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Abstract

We give an explicit formula for the Frobenius number of triples associated with the Diophantine equation
x2 + y2 = z3, that is, the largest positive integer that can only be represented in p ways by combining the
three integers of the solutions of x2 + y2 = z3. For the equation x2 + y2 = z2, the Frobenius number has
already been given. Our approach can be extended to the general equation x2 + y2 = zr for r > 3.
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1. Introduction

Diophantine equations are important in mathematics because of their historical
significance, their central role in number theory and their applications in cryptography
and other fields. Some Diophantine equations have no integral solution or only
finitely many integral solutions, whereas some have infinitely many solutions, often
characterised as parametrisations. One of the best known Diophantine equations is
x2 + y2 = z2, whose positive integral solutions are known as Pythagorean triples.
Some of its generalisations are x2 + y2 = zr and x2 − y2 = zr (r ≥ 2). In this paper,
we consider the former one. Diophantine equations are used to characterise certain
problems in Diophantine approximations. In [4, 5], we computed upper and lower
bounds for the approximation of hyperbolic functions at points 1/s (s = 1, 2, . . .) by
rationals x/y, such that x, y and z form Pythagorean triples. In [2, 6], we considered
Diophantine approximations x/y to values of hyperbolic functions, where (x, y, z) is the
solution of certain Diophantine equations, including x2 + y2 = z4.

For an integer k ≥ 2, consider a set of positive integers A = {a1, . . . , ak} with
gcd(A) = gcd(a1, . . . , ak) = 1. Finding the number d(n; A) = d(n; a1, a2, . . . , ak) of
nonnegative integral representations x1, x2, . . . , xk to a1x1 + a2x2 + · · · + akxk = n
for a given positive integer n is an important and interesting problem. This
number is often called the denumerant and is equal to the coefficient of xn in
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1/(1 − xa1 )(1 − xa2 ) · · · (1 − xak ) (see [21]). For recent studies and references on the
denumerant, see [10, 17, 18].

For a nonnegative integer p, define Sp and Gp by

Sp(A) = {n ∈ N0 | d(n; A) > p} and Gp(A) = {n ∈ N0 | d(n; A) ≤ p},
so that Sp ∪ Gp = N0, which is the set of nonnegative integers. The set Sp is called a
p-numerical semigroup, because S(A) = S0(A) is a numerical semigroup, and Gp is the
set of p-gaps. Define gp(A) and np(A) by

gp(A) = max
n∈Gp(A)

n, np(A) =
∑

n∈Gp(A)

1,

respectively; these numbers are called the p-Frobenius number and the p-Sylvester
number (or p-genus), respectively. When p = 0, g(A) = g0(A) and n(A) = n0(A) are
the original Frobenius number and Sylvester number (or genus), respectively. More
detailed descriptions of p-numerical semigroups and their symmetric properties can
be found in [16].

We are interested in explicit formulas for the Frobenius number and related values.
For two variables, A = {a, b}, it is known that

g(a, b) = (a − 1)(b − 1) − 1 and n(a, b) =
(a − 1)(b − 1)

2
[21, 22]. However, for three or more variables, the Frobenius number cannot be given
by any set of closed formulas, which can be reduced to a finite set of polynomials [3].
For three variables, various algorithms have been devised for finding the Frobenius
number. Nevertheless, explicit closed formulas have been found only for some special
cases (see [19] and references therein). Recently, the first author and his co-authors
succeeded in giving the p-Frobenius number as a closed-form expression for the
triangular number triplet [8], for repunits [9], Fibonacci triplets [14], Jacobsthal triplets
[12, 13] and arithmetic triplets [15].

In this paper, we study the numerical semigroup of the triples (x, y, z), satisfying the
Diophantine equation x2 + y2 = zr (r ≥ 2). When r = 2, the Frobenius number of the
Pythagorean triple is given in [7]. Unlike the case of x2 − y2 = zr (r ≥ 2) in [23], it is
more difficult to give a closed explicit formula for the Frobenius number of the triple
from x2 + y2 = zr (r ≥ 2) for general r. So, in this paper, due to space limitations, we
give the results for only r = 3 and p = 0. A detailed discussion, including the cases for
r = 4, 5 and for p > 0, is given in [11].

2. Preliminaries

We introduce the p-Apéry set in order to obtain the formulas for gp(A) and np(A).
Without loss of generality, we assume that a1 = min(A).

DEFINITION 2.1. Let p be a nonnegative integer. For a set of positive integers
A = {a1, a2, . . . , aκ} with gcd(A) = 1 and a1 = min(A), we denote the p-Apéry set of
A by
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App(A) = App(a1, a2, . . . , aκ) = {m(p)
0 , m(p)

1 , . . . , m(p)
a1−1},

where each positive integer m(p)
i (0 ≤ i ≤ a1 − 1) satisfies the conditions

(i) m(p)
i ≡ i (mod a1), (ii) m(p)

i ∈ Sp(A), (iii) m(p)
i − a1 � Sp(A).

Note that m(0)
0 is defined to be 0.

LEMMA 2.2. Let k and p be integers with k ≥ 2 and p ≥ 0 and assume that
gcd(a1, a2, . . . , ak) = 1. Then

gp(a1, a2, . . . , ak) =
(

max
0≤j≤a1−1

m(p)
j

)
− a1, (2.1)

np(a1, a2, . . . , ak) =
1
a1

a1−1∑
j=0

m(p)
j −

a1 − 1
2

. (2.2)

REMARK 2.3. When p = 0, the formulas (2.1) and (2.2) reduce to the formulas given
by Brauer and Shockley [1] and Selmer [20], respectively.

3. x2 + y2 = z3

For the solution of the Diophantine equation x2 + y2 = zr, we obtain the parametri-
sation

x =
�r/2	∑
k=0

(−1)k
(

r
2k

)
sr−2kt2k,

y =
�(r−1)/2	∑

k=0

(−1)k
(

r
2k + 1

)
sr−2k−1t2k+1,

z = s2 + t2,

where s and t are of opposite parity with gcd(s, t) = 1.
The case r = 2 has already been discussed in [7], leading to

g(s2 − t2, 2st, s2 + t2) = (s − 1)(s2 − t2) + (s − 1)(2st) − (s2 + t2).

Let r = 3. The triple of the Diophantine equation x2 + y2 = z3 is parametrised by

(x, y, z) = (s(s2 − 3t2), t(3s2 − t2), s2 + t2).

For convenience, we put

x := s(s2 − 3t2), y := t(3s2 − t2), z := s2 + t2.

Since x, y, z > 0 and gcd(x, y, z) = 1, we see that s >
√

3t, gcd(s, t) = 1 and
s � t (mod 2).

When x > z, the Frobenius number of this triple is given in the following theorem.
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FIGURE 1. The five intervals for s/t considered in this section.

THEOREM 3.1. Suppose that x > z. Then

g(s(s2 − 3t2), t(3s2 − t2), s2 + t2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s − 1)s(s2 − 3t2) + (s − 1)t(3s2 − t2) − (s2 + t2)
if s > (1 +

√
2)t,

(2s + t − 1)s(s2 − 3t2) + (t − 1)t(3s2 − t2) − (s2 + t2)
if 2t < s < (1 +

√
2)t,

(2s + t − 1)s(s2 − 3t2) + (s − t − 1)t(3s2 − t2) − (s2 + t2)
if (2 +

√
13)t/3 < s < 2t,

(5s + 3t − 1)s(s2 − 3t2) + (2t − s − 1)t(3s2 − t2) − (s2 + t2)
if C1t < s < (2 +

√
13)t/3,

(2s + t − 1)s(s2 − 3t2) + (2s − 3t − 1)t(3s2 − t2) − (s2 + t2)
if (3 +

√
34)t/5 < s < C1t,

(7s + 4t − 1)s(s2 − 3t2) + (2t − s − 1)t(3s2 − t2) − (s2 + t2)
if
√

3 t < s < (3 +
√

34)t/5.

Here, C1 = 1.8139. . . is the positive real root of 3x4 − 7x3 + 6x2 − 3x − 5 = 0.

REMARK 3.2. When x < z, that is, s
√

(s − 1)/(3s + 1) < t < s/
√

3, there is no uniform
pattern for the Frobenius number. We need a separate discussion for each case. See
[11] for details.

3.1. The case where
√

3t < s < (2 +
√

3)t. We divide the discussion into five parts
corresponding to the intervals in Figure 1.

If
√

3t < s < (2 +
√

3)t, then 0 < x < y. Hence, x < z < y or z < x < y.
First, consider z < x < y. Since (2s + t)x + (2t − s)y = 2(s2 − st − t2)z with

s2 − st − t2 > (2 −
√

3)t2,

(2s + t)x + (2t − s)y ≡ z and (2s + t)x + (2t − s)y > 0. (3.1)

Case 1: (1 +
√

2)t < s < (2 +
√

3)t. The elements of the (0-)Apéry set are shown in
Figure 2, where each point (X, Y) corresponds to the expression Xx + Yy and the area
of the (0-)Apéry set is equal to z = s2 + t2.

Since (1 +
√

2)t < s < (2 +
√

3)t, we see that (s + t)x > (s − t)y. Since (s + t)x ≡
(s − t)y (mod z) and sx ≡ −ty (mod z), the sequence {�x (mod z)}z−1

�=0 is given by
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FIGURE 2. Ap0(x, y, z) when (1 +
√

2)t < s < (2 +
√

3)t.

(0, 0), (1, 0), . . . , (s + t − 1, 0), (0, s − t), (1, s − t), . . . , (s − 1, s − t),
(0, s − 2t), (1, s − 2t), . . . , (s + t − 1, s − 2t),
(0, 2s − 3t), (1, 2s − 3t), . . . , (s − 1, 2s − 3t),
(0, 2s − 4t), (1, 2s − 4t), . . . , (s − 1, 2s − 4t),
(0, 2s − 5t), (1, 2s − 5t), . . . , (s + t − 1, 2s − 5t)
(0, 3s − 6t), (1, 3s − 6t), . . . , (s − 1, 3s − 6t),
(0, 3s − 7t), (1, 3s − 7t), . . . , (s − 1, 3s − 7t)
. . . , (s − 1, st − (s − 1)t). (3.2)

After (s − 1, st − (s − 1)t), the next point adding x (mod z) is (0, 0). Note that the
typical patterns in the sequence (3.2) are shown as follows: if k1s − k2t ≤ t − 1, then
the pattern is

(0, k1s − k2t), (1, k1s − k2t), . . . , (s + t − 1, k1s − k2t), (0, (k1 + 1)s − (k2 + 1)t),

and if k1s − k2t ≥ t, then it is

(0, k1s − k2t), (1, k1s − k2t), . . . , (s − 1, k1s − k2t), (0, k1s − (k2 + 1)t).

Since gcd(s, t) = 1, all the points inside the area in Figure 2 appear in the sequence
(3.2) just once. Since gcd(x, z) = 1, the sequence {�x (mod z)}z−1

�=0 is equivalent to the
sequence {� (mod z)}z−1

�=0.
Comparing the elements at (s + t − 1, t − 1) and (s − 1, s − 1), taking possible

maximal values, we find that the element at (s − 1, s − 1) is the largest in the Apéry
set because

(s − 1)x + (s − 1)y − ((s + t − 1)x + (t − 1)y) = t(s2(2s − 3) + (2s + t)t2) > 0.

By (2.1) in Lemma 2.2,

g(x, y, z) = (s − 1)x + (s − 1)y − z

= (s − 1)(s − t)(s2 + 4st + t2) − (s2 + t2).

Case 2: 2t < s < (
√

2 + 1)t. Now (s + t)x ≡ (s − t)y (mod z) but (s + t)x < (s − t)y.
Nevertheless, by (2s + t)x − (s − 2t)y = 2(s2 − st − t2)z > 0, we have (2s + t)x ≡
(s − 2t)y (mod z) and (2s + t)x > (s − 2t)y. For example, (s, t) = (9, 4) satisfies this
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FIGURE 3. Ap0(x, y, z) when 2t < s < (
√

2 + 1)t.

FIGURE 4. Ap0(x, y, z) when (2 +
√

13)t/3 < s < 2t.

condition, so (x, y, z) = (297, 908, 97). Similarly, all the elements of the (0-)Apéry set
are given in Figure 3.

Compare the elements at (2s + t − 1, t − 1) and (s − 1, s − t − 1), which take possible
maximal values. Since the real roots of −x4 + 2x3 − 3x2 + 2x + 2 = 0 are −0.4909 and
1.4909, together with s > 2t, we see that

(s − 1)x + (s − t − 1)y − ((2s + t − 1)x + (t − 1)y) = −s4 + 2s3t3s2t2 + 2st3 + 2t4 < 0,

and we find that the element at (2s + t − 1, t − 1) is the largest in the Apéry set. By
(2.1) in Lemma 2.2,

g(x, y, z) = (2s + t − 1)x + (t − 1)y − z.

Case 3: (2 +
√

13)t/3 < s < 2t. For example, (s, t) = (27, 14) satisfies this condition, so
(x, y, z) = (3807, 27874, 925).

By (2 +
√

13)t/3 < s, we have (3s + 2t)x − (2s − 3t)y = (3s2 − 4st − 3t2)z > 0. So,
(3s + 2t)x ≡ (2s − 3t)y (mod z) and (3s + 2t)x > (2s − 3t)y. Together with (3.1), all
the elements of the (0-)Apéry set are given in Figure 4.

Compare the elements at (3s + 2t − 1, 2t − s − 1) and (2s + t − 1, s − t − 1), which
take the possible maximal values. We find that the element at (s − 1, s − 1) is the largest
in the Apéry set because (2 +

√
13)t/3 < s < 2t and

(2s + t − 1)x + (s − t − 1)y − ((3s + 2t − 1)x + (2t − s − 1)y)

= −(s4 − 5s3t + 6s2t2 − st3 − 3t4) > 0
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FIGURE 5. Ap0(x, y, z) when (3 +
√

34)t/5 < s < (2 +
√

13)t/3.

for C2 t < s < C3 t. Here, C2 ≈ −0.5268 and C3 ≈ 3.3968 are the roots of x4 − 5x3 +

6x2 − x − 3 = 0. By (2.1) in Lemma 2.2,

g(x, y, z) = (2s + t − 1)x + (s − t − 1)y − z.

Case 4: (3 +
√

34)t/5 < s < (2 +
√

13)t/3. For example, (s, t) = (24, 13) satisfies this
condition, so (x, y, z) = (1656, 20267, 745).

In this case, (3s + 2t)x ≡ (2s − 3t)y (mod z) but (3s + 2t)x < (2s − 3t)y. Neverthe-
less, since (3 +

√
34)t/5 < s, we have (5s + 3t)x − (3s − 5t)y = (5s2 − 6st − 5t2)z > 0.

So, (5s + 3t)x ≡ (3s − 5t)y (mod z) and (5s + 3t)x > (3s − 5t)y. Together with (3.1),
all the elements of the (0-)Apéry set are given in Figure 5.

Comparing the elements at (5s + 3t − 1, 2t − s − 1) and (2s + t − 1, 2s − 3t − 1),
taking possible maximal values, we find that there are two possibilities. First, consider

(2s + t − 1)x + (2s − 3t − 1)y − ((5s + 3t − 1)x + (2t − s − 1)y)

= −3s4 + 7s3t − 6s2t2 + 3st3 + 5t4 > 0,

which is equivalent to C4 t < s < C1t (where C4 ≈ −0.5553 is also a root of 3x4 − 7x3 +

6x2 − 3x − 5 = 0). Restricting to the range in this case, if 1.7661 t ≈ (3 +
√

34)t/5 < s <
C1t, then, by (2.1) in Lemma 2.2,

g(x, y, z) = (2s + t − 1)x + (2s − 3t − 1)y − z.

Otherwise, that is, if C1t < s < (2 +
√

13)t/3 ≈ 1.8685 t, then

g(x, y, z) = (5s + 3t − 1)x + (2t − s − 1)y − z.

Case 5:
√

3t < s < (3 +
√

34)t/5. For example, (s, t) = (44, 25) satisfies this condition,
so (x, y, z) = (2684, 129575, 2561).

In this case, (5s + 3t)x ≡ (3s − 5t)y (mod z) but (5s + 3t)x < (3s − 5t)y. Since
s >
√

3t (≈ 1.732 t) > (4 +
√

65)t/7 (≈ 1.723 t), we have (7s + 4t)x − (4s − 7t)y =
(7s2 − 8st − 7t2)z > 0. So, (7s + 4t)x ≡ (4s − 7t)y (mod z) and (7s + 4t)x > (4s − 7t)y.
Together with (3.1), all the elements of the (0-)Apéry set are given as Figure 6.
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FIGURE 6. Ap0(x, y, z) when
√

3t < s < (3 +
√

34)t/5.

FIGURE 7. Ap0(x, y, z) when s > (2 +
√

3)t.

Comparing the elements at (7s + 4t − 1, 2t − s − 1) and (2s + t − 1, 3s − 5t − 1),
taking possible maximal values, we find that the element at (7s + 4t − 1, 2t − s − 1)
is the largest in the Apéry set because, from

√
3t < s < (3 +

√
34)t/5,

(2s + t − 1)x + (3s − 5t − 1)y − ((7s + 4t − 1)x + (2t − s − 1)y)

= −5s4 + 9s3t − 6s2t2 + 5st3 + 7t4 < 0.

Note that −5x4 + 9x3 − 6x2 + 5x + 7 = 0 has real roots at 0.5702 and 1.71692 and
s >
√

3t = 1.732t. By (2.1) in Lemma 2.2,

g(x, y, z) = (7s + 4t − 1)x + (2t − s − 1)y − z.

3.2. The case s > (2 +
√

3)t. If s > (2 +
√

3)t, then z < y < x. The elements of the
(0-)Apéry set are given in Figure 7, where each point (Y , X) corresponds to the
expression Yy + Xx and the area of the (0-)Apéry set is equal to z = s2 + t2.

Since sy − tx = stz, we have sy ≡ tx (mod z) and sy > tx. By using an additional
relationship ty + sx = (s − t)(s + t)z, it can be shown that the sequence {�y (mod z)}z−1

�=0
matches the sequence {� (mod z)}z−1

�=0 (see [11]).
Since s > (2 +

√
3)t, we have (s − 1)y + (s − 1)x > (t − 1)y + (s + t − 1)x. Hence,

by (2.1) in Lemma 2.2,

g(x, y, z) = (s − 1)y + (s − 1)x − z.

4. Final comments

When x < z < y, or s(s2 − 3t2) < z and s >
√

3t, we need a more precise discussion
in each special case (see [11]).
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The detail, the proof and the results including the cases r = 4, 5 are recorded in
[11], although the structures for r = 4, 5 are not similar to that for r = 3. When p > 0,
the formulas for p-Frobenius numbers and p-Sylvester numbers are obtained, although
there are many different situations. See [11] for the details.

When r ≥ 6, we can also obtain the Frobenius numbers of the triple for x2 + y2 = zr.
However, we need to discuss the cases for each specific value of r.
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