
reduction in precipitation will be adversely affected (Section 14.5.4; 
Esperon-Rodriguez et al., 2016). Outdoor workers in rural and urban 
areas will be exposed to higher health risks from higher temperatures 
and heatwaves (Section  14.5.8). Reduced livelihoods will also be 
associated with adverse mental health effects (Section 14.5.6.8).

Future climate hazards will deepen patterns of social inequality as 
vulnerable groups may also experience intersecting impacts that 
adversely affect their livelihoods (medium confidence). Health, in 
particular, will be a key intersection as marginalised and disadvantaged 
groups often have poorer health status and hold occupations that 
may involve higher exposure to climate hazards. African Americans 
are expected to experience the largest impacts on their health status 
due to differential exposure and vulnerability to climate hazards 
(Section 14.5.6; Marsha et al., 2016).

Displacement, migration and resettlement will increase along higher-
emission pathways (medium confidence). Combining projections of 
SLR and population scenarios for the USA, Haer et al. (2013) and Hauer 
et al. (2016) have estimated the magnitude of the population at risk 
in coastal communities, numbering in the millions. In the near term, 
where climate hazards influence out-migration, it will mostly augment 
existing patterns as migration is strongly influenced by existing social 
networks (Section  7.3.2). Planned relocation and resettlements will 

reduce the exposure to climate hazards for the involved populations 
but could adversely affect their livelihoods in the absence of supportive 
programmes (Section 7.3.2; Jantarasami et al., 2018a), since livelihood 
outcomes strongly depend on socioeconomic conditions.

14.5.9.3 Adaptation

Climate hazards undermine adaptation by damaging livelihoods 
(high confidence). Many actions that enhance and promote resilient 
livelihoods can have substantial benefit for adaptation to climate 
hazards (medium confidence). Livelihoods in the context of climate 
change are characterised by adjustments that then feed back into 
the assets that comprise a livelihood. Social capital–in the form of 
household and community cohesion–facilitates the development of 
adaptation strategies to the impacts of climate change in rural and 
urban communities at the household level and for small groups (Barbier, 
2014; Nawrotzki et al., 2015b; Nawrotzki et al., 2015c). Cultural capital, 
especially in the form of Indigenous knowledge and local knowledge, 
can guide adaptation practices in North America (Akpinar Ferrand and 
Cecunjanin, 2014), preserving Indigenous cultures and enhancing future 
adaptation and resilience (see Box 14.1; Pearce et al., 2012; Audefroy 
and Cabrera Sánchez, 2017). In Mexico, rainwater harvesting (practised 
by some Mayan communities) and the use of local–traditional varieties 
of maize have assisted in the adaptation to climate impacts and 
promoted food security (Akpinar Ferrand and Cecunjanin, 2014; Hellin 
et al., 2014). Funding and support for these social adaptation strategies 
have been uneven (Barbier, 2014; Romeo-Lankao et al., 2014). The legacy 
of colonialism and historical patterns of development will continue to 
shape the adaptation responses and resiliency of Indigenous Peoples 
(Todd, 2015; Davis and Todd, 2017; Whyte, 2017; Cameron et al., 2019).

Migration is a common adaptation strategy to maintain and diversify 
people’s livelihoods and will continue to play an important role 
when households manage climate and social risks (high confidence) 
(Section 7.4.3). In the near term, actions that enhance in situ adaptive 
capacities as well as foster safe and orderly migration can result in 
synergies for both adaptation and development (Cross-Chapter 
Box MIGRATE in Chapter 7). Populations that experience less mobility 
or cannot engage in voluntary migration as an adaptation may need 
additional support to adapt to climate hazards, for example, northern 
communities that are at risk of climatic events (Hamilton et al., 2016). 
Policies associated with the transition from high-GHG intensive 
extractive industries, sometimes referred to as ‘just transitions’, may 
also support in situ livelihoods if they also aim to address and redress 
existing inequalities to reduce vulnerabilities (McCauley, 2018); 
however, these policies could result in maladaptation if they create 
new inequalities or generate other environmental damages.

14.5.10 Violence, Crime and Security

Elevated rates of various types of crime have been associated with 
higher temperatures in the USA and Mexico (medium confidence 
based on limited evidence and high agreement) (Section 14.5.10.1). 
If social relationships prevailing now and in the recent past continue, 
projections show future crime rates in the USA and Mexico increasing 
with increasing temperatures (low confidence) (Section  14.5.10.2). 
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Degradation of human security and conflicts exacerbated by climate 
change–even outside of North America–will increase the demand 
for humanitarian assistance, foreign aid and resettlement (medium 
confidence) (Section 14.5.10.2).

14.5.10.1 Observed Impacts

14.5.10.1.1 Violence and crime in the past and present

Crime, including violent crime, has been associated with higher 
temperatures in the USA (medium confidence). Studies of crime 
statistics in the USA have revealed a relationship between temperature 
and a range of violent crimes including aggravated assaults, rapes and 
homicides; effects for property crimes are weaker (limited evidence, 
medium agreement) (Ranson, 2014; Houser et  al., 2015; Heilmann 
and Kahn, 2019; Mares and Moffett, 2019). These effects have been 
observed in US urban centres (Hsiang et al., 2013; Mares, 2013; Ranson, 
2014; Schinasi and Hamra, 2017; Heilmann and Kahn, 2019) and more 
generally across the USA (Mares and Moffett, 2019). Differential effects 
have also been observed within urban areas. Observed higher rates 
of domestic and intimate partner violence during periods of high heat 
in less affluent neighbours in Los Angeles have been associated with 
disparities in access to air conditioning and greenery (Heilmann et al., 
2021). By contrast, Lynch et al. (2020a) found no significant correlation 
between annual homicide rate and annual temperature for New York City 
(Lynch et al., 2020b). For Mexico, Burke et al. (2018a) found temperature 
linkages with intergroup killings by drug-trafficking organisations, 
homicides and suicides. No linkages between temperature and crime 
have been reported for Canada. Differences in spatial and temporal 
aggregation of the crime statistics as well as in the measure of climate 
change or variability explain some of the differences between studies. 
Several causal pathways can explain these relationships (Miles-Novelo 
and Anderson, 2019; Lynch et al., 2020b). The dominant theory is that 
weather changes result in changes in behavioural patterns that lead to 
more opportunities for crimes. For example, studies that disaggregate 
by month often report significant positive associations between 
temperature anomalies and violent crime (especially aggravated 
assaults, rapes and homicides), particularly in the cold season (Harp 
and Karnauskas, 2018; Mares and Moffett, 2019). Smaller increases in 
crime during positive warm-season temperature anomalies may be due 
to people seeking shelter in cooler indoor spaces, decreasing crimes of 
opportunity (Section 7.2.7; Gamble and Hess, 2012).

The archaeological record has been used to infer linkages be-
tween climatic variability and social process, including violence 
(inferred with medium confidence). Past North American societies 
have been exposed to greater climatic variability than is documented 
in the instrumental record. Because future climatic conditions are likely 
to exceed those known for the recent past (Cross-Chapter Box PALEO 
in Chapter 1), the North American archaeological record can illuminate 
possible relationships between climate variability and violence that 
cannot be observed in the present record. In the upland southwest 
US between 600 and 1280 CE, one study found that violence signifi-
cantly increased as climatically controlled maize production decreased 
and interannual variability increased (low evidence, high agreement) 
(Kohler et al., 2014); massive emigration from the northern Southwest 
in the last half of the 1200s CE is connected with, though not com-

pletely explained by, climatic variability (Scheffer et al., 2021). In the 
central and southern Maya lowlands, following centuries of increasing 
populations and attempts to produce more maize (Roman et al., 2018), 
episodes of drought and/or increased summer temperatures in the 9th 
and 10th centuries (Dunning et al., 2012; Kennett et al., 2012) accom-
panied increased conflicts and social disintegration including collapse 
of long-lived dynasties, cessation of monumental inscriptions (Carleton 
et al., 2017) and emigration (medium evidence, medium agreement). 
Such findings reinforce research on contemporary societies that cli-
mate-induced farming shortfalls in regions dependent on agriculture 
may induce or exacerbate conflict, especially in interaction with un-
favourable demographic, political and socioeconomic factors (medium 
evidence, medium agreement) (Section 7.2.7; e.g., Koubi, 2019).

14.5.10.1.2 Security

Climate change poses risks to peace (Section 16.5.2.3.8) that 
could affect North America (medium confidence). Military and 
security communities are adapting their planning, operations and 
infrastructure to current impacts of climate change in North America 
and globally (medium agreement, medium evidence). Arctic nations 
are renewing their military capacity and expanding their constabulary 
presence around their existing boundaries (Choi, 2020). There is 
increasing awareness that climate change causes weather patterns 
and extreme events that directly harm military installations and 
readiness through infrastructure damage, loss of utilities, and loss of 
operational capability (Duffy-Anderson et  al., 2019). Transboundary 
disputes and competition over resources, such as fish (Østhagen, 
2020), are a concern in the changing Arctic and increases in military 
and constabulary operations are being observed (Jönsson et al., 2012; 
Smith et al., 2018; Eyzaguirre et al., 2021).

14.5.10.2 Projected Risks

14.5.10.2.1 Violence and crime

Projections of future crime derived from the empirical relation-
ships between temperature and crime in the USA show the 
potential for increased criminality under RCP8.5 compared with 
RCP4.5 (low confidence). For RCP8.5, holding all socioeconomic 
conditions at 2015 levels, violent crime could increase 0.6–2.1% by 
mid-century and 1.9–4.5% by late century (Houser et al., 2015). The 
rise in property crime is projected to be smaller as property crime 
flattens at higher temperatures (Hsiang et al., 2013). Using relation-
ships between crime and monthly temperatures established for five 
US regions by Harp and Karnauskas (2018), Harp and Karnauskas 
(2020) project 18,800 additional violent crimes annually beyond 2014 
levels by the end of the 21st century under 1.5°C warming, rising to 
48,200 under 4°C warming. Aggregating data by states weighted by 
population density, Mares and Moffett (2019) project an average an-
nual increase of 0.94% across seven categories of violent and prop-
erty crime for each anomalous degree Celsius of warming (an average 
annual increase of about 100,000 crimes). Changing socioeconomic 
conditions in the future may either reduce or exacerbate the projected 
contemporaneous relationship between temperature anomalies and 
crime (Agnew, 2011; Lynch et al., 2020b), whereas adaptation could 
weaken these relationships.
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14.5.10.2.2 Defence and security

Climate change will affect ecosystems (Section 16.5.2.3), living 
standards (Section  16.5.2.3.4), health (Section  16.5.2.3.5) and 
food security (Section  16.5.2.3.6) globally, and these changes 
may exacerbate violence and political instability (medium 
confidence) with implications for national security in North 
America (medium confidence). Climate variability, hazards and trends, 
to date, have played a role in exacerbating conflict, but the influence of 
climate appears to be minor and more uncertain than the roles of low 
socioeconomic development, low state capability and high intergroup 
inequality (Mach et  al., 2019). More profound impacts from climate 
change on weather and seasons, as well as changing socioeconomic 
conditions, could lead to patterns of violence that cannot be predicted 
by projecting relationships between current climate and violence into 
the future (Section 14.6.3; Mach et al., 2019). If global levels of violence 
increase, there will be increased demand for international efforts, 
including disaster aid and humanitarian efforts (Eyzaguirre et al., 2021). 
Climate change and geopolitical goals interact in the Arctic (Smith et al., 
2018). New transportation corridors and the potential access to natural 
resources could lead to competition for access to and control over the 
region (Section CCP6.2.6; see Box CCP6.1; FAQ CCP6.2; Estrada, 2021). 
Governance structures exist to manage geopolitical manoeuvring and 
to protect the human security of Arctic populations (Sections 14.5.10.3, 
7.2.7.1).

14.5.10.3 Adaptation Options

14.5.10.3.1 Violence and crime

Co-benefits from adaptation options include improving the live-
ability of, and quality of life in, cities, reducing socioeconomic 
vulnerability and exposure to locally higher temperatures (me-
dium confidence). Urban settings in the USA have disproportionately 
higher exposure to urban heat island effects in low-income and mi-
nority neighbourhoods in US cities (Section 14.5.5.1). Co-benefits from 
adaptation responses in the urban landscape can reduce socioeconomic 
vulnerabilities and exposure to higher temperatures (Section 14.5.5.3). 
Evaluation of adaptation efforts to reduce crime rates that have been 
associated with temperature are limited. In Los Angeles, a link has been 
inferred between violence and older buildings that may lack air con-
ditioning (Heilmann et al., 2021). By contrast, access to air conditioning 
did not appear to lessen crime rates in Mexico (Baysan et al., 2019).

14.5.10.3.2 Defence and security

Existing environmental and international agreements that 
consider climate risks can contribute to cooperation (medium 
confidence). Strengthening and empowering existing environmental 
and diplomatic avenues (e.g., the Arctic Council and international 
agreements such as the United Nations Convention on the Law of the 
Sea, and various subnational actors and agreements) (Section CCP6.3.2) 
to incorporate risks from climate impacts could enhance cooperative 
avenues for defusing conflict (Huebert et  al., 2012). Improving the 
consideration of climate risks in efforts to expand economies and trade 
(see Box  14.5), and improvements in peacekeeping (Section  7.4.4; 
Barnett, 2018) could also reduce future conflict risks.

14.6 Key Risks

Ten key risks from climate change were identified for North American 
based on definitions and assessment approaches outlined in Chapter 
16, which were extended to include the development of a risk database 
and analysis that included expert evaluation of interactions between 
climate hazards and sectors (Figure 14.11; SM14.3).

14.6.1 Key Risks of Climate Change for North America

In North America, divergent perceptions regarding the attribution 
and implications of climate change pose a key risk to adaptation 
mainstreaming (KR1). This lack of adequate adaptation in turn amplifies 
threats to human life and safety from intensifying extreme events, fires 
and storms (KR2). Climate change hazards pose risks to economic and 
social well-being (KR3), marine social–ecological systems (KR4), unique 
terrestrial ecosystems and their services (KR5), freshwater services 
(KR6), physical and mental health (KR7), food and nutritional security 
(KR8), and commerce and trade (KR9). Cumulatively, these risks interact 
to imperil the quality of life for North American communities, cities and 
towns (KR10).

14.6.2 Key Risks Across Sectors in North America

KR1: In the public and policy domains, divergent perceptions of 
anthropogenic climate change which pose a risk of inaction on 
adaptation efforts to reduce exposure and socioeconomic vulnerability

Complex factors, including individual beliefs, ideology, world view, par-
tisan identity as well as societal context, influence how the public, as 
well as professional groups, communities and policymakers, perceive 
and understand climate change (high confidence) (Sections  14.3.3, 
14.3.4). While there is expert scientific consensus on anthropogenic 
climate change, rhetoric, misinformation and politicisation of science 
have contributed to misperceptions (high confidence), polarisation on 
the severity of impacts and risks to society, indecision and delayed ac-
tion (high confidence) (Section 14.3.1). In North America, this impedes 
adaptation efforts (Section 14.3.4) and inflates climate risks (high con-
fidence).

KR2: Risk to life, safety and property from intensifying extreme events

Human life and safety across North America, and especially along the 
coasts of Mexico, the Hawaiian Islands, Gulf of Mexico, Atlantic Canada 
and southeast USA, will be placed at risk from SLR and severe storms and 
hurricanes, even at 1.5°C GWL (very high confidence) (Sections 14.5.2, 
14.5.5; see Box  14.4). Warming, heatwaves and increases in wildfire 
activity in many regions of North America pose risks to air quality, 
health, lives and property (see Box 14.2). More extreme precipitation and 
flooding pose a risk to human morbidity, mortality and safety in fluvial 
flood zones and areas downstream of levees, dams and flood culverts. 
The increasing intensity of storm events poses a risk of landslides, erosion 
and flooding in shoreline and urban communities, especially high-bank 
areas along exposed coasts, in Arctic and temperate areas where winter 
sea ice has diminished and in low-lying coastal areas where SLR and 
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Rapid assessment of relative risk by sector and climate hazard for North America
based on an assessment of asset-specific vulnerability and exposure across climate hazards 
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Figure 14.11 |  Rapid assessment of relative risk by sector (y-axis) and climate hazard (x-axis) for North America based on an assessment of asset-specific 
vulnerability and exposure across climate hazards (see SM14.3 for methodological details). For each unique combination, the hazard-by-sector risk was ranked as 
very high (very high risk and high confidence), high (significant impacts and risk, high to medium confidence), medium (impacts are detectable and attributable to climate change, 
medium confidence), low or not detected (risk is low or not detectable). Blank cells are those where the assessment was not applicable or not conducted. Risks identified through 
the rapid assessment were further evaluated in the chapter assessments (see corresponding sector text for full assessment of risk and impacts).
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storm surge often overwhelm existing natural coastal features and 
engineered structures (Section 14.5.5; see Box 14.4).

KR3: Cumulative damages from climate hazards which pose a 
substantial risk to economic well-being and shared prosperity

Climate-change impacts are projected to cause large market and non-
market damages (high confidence). By end of century under higher GWL 
scenarios (>4°C), these damages are expected to reach several tens of 
billions of USD annually in Canada and hundreds of billions annually 
in the USA. Losses in labour productivity and wages, and damages 
to coastal properties, will be especially large; however, all sectors in 
the USA and most sectors in Canada are projected to see substantial 
relative damages on high-emission pathways by mid- to end of century 
compared with lower-emission pathways. Economic sectors with hard 
limits to adaptation (i.e., winter tourism) or that are highly affected by 
climate variability (i.e., agriculture and fisheries) will be at more risk 
at lower temperatures than other economic sectors (Sections 14.5.7, 
14.5.8). Strategic implementation of adaptation strategies coupled 
with lower-emissions scenarios result in multi-billion-dollar reductions 
in economic damages (Section 14.5.8; see Box 14.6).

KR4: Risk of degradation of marine and coastal ecosystems, including 
loss of biodiversity, function and related services with cascading 
effects for communities and livelihoods

Ocean warming will increase the frequency and intensity of MHWs 
(see Box  14.3), accelerate unprecedented rates of sea ice loss, and 
alter ocean circulation, chemistry and nutrient cycling in ways that 
profoundly impact marine productivity, biodiversity and food webs 
(very high confidence) (Section  14.5.2). Collectively these impacts 
pose a risk to nearshore ecological and human systems (high 
confidence), increasing the probability of phenological mismatches, 
large-scale redistribution of species, and species population declines 
(Section  14.5.4) with cascading impacts that strain cultural and 
economic systems reliant on marine productivity across North America 
(high confidence). Nearshore areas of Chesapeake Bay (USA) and 
Akimiski Island, mid-western James Bay and the coasts in the Pacific 
ranging from the Gulf of Alaska through Baja Peninsula, have a high 
proportion of species near their upper thermal limit, and are areas that 
are particularly susceptible to climate-change risk.

KR5: Risk to major terrestrial ecosystems leading to disruptions of 
species, ecosystems and their services

Major risks to terrestrial ecosystems across North America, such as 
semiarid landscapes, rangelands, boreal and temperate forests, and 
Arctic tundra, include significant ecosystem transformations and shifts 
in species abundances and ranges, and major vegetation types (e.g., 
transitions from forests to grasslands), with cascading implications 
for regional biodiversity (very high confidence). Warming increases 
the risk of permafrost thaw with propagating impacts on species 
and communities in the Canadian and US Arctic (high confidence) 
(CCP6). 6Forest disturbances, including wildfire, drought, insects 
and pathogens, are expected to increase with warming, acting 
synergistically to raise the prevalence of tree mortality and ecosystem 
transformation (medium confidence) (Section 14.5.1). These changes 

will reduce services provided by terrestrial ecosystems, including 
timber yields and carbon sequestration (medium confidence).

KR6: Risk to freshwater resources with consequences for ecosystems, 
reduced surface water availability for irrigated agriculture and other 
human uses

Droughts and earlier snowmelt runoff will increase water scarcity 
during the summer peak water demand period especially in regions 
with extensive irrigated agriculture, leading to economic losses and 
increased pressures on groundwater as a substitute for diminished 
surface water supplies (medium to high confidence) (Section 14.5.3). 
Streams in North America are expected to continue to warm, with 
important ramifications for aquatic ecosystems (high confidence), 
reducing habitat for salmon and trout species that are economically 
and culturally important (Section 14.5.1). Warming and drying coupled 
with other stressors (e.g., pollutants, nutrients and invasive species) 
pose a risk to ecosystem structure and function in lakes, streams 
and reservoirs across many parts of North America (high confidence) 
(Sections  14.5.1, 14.5.3). Warming increases in heavy rainfall and 
nutrient loading pose risks for water quality and HABs (medium to 
high confidence) (Section 14.5.3).

KR7: Risk to human health and well-being, including mental health

Heat-related human mortality is projected to increase in North America 
as a result of climate change and ageing populations, poverty, chronic 
diseases and inadequate public health systems (very high confidence) 
(Section 14.5.6.1). Gradual changes to temperature and precipitation 
are impacting urban ecosystems and creating ecosystem regime 
changes resulting in the poleward expansion among insects that 
bring risks related to vector-borne diseases such as West Nile virus 
and Lyme disease (high confidence) (Section 14.5.6). Climate change 
is expected to lead to wide-ranging mental health challenges related 
to an increase in the psychological burdens of climate change (high 
confidence), particularly for individuals with existing mental health 
conditions, who live in severely impacted areas or who are reliant 
on climate for livelihoods and cultural well-being (e.g., Indigenous 
Peoples and farmers) (Section 14.5.6.8).

KR8: Risk to food and nutritional security through changes in 
agriculture, livestock, hunting, fisheries and aquaculture productivity 
and access

Cascading and interacting impacts of climate change threatens food 
systems as well as food and nutritional security for many North 
Americans, especially those already experiencing food and nutritional 
scarcity, women and children with high nutritional needs and 
Indigenous Peoples reliant on subsistence resources (high confidence) 
(Section 14.5.6). In agricultural regions experiencing aridification and 
where water scarcity precludes substantial expansion of irrigation, 
warming and extreme heat pose a risk to food and forage crop 
and livestock production (high confidence) (Section  14.5.4). Ocean 
warming and MHWs will continue to disrupt commercial capture 
fisheries through species redistribution and changes to yield (high 
confidence), and warming waters and OA will increasingly impact 
aquaculture production (high confidence) (Section 14.5.4). Interactions 
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between competing aspects of human security (e.g., food, energy 
and water) will be exacerbated by climate change (high confidence) 
(Sections 14.5.3, 14.5.4, 14.5.8).

KR9: Risks to major infrastructure supporting commerce and trade 
with implications for sustainable economic development, regional 
connections and livelihoods

Climate change and extreme events are expected to increase risks 
to the North American economy via infrastructure damage and 
deterioration (high confidence), disruption to operations, unsafe 
conditions for workers (medium confidence) and interruptions to 
international and inter-regional supply chains (medium confidence) 
(Section  14.5.8; see Box  14.5). These climatic impacts will have 
cascading implications for local livelihoods, sustainable economic 
development pathways and regional connectivity, and will reinforce 
pre-existing social inequities (medium confidence). Infrastructure 
damage will also disrupt economic activities, including manufacturing, 
tourism, fisheries, natural resource extraction and energy production 
(high confidence) (Section 14.5.8).

KR10: Risk to the quality of life in North American communities, cities 
and towns

In major North American cities and settlements, vulnerability to climate 
change has increased and is projected to continue to rise (medium 
confidence) (Section 14.5.5). Concentrated populations with unequal 
adaptive capacities, exposure of valuable assets, ageing infrastructure, 
and differing degrees of institutional capacity and effectiveness 
will underpin climate hazards (Section  14.5.5). Coastal, riverine and 
urban flooding displacing communities and coastal ecosystems 
(Section 14.5.5.2) will become a dominant risk to urban centres (high 
confidence) and will cause disruptions to transportation and trade 
infrastructure (Section  14.5.8). Large wildfires endangering lives, 
livelihoods, property and key infrastructure, and economic activities 
will contribute to compromised air quality and municipal water 
contamination (Section 14.5.6; see Box 14.2).

14.6.3 Cumulative Risk, Tipping Points, Thresholds and 
Limits

Across North America, climate change poses a risk to social–ecological 
systems increasingly destabilised by compounding climate impacts and 
non-climate pressures (high confidence) (Sections 14.5.1–14.5.3) that 
erode the connectivity and redundancy underpinning system resilience 
(Sections 14.5.1–14.5.5; Xiao et al., 2017a; Koven et al., 2020; Malhi 
et  al., 2020; Turner et  al., 2020). Accelerating climate change and 
increasingly severe hazards and shocks may induce abrupt changes 
or push systems, people and species to critical points–tipping points–
where a small additional change causes a disproportionately large 
response, triggering feedbacks that lock systems into novel regimes 
(Scheffer et al., 2001; Scheffer, 2010; Anderies et al., 2013; Lenton, 2013; 
Iglesias and Whitlock, 2020; Lenton, 2020a). Climate-change tipping 
points can compound and amplify climate impacts and risk, induce 
disparate climate burdens and benefits across human and ecological 
systems, and irreversibly restructure ecosystems and livelihoods (e.g., 

species extinctions, fisheries collapse, community-managed relocation) 
(Lynham et al., 2017). Examples of systems with potential tipping points 
in North America include (a) permafrost and sea ice loss triggering 
transformation of ecological and human systems (including substantial 
shipping opportunities) in the Arctic that are permanent and irreversible 
except on geological timescales, and which are potentially underway 
(high agreement, low evidence) (Section 14.6.2; see Box 14.3, CCP6), 
(b) mid-latitude forest ecosystems at low to middle elevations in 
western North America where wildfire and cumulative climate and 
non-climate pressures may restructure forests and succession in ways 
that promote transition to new vegetation types (Section 14.5.1) and 
(c) agricultural communities in northern Mexico and the southwest 
USA where aridification and drought may interact with water resource 
policies, economic opportunities and pressures, and farm practices 
to induce either adaptation (via changes in irrigation practices) or 
farm abandonment, land-use transformation and livelihood changes 
(due to heat stress, soil deterioration or reduced economic viability) 
(Sections 14.5.3, 14.5.4, CCP6, Yumashev et al., 2019; Turner et al., 
2020; Heinze et al., 2021).

Identification of critical thresholds, elements and connections within 
a system may also help identify potential positive tipping points, that 
is, focal components or processes in a system where a relatively small 
investment or intervention can induce a large benefit and enable 
self-reinforcing transformative adaptation (Section 14.7; Chapter 17; 
Tàbara et  al., 2018; Lenton, 2020b; Otto et  al., 2020). Under low-
mitigation scenarios, compounding risks and higher-carbon-emission 
scenarios increase the potential that amplifying feedback loops and 
fatal synergies across sectors could lead to existential threats to the 
social–ecological systems of North America (medium confidence). 
Societal collapse has been linked to shifts in climate regimes, especially 
when societies have lost resilience due to slowly mounting social–
ecological challenges, while other studies reveal that social continuity 
and flexibility enable historical climate resilience and prosperity under 
changing environments (FAQ 14.2; Lenton et  al., 2019; Otto et  al., 
2020; Degroot et al., 2021; Richards et al., 2021).

Accounting for tipping points, interactions and reinforcing dynamics 
among ecological, social and climate processes is necessary for 
comprehensive analyses of climate-change risk, cost and urgency, 
as well as effective adaptation design and implementation 
(Section  14.7; Cai et  al., 2015; Steffen and et  al., 2018; Lenton 
et al., 2019; Narita et al., 2020; Dietz et al., 2021). Multiple lines of 
evidence across sectors assessed in this chapter suggest that after 
mid-century and without carbon mitigation, climate-driven changes 
to ecological and social boundary conditions may rapidly push many 
systems into disequilibrium (medium confidence), emphasising the 
importance of prioritising adaptation actions with co-benefits for 
mitigation (Section 14.5.4; see Box 14.3). Reducing climate hazards 
through mitigation and removing catalysts of system instability 
through adaptation measures that increase system resilience (e.g., 
ecosystem restoration) will help reduce the risk that systems move 
across a tipping point from a desirable to an alternate or undesirable 
state (Sections 14.5.4, 14.7; see Box 14.3; Narita et al., 2020; Turner 
et al., 2020; Heinze et al., 2021).
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Frequently Asked Questions

FAQ 14.2 | What can we learn from the North American past about adapting to climate change?

The archaeology and history of Indigenous Peoples and Euroamerican farmers show that climate variability can have severe impacts on 
livelihoods, food security and personal safety. Traditional societies developed numerous methods to cope with variability but have always 
expanded to the limits of what those adaptations permit. Current knowledge and technology can buffer societies from many negative effects 
of climate change already experienced but will be severely challenged by the novel conditions we are now creating.

People came into North America more than 15,000  years ago and have experienced both massive and minor 
shifts in climate ever since. At the end of the last very cold phase of the most recent Ice Age, about 11,500 years 
ago, temperatures rose extremely rapidly—as much as 10°C (18°F) in a decade in some regions. This undoubtedly 
contributed to the extinction of large mammals like mammoths and mastodons that people hunted alongside 
many other resources (see Cross-Chapter Box PALEO in Chapter 1). There were so few people on the land, though, 
and other resources were so abundant, that the long-standing human means of coping with climate variability—
switching foods and moving on—were sufficient.

Following the end of the Ice Age, populations across North America grew for the next few thousand years, at a 
rate that increased once people began to domesticate corn (maize), beans and squash (the ‘three sisters’) as well 
as other crops. However, more people meant less mobility, and farmers traditionally are also more invested in their 
fields and remaining in place than foragers are to hunting grounds. Other means of coping with vulnerability to 
food shortage caused by climate variability included some continued hunting and gathering of wild resources, 
planting fields in multiple locations and with different crops, storage in good years, and exchange with neighbours 
and neighbouring groups.

According to archaeological evidence, however, these adaptation strategies were not always sufficient during times 
of climate-induced stress. Human remains showing the effects of malnutrition are fairly common, and conflict caused 
in part by climate-induced shortfalls in farming has left traces that include fortified sites, sites placed in defensible 
locations and trauma to human bone. Larger and more hierarchical groups emerged, first in Mesoamerica and then 
in the southwest and southeast USA as well as the Midwest USA. These groups offered the possibility of buffering 
poor production in one area with surplus from another, but they also tended to increase inequality within their 
borders and often attempted to expand at the expense of their neighbours, introducing new sources of potential 
conflict. Dense hierarchical societies also arose in other areas such as the northwest coast where agriculture was not 
practised but resources, such as salmon and roots, were abundant and either relatively constant or storable.

These societies were not immune to climate hazards despite their greater population and more formal organisation. 
Archaeological evidence strongly suggests that drought, or growing conditions that were too hot or cold, 
contributed to the decline of groups ranging from Classic-period Maya states in Mesoamerica, to the somewhat less 
hierarchical societies of Chaco in the southwest USA and Cahokia in the Midwest USA (Figure FAQ14.2.1). The usual 
pattern seems to be that climatic variability compounded social and environmental problems that were already 
challenging these societies.

If societies in North America prior to the Euroamerican colonisation were vulnerable to climate variability, surely 
were not the more recent and technologically advanced societies of North America at lower risk? The 20th century 
Dust Bowl created in the US and Canadian prairies suggests otherwise. Severe drought conditions throughout 
the 1930s—which, to make matters worse, peaked during the Great Depression—did not cause either the USA 
or Canada to collapse. But both countries suffered massive economic losses, regional loss of topsoil and regional 
human strife (including loss of crops, income and farms) leading to migration. Yet anthropogenic global climate 
change was of little or no consequence in the 1930s. While farming practices made climate stress worse, the climate 
variability itself was either completely, or mostly, within the envelope of historical climate variability that earlier 
human societies had experienced.

Indigenous Peoples and Euroamerican farmers and ranchers have a long history of mostly successful adaptation 
to changing weather patterns. The wisdom held by Indigenous Peoples deep knowledge of how plants, animals 
and atmospheric conditions provide early warning signals of approaching weather shifts, and stories about how 
past communities have tried to cope with climate-related resource shortfalls. Long-standing community-level 
management of resources also helps prevent shortfalls, and institutions such as kin groups, church groups, clubs and 
local governments (which exist in communities of both Euroamericans and Indigenous Peoples, in different forms) 
can be powerful aids in ameliorating shortfalls and resolving conflict.
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Examples of areas where past climate variability has contributed to crises

Like the N. Pueblo area, the mound complex of 
Cahokia at the center of this zone was affected 
by droughts in the 12th and 13th centuries CE, 
and possibly by flooding.
 

Image credit: Ira Block/National Geographic Creative

Dust-bowl conditions caused by drought and land 
management were especially severe in this area. 

 

Photo credit Arthur Rothstein.

Many cities in the Central Maya Lowlands declined 
or disappeared in the 9th and 10th centuries CE 
under pressure from drought, increased summer 
heat, deforestation, and warfare. 

Image credit: Image credit: iStock/id 543832440 

Large scale droughts in the 12th and 13th 
centuries CE, and cooling temperatures in the 
13th century, contributed to farmers leaving the  
northern Pueblo area in the 13th century. 

Image credit Nate Crabtree

Figure FAQ14.2.1 |  Examples of areas where past climate variability has contributed to crises. Climatic variability is most likely to lead to crisis when 
it is accompanied by social, demographic and political conditions or environmental mismanagement that compound climatic impacts on societies.

Box FAQ 14.2 (continued)
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Frequently Asked Questions

FAQ 14.3 | What impacts do changes in the North American Arctic have within and outside the region?

The North American Arctic is warming at nearly three times the global average, creating a cascading web of local, regional and global impacts 
within and beyond polar regions. Changes in the Arctic not only effect global ocean circulation and climate regulation, but also facilitate new 
Arctic transportation routes and support transboundary resources with geopolitical, environmental and cultural implications as conditions 
change.

Rapid warming and extreme temperatures in the Arctic is leading to unprecedented seasonal sea ice loss, permafrost 
thaw and increasing ocean temperatures. Cascading from these biophysical changes are cultural, socioeconomic 
and political consequences that are widespread and largely unprecedented in human history. Changes in sea ice 
create safety hazards for Indigenous Peoples and northerners who rely on frozen seas and rivers for transportation 
between remote communities and to subsistence hunting areas. Thawing permafrost, especially that of ice-rich 
permafrost, creates challenges and costs for a region with low population density and a small tax base to support 
major infrastructure investments. Warmer ocean temperatures induce large-scale distributional shifts and reduced 
productivity and access to the largest North American fisheries. Ice-associated marine mammals, such as polar bears, 
seals and walruses, have declined precipitously with decreasing sea ice in the Bering Sea, and widespread ecosystem 
changes from fish through birds and marine mammal species have altered the system with uncertain outcomes for 
these productive ice-driven ecosystems. Newly ice-free shipping routes are increasing regional and geopolitical 
tensions and may facilitate novel threats like the spread of invasive species and safety hazards to local hunters and 
fishers. The local and regional impacts of climate change in the North American Arctic are profound and span social, 
cultural, health, economic and political imperatives.

Although the region is remote, changes in the Arctic impact the rest of the world. The Arctic serves as a regulator 
of global climate and other ecological processes through large-scale patterns related to air and ocean circulation. 
These vitally important processes are nearing points beyond which rapid and irreversible (on the scale of multiple 
human generations) changes are possible. The magnitude of cascading changes over the next two centuries includes 
regional warming and temperature extremes, permafrost declines and sea ice loss beyond that experienced in 
human existence. This includes macro-scale risks related to SLR from the melting of glaciers and thermal expansion 
of oceans. Changes in the Arctic are more pronounced than elsewhere and portend climate-change impacts in other 
areas of the globe.

Adaptation in the Arctic is underway and lessons learned on what works and what is effective and feasible to 
implement can provide global insights. Successful adaptation in the North American Arctic region has been 
attributed, in part, to the explicit and meaningful inclusion of IK and Indigenous self-determination, and diverse 
perspectives in decision-making processes, strong local leadership, co-management approaches, technological 
investment in integrated climate modelling and projections, and multilateral cooperation.

Still, Indigenous knowledge and traditional knowledge among Euroamerican farming communities provide 
guidelines for how to cope with traditional problems. Contemporary governmental restrictions (such as legal 
water-rights allocations, international borders and tribal-lands boundaries) have limited the adaptive capacity that 
Indigenous societies have developed over the centuries. Now human-caused climate forcing, if not mitigated by 
reducing heat-trapping GHGs, is expected to produce climates in North America that have no local analogues in 
human history even as it destroys heritage sites that are sources of knowledge about palaeoclimates and the diverse 
ways of coping with them that past peoples have discovered. Just as past peoples often avoided local climate change 
by moving on, in a world where mobility options are severely limited, a lesson from archaeology and history is that 
we should use our hard-won knowledge of the causes of climate change to avoid creating futures with no past 
analogues to provide useful guidance.

Box FAQ 14.2 (continued)
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14.7 Adaptation in North America

14.7.1 Overview of Observed Adaptation  
in North America

Climate adaptation efforts have increased across all North American 
regions and sectors (high confidence). Support for, and implementation 
of, adaptation policies, plans and measures have not been equal across 
the public and private sectors, regions or varying levels of governance 
(high confidence) (Table  14.7). To date, reactive (coping-based) and 
incremental adaptations have helped North Americans avoid greater 
damages from observed climate impacts (medium confidence). There 
is increasing agreement that worsening impacts and expanding risk 
conditions may exceed current adaptation capacities by mid-century 
under high-emissions scenarios (RCP8.5) (medium confidence).

14.7.1.1 Individuals and Households

Across North America, individuals and households have taken action to 
reduce climate-influenced risks (high confidence). These autonomous 
adaptations comprise the majority of the observed responses in the 
peer-reviewed literature (Berrang-Ford and et al., 2021). The increased 
use of cooling systems (which could be maladaptive unless there 
are innovations) (Section  14.5.5.3; Barreca et  al., 2016), creating 
defensible space around homes in wildfire-prone areas (see Box 14.2), 
and the modification or redesign of housing structures along coasts 
(Koerth et al., 2017), are important household responses to existing 
risks. Although these actions have played a role in reducing risks, the 
capacity to undertake such actions is not uniform across individuals 
in North America and has exacerbated existing social inequities, 
especially in coastal areas (Keenan et al., 2018; de Koning and Filatova, 
2020). Additionally, these adaptation activities often are taken without 
consideration of the impact on mitigation efforts (Kates et al., 2012; 
Fedele et al., 2019; Shi and Moser, 2021).

14.7.1.2 Local and Subnational Governments

The majority of local jurisdictions in North America have undertaken 
some level of adaptation. These efforts largely have focused on planning 
and less on implementation (high confidence). Some subnational 
governments, namely states and provinces, have engaged in advanced 
adaptation planning efforts (high confidence). Indigenous Peoples in 
North America have undertaken substantial activities (Section  14.4; 
see Box 14.1).

Many cities across North America have undertaken adaptation 
planning (Section  14.5; Hughes, 2015; Reich et  al., 2016; Moser 
et  al., 2017; Auditors General, 2018; McMillan et  al., 2019) with 
some financing adaptation implementation, for example, in the case 
of SLR (see Box  14.4). Adaptation actions commonly implemented 
in cities include climate-informed building codes, enacting energy 
conservation measures, modifying zoning and increasing green 
infrastructure (Section  14.5.5.3; see Box  14.7; Binder et  al., 2015; 
Maxwell et  al., 2018a; Moss et  al., 2019; Brown et  al., 2021). The 
majority of cities have formed practitioner networks to share 
information (ICLEI Canada, 2016; Vogel et  al., 2016; C40 Cities, 
2018) and supporting learning and collaboration through regional 

collaborations that include utility managers and the private sector 
(Fünfgeld, 2015; Moser et al., 2017).

In Canada, the Map of Adaptation Actions10 presents over 200 
adaptation case studies addressing a variety of climate-related impacts 
(Warren and Lulham, 2021). The City of Saskatoon, in developing its 
Climate Action Plan (which includes a Corporate Climate Adaptation 
Strategy), engaged with local businesses, non-governmental 
organisations (NGOs), residents and experts to identify potential risks 
(and benefits) requiring action (City of Saskatoon, 2019). Similarly, 
the City of Surrey specifically used community outreach programmes 
to develop its Coastal Flood Adaptation Strategy (CFAS) through a 
value-based planning approach (City of Surrey, 2019). Municipal 
asset management, local services and community well-being were 
key considerations for the City of Selkirk, Manitoba, when developing 
an adaptation strategy as well as ensuring a budgeting process that 
supports implementation (City of Selkirk, 2019). As of 2019, 8 of 13 
Canadian provinces and territories have high-level climate adaptation 
strategies. The scope of these efforts vary by jurisdiction as a review 
conducted by federal and provincial auditors in Canada identified 
several deficiencies related to a lack of detailed implementation plans, 
obligated funding and specific timelines (Auditors General, 2018).

Progress in Mexico on adaptation implementation at the local level 
has been extensive (INECC and Semarnat, 2018). Activities include 
executing programmes for relocating infrastructure in high-risk zones 
in priority tourist sites, incorporating adaptation criteria in public 
investment projects that involve construction and infrastructure 
management, water management, application of climate adaptation 
norms for the construction of tourist buildings in coastal zones, 
and improving the security of key water, communication and 
transportation infrastructure (Sections  14.5.5, 14.5.7, 14.5.8). 
Additionally, local capacity and protocol to respond to extreme 
weather events as a function of climate change have been integrated 
more regularly into community-based hazard mitigation plans. States 
and municipalities in Mexico must have climate policies that are 
consistent with the guidelines of national strategies (Section 14.7.1.5) 
and state-level programmes on climate change, in addition to other 
state and municipal laws. As a result, these entities have developed 
and implemented early warning systems designed to protect the 
population from climate-related risks, such as strong storms and 
hurricanes (INECC and Semarnat, 2018).

Implementation of adaptation initiatives and specific actions in US 
cities has increased in the approximately 5 years between the 3rd US 
National Climate Assessment (NCA3) (Melillo et al., 2014) and the 4th 
Assessment (NCA4), and adaptation responses have been observed 
widely (Lempert et al., 2018). ICLEI-USA provides numerous resources 
for adaptation planning and implementation for cities, Indigenous 
Peoples and Regional Governments11. The Georgetown Center for 
Climate maintains a comprehensive resource for tracking adaptation 
progress for States12. As of 2021, 18 US states have completed 
climate adaptation plans, and six states have plans underway as of 

10 See https://changingclimate.ca/case-studies

11 See https://icleiusa.org

12 See www.georgetownclimate.org/adaptation/plans.html

https://doi.org/10.1017/9781009325844.016
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 09 Jul 2024 at 02:37:57, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://changingclimate.ca/case-studies
https://icleiusa.org
http://www.georgetownclimate.org/adaptation/plans.html
https://doi.org/10.1017/9781009325844.016
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


14

1990

Chapter 14 North America

the time of this report (Georgetown Climate Center, 2021). California, 
in particular, has adopted sustained climate assessment to allow for 
more rapid iterations on adaptation planning (Bedsworth et al., 2018; 
Miao, 2019). Across all US states, however, adaptation activities do not 
have readily accessible budgets, such that levels of funding cannot be 
assessed directly (Gilmore and St. Clair, 2018).

14.7.1.3  National and Multi-National Governance

The federal government of each North American country has developed 
policies and actions that promote climate adaptation (Figure 14.12). 
Recognising the cultural, economic and social networks that span 
North America, the federal governments have also committed to 
engagement on adaptation and resilience across borders and through 
cooperation on domestic adaptation efforts (The White House, 2016). 
Each country also outlines their respective adaptation efforts through 
submissions under the UN Framework Convention on Climate Change, 
including their nationally determined contributions (NDCs) under the 
Paris Agreement. The federal governments also support adaptation 
efforts in other countries through international climate negotiations 
as well as related agreements, such as the Sendai Framework for 
Disaster Risk Reduction and efforts to support the achievement of the 
Sustainable Development Goals (SDGs).

Mexico’s 2020 update to its first NDC communicated extensive 
adaptation efforts (Government of Mexico, 2020). The measures 
outlined in this document highlight the importance of co-benefits for 
adaptation efforts as they relate to the SDGs and to support mitigation 
commitments. Ecosystem-based solutions and NbS (see Box 14.7) are 
the basis for much of the synergies between adaptation and mitigation 
efforts. These plans are supported by domestic legislation through the 
General Law on Climate Change, which includes the Climate Change 
Adaptation Process (CCAP). The CCAP provides a holistic systems 
approach for identifying instruments and institutional arrangements 
for adaptation implementation (Semarnat and INECC, 2015; INECC and 
Semarnat, 2018). This approach includes guidance for planning (e.g., 
the Climate Change Mid-Century Strategy, the Special Climate Change 
Program 2014–2018) and formalises its adaptation commitments to 
the Paris Agreement.

In Canada, the Federal Adaptation Policy Framework (Government 
of Canada, 2011) guides domestic action to develop adaptation 
knowledge, build adaptive capacity, and mainstream adaptation 
into federal policy, in support of the Pan-Canadian Framework on 
Clean Growth and Climate Change (Government of Canada, 2016), 
which included specific adaptation measures and investments to 
build resilience. In August 2021, the government initiated a National 
Adaptation Strategy with development anticipated through 2022. 
Additionally, the government facilitates efforts and funds research, 
capacity building and information sharing across sectors and among 
government departments (Government of Canada, 2021a). The 
Canadian Centre for Climate Services provides access to climate 
data, tools and information13. In Canada’s revised NDC, near-term 
commitments to protecting land and oceans, and efforts related to 
sustainable and resilient energy systems, are highlighted as examples 

13 See www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services.html

of co-benefits between climate-change adaptation and mitigation 
(Government of Canada, 2021b).

The USA has experienced substantial revisions to its climate policy and 
its international engagement since AR5 with implications still unclear 
(Bomberg, 2021). Since AR5 and until early 2020, many congressionally 
mandated federal efforts (Beavers et  al., 2016; Parris et  al., 2016; 
Rockman et al., 2016; Caffrey and Hoffman, 2018) faced programmatic 
challenges, but most continued to provide research and capacity 
development to support adaptation implementation across the USA. 
Importantly, the US government sustained the national climate 
assessments (Lempert et al., 2018). Recently, the administration has 
re-engaged with the Paris Agreement and the USA has submitted an 
NDC (Government of the United States of America, 2021); however, 
adaptation was not directly addressed. Subsequent Executive orders 
mandate adaptation planning at the federal level (e.g., USEO 13754; 
USEO 14008). As of the time of this report, the US climate policy 
landscape is rapidly evolving, including major legislative initiatives 
(e.g., Green New Deal) (Boyle et al., 2021).

14.7.1.4  Private Sector, Including Companies, NGOs, 
Professional Organisations, Academic Institutions and 
Communities of Practice

The private sector comprises a diverse set of actors who influence, 
interact with and support adaptation efforts, generally through shared 
governance with the public sector. The weight of evidence points to the 
benefits of these collaborations and the importance of voluntary code-
making and self-regulation (Section  17.4.2.1.6). In North America, 
NGOs and professional organisations have been important agents of 
change in the adaptation field (Bennett and Grannis, 2017; Stults and 
Meerow, 2017). Efforts have included supporting community-based 
resilience, network building, Internet-based guidance and resources, 
case studies, workshops and other services to support adaptation 
action (e.g., vulnerability assessments, scenario-based planning).

Market and financial mechanisms have provided important buffering 
capacity against climate shocks in North America. Insurance products 
are being developed to meet emerging climate risks, especially related 
to availability and pricing of flood insurance in Canada (Thistlethwaite, 
2017; Davies, 2020) and the USA (Kousky et al., 2021). Some existing 
US flood insurance products provided through joint public and private 
arrangements has led to rebuilding in flood-prone locations (Zellmer 
and Klein, 2016). The price of these products may limit their uptake in 
low-income neighbourhoods (Cannon et al., 2020).

Professional organisations have participated in the development and 
adoption of measures to integrate climate resilience into the built 
environment. This includes new designs, guidelines, codes, standards 
and specifications, in addition to infrastructure inventories that 
incorporate evaluation of vulnerabilities and identification of priority 
at-risk areas (Amec Foster Wheeler and Credit Valley Conservation, 
2017; ASCE, 2018a). These efforts are supported by provincial/state and 
federal initiatives (e.g., Canada’s Climate Lens (Infrastructure Canada, 
2018), and California’s Climate-Safe Infrastructure Working Group 
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(Climate-Safe Infrastructure Working Group, 2018)). Infrastructure 
Canada has undertaken Canada-wide initiatives to improve 
infrastructure resilience to climate change14. The Standards Council of 
Canada (SCC) established the Northern Infrastructure Standardization 
Initiative15 engaging stakeholders, including Indigenous Peoples, to 
develop standards specific for addressing climate-change impacts 
on northern infrastructure design, planning and management, and 
community development (Standards Council of Canada, 2020).

Professional organisations in the USA (e.g., National Medical Association, 
American Institute of Architects, Association of Metropolitan Water 
Agencies, Water Utility Climate Alliance, American Society of Adaptation 
Professionals) have engaged with their members particularly through 
training about urban adaptation (Stults and Meerow, 2017). The 
private sector and citizens (Klein et al., 2018) have been involved in the 
management of increasing flood risk, such as the adoption of property-
level flood protection (Thistlethwaite and Henstra, 2018; Valois et al., 
2019), implementing FireSmart Canada and Firewise USA guidance (see 
Box 14.2). In Canada, Engineers Canada developed the PIEVC Protocol 
to provide guidance for professionals in engineering and geoscience16.

Research-based institutions have accelerated the development of 
Internet-based tools for visualising and exploring climate information, 
in addition to furthering the scholarship on adaptation. In the USA, joint 
university, foundation and government programmes have contributed 
to advancing the field with products such as oceanographic and fishery 
climate forecasting tools (Section 14.5.2), in addition to methods for 
evaluating water resource plans under uncertainty about future mean 
and extreme conditions (ASCE, 2018a; Ray et al., 2020). Some regional 
research centres focus on stakeholder engagement in addition to 
research; these include the National and Regional Climate Adaptation 
Science Center Network of the US Geological Survey17, the US 
Department of Agriculture’s Climate Hub Network18 and the Climate 
Program Office of NOAA19 which includes the Regional Integrated 
Science Assessment Network20 to support delivery of climate services. 
So-called networks of networks, consisting of NGOs as well as state 
and city government programmes, have provided an alternative to 
federal support. For example, the Science for Adaptation Network was 
formed subsequent to dismantling the federal advisory group to the US 
National Climate Assessment (Moss et al., 2019).

14.7.2 The Solution Space

14.7.2.1 Incremental Adaptation, Barriers and Limits

Adaptation actions to moderate the effects of climate impacts are well 
documented in North America and have buffered much of the past and 
currently observed climate impacts (e.g., Lempert et al., 2018; Lemmen 

14 See www.infrastructure.gc.ca/plan/crbcpi-irccipb-eng.html

15 See www.scc.ca/en/nisi

16 See www.pievc.ca

17 See www.usgs.gov/ecosystems/climate-adaptation-science-centers

18 See www.climatehubs.usda.gov

19 See https://cpo.noaa.gov

20 See https://cpo.noaa.gov/Meet-the-Divisions/Climate-and-Societal-Interactions/RISA/About-RISA

et al., 2021). While it is challenging to catalogue adaptation activities, 
as many are not published or are not necessarily undertaken with 
climate adaptation as the primary rationale (Section 1.3.2.2), most of 
the activities identified by sector in this chapter have been primarily 
incremental adaptation measures (medium evidence, high agreement). 
Many actions are extensions of existing practices for managing 
climate variability and there is broad agreement that worsening future 
conditions will exceed the capacity of many of these efforts (Kates 
et al., 2012; Termeer et al., 2017; Fazey et al., 2018; Fedele et al., 2019; 
Shi and Moser, 2021).

Progress in adaptation planning and implementation between regions 
in North America is uneven (Table 14.6; see Box 14.7; Bierbaum et al., 
2013; Moser et al., 2017; Auditors General, 2018; INECC and Semarnat, 
2018; Shi and Moser, 2021). At the local level (cities) in the USA, 
commitment of elected officials, financial resources and awareness 
of climate-change hazards and risks have been identified as driving 
the variation in climate adaptation (Shi et  al., 2015). Adaptation 
programmes have come under budgetary and political pressures 
that limit continuity of efforts (Moss et al., 2019). Implementation of 
adaptation has also faced challenges due to institutional arrangements, 
constraints and gaps that prevent different levels of government, 
social organisations and academia to act in an integrated and timely 
way to consider biodiversity, agriculture and water systems (e.g., see 
Box 14.7; Bourne et al., 2016; Nalau et al., 2018)

Adaptive capacity in the face of climate risks and impacts has not 
been equal across North American communities (Sarkodie and 
Strezov, 2019). Lack of representation, health inequities and economic 
constraints adversely affect the capacity to respond to change and 
further exacerbate marginalisation. For example, within many water 
basins in Canada and the USA, planning processes are often hampered 
by conflicting interests, asymmetrical information and differential 
power (ICLEI Canada, 2016; Nordgren et al., 2016; Woodruff and Stults, 
2016).

The absence of evidence about the current effectiveness of proposed 
adaptation actions to guide future actions and investments presents 
a serious risk to North America, especially at higher GWLs (medium 
confidence). Evaluating the limits to adaptation and the effectiveness 
of adaptation actions is hindered by a lack of monitoring and evaluation 
(Auditors General, 2018; Dilling et al., 2019; Berrang-Ford et al., 2021). 
Incremental, passive adaptations are often characterised by soft limits 
due to differing access to resources and by perceptions and tolerance 
of risk (Moser, 2010; Dow et  al., 2013). At current warming levels, 
social–ecological systems have been reaching limits to adaptation in 
regions with high exposure and high sensitivity (medium confidence). 
However, the implications for adaptation are unclear as soft 
adaptation limits are mutable and change with evolving knowledge, 
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Table 14.6 |  Adaptation trends and progress across sectors. Adaptation progress consists of assessment (A), planning (P), implementation of strategies (I) and evaluation of 
efficacy (E).

Adaptation progress Limits

Sector Strategies Cases A P I E Soft Hard

Terrestrial 
ecosystems 
(Section 14.5.1.1)

Broad use of tools such 
as scenario planning, 
structured decision making 
and adaptation planning 
frameworks

Planning for climate refugia in the Sierra 
Nevada of California, USA (Morelli et al., 
2016)

H H
L 
to 
M

L

Management agency internal 
policies which may prevent 
the flexibility required for 
implementation of adaptation 
strategies

Some species may 
face local extirpation 
or even extinction if 
adaptive capacity is 
overwhelmed

Oceans 
(Section 14.5.2)

Proactive and rapid 
management approaches 
to minimise impacts of 
increasingly frequent 
entanglements of protected 
species, caused by 
climate-driven changes in 
prey and fishery activities

Dynamic closure areas to reduce 
loggerhead turtle bycatch in Hawaiian 
shallow-set longline fisheries (Howell 
et al., 2015; Lewison et al., 2015), blue 
whale ship-strike risk in near-real time 
(Hazen et al., 2017; Abrahms et al., 2019a) 
and bycatch of multiple top predator 
species in a West Coast drift gillnet fishery 
(Hazen et al., 2018)

H H M M

Lack of coordination and 
planning at multiple scales 
as species redistribute across 
fishery areas, marine protected 
zones and international and 
jurisdictional boundaries

Marine species 
mortality events

Freshwater 
resources 
(Section 14.5.3)

Forecasting and warning of 
harmful algal blooms (HABs) 
that affect water quality

Reduced human exposure to the increased 
risk of toxins from HABs in the Great 
Lakes

M
L 
to 
M

L 
to 
M

L 
to 
M

Financial resources required 
to enhance water treatment 
facilities to deal with HABs, 
technological innovation to 
improve treatment and removal 
of HABs, closure of recreational 
water use

Severe human health 
effects, mortality of 
aquatic species

Water availability 
(Section 14.5.3)

Water allocation policies 
reassessed to enhance 
equity, sustainability 
and flexibility in times of 
shortage through sharing 
agreements, improved 
groundwater regulation and 
voluntary water transfers

US Colorado River interstate shortage 
sharing agreement

H H M
L 
to 
M

Complex legal and 
administrative challenges, 
heightening lengthy disputes 
and costly interstate legal 
battles

Depletion of finite 
groundwater 
resources and 
reduced flow in 
hydrologically 
connected rivers

Food and fibre 
(Section 14.5.4)

Improved climate resilience 
through increasing income 
and harvest/crop portfolio 
diversification

Fishing communities in the US-SW and 
US-NE through nature-based aquaculture 
solutions (Messier et al., 2019; Rogers 
et al., 2019; Young et al., 2019; Fisher 
et al., 2021)

H H
M 
to 
H

M
Lack of high-resolution and 
locally tailored climate-change 
information

Collapse of fisheries 
and loss of crops 
due to excessive 
warming and 
extreme events

Cities and 
infrastructure 
(Section 14.5.5)

Consideration of the value 
of green infrastructure and 
natural assets to meet a 
range of adaptation needs 
related to flooding, extreme 
urban heat, SLR and drought

Municipal Natural Assets Initiative to 
assist Canadian municipalities to integrate 
natural assets in financial planning and 
asset management programmes and 
consider projected climate changes 
(Municipal Natural Assets Initiative, 2018)

H H M
L 
to 
M

Organisations’ willingness 
to take on solutions that are 
emergent and less tested;
capacity for municipalities to 
undertake the development 
and assessment of this new 
infrastructure

Rate and magnitude 
of climate changes 
exceeding capacity 
of natural/green 
infrastructure to 
cope

Health and 
communities 
(Sections 14.5.5, 
14.5.6)

Access to green spaces, 
cooler infrastructure and 
cooling stations

The heatwave plan for Montreal which 
includes visits to vulnerable populations, 
cooling shelters, monitoring of 
heat-related illness and extended hours 
for public pools (Lesnikowski et al., 2017)

H H
L 
to 
M

L 
to 
M

Lack of effective warning 
and response systems, ability 
to reach at-risk populations, 
building designs, enhanced 
pollution controls, urban 
planning strategies, and 
affordable, resilient health 
infrastructure

Extreme increase 
in heat-related 
mortality and 
morbidity

Tourism and 
recreation 
(Section 14.5.7)

Diversification of 
winter-focused recreation 
and tourism opportunities

Investments in climate-resilient 
infrastructure within Canadian National 
Parks which have increased visitation 
rates during the shoulder seasons 
(Fisichelli et al., 2015; Lemieux et al., 2017; 
Wilkins et al., 2018)

H H M L

Social inequalities generated 
by the tourism development 
process not considered, such 
as increased property taxes 
leading to the marginalisation 
of local residents in favour of 
wealthy tourists

Lack of precipitation 
that falls as snow 
particularly in 
lower-elevation 
areas

https://doi.org/10.1017/9781009325844.016
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 09 Jul 2024 at 02:37:57, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.016
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


14

1993

North America  Chapter 14

values, interests and perspectives involved in decision making (Adger 
et al., 2009; Moser et al., 2017). Hard limits have been identified for 
some natural systems, such as species extinctions (Sections 14.5.2.1, 
14.5.1.3; Table 14.2).

Adaptation actions in one place or sector can have adverse side 
effects elsewhere (medium confidence). For example, increased use 
of groundwater for irrigation in response to aridification can reduce 
baseflows into rivers with adverse impacts on stream ecology and 
water availability for communities far downstream (Section  14.5.3). 
Additionally, across multiple sectors in North America, adaptation 
actions have tended to be sector specific rather than integrating 
across systems (Gao and Bryan, 2017; Fulton et al., 2019), despite the 
increasing awareness of cascading impacts and interdependencies 
(Zimmerman and Faris, 2010; C40 Cities and AECOM, 2017) and 
risks from possible ecological and social thresholds that have been 
identified under higher GWL (Section 14.6.3). For example, the water, 
energy and food nexus in North America has highlighted that food, 
water and energy security depend on transportation infrastructure 
(Section 14.5.8.1.2; Romero-Lankao et al., 2018).

14.7.2.2  Adaptation Through Participatory and Robust Decision 
Making, Indicators and Sustained Assessments

In response to some of the challenges presented in Section 14.7.2.1, 
substantial progress has been made in the North American context on 
the development of climate services, indicators, sustained assessments, 
and participatory and stakeholder-driven robust decision making 
(medium confidence) (Fazey et  al., 2018; Fedele et  al., 2019; Moss 
et al., 2019; Boon et al., 2021; Werners et al., 2021).

Decision making related to adaptation policies, plans and projects has 
become more formalised, emphasising participatory governance and 
co-production of knowledge. Canada has improved capacity with its 
Canadian Expert Panel on Climate Change Adaptation and Resilience 
Results and the recent National Adaptation Plan (Section  14.7.1.5), 
with the development of a series of indicators to measure progress 
on adaptation (EPCCAR, 2018; Government of Canada, 2021a). In the 
USA, indicators have been developed to communicate climate risks 
and guide adaptation efforts from federal (Kenney et al., 2020) to more 
regional initiatives (Kenney and Gerst, 2021). These climate indicators 
have been used to support user-driven assessments and to articulate 

adaptation goals (Moss et  al., 2019; Kenney et  al., 2020); however, 
these frameworks have not sufficiently incorporated monitoring and 
evaluation into adaptation plans (Lempert et al., 2018; Kenney et al., 
2020). Tools and services to facilitate risk assessment and action 
planning have been made available through federal government 
climate service efforts, and guidance for their use has been developed 
(Vano et al., 2018); however, these products have been characterised 
as insufficiently developed to allow all adaptation practitioners to use 
these services (Meerow and Mitchell, 2017).

Throughout North America, co-development (or co-production) of adap-
tation efforts among stakeholders who share common climate vulner-
abilities or risk levels (e.g., individuals, groups, communities, businesses 
or institutions) has been a core attribute of adaptation planning (Mees 
et al., 2016) and ranges across many sectors (e.g., Sections 14.5.2.2, 
14.5.3.3, 14.5.4.3). Participatory efforts and robust decision making 
have also been observed; some integrated watershed planning proc-
esses have high degrees of sustained stakeholder involvement (Sec-
tion 14.5.3.3; FAQ 14.4; Harris-Lovett et al., 2015; Cantú, 2016).

14.7.2.3 Transformational Adaptation and Climate Resilience

Climate change and its projected impacts pose a substantial risk to North 
America as a region as well as to sectors, communities and individuals 
(Section 14.6.2). Incorporating different values and knowledge systems, 
consideration of equity and justice as core objectives and addressing 
underlying vulnerabilities are principles that can guide transformational 
adaptation and resilience (medium confidence).

Approaches that advance adaptation within the existing contexts 
(finances, institutions and processes) have been increasingly promoted 
by governments to mainstream climate risk into all considerations 
(Rosenzweig and Solecki, 2014; Van der Brugge and Roosjen, 2015; 
Boon et  al., 2021; Shi and Moser, 2021). Policies and programmes 
that build upon existing approaches that have inherent climate 
resilience including Indigenous knowledge-based land and resource 
management (Section  14.5.4), co-management of agriculture and 
freshwater resources (Section  14.5.3), NbS (see Box  14.7), links 
between health and equity, and ecosystem-based management 
(Sections  14.5.2–14.5.4) have advanced sustainable and equitable 
climate resilience. Implementing the recommendations in the ASCE 
committee’s report on adaptation to a changing climate (2018a) 

Adaptation progress Limits

Sector Strategies Cases A P I E Soft Hard

Commerce and 
transportation 
(Section 14.5.8)

Improved engineering 
and technological 
solutions, in addition 
to innovative policy, 
planning, management and 
maintenance approaches, to 
enhance climate resilience 
for transportation and 
related commerce

For roads, changing pavement mixes 
to be more tolerant to heat or frost 
heaving, expanding drainage capacity, 
reducing flood risks, enhancing travel 
advisories and alerts, elevating or 
relocating new infrastructure where 
feasible and changing infrastructure 
design requirements (Natural Resources 
Conservation Service, 2008; EPA, 2017; 
Pendakur, 2017)

H H M L

Lack of financial resources 
to build climate-resilient 
infrastructure, particularly in 
marginalised communities

Extreme events 
which may cause 
significant and 
irreversible impacts 
on the transportation 
sector with major 
implications for 
supply chains and 
global trade

Note:

L: low, M: moderate, H: high
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and Canada’s Infrastructure and Buildings Working Group report has 
been identified as an opportunity to improve social equity by ensuring 
the resilience of infrastructure and the services it provides, through 
adoption of standards and good asset management practices (Amec 
Foster Wheeler Environment and Infrastructure, 2017; ASCE, 2018a).

Long-term policy signals to incentivise ongoing, scalable adaptation 
action that is coordinated with mitigation efforts will increase actions 
and prevent potential maladaptive investment (Moser, 2018; Shi 
and Moser 2021). Using SDG goals and the NDCs as a framework 
for inclusive and coordinated partnership and vertical integration 
across subnational, national and regional planning can promote 
climate resilient development (CRD) (Section 18.1.3). Coordination of 
policies and responses have been identified as supporting longer-term, 
transformational adaptation and minimising risk (Termeer et al., 2017; 
Fazey et  al., 2018). New approaches for enabling and incentivising 
transformative adaptation in North America are rapidly emerging 
(Colloff et al. 2017; Fedel et al. 2019; Werners et al. 2021). Evaluation 
of the feasibility of evolving adaptation strategies is only in the early 
stages, but recent work has provided the foundation for assessing 
these considerations (Table 14.7; Chapter 16).

Differing values, perspectives, interests and needs of relevant actors 
(Dittrich et  al., 2016) through participatory processes, such as co-
production of knowledge (Meadow et  al., 2015; Wall et  al., 2017), 
have been incorporated through the Resilience Dialogues21 and the 
development of guidance on climate scenarios (Chaumont, 2014). 
Framing of adaptation goals strongly determines beneficiaries of 
resultant policies and underscores the importance of a plurality of 

21 See www.resiliencedialogues.org

perspectives in adaptation governance (Cochran et al., 2013; Plummer, 
2013; Allison and Bassett, 2015; Raymond-Yakoubian and Daniel, 2018). 
Sustained engagement through iterative knowledge development, 
learning and negotiation has been identified as core for addressing 
climate risks (Kates et al., 2012; Seijger et al., 2014). Interdisciplinary 
and inclusive adaptation programmes that embrace and plan for conflict 
and resolution, and address inequalities, have been part of broadening 
the opportunities for engagement (Cantú, 2016; Termeer et al., 2017; 
Parlee and Wiber, 2018; Sterner et al., 2019; Haasnoot et al., 2020).

Equity and justice in climate adaptation have been identified as providing 
a foundation for resilience in natural, social and built systems (Cochran 
et  al., 2013; Reckien et  al., 2017; Schell et  al., 2020). This approach 
recognises that social vulnerability undermines efforts to increase adaptive 
capacity and that adaptation may also entrench existing social inequities, 
such as marginalisation of communities of colour, gender discrimination, 
legacy effects of colonisation and gentrification of coastal communities 
(Schell et al., 2020; Thomas, 2020). Thus, identifying systemic racism and 
the effects of colonialism within and across institutions has also been 
identified as part of achieving more just and equitable adaptation (Shi and 
Moser 2021). Acknowledgement and incorporation of IK in adaptation 
planning and implementation also recognises Indigenous sovereignty 
issues and the importance of the equitable role of Indigenous self-
determination in governance and planning (see Box 14.1; Section 14.4; 
Raymond-Yakoubian and Daniel, 2018).

Strategies have been emerging to facilitate progress by including specific 
guidance on tools for financing and funding climate-change adaptation 
infrastructure (Berry and Danielson, 2015; Chen et  al., 2016; Zerbe, 

Table 14.7 |  Simplified example for transitioning from incremental to transformative adaptation approaches to support future climate-resilient sustainable development

Adaptation approaches Mitigation Feasibility dimensions

Hazard Response Incremental Transformational
Evidence/

agreement
Co-benefits Barriers Enablers

Extreme 
storms causing 
severe flooding 
and erosion

Integrated 
ecosystem and 
watershed 
management

Restoration of stream 
corridors to incorporate 
environmental flows; 
continuing to build 
hardened surfaces and 
stream diversions in urban 
areas to accommodate 
infrequent, yet extreme, 
storm events

Restoration of streambanks 
and beds to stabilise 
and slow flows; use of 
drought-tolerant plantings 
and shade trees to 
reduce evaporation rates; 
incorporation of pervious 
surfaces in urban settings 
in combination with 
designating wide buffer 
area within floodplains to 
accommodate increased 
frequency of extreme 
events; integration of equity 
and justice considerations

Medium

Conservation 
of soil and 
increased 
opportunity 
for carbon 
sequestration

Sectors working in 
silos, inadequate 
financing, inability to 
identify shared goals 
(EC, INST, SOC, GEO)

Development of a 
coordinated suite of 
adaptation efforts, 
co-produced among 
stakeholders and 
across sectors (INST, 
SOC, ENV, TEC)

Notes:

This table is modified from the IPCC SR1.5 adaptation feasibility assessment for Land and Ecosystem Transitions (IPCC, 2018). Feasibility dimensions (can be barriers and/or 
enablers) are as follows: Economic (EC), Technological (TEC), Institutional (INST), Sociocultural (SOC), Environmental/Ecological (ENV) or Geophysical (GEO) (Chapter 16).
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2019). This includes facilitating transitions between incremental and 
transformational efforts to facilitate CRD (Figure 14.12; Chapter 18).

The extent to which resilient infrastructure contributes to social 
justice and equity has also been taken into consideration (Climate-
Safe Infrastructure Working Group, 2018; Doorn, 2019). Proactive 
actions focused on small towns and rural areas—including the 

interdependencies between cities and surrounding areas—increases 
the potential that small and medium cities can build adaptive capacity 
at a pace that is commensurate with present and future risks (Moss 
et al., 2019; Vodden and Cunsolo, 2021). This coordination also creates 
greater opportunity for translation of knowledge into practice and 
assessing knowledge in the context that it is to be applied to improve 
decision making across scales (Enquist et al., 2017; Moss et al., 2019).

Conceptual diagram of the key elements for expanding the adaptation solution space
and implementing climate-resilient development

Figure 14.12 |  Conceptual diagram of the key elements for expanding the adaptation solution space and implementing climate resilient development 

(Chapter 18). Adapted from Shi and Moser (2021).
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Box 14.7 | Nature-based Solutions to Support Adaptation to Climate Change

Nature-based Solutions (NbS) are ‘actions to protect, sustainably manage, and restore natural or modified ecosystems, that address 
societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits’ (IUCN, 2016). Such 
NbS in the context of climate change, or nature-based adaptation see (Box 1.3), can jointly address multiple social–ecological issues 
related to climate-change hazards, impacts, adaptation and mitigation (Figure Box 14.7.1; Cross-Chapter Box NATURAL in Chapter 2). 
Successful nature-based adaptation draws from existing adaptation approaches (Borsje et al., 2011; Temmerman et al., 2013; Law et al., 
2018; Reguero et al., 2018; Buotte et al., 2019) and is applied across ecological and human systems (high confidence) (Table Box 14.7.1; 
Figure Box 14.7.1).

Adaptations: Forest thinning; prescribed 
burning; cultural burning
Benefits: Increase carbon storage; protect 
biodiversity; increase resilience to fire and 
drought
Caution: potential for failed regeneration

Adaptation: Green cities and urban 
spaces; green infrastructure; habitat 
restoration
Benefits: Protection from flooding; 
reduce heat-island effects and 
related human health 
risks; maintain and 
enhance carbon 
storage and 
biodiversity

Adaptation: Protect and restore barrier habitats; combined 
natural and built infrastructure
Benefits: Wave attenuation, erosion and flood reduction 
from storm events exacerbated by SLR

Adaptation: Forest preservation and 
restoration
Benefits: Enhance carbon storage; 
protect biodiversity; reduce soil erosion

Adaptation: Integrated watershed 
management
Benefits: Increase carbon storage; protect 
biodiversity; regulate seasonal 
streamflows; reduce water treatment costs; 
improve water quality and quantity; reduce 
soil erosion

Adaptation: Agroforestry; winter cover crops; 
revegetate stream buffers; wetland protection
Benefits: Maintain crop yields; reduce soil erosion; 

reduce crop heat stress; enhance carbon 
storage; enhance biodiversity

Adaptation: Protect critical habitats, kelp forests and coral reefs; 
ecosystem-based management
Benefits: Support fish and shellfish resources; promote ecosystem 
resilience; maintain and enhance carbon storage and biodiversity

Climate hazards protection services provided by nature-based solutions

Figure Box 14.7.1 |  Climate hazard protection services provided by Nature-based Solutions

Through a capacity to evolve to keep pace with climate change, these approaches can impart self-sustaining and cost-efficient long-term 
protection in addition to serving as biodiverse, carbon sinks (Scyphers et al., 2011; Cheong et al., 2013; Temmerman et al., 2013; Rodriguez 
et al., 2014; Herr and Landis, 2016; Sasmito et al., 2016; Reguero et al., 2018). Nature-based adaptation is generally less expensive and 
strengthens over time, as compared with built infrastructure which erodes with time (medium confidence) (Narayan et al., 2016; Smith 
et al., 2017; Sutton-Grier et al., 2018). Analysis of the impacts of Hurricane Sandy determined that communities located behind wetlands 
experienced 20% less damage (Narayan et al., 2016). Coral reefs are providing 544 million USD yr−1 (Beck et al., 2018a) and mangroves 
22 billion USD yr−1 in property protection for coastal communities in the USA and Mexico (Beck et al., 2018b). By 2030, flooding from 
changes in storms, SLR (based on RCP8.5) and increases in built infrastructure in the US Gulf Coast may result in net economic losses of 
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up to 176 billion USD, of which 50 billion USD could be avoided through implementation of nature-based measures including wetland 
and oyster reef restoration and other green infrastructure (see Box 14.4; Section 14.5.2; EPA, 2015b; Reguero et al., 2018).

Innovative approaches in Canada (Borsje et al., 2011; Spalding et al., 2014; Soto-Navarro et al., 2020) and the USA (Law et al., 2018; 
Buotte et al., 2019; Soto-Navarro et al., 2020) have led to social and environmental co-benefits and could address both future climate 
risk and long-standing social injustices (Hobbie and Grimm, 2020; Schell et al., 2020; Cousins, 2021). Effective nature-based adaptation 
requires a well-coordinated suite of adaptation efforts (e.g., assessment, planning, funding, implementation and evaluation) that is co-
produced among stakeholders and across sectors (high confidence) (Millar and Stephenson, 2015; Kabisch et al., 2016; Dilling et al., 2019; 
Morecroft et al., 2019; Lavorel et al., 2020). Evaluating the efficacy of nature-based adaptation may become more tractable with more 
uniform guidelines for implementation (Scarano, 2017; Malhi et al., 2020; Seddon et al., 2020), and coordination in scaling-up local-level 
nature-based adaptation measures is likely to facilitate long-term success (Gao and Bryan, 2017).

Table Box 14.7.1 |  Nature-based adaptation in North America

Sector NbS actions Benefits References

Coasts

Conservation and restoration of barrier 
habitats, salt marshes, mangroves, 
coral and oyster reefs, sand dunes and 
river deltas; combined natural and built 
infrastructure (e.g., oyster reef in front of 
breakwall)

Wave attenuation; erosion and flood 
reduction from storm events exacerbated 
by SLR; novel, created habitats, 
connectivity; recreation, quality of life

Borsje et al. (2011); Scyphers et al. (2011); Cheong et al. (2013); 
Pinsky et al. (2013a); Temmerman et al. (2013); Ferrario et al. (2014); 
Möller et al. (2014); Rodriguez et al. (2014); Spalding et al. (2014); 
Yates et al. (2014); EPA (2015b); Grenier et al. (2015); Brandon et al. 
(2016); Herr and Landis (2016); Narayan et al. (2016); Sasmito et al. 
(2016); Ward et al. (2016); Aerts et al. (2018); Beck et al. (2018a); 
Morris et al. (2018b); Moudrak et al. (2018); Reguero et al. (2018); 
Sutton-Grier et al. (2018)

Watershed approaches such as protecting 
and restoring forests and wetlands in 
coastal watersheds, adopting stream 
buffers in agricultural areas (see 
agriculture below)

Creation of a less flashy/variable hydrology; 
reduction in sediment, nutrient, hazardous 
chemical input to coastal waters and 
reduction in eutrophication and other 
water quality impairments, notably in deep 
waters where fish seek refuge from rising 
sea surface temperatures

Deutsch et al. (2015b); Boesch (2019); CENR (2010)

Aquaculture
Controlled culture of fish, bivalves, corals 
and other marine species

Enhancement and restoration of, and 
reduction in pressure on, wild species and 
ecosystems; restoration of threatened 
species such as coral reef species; storage 
of carbon

Froehlich et al. (2017); Reid et al. (2019); Theuerkauf et al. (2019)

Agriculture
Re-vegetation of stream buffer zones; 
planting of winter cover crops; wetland 
protection and restoration; agroforestry

Self-sustaining and cost-efficient 
long-term protection from soil erosion; 
maintenance and enhancement of crop 
yields; enhancement of carbon sinks; 
enhancement of biodiversity; reduction in 
nutrient input to coasts

CENR (2010); Boesch (2019); Seddon et al. (2020)

Urban areas

Replacement of impervious surfaces 
with permeable pavement, green space, 
parks, wetlands and green infrastructure 
(e.g., stormwater ponds, bioswales, rain 
gardens, green roofs); community gardens 
and urban forests; restoration of natural 
habitats

Reduction in urban heat island effects 
and air pollution; self-sustaining and 
cost-efficient long-term protection from 
flooding, erosion and SLR; enhancement of 
carbon sequestration biodiversity, habitat 
and connectivity; improvement in quality of 
life and human health benefits

Hobbie and Grimm (2020); Brown et al. (2021)

Box 14.7 (continued)
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Sector NbS actions Benefits References

Terrestrial

Forest conservation based on productivity 
and vulnerability to drought and fire; 
longer harvest rotations

Increase in carbon storage and biodiversity
Law et al. (2018); Buotte et al. (2020); Soto-Navarro et al. (2020); 
Mori et al. (2021)

Forest thinning; prescribed burning; 
cultural burning

Reduction in wildfire risk and severity; 
increase in forest resilience to fire; 
reduction in forest drought stress; increase 
in carbon storage

See Box 14.2 and citations therein.

Protection and restoration of natural 
forests

Regulation of stream flow; reduction in soil 
erosion; protection and enhancement of 
biodiversity

Lawler et al. (2020); Seddon et al. (2020)

Beaver (Castor canadensis) reintroduction Regulation of seasonal stream flow McKelvey and Buotte (2018); Vose et al. (2018)

Freshwater
Forests to Faucets and other watershed 
restoration projects for stream and 
drinking water protection

Improvement in water quality; reduction in 
drinking water treatment costs; increase in, 
and regulation of, streamflow

Gartner et al. (2017); Claggett and Morgan (2018); Price and 
Heberling (2018)

Box 14.7 (continued)

Frequently Asked Questions

FAQ 14.4 | What are some effective strategies for adapting to climate change that have been implemented across 

North America, and are there limits to our ability to adapt successfully to future change?

Climate adaptation is happening across North America. These efforts are differential across sectors, scale and scope. Without more integrative 
and equitable approaches across broad scales, known as transformational adaptation, the continent may face limits to the future effectiveness 
of adaptation actions.

Across North America, progress in introducing climate adaptation is steady, but incremental. Adaptation is typically 
limited to planning, while implementation is often hindered by ‘soft’ limits, such as access to financial resources, 
disparate access to information and decision-making tools, the existence of antiquated policies and management 
frameworks, lack of incentives and highly variable political perceptions of the urgency of climate change.

Cities and other state and local entities are taking the lead in adaptation efforts, particularly in terms of mainstreaming 
the use of many approaches to adaptation. These approaches include a suite of efforts ranging from assessment of 
impacts and vulnerability (relative to individuals, communities, jurisdictions, economic sectors, natural resources, 
etc.), planning processes, implementation of identified strategies and evaluation of the effectiveness of these 
strategies. Other institutions (e.g., NGOs, professional societies, private engineering and architecture businesses) 
also are making significant progress in the adaptation arena, particularly at local to regional levels.

The water management and utilities sectors have made significant progress towards implementation of adaptation 
strategies using broad-based participatory planning approaches. Consideration of climate change is now folded 
into some ongoing watershed-wide planning efforts. An example is provided by the One-Water-One-Watershed 
(OWOW) approach followed by the Santa Ana Watershed Project Authority (SAWPA) in southern California. SAWPA 
is a joint powers authority comprising five regional water districts that provide drinking water to more than 6 million 
people as well as industrial and irrigation water across the 2400-square-mile watershed. The OWOW perspective 
focuses on integrated planning for multi-benefit projects and explicit consideration of the impacts of any planning 
option across the entire watershed. Planning is supported by stakeholder-driven advisory bodies organised along 
themes that consider a full suite of technical, political, environmental and social considerations. SAWPA provides 
member agencies with decision-support tools and assistance to implement water conservation policies and pricing 
regimes, and one member agency is an industry leader on potable water recycling.

The marine and coastal fisheries sector also has shown considerable progress in climate adaptation planning, 
particularly in terms of assessing impacts and vulnerability of fisheries. Along the Pacific Northwest coast of the 
USA and Alaska, seasonal and sub-seasonal forecasts of ocean conditions exacerbated by warming (e.g., O2, pH, 
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temperature, sea ice extent) already have informed fisheries and aquaculture management. Similarly, forecasts and 
warnings have reduced human exposure to the increased risk of toxins from HABs in the Gulf of Mexico, the Great 
Lakes, California, Florida, Texas and the Gulf of Maine.

Professional organisations and insurance play an important part in mainstreaming climate adaptation. Government 
and private-sector initiatives can help address adaptation efforts through building-design guidelines and engineering 
standards, as well as insurance tools that reflect the damages from climate impacts. Through the identification of 
climate risks and proactive adaptation planning, the private sector can contribute to reducing risks throughout 
North America by securing operations, supply chains and markets.

Indigenous Peoples and rural community efforts across the continent show great potential for enhancing and 
accelerating adaptation efforts particularly when integrated with Western-based natural resource management 
approaches, such as cultural burning and other traditional practices that reduce the buildup of fuels, in addition 
to prescribed fire and mechanical thinning. In the agricultural sector, examples include planting and cultivation 
of culturally significant plants, as a traditional practice of soil conservation, in addition to food crops or in lieu of 
synthetic or mechanical soil treatments.

Future changes in climate (e.g., more intense heatwaves, catastrophic wildfire and post-fire erosion, SLR and forced 
relocations) could exceed the current capacity of human and natural systems to successfully adapt (or ‘hard limits’). 
The inclusion and equitable contribution of Indigenous Peoples and rural communities in decision-making and 
governance processes—including recognition of the interdependencies between cities and surrounding areas—
increases the likelihood of building adaptive capacity at a pace that is commensurate with present and future 
climate-change risks.

Large-scale, equitable transformational adaptation likely will be required to respond to the growing rate and 
magnitude of changes before crossing tipping points where hard limits exist, beyond which adaptation may no 
longer be possible. Increasingly, there are calls for accelerating and scaling up adaptation efforts, in addition to 
aligning policies and regulatory legislation at multiple levels of government. Improved processes for adaptation 
decision making, governance and coordination, across sectors and jurisdictions, could enhance North America’s 
capacity to adapt to rapid climatic change. These actions include a focused societal shift, across governments, 
institutions and transnational boundaries, from primarily technological approaches to NbS that help foster changes 
in perception of risk and, ultimately, human behaviour.

Box FAQ 14.4 (continued)
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