
The Review of Symbolic Logic, Page 1 of 26

THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS:
AXIOMATIZATIONS AND ALGEBRAIZABILITY

GIULIANO ROSELLA

Department of Philosophy and Education, University of Turin, Turin, Italy
and

SARA UGOLINI

Artificial Intelligence Research Institute (IIIA), CSIC, Barcelona, Spain

Abstract. The logico-algebraic study of Lewis’s hierarchy of variably strict conditional logics
has been essentially unexplored, hindering our understanding of their mathematical foundations,
and the connections with other logical systems. This work starts filling this gap by providing a
logico-algebraic analysis of Lewis’s logics. We begin by introducing novel finite axiomatizations
for Lewis’s logics on the syntactic side, distinguishing between global and local consequence
relations on Lewisian sphere models on the semantical side, in parallel to the case of modal
logic. As first main results, we prove the strong completeness of the calculi with respect to
the corresponding semantical consequence on spheres, and a deduction theorem. We then
demonstrate that the global calculi are strongly algebraizable in terms of a variety of Boolean
algebras with a binary operator representing the counterfactual implication; in contrast, we
show that the local ones are generally not algebraizable, although they can be characterized as
the degree-preserving logic over the same algebraic models. This yields the strong completeness
of all the logics with respect to the algebraic models.

§1. Introduction. A counterfactual conditional (or simply a counterfactual) is a
conditional statement of the form “If antecedent were the case, then consequent would
be the case”, where the antecedent is usually assumed to be false. Counterfactuals have
been studied in different fields, such as linguistics, artificial intelligence, and philosophy.
The logical analysis of counterfactuals is rooted in the work of Lewis [16, 17] and
Stalnaker [29, 30] who have introduced what has become the standard semantics for
counterfactual conditionals based on particular Kripke models (called sphere models)
equipped with a similarity relation among the possible worlds. In Lewis’s language,
a counterfactual is formalized as a formula of the kind ϕ� � which is intended to
mean that if ϕ were the case, then � would be the case. Lewis develops a hierarchy of
logics meant to deal with different kinds of conditionals that have had a notable impact,
and are quite well-known and studied; surprisingly, the literature on these logics (quite
vast: Lewis’s book counts thousands of citations at the present date) essentially lacks
a logico-algebraic treatment.
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2 GIULIANO ROSELLA AND SARA UGOLINI

The reader needs not be reminded that the role of algebra has been pivotal in the
formalization and understanding of correct reasoning; indeed, modern logic really
flourishes with the rise of the formal methods of mathematical logic, which moves its
first steps with George Boole’s intuition of using the symbolic language of algebra as
a mean to formalize how sentences connect together via logical connectives [7]. More
recently, the advancements of the discipline of (abstract) algebraic logic have been one
of the main drivers behind the surge of systems of nonclassical logics in the 20th century,
in particular via the notion of equivalent algebraic semantics of a logic introduced by
Blok and Pigozzi [6]. In this framework, the deductions of a logic are fully and faithfully
interpreted by the semantical consequence of the related algebras, and powerful bridge
theorems allow one to study properties of the logics in the corresponding algebraic
framework and vice versa [10].

While a few works present a semantics in terms of algebraic structures for Lewis’s
conditional logics [23, 26, 28, 31], the results therein are either partial or fall outside the
framework of the abstract algebraic analysis (however see [24] for a logico-algebraic
work on a conditional logic outside of Lewis’s framework). On a different note, the
proof-theoretic perspective on Lewis’s conditional logics is instead more developed, in
particular it is carried out in a series of recent works [11, 12, 21]. However, although the
research on Lewis’s conditional logics has been and still is very prolific, a foundational
work that carries Lewis’s hierarchy within the realm of the well-developed discipline
of (abstract) algebraic logic is notably missing in the literature; the present manuscript
aims at filling this void.

To this end, we start by considering Lewis’s logics as consequence relations, instead
of just sets of theorems; this brings us to consider two different kinds of derivation,
depending on whether the deductive rules are applied only to theorems (giving a
relatively weaker calculus) or to all derivations (i.e., yielding a stronger calculus). We
stress that this distinction, although relevant, is often blurred in the literature. As it
is the case for modal logic (see [4, 32]), these two choices turn out to correspond to
considering two different consequence relations on the intended sphere models: a local
and a global one; the latter, to the best of our knowledge, has not been considered in
the literature. The strong completeness of the local consequence with respect to the
weaker calculi essentially follows from Lewis’s work; we provide an analogous result
for the global consequence relation with respect to the stronger calculi (Theorem 3.23).
It is worth stressing that the axiomatizations we introduce here are novel, and simpler
than the original ones in [17].

Inspired by some results connecting modal operators and Lewis’s counterfactuals
(see [17, 33]), our work unveils a deep relationship between Lewis’s logics and
modal logic, which will guide the groundwork of this investigation. Specifically, we
demonstrate how several model-theoretic techniques commonly used in standard
Kripke semantics for modal logic can be successfully applied to Lewis’s sphere
semantics, thanks to a modal operator � that can be term-defined in the language.
This allows us to prove, for example, a deduction theorem for the strong calculus
(Theorem 3.25), whereas the weak calculus is known to have the classical deduction
theorem [17].

One should however keep in mind that the binary operator � does not
straightforwardly inherit the plethora of results on modal operators; for the reader
more expert on the algebraic perspective, the models are not Boolean algebras with
an operator in the usual sense (see [14]), since� is not additive on both arguments
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 3

(more precisely, it only distributes over infima on the right) and it cannot be recovered
from a unary modal operator.

The other main results show that the stronger calculi, associated with the
global consequence relation, are strongly algebraizable in the sense of Blok–Pigozzi
(Corollary 4.7), i.e., there is a class of algebras axiomatized by means of equations
(a variety of Boolean algebras with an extra binary operator �) that serve as
the equivalent algebraic semantics; the weaker calculi, associated with the local
consequence relation, are shown to not be algebraizable in general (there is no class
of algebras whose consequence relation “corresponds” to the deduction of the logic),
but they are the logics preserving the degrees of truth of the same algebraic models
(Corollaries 4.19 and 4.22). Therefore, the same class of algebras can be meaningfully
used to study both versions of Lewis’s logics; precisely, we have strong completeness
of both calculi with respect to the algebraic models. We also initiate the study of
the structure theory of the algebraic models; interestingly, we demonstrate that the
congruences of the algebras, which are in one-one correspondence with the deductive
filters inherited by the logics, can be characterized by means of the congruences of
their modal reducts (Proposition 4.12 and Corollary 4.13).

§2. Lewis’s logics: New axiomatizations. This section lays out the groundwork for
a logico-algebraic study of the hierarchy of logics introduced by Lewis in his seminal
book [17] to reason with counterfactuals conditionals, and their intended models, i.e.,
sphere models. All the logics in the hierarchy are axiomatic extensions of the system
V, which according to Lewis is the “weakest system that has any claim to be called
the logic of conditionals” [16, p. 80]; therefore our investigation starts with V, and all
our results will carry through its axiomatic extensions1. In particular, we will give a
new and simpler axiomatization of V with respect to the original ones [17]; we will
take the counterfactual connective as a primitive symbol in the language, and we will
distinguish between two different consequence relations: a weak one, where the rules
of the calculus only apply to theorems (which is the one usually considered in the
literature), and a strong one, where the rules instead apply to all deductions. We will
see in the next section that these two choices correspond to considering two different
consequence relations over sphere models: a local and a global one, in analogy with
the case of modal logic.

While often in the literature V is presented as a set of theorems, we are interested
in studying logics as consequence relations; let us be more precise. Given an algebraic
language L, we denote the set of its formulas built from a denumerable set of variables
by FmL and the corresponding algebra of formulas by FmL. A consequence relation on
FmL is a relation �⊆ P (FmL) × FmL (and we write Σ � � for (Σ, �) ∈�) such that:

1. if α ∈ Γ then Γ � α;
2. if Γ � � for all � ∈ Δ and Δ � � , then Γ � � .

We call substitution any endomorphism of FmL (i.e., any function on itself that respects
all operations);� is substitution invariant (also called structural) if Γ � α implies {�(�) :
� ∈ Γ} � �(α) for each substitution �. Finally, � is finitary if Γ � α implies that there

1 The system V from [17] is equivalent to the system C0 in [16], essentially differing in minor
differences in the language.
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4 GIULIANO ROSELLA AND SARA UGOLINI

is a finite Γ′ ⊆ Γ such that Γ′ � α. A logic L is an ordered pair L = (L,�L) given by a
language L and a substitution-invariant consequence relation �L on FmL; in this work
we will actually only be interested in finitary logics.

Let us now fix the language L� to be the one obtained from a denumerable set of
variables and expanding the language of propositional classical logic {∧,∨,→, 0, 1}
with a binary connective�, where ϕ� � should be read as

“if it were the case that ϕ, then it would be the case that �”.

As usual, one can define further classical connectives by: ¬x := x → 0, x ↔ y :=
(x → y) ∧ (y → x). The following derived connectives will be also considered:

x� y := ¬(x� ¬y); �x := ¬x� x; �x := ¬�¬x;

x � y := ((x ∨ y)� (x ∨ y)) → ((x ∨ y)� x);

x ≺ y := ¬(y � x); x ≈ y := (x � y) ∧ (y � x).

Notation 2.1. We denote with Fm� the algebra of L�-formulas over a fixed
denumerable set of variables Var.

We will hence distinguish two different logics, GV and LV, which arise depending on
whether we apply the rules of Lewis calculus only to theorems (for the weaker logic
LV) or to all derivations (for the stronger logic GV). We remark that this distinction,
although significant, is often blurred in the literature. The two systems GV and LV share
the same axioms, that is, given ϕ,�, � ∈ Fm� we have:

(L0) the reader’s favorite Hilbert-style axioms of classical logic2 ;
(L1) � ϕ� ϕ;
(L2) � ((ϕ� �) ∧ (�� ϕ)) → ((ϕ� �) ↔ (�� �));
(L3) � ((ϕ ∨ �)� ϕ) ∨ ((ϕ ∨ �)� �) ∨ (((ϕ ∨ �)� �) ↔ ((ϕ� �) ∧

(�� �)));
(L4) � (ϕ� (� ∧ �)) ↔ ((ϕ� �) ∧ (ϕ� �));

Moreover, both GV and LV satisfy modus ponens:

(MP) ϕ,ϕ → � � �.

While GV satisfies the following rule involving the counterfactual implication:

(C) ϕ → � � (�� ϕ) → (�� �),

LV satisfies the following weaker version of the rule:

(wC) � ϕ → � implies � (�� ϕ) → (�� �).

Definition 2.2. The logic GV is given by the pair (L�,�GV), where �GV is the smallest
finitary consequence relation satisfying all axioms (L1)–(L4), (MP), and (C ). The logic
LV is given by (L�,�LV), where�LV is the smallest finitary consequence relation satisfying
all axioms (L1)–(L4), (MP), and (wC ).

Lewis’s conditional logics are the axiomatic extensions of the above systems with the
axioms:

(W) � (ϕ� �) → (ϕ → �); (weak centering)
(C) � ((ϕ� �) → (ϕ → �)) ∧ ((ϕ ∧ �) → (ϕ� �)) (centering)

2 The reader can find some in this work by Łukasiewicz [18].
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 5

(N) � �ϕ → �ϕ (normality)
(T) � �ϕ → ϕ (total reflexivity)
(S) � (ϕ� �) ∨ (ϕ� ¬�) (Stalnakerian)
(U) � (�ϕ → ��ϕ) ∧ (�ϕ → ��ϕ) (uniformity)
(A) � ((ϕ � �) → �(ϕ � �)) ∧ ((ϕ ≺ �) → �(ϕ ≺ �)) (absoluteness)

We indicate a certain system in the family of Lewis’s conditional logics by just
juxtaposing toGVorLV the corresponding letter for axioms. For instance,LVCA indicates
the axiomatic extension of the logic LVwith the axioms C and A. Among these axiomatic
extensions, it is worth mentioning the system LVCwhich is considered by Lewis to be the
“correct logic of counterfactual conditionals” [16], while LVCS essentially corresponds
to Stalnaker’s logic of conditionals [29, 30].

It is clear from the definition that GV is a stronger deductive system than LV, i.e.,:

Lemma 2.3. For any set Γ ∪ {ϕ} of L�-formulas, Γ �LV ϕ implies Γ �GV ϕ.

While GV is strictly stronger than LV, e.g., the latter does not satisfy (C), they do have
the same theorems; the following proof is standard.

Theorem 2.4. GV and LV have the same theorems.

Proof. It follows from Lemma 2.3 that if a formula ϕ is a theorem of LV, it is also a
theorem of GV; we show the converse. Let ϕ be a theorem of GV, we show by induction
on the length of the proof that ϕ is a theorem of LV. The base case is for ϕ being an
axiom, thus the thesis holds given that GV and LV share the same axioms. Assume now
that ϕ is obtained by an application of a rule of GV, i.e., either by modus ponens or
(C). But such rule is applied to theorems or axioms of GV, that by inductive hypothesis
are theorems of LV; therefore, one can obtain the same conclusion by applying (MP)
or (wC). �

We will now see that the axiomatization we have given is equivalent to the one given
by Lewis in [16]; with respect to the latter, we have added axioms (L4) and removed the
denumerable set of rules describing “deductions within conditionals”. Let us present
the latter in the two versions, the strong ones:

� � ϕ� �, (DWC0)

(ϕ1 ∧ ··· ∧ ϕn) → � � ((�� ϕ1) ∧ ··· ∧ (�� ϕn)) → (�� �) (DWCn)

for each n ∈N, n ≥ 1, and the weaker versions:

� � implies � ϕ� �, (wDWC0)

� (ϕ1 ∧ ··· ∧ ϕn) → � implies � ((�� ϕ1) ∧ ··· ∧ (�� ϕn)) → (�� �)
(wDWCn)

for each n ∈N, n ≥ 1. We start by noting that the monotonicity of � on the
consequent can be shown to be a consequence of the axioms.

Lemma 2.5. The following holds for all L�-formulas ϕ,�, �:

1. �GV (ϕ� �) → (ϕ� (� ∨ �)).
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6 GIULIANO ROSELLA AND SARA UGOLINI

Proof. Observe first that by the axioms and rules of classical logic, it holds that
�GV � ↔ (� ∧ (� ∨ �)). Therefore, by using (C) and (L4) we get

�GV (ϕ� �) ↔ (ϕ� (� ∧ (� ∨ �)))

�GV (ϕ� �) ↔ ((ϕ� �) ∧ (ϕ� (� ∨ �)))

from which we can derive �GV (ϕ� �) → (ϕ� (� ∨ �)), which concludes the
proof. �

Moreover:

Lemma 2.6. Consider a logic (L�,�′) satisfying the axioms of classical logic, (MP),
and (DWC2). Then:

1. ϕ → � �′ (�� ϕ) → (�� �);
2. ϕ ↔ � �′ (�� ϕ) ↔ (�� �);
3. �′ (ϕ� �) → (ϕ� (� ∨ �)).

Proof. For (1), from (DWC2) we get:

ϕ→� �′ (ϕ∧ϕ)→� �′ ((��ϕ)∧ (��ϕ))→ (���) �′ (��ϕ)→ (���).

(2) is a direct consequence of (1). For (3) we have the following:

�′ (� ∧ �) → (� ∨ �) �′ ((ϕ� �) ∧ (ϕ� �)) → (ϕ� (� ∨ �)),

which, given that �′ � ↔ (� ∧ �), proves the claim. �

Proposition 2.7. Consider a logic (L�,�′) satisfying the axioms of classical logic
and (MP). The following are equivalent.

1. �′ satisfies (L1)–(L4) and (C);
2. �′ satisfies (L1)–(L3) and the rule (DWC2).

The same holds replacing (C), and (DWC2) with their weaker versions (wC), and
(wDWC2).

Proof. Let us first show that (1) implies (2), i.e., we derive the rule (DWC2) using (L4)
and (C). Using (C) we obtain that (ϕ1 ∧ ϕ2) → � �′ (�� (ϕ1 ∧ ϕ2)) → (�� �);
using now (L4) we get

(ϕ1 ∧ ϕ2) → � �′ ((�� ϕ1) ∧ (�� ϕ2)) → (�� �)

which is exactly (DWC2).
Conversely, let us prove that (DWC2) implies (C) and (L4); (C) can be derived by

(DWC2) by setting ϕ1 = ϕ2 := ϕ; for (L4), by the axioms and rules of classical logic
and (DWC2) we get:

�′ (� ∧ �) → (� ∧ �) �′ ((ϕ� �) ∧ (ϕ� �)) → (ϕ� (� ∧ �));
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 7

moreover, one can use monotonicity of� (Lemma 2.5) and the fact that classically
equivalent formulas can be substituted in the consequent of � (Lemma 2.6) and
obtain

�′ (ϕ� (� ∧ �)) → (ϕ� �) and �′ (ϕ� (� ∧ �)) → (ϕ� �),

and therefore �′ (ϕ� (� ∧ �)) → ((ϕ� �) ∧ (ϕ� �)), which shows (L4).
The proof for the statement involving the weaker rules goes similarly, with the proviso

that every derivation starts from theorems and axioms. �

The next theorem shows that both the alternative axiomatizations we have introduced
are equivalent to the one presented by Lewis’s in [16].

Theorem 2.8. Consider a logic (L�,�′) satisfying the axioms of classical logic and
(MP). The following are equivalent.

1. �′ satisfies (L1)–(L3) and (DWCn) for all n ∈N;
2. �′ satisfies (L1)–(L3) and (DWC2);
3. �′ coincides with �GV.

The same holds replacing (DWC2), (DWCn), and �GV with their weakened versions
(wDWC2), (wDWCn), and �LV.

Proof. (2) and (3) are equivalent by Proposition 2.7; moreover, it is obvious that
(1) implies (2); let us show the converse. (DWC1) follows from (DWC2) by setting
ϕ1 = ϕ2. Now, consider n ∈N, n ≥ 2, then with (DWC2) we obtain immediately:

((ϕ1 ∧ ··· ∧ ϕn–1) ∧ ϕn) → � � (((�� (ϕ1 ∧ ... ∧ ϕn–1)) ∧ (�� ϕn)) → (�� �),

which using the fact that (L4) holds by Proposition 2.7, yields that (DWCn) holds
for all n ≥ 2. In order to show that (DWC0) holds, we first observe that ϕ� 1 is a
theorem, indeed by (L4) we get

�′ (ϕ� (ϕ ∧ 1)) ↔ ((ϕ� ϕ) ∧ (ϕ� 1))

�′ (ϕ� ϕ) ↔ ((ϕ� ϕ) ∧ (ϕ� 1)) �′ 1 ↔ (ϕ� 1)

where in the derivations we used (L1) and substitution of classically equivalent
formulas in the consequent of� (Lemma 2.6). Finally, (DWC0) is then a consequence
of applying (DWC2) with ϕ1 = ϕ2 := 1, � := �, � := ϕ.

The proof for the weaker calculus is completely analogous. �

Lastly, let us observe that both GV and LV satisfy the substitution of logical
equivalents, in the following sense.

Proposition 2.9. The following hold for any ϕ,�, � ∈ Fm�:

1. (ϕ ↔ �) �GV (�� ϕ) ↔ (�� �),
2. (ϕ ↔ �) �GV (ϕ� �) ↔ (�� �),
3. �LV (ϕ↔�) implies �LV (��ϕ)↔ (���) and �LV (ϕ� �) ↔ (�� �).

Proof. First, notice that (1) follows by (C). Moreover, since (DWC1) holds by
Theorem 2.8, one gets

ϕ → � �GV (ϕ� ϕ) → (ϕ� �) �GV ϕ� �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020324000303
Downloaded from https://www.cambridge.org/core. IP address: 18.222.112.142, on 17 Apr 2025 at 06:55:36, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020324000303
https://www.cambridge.org/core


8 GIULIANO ROSELLA AND SARA UGOLINI

and its symmetric copy; thus it follows ϕ ↔ � �GV (ϕ� �) ∧ (�� ϕ), which via
(L2) gives (2). Finally, (3) follows from the previous points, given that GV and LV have
the same theorems (Theorem 2.4). �

§3. Sphere models. Lewis bases his interpretation of the counterfactual connective
� on a neighbourhood-style semantics. The intuitive idea to evaluate the connective
� is that ϕ� � is true at some world w if in the closest worlds to w in which ϕ
is true, also � is true. This results in the definition of what Lewis calls a “variably
strict conditional”, where the word “variably” stresses the fact that to evaluate
counterfactuals with different antecedents at some worldw, one might need to evaluate
the corresponding classical implication in different worlds; from another point of view,
this also means that, in general, a counterfactual ϕ� � does not arise as some
�(ϕ → �), for some modality �. Lewis formalizes this intuition by assigning to each
possible world w a nested set of spheres, which are subsets of possible worlds, meant
to describe a similarity relationship with w; the smaller is the sphere to which a world
w′ belongs, the closer, and therefore more similar, it is to w.

In this section we will introduce two different consequence relations over sphere
models: a local and a global one, in complete analogy with the case of modal logic.
This parallel will continue and guide the investigation throughout the rest of this
section. In particular, we will use the tool of generated submodels, borrowed from
modal logic (see [4]), and apply it to sphere models to first characterize the global
consequence relation via the local one, secondly to prove a deduction theorem, and
finally to prove the strong completeness of the global consequence with respect to the
strong version of the presented Hilbert-style calculus. Let us now be more precise.

Definition 3.1. A sphere model M is a tuple M = 〈W,S, v〉 where:

1. W is a set of possible worlds;
2. S :W → P (P (W )) is a function assigning to each w ∈W a non-empty3 set

S(w) of nested subsets ofW, i.e., for all X,Y ∈ S(w), either X ⊆ Y or Y ⊆ X .
3. v : Var → P (W ) is an assignment of the variables to subsets ofW, extending to

all L�-formulas as follows:

v(0) = ∅
v(1) =W
v(ϕ ∧ �) = v(ϕ) ∩ v(�)
v(ϕ ∨ �) = v(ϕ) ∪ v(�)
v(ϕ → �) = (W \ v(ϕ)) ∪ v(�)
v(ϕ� �) = {w ∈W : (

⋃
S(w) ∩ v(ϕ)) = ∅ or

∃S ∈ S(w) such that ∅ � (S ∩ v(ϕ)) ⊆ v(�))}
Given a sphere model M = 〈W,S, v〉, and a set of L�-formulas Γ, we set:

w � Γ iff w ∈
⋂

{v(�) : � ∈ Γ}; (1)

M � Γ iff for all w ∈W,w � Γ. (2)

Notation 3.2. If Γ = {�}, we drop the parentheses and write w � � (or M � �)
instead ofw � {�} (or M � {�}). Moreover, since in what follows we will be dealing with

3 Note that given w ∈W , it can be that S(w) = {∅}, since {∅} ⊆ P (W ).
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 9

some submodels, it is sometimes convenient to stress to which universe a world belongs;
given a sphere model M = (W,S, v), w ∈W , we then write

M, w � ϕ iff w � ϕ. (3)

The theorems of GV and LV (which are the same by Theorem 2.4) are exactly the set
of formulas true in all sphere models, i.e., the set of L�-formulas ϕ such that M � ϕ
for all sphere models M (see Theorem 3.8 below).

3.1. Local and global semantics. We now introduce two natural notions of
semantical consequence, in close analogy with the local and global consequence
relations of modal logic, and we will see by the end of this section that they are
sound and (strongly) complete with respect to LV and GV respectively.

Definition 3.3. Let S be a class of sphere models.

1. We define the globalS-consequence relation on sphere models as: Γ �S,g ϕ if and
only if for all sphere models M ∈ S, M � Γ implies M � ϕ.

2. We define the local S-consequence relation on sphere models as: Γ �S,	 ϕ if and
only if for all sphere models M = 〈W,S, v〉 ∈ S and all w ∈W , w � Γ implies
w � ϕ.

Notation 3.4. WhenS is the class of all sphere models we write �g for �S,g and �	 for
�S,	 .

The following is a direct consequence of the definitions.

Theorem 3.5. Given any L�-formula ϕ, �g ϕ if and only if �l ϕ.

Lewis [17] considers the classes of sphere models corresponding to the main
axiomatic extensions of the system V; those classes are listed in the following definition:

Definition 3.6. Let M = 〈W,S, v〉 be a sphere model.

1. M is normal if for each w ∈W ,
⋃

S(w) � ∅ .
2. M is totally reflexive if for each w ∈W , w ∈

⋃
S(w) .

3. M is weakly centered if for each w ∈W , w ∈ S for each nonempty S ∈ S(w),
and there is a nonempty S ∈ S(w).

4. M is centered if for each w ∈W , {w} ∈ S(w).
5. M is Stalnakerian if for any w ∈W , and any L�-formula ϕ such that v(ϕ) ∩⋃

S(w) � ∅, there is some S ∈ S(w) and y ∈W such that v(ϕ) ∩ S = {y}.
6. M is locally uniform if for any w ∈W and v ∈

⋃
S(w),

⋃
S(w) =

⋃
S(v).

7. M is locally absolute if for any w ∈W and v ∈
⋃

S(w), S(w) = S(v).
8. M is weakly trivial if for eachw ∈W ,W is the only non-empty member of S(w).
9. M is trivial ifW is a singleton {w}, and S(w) = {∅, {w}}.

Notice that if M = 〈W,S, v〉 is centered, {w} is the smallest (nonempty) sphere
of S(w) for all w ∈W . Stalnakerian sphere models are complete with respect to
Stalnaker’s logic of conditionals [17, 29].

Notation 3.7. It will be convenient to set the following notation. Given an axiomatic
extension of LV by Σ, where Σ is a subset of the axioms {W, C, N, T, S, U, A}, we denote by
SΣ the corresponding class of sphere models, defined by the corresponding conditions in
Definition 3.6.
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10 GIULIANO ROSELLA AND SARA UGOLINI

In particular then, we denote the class of spheres that are: normal by SN, totally
reflexive by ST, weakly centered by SW, centered by SC, Stalnakerian by SS, locally
uniform bySU, absolute bySA. Moreover, Lewis shows that weak triviality corresponds
to the combination of axioms WA thus we denote the class by SWA, and triviality is
analogously linked to CA so the corresponding class of models is SCA.

Lewis demonstrates in [17, §6.1] that the logic LV and its extensions by the axioms
{W, C, N, T, S, U, A} are sound and complete with respect to the corresponding classes of
sphere models with the local consequence relation. This means that the theorems in a
logic precisely correspond to the validities over the associated class of sphere models.
Actually, Lewis’s proof can be straightforwardly extended to show strong completeness,
i.e., to consider derivations instead of just theorems. Indeed, Lewis proves in particular
the following fact. Given any logic LVΣ, for Σ ⊆ {W, C, N, T, S, U, A}, and any set of L�-
formulas Γ that is LVΣ-consistent, i.e., such that Γ �LVΣ 0, there is a sphere model M
in SΣ such that M � Γ.4 This is enough to show not only completeness, but strong
completeness with standard arguments (see e.g., [4, proposition 4.12]).

Theorem 3.8 (Strong Completeness and Soundness of the Local Consequence [17]).
Consider any logic LVΣ for Σ ⊆ {W, C, N, T, S, U, A}. Then for all Γ ∪ {ϕ} ⊆ FmL� ,

Γ �LVΣ ϕ ⇔ Γ �SΣ,l ϕ.

We will show that the global consequence relation can be characterized by means
of the local one. In order to do that, we introduce a useful tool. In close analogy to
the case of Kripke models, we will see how to manipulate a sphere model in order to
obtain a new model, preserving the satisfaction of formulas. Namely, we will prove
some invariance results for Lewis’s sphere semantics of counterfactuals.

Definition 3.9. Let Σ = 〈W,S, v〉 and Σ′ = 〈W ′,S ′, v′〉 be two sphere models. We say
that Σ′ is a submodel of Σ if and only if:

1. W ′ ⊆W
2. S ′ is the restriction of S toW ′, i.e., for allw ∈W ′, S ′(w) = S(w) ∩ P (P (W ′)).
3. v′ is the restriction of v toW ′, i.e., for any L�-formula ϕ, v′(ϕ) = v(ϕ) ∩W ′.

We now consider a special class of submodels, namely generated submodels.

Definition 3.10. Let M = 〈W,S, v〉 and M′ = 〈W ′,S ′, v′〉 be two sphere models. We
say that M′ is a generated submodel of M if M′ is a submodel of M such that for all
w′ ∈W ′, S ′(w′) = S(w′).

In other words, in order to obtain a generated submodel of some sphere model
M = 〈W,S, v〉 one needs to select a subset W ′ ⊆W in such a way that, for each
w′ ∈W ′, all the worlds belonging to the spheres of w′ also belong to W ′. This
particular type of generated submodel will play a key role in our analysis. Let us show
how one can effectively construct one such submodel.

4 More precisely, Lewis’s proofs consider an alternative, but equivalent, presentation of his
logics where a different connective, �, is taken as primitive instead of�. Moreover, he uses
a technique that is widely used to show completeness in modal logics, that is, he constructs
the canonical model of each logic, showing that it belongs to the corresponding class of
spheres. See [17, §6.1] for details, and [4] for more on this technique and its use to prove
strong completeness in modal logics.
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 11

Consider a sphere model M = 〈W,S, v〉 and a subsetX ⊆W . Let us define a binary
relation RS ⊆W ×W as follows: for all w, u ∈W ,

w RS u ⇔ u ∈
⋃

S(w) (4)

Thus, wRSu if and only if u appears in the system of spheres associated with w. Now,
for all n ∈N, we inductively define a relation RnS ⊆W ×W in the following way:

• wR0
Su ⇔ w = u

• wRn+1
S u ⇔ there is z ∈W such that wRnSz and zRSu.

We refer toRS as the accessibility relation of M. Intuitively, the relationwRnSu indicates
that there are n steps needed to reach the world u starting from w, where every steps
is given by checking a set of spheres. Now, consider the subset WX ⊆W defined as
follows:

WX = {w ∈W : uRnSw for some n ∈N and u ∈ X}. (5)

Namely,WX is the set of all worlds inW that are reachable from a member of X by a
finite number of steps via the accessibility relation RS . We shall now define the sphere
model

MX = 〈WX,SX , vX 〉 (6)

where:

• SX is the restriction of S to WX , i.e., for all w ∈WX , SX (w) = S(w) ∩
P (P (WX )).

• vX is the restriction of v to WX , i.e., vX (ϕ) = v(ϕ) ∩WX for all
L�-formulas ϕ.

We say that a submodel M′ of M is smaller than another submodel M∗ if the domain
of M′ is contained in the domain of M∗. Then:

Lemma 3.11. Let M = 〈W,S, v〉 be a sphere model, X ⊆W , and let MX be defined
as above. Then MX is the smallest generated submodel of M whose domain contains X .

Proof. First observe that MX is a submodel of M by definition; it is also easily seen
to be a generated submodel of M. Indeed by the definition ofWX the following holds:
if w ∈WX and wRSu, then u ∈WX . Equivalently,

if w ∈WX and u ∈
⋃

S(w), then u ∈WX,

i.e., SX (w) = S(w) ∩ P (P (WX )) = SX (w) and then MX is a generated submodel of
M by definition. By the very same equivalence and the definition of WX , it follows
that if M∗ = 〈W ∗,S∗, v∗〉 is any other generated submodel of M such that X ⊆W ∗,
necessarily WX is contained in W ∗. Therefore, MX is the smallest submodel of M
generated by X. �

Definition 3.12. Consider a sphere model M = 〈W,S, v〉, and let X ⊆W ; we call
submodel generated by X the smallest submodel of M whose domain contains X.
Moreover, we call centered or point-generated a submodel ofM generated by a singleton.

Notice that by Lemma 3.11 above, the submodel of M generated by X is exactly
MX . Importantly, all generated submodels preserve the validity of formulas, as the
following lemma shows.
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12 GIULIANO ROSELLA AND SARA UGOLINI

Lemma 3.13. Let M = 〈W,S, v〉 be a sphere model, and let M′ = 〈W ′,S ′, v′〉 be a
generated submodel of M. The following holds for all w ∈W ′, and all L�-formulas ϕ:

M, w � ϕ ⇔ M′, w � ϕ

Proof. The statement can be easily proved by induction on the construction of the
formula ϕ. In particular, the base case where ϕ is a variable and the inductive cases
given by the classical connectives (i.e., ϕ = � ∗ � for ∗ ∈ {∧,∨,→}) directly follow
from the fact that v′ is the restriction of v to W ′. The inductive case ϕ = �� �
follows from the fact that v′ is the restriction of v to W ′ and that S ′(w) = S(w) for
all w ∈W ′. �

Moreover, the following is a direct consequence of the definitions.

Lemma 3.14. All the classes of spheres in Definition 3.6 are closed under generated
submodels.

Before delving into the relationship between local and global consequences, we
provide a first application of generated submodels. Lewis in [17] considers three
additional classes of sphere models, that we have not included in Definition 3.6; let us
consider them now.

Definition 3.15. Let M = 〈W,S, v〉 be a sphere model, then:

1. M is uniform if for any w, v ∈W ,
⋃

S(w) =
⋃

S(v).
2. M is absolute if for any w, v ∈W , S(w) = S(v).
3. M is universal if for each w ∈W ,

⋃
S(w) =W .

We denote bySU+ the class of uniform models, bySA+ the class of absolute models, and
by SUT the class of universal models.

As the reader can easily check, uniformity implies local uniformity, and absoluteness
implies local absoluteness. Lewis observes in [17] that the validity of formulas does
not change between the classes of, respectively, locally uniform and uniform models,
and locally absolute and absolute ones. We demonstrate that such classes of models
are indistinguishable also from the point of view of derivations.

Proposition 3.16. The following hold for any Γ ∪ {ϕ} ⊆ FmL� :

1. Γ �SU,l ϕ ⇔ Γ �S
U+ ,l
ϕ and Γ �SU,g ϕ ⇔ Γ �S

U+ ,g
ϕ

2. Γ �SA,l ϕ ⇔ Γ �S
A+ ,l
ϕ and Γ �SA,g ϕ ⇔ Γ �S

A+ ,g
ϕ

Proof. We prove (1), the proof of (2) being similar. Let us focus on the local
consequence first. The (⇒) direction is straightforward since every uniform models
is also locally uniform. For the (⇐) direction, we reason by contraposition and assume
that Γ �SU,l ϕ, namely there is a locally uniform sphere model M = 〈W,S, v〉 and a
w ∈W such that w � Γ and w � ϕ. Now, consider the submodel generated by {w},
Mw = 〈Ww,Sw, vw〉 and observe that all x ∈Ww are such thatwRnSx for some n ∈N,
by Definition 3.12. We prove by induction on n that for all x ∈Ww such that wRnSx,⋃

S(x) =
⋃

S(w). For the base case, ifwR0
Sx we have that x = w by definition ofR0

S ,
and then clearly

⋃
S(x) =

⋃
S(w). For the inductive step, by inductive hypothesis we

have that for all y such that wRnSy,
⋃

S(w) =
⋃

S(y). Assume that wRn+1
S x; then

by definition of Rn+1
S , we have that wRnSyRSx for some y, and so x ∈

⋃
S(y). Since

the original model M is locally uniform, we have that
⋃

S(y) =
⋃

S(x), which yields
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 13

that
⋃

S(w) =
⋃

S(x). This proves that Mw is uniform. Moreover, by Lemma 3.13,
we have that Mw,w � Γ and Mw,w � ϕ, hence Γ �S

U+ ,l
ϕ. The proof for the global

consequence proceeds analogously. �

Additionally, as Lewis [17, p.120] himself noted, the class of universal sphere
models corresponds to the class of models that are both uniform and totally reflexive.
Therefore, for the purpose of the present work, it is sufficient to confine our attention
to the class of models presented in Definition 3.6. Nonetheless, in light of the previous
observations, is important to note that all of our results can be easily extended to
include these other classes of models as well.

After this brief digression, we can continue toward the main focus of this section.
Before presenting the characterization of the global consequence relation by means of
the local consequence, we need another technical result. Observe that, given a sphere
model M = 〈W,S, v〉 and w ∈W , w � ¬ϕ� ϕ if and only if

⋃
S(w) ∩ v(¬ϕ) = ∅,

or equivalently
⋃

S(w) ⊆ v(ϕ). Recall that�ϕ := ¬ϕ� ϕ. It is then straightforward
that, given a sphere model M = 〈W,S, v〉, � can be characterized by means of the
relation RS defined in (4) above.

Lemma 3.17. Let M = 〈W,S, v〉 be a sphere model; given any w ∈W and L�-
formula ϕ, the following are equivalent:

1. w � �ϕ;
2.

⋃
S(w) ⊆ v(ϕ) ;

3. wRSu implies u � ϕ.

One can then easily show that � is a modal operator, in the following sense.

Proposition 3.18. The following hold for all ϕ,� ∈ Fm�:

1. �g �(ϕ → �) → (�ϕ → ��);
2. ϕ �g �ϕ;
3. �l ϕ implies �l �ϕ;
4. �g �(ϕ ∧ �) ↔ (�ϕ ∧��).

Proof. Let us start with (1); consider any sphere model M = 〈W,S, v〉, and let w ∈
W . Suppose w � �(ϕ → �), i.e., by Lemma 3.17

⋃
S(w) ⊆ v(ϕ → �). Therefore,

if w � �ϕ, or equivalently
⋃

S(w) ⊆ v(ϕ), it follows that
⋃

S(w) ⊆ v(�); applying
Lemma 3.17 again, we get that w � ��, which proves the claim.

Let us now prove (2); one needs to show that for all sphere models M = (W,S, v),
M � ϕ impliesM � �ϕ, which is an easy consequence of Lemma 3.17, since ifM � ϕ,
then for every w, w ∈ v(ϕ). (3) can be proved analogously, while (4) follows from the
previous points. �

Let us define inductively an operator �n, that iterates �, for n ∈N:

�0ϕ := ϕ; �n+1ϕ := ��nϕ. (7)

We are now ready to characterize the connection between local and global consequence
relations.

Theorem 3.19. LetS be a class of sphere models closed under generated submodels. For
all sets of L�-formulas Γ and L�-formula ϕ the following are equivalent:
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14 GIULIANO ROSELLA AND SARA UGOLINI

1. Γ �S,g ϕ;
2. {�n� : n ∈N, � ∈ Γ} �S,l ϕ.

Proof. We verify that (2) implies (1) by contraposition. Assume Γ �S,g ϕ; i.e., there
is a sphere model M = 〈W,S, v〉 ∈ S such that w � � for all w ∈W , � ∈ Γ, and for
some u ∈W , u � ϕ. By the definition of �n and Lemma 3.17, it follows that w � �n�
for all � ∈ Γ, n ∈N and w ∈W . Thus in particular u � �n� for all � ∈ Γ, n ∈N, but
u � ϕ. Therefore {�n� | n ∈N and � ∈ Γ} �S,l ϕ.

We now prove that (1) implies (2), again by contraposition; assume that {�n� | n ∈
N and � ∈ Γ} �S,l ϕ. Thus, there is a sphere model M = 〈W,S, v〉 ∈ S and x ∈W
such that x � �n� for all n ∈N and � ∈ Γ but x � ϕ. Consider the submodel generated
by {x}, Mx = 〈Wx,Sx, vx〉, where

Wx = {w ∈W : xRnSw for some n ∈N}.

By Lemma 3.11,Mx is a sphere model and it is inS sinceS is closed under generated
submodels by assumption; moreover, by Lemma 3.13 we have that for all w ∈Wx

M, w � ϕ if and only if Mx, w � ϕ.

Hence, in particular, Mx, x � �n� for all n ∈N, � ∈ Γ but Mx, x � ϕ. We now prove
that for all w ∈Wx , w � Γ, which will conclude the proof by showing that Mx � Γ
but Mx � ϕ (since Mx, x � ϕ). By definition, all elements w ∈Wx are such that
xRmSw for some m ∈N; we show by induction on k that xRkSw implies w � �n� for
all n ∈N, � ∈ Γ.

• If k = 0, we get w = x and thus by assumption x � �n� for all � ∈ Γ, n ∈N.
• Assume that the inductive hypothesis holds for k, we show it for k + 1.

Suppose xRk+1
S w, i.e., by definition of Rk+1

S , there is some z ∈Wx such
that x RkS z RS w. By inductive hypothesis z � �n� for all n ∈N, � ∈ Γ. Thus
Lemma 3.17 implies that also w � �n� for all n ∈N, � ∈ Γ.

Therefore, we have shown that, in particular, all elements w ∈Wx are such that w �
�0� = � for all � ∈ Γ, which concludes the proof. �

We will now use the last result to prove a deduction theorem and a strong
completeness result for the global consequence relation.

3.2. Completeness and deduction theorem. Lewis proves soundness and (strong)
completeness with respect to sphere models of what we called the local consequence
relation with respect to the logic �LV (Theorem 3.8); moreover he proves a deduction
theorem for the local consequence with respect to the classical implication.

Theorem 3.20 (Deduction Theorem of the local consequence). For all Γ ∪ {ϕ,�} ⊆
Fm� the following holds: Γ, � �l ϕ if and only if Γ �l � → ϕ.

In this subsection we prove the analogous results for the stronger deductive systems
and the corresponding global consequence relations; but first, some technical results.

Lemma 3.21. Consider any L�-formula ϕ, then ϕ �GV �nϕ for all n ∈N.

Proof. The claim is easily shown by induction on n; indeed the case n = 0 is obvious,
and the inductive case is given by one application of (DWC0): ϕ �GV ¬ϕ� ϕ, which
holds for GV by Proposition 2.7 and Theorem 2.8. �
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Proposition 3.22. Let L be any axiomatic extension of GV. For all Γ ∪ {ϕ} ⊆ Fm�
the following are equivalent:

1. Γ �L ϕ;
2. {�n� | � ∈ Γ and n ∈N} �L ϕ.
3. There exist a finite subset Γ0 ⊆ Γ and n0 ∈N such that {�n� | � ∈ Γ0 and n ≤
n0} �L ϕ.

Proof. The fact that (1) implies (2) is obvious, since Γ ⊆ {�n� | � ∈ Γ and n ∈N}.
For the converse, let us assume that {�n� | � ∈ Γ and n ∈N} �L ϕ; By Lemma 3.21,
we have that Γ �L �n� for all � ∈ Γ and n ∈N, and thus also Γ �L ϕ. Lastly, (2) and
(3) are equivalent since �L is a finitary consequence relation. �

We now have all the ingredients to prove our completeness result.

Theorem 3.23 (Soundness and strong completeness of the global consequence). Let Σ
be a subset of the axioms {W, C, N, T, S, U, A}. For all subsets Γ ∪ {ϕ} ⊆ Fm�,

Γ �GVΣ ϕ ⇔ Γ �SΣ,g ϕ.

Proof. The soundness follows from the facts that: (MP) and (C) are easily seen to
be sound with respect to sphere models, and the axioms of GVΣ are the same axioms of
LVΣ, which is sound with respect to the same class of models for the local consequence
relation (Theorem 3.8), and the latter has the same valid formulas as the global one
(Theorem 3.5).

We prove completeness by contraposition; assume Γ �GVΣ ϕ. By Proposition 3.22,
we have that {�n� | � ∈ Γ and n ∈N} �GVΣ ϕ. By the fact that all deductions of �LVΣ
are deductions of �GVΣ (Lemma 2.3), it follows that {�n� | � ∈ Γ and n ∈N} �LVΣ ϕ.
By the strong completeness of �LVΣ in Theorem 3.8, we get that {�n� | � ∈ Γ and n ∈
N} �SΣ,l ϕ. Theorem 3.19 then yields that Γ �SΣ,g ϕ and the proof is complete. �

We will now show another relevant fact, i.e., that the global consequence relation
has a deduction theorem. However, it generally does not have the classical deduction
theorem, as the following example shows.

Example 3.24. By Lemma 3.21 and the strong completeness in Theorem 3.23,ϕ �g �ϕ
for any L�-formula ϕ. However, it is easily seen that in general �g ϕ → �ϕ. Consider
the following sphere model M = (W,S, v) such that

• W = {w1, w2};
• S(w1) = {{w2}}; S(w2) = {w2, {w1, w2}};
• v is such that it maps a propositional variable p to v(p) = {w1}.

Note that then v(�p) = ∅, and therefore w � p but w � �p; hence M � p → �p. One
can easily adapt this same example for any class of sphere models that allow at least two
different worlds inW (thus, except for the trivial class of models).

Nonetheless:

Theorem 3.25 (Deduction Theorem of the global consequence). For all Γ ∪ {ϕ,�} ⊆
Fm�, the following are equivalent:

1. Γ, � �g ϕ,
2. there is n ∈N such that Γ �g (

∧
m≤n

�m�) → ϕ,
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16 GIULIANO ROSELLA AND SARA UGOLINI

Proof. Let us start by proving that (1) implies (2); assume Γ, � �S,g ϕ. By
Theorem 3.19, this is equivalent to the fact that

{�n� : � ∈ Γ, n ∈N} ∪ {�n� : n ∈N} �S,l ϕ
By the deduction theorem for the local consequence, and the fact that this is finitary

(given that it is strongly complete with respect to a finitary logic by Theorem 3.8), it
follows that there is n0 ∈N

{�n� : � ∈ Γ, n ∈N} �S,l

⎛
⎝ ∧
k≤n0

�k�

⎞
⎠ → ϕ.

Using Theorem 3.19 again, we have that Γ �S,g (
∧
k≤n0

�k�) → ϕ.
We now show that (2) implies (1); assume that there is a n ∈N such that Γ �S,g

(
∧
m≤n �

m�) → ϕ. Equivalently, for all sphere models M = 〈W,S, v〉 ∈ S, we have
that ifM � � for all � ∈ Γ, thenM � (

∧
m≤n �

m�) → ϕ. Consider then a sphere model
M = (W,S, v) such thatM � � for all � ∈ Γ andM � �. By assumption, we then have
that for any world w ∈W , w � � and w � (

∧
m≤n �

m�) → ϕ. By Proposition 3.18,
this implies that for allw ∈W ,w �

∧
m≤n �

m�. Therefore, by modus ponens, we have
that for all w ∈W , w � ϕ as well; i.e., M � ϕ. Hence Γ, � �S,g ϕ. �

By the strong completeness in Theorem 3.23, the theorem above can also be read as
follows:

Corollary 3.26. For all Γ ∪ {ϕ,�} ⊆ Fm�, Γ, � �GV ϕ if and only if
Γ �GV (

∧
m≤n

�m�) → ϕ for some n ∈N.

We are now ready to proceed with our investigation toward an algebraic study of
Lewis’s hierarchy of logics for variably strict conditionals.

§4. Algebraic semantics. In this section we show that the stronger calculi are
algebraizable in the sense of Blok–Pigozzi, and we study the equivalent algebraic
semantics, given by varieties of Boolean algebras with an extra operator�. Moreover,
we show that such algebras give a semantics for the weaker logics as well, in the sense
that the latter are the logics preserving the degrees of truth of the algebras. For the sake
of the reader, we first recall the basics of the Blok–Pigozzi machinery [6], that connects
algebraizable logics with their equivalent algebraic semantics. For the omitted details
we refer to [6, 10].

Let us set some notation; Roman bold letters will be used to represent algebras,
while the corresponding Roman standard letters will denote their underlying domains.
For instance, if A is an algebra, then the symbol A will refer to its domain. Given an
algebraic language L, recall that we write FmL for its algebra of formulas written over
a denumerable set of variables. An equation of the language L (or an L-equation for
short) is a pair (p, q) of L-formulas (i.e., elements of FmL) that we write suggestively
as p ≈ q. We write EqL for the set of all L-equations. A quasi-equation of L is a first-
order formula of the form &ni=1pi ≈ qi ⇒ p ≈ q where {pi ≈ qi : i = 1, ... , n} ∪ {p ≈
q} ⊆ EqL, and & and ⇒ are, respectively, first order conjunction and implication. It
is understood that this expression also covers the case of an empty antecedent, so that
equations can be seen as particular cases of quasi-equations.
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 17

An assignment is a homomorphism (i.e., a function which commutes with all the
operations) from the algebra of formulas FmL to some L-algebra A. An L-algebra
A satisfies an L-equation p ≈ q with an assignment h (and we write A, h � p ≈ q) if
h(p) = h(q) in A. An L-equation p ≈ q is valid in A (and we write A � p ≈ q) if for
all assignments h to A, A, h � p ≈ q; if Σ is a set of L-equations then A � Σ if A � �
for all � ∈ Σ. An L-equation p ≈ q is valid in a class of L-algebras K, and we write
K � p ≈ q or �K p ≈ q, if A � p ≈ q for all A ∈ K. With respect to quasi-equations, an
L-algebra A satisfies an L-quasi-equation &ni=1pi ≈ qi ⇒ p ≈ q with an assignment h
if h(pi) = h(qi) for all i = 1, ... , n implies h(p) = h(q); the other notions of validity
extend to quasi-equations in the obvious way.

Moreover, given any set of L-equations Σ ∪ {p ≈ q}, and any class of L-algebras K,
we write

Σ �K p ≈ q

if for every algebra A ∈ K, and any assignment h to A, if h(p′) = h(q′) for all p′ ≈
q′ ∈ Σ, then h(p) = h(q). Σ �K Δ, for Σ,Δ sets of L-equations, is interpreted as Σ �K �
for all � ∈ Δ. �K is called the equational consequence relative to K. We write Σ ��K Δ as
a shortening of Σ �K Δ and Δ �K Σ.

Intuitively, in order to establish the algebraizability of a logic Lwith respect to a class
of algebras KL over the same language L, one wants to be able to fully and faithfully
interpret the consequence relation of L into the equational consequence relative to KL.

Let us be precise. Fix a language L; a transformer from formulas to (sets of) equations
is any function 
mapping eachL-formula to a set ofL-equations, 
 : FmL → P (EqL).
This extends to sets of formulas by setting, for any set of formulas Γ ⊆ FmL, 
(Γ) =⋃
�∈Γ 
(�). Similarly, a transformer of equations into (sets of) formulas is a function �

mapping each L-equation into a set of L-formulas, � : EqL → P (FmL), that extends
to sets of equations by taking unions. In particular, one wants to consider structural
transformers: a transformer is structural when it commutes with substitutions.

A logic L is algebraizable when there is a class of algebras K and structural
transformers 
, � (from formulas into equations and from equations into formulas,
respectively) such that the following conditions are satisfied, for all Γ ∪ {ϕ} ⊆ FmL
and L-equation p ≈ q:

Γ �L ϕ iff 
(Γ) �KL 
(ϕ) (8)

(p ≈ q) ��KL 
(�(p ≈ q)). (9)

The transformers 
 and � are said to witness the algebraizability of Lwith respect to the
class K. The equations E(x) := 
(x) are called the defining equations and the formulas
in Δ(x, y) := �(x ≈ y) are called the equivalence formulas. Given L an algebraizable
logic, its equivalent algebraic semantics is the largest class of algebras K such that L
is algebraizable with respect to it. In particular, if L is algebraizable with respect to a
quasivariety (i.e., a class of models of a set of quasi-equations) K, K is the equivalent
algebraic semantics of L, and every finitary logic has a quasivariety as its equivalent
algebraic semantics. When the equivalent algebraic semantics can be axiomatized by
equations (i.e., it is a variety), we say that a finitary logic is strongly algebraizable.

Example 4.1. Classical logic is (strongly) algebraizable with respect to the variety of
Boolean algebras, as testified by 
(x) = {x ≈ 1} and �(x ≈ y) = {x ↔ y}.
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18 GIULIANO ROSELLA AND SARA UGOLINI

While the conditions (8) and (9) above are necessary and sufficient to show the
algebraizability of a logic, in some cases there are easier ways to check whether a logic
is algebraizable. In fact, many of the well-known algebraizable logics belong to the
class of implicative logics, that is, they have a well-behaved binary connective → which
allows to show that (8) and (9) hold.

Definition 4.2. An implicative logic is a logic L in a language L with a binary term →
such that:

1. � x → x
2. x → y, y → z � x → z
3. x1 → y1, ... , xn → yn, y1 → x1, ... , yn → xn � �(x1, ... , xn) → �(y1, ... , yn) for

each term � ∈ L of arity n > 0
4. x, x → y � y
5. x � y → x.

Classical logic is an example of an implicative logic. In an implicative logic that does
not have a constant 1 that is a theorem, one can always define 1 := x → x for a fixed
variable x, and 1 is a theorem by the above definition.

Theorem 4.3 [10]. All implicative logics are algebraizable, with defining equation

(x) := {x ≈ x → x} and equivalence formulas Δ(x, y) := {x → y, y → x}. If there
is a constant 1 that is a theorem, 
(x) := {x ≈ 1}. If the logic is finitary, the quasivariety
that is its equivalent algebraic semantics can be presented by the equations and quasi-
equations that result by applying the transformation 
 to the axioms and rules of any
Hilbert-style presentation of the logic.

From the more strictly algebraic perspective, in a class of algebras that is the
equivalent algebraic semantics of a logic L over a language L, congruences are in
one-one correspondence with the deductive filters induced by the logic. An L-deductive
filterF of an algebra A is a subset of the domain of A that is closed under the deductions
of the logic L; that is, for every Γ ∪ {ϕ} ⊆ FmL, if Γ �L ϕ, for every homomorphism
f from FmL to A, if f[Γ] ⊆ F , then f(ϕ) ∈ F .

Theorem 4.4 [10, Theorem 3.51]. Let L = (L,�) be a finitary logic with equivalent
algebraic semantics a quasivariety K, and let A be an L-algebra. Then the L- deductive
filters of A are in bijection with the K-relative congruences of A.

We mention that the L-deductive filters of the algebras of formulas are the theories
of the logic L. In particular, if L is an implicative logic and KL its equivalent algebraic
semantics, for every A in KL the correspondence between congruences and deductive
filters is given by the following maps:

 �→ F = {a ∈ A : (a, a → a) ∈ }, F �→ F = {(a, b) : a → b, b → a ∈ F }.
where  is any congruence of A and F is any deductive filter of A. If there is a constant
1 in the language of L that is a theorem, as it is the case for classical logic, then
congruences are totally determined by their 1-blocks, i.e., the first map above becomes:

 �→ F = {a ∈ A : (a, 1) ∈ } = 1/.

This means that KL is ideal-determined with respect to 1, and so in particular also
1-regular (1/ = 1/� implies  = � for all congruences , � of every algebra A ∈ KL),
see [2, 13].
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THE ALGEBRAS OF LEWIS’S COUNTERFACTUALS 19

4.1. Global equivalent algebraic semantics. The algebraizability of GV follows from
the fact that it is an implicative logic.

Theorem 4.5. Let L be any axiomatic extension of GV. Then L is an implicative logic.

Proof. We need to show that the conditions of Definition 4.2 hold; (3) follows from
Proposition 2.9 and the others follow from the fact that→ is a Boolean implication. �

Moreover, since 1 is a theorem of GV (see Theorem 4.3), we get the following.

Theorem 4.6. GV is algebraizable with defining equation 
(x) = {x ≈ 1} and equivalence
formula Δ(x, y) = {x ↔ y}.

An important consequence of algebraizability is that axiomatic extensions of
algebraizable logics are also algebraizable with the same equivalence formulas and
defining equations. Moreover, the lattice of axiomatic extensions of the logic is dually
isomorphic to the subvariety lattice of the equivalent algebraic semantics whenever the
latter is a variety [10], as it is the case here. Therefore, we obtain the algebraizability of
GV and all its axiomatic extensions with respect to the corresponding class of algebras.

Corollary 4.7 (Algebraizability). Let L be any axiomatic extension of GV, axioma-
tized relatively to GV by the set of axioms Φ. Then the equivalent algebraic semantic of L,
KL, is axiomatized relative to KGV by 
(Φ) = {ϕ ≈ 1 : ϕ ∈ Φ}. In particular given any
set of formulas Γ and formulas �:

Γ �L � ⇔ 
(Γ) �KL 
(�).

By direct application of the Blok–Pigozzi machinery, we get an axiomatization of
KGV made of equations (coming from the axioms) and quasi-equations (coming from
rules); we now show that actually equations suffice, in particular because the rules
(MP) and (C) are translated to quasi-equations that already hold as a consequence
of the other axioms. In other words, the equivalent algebraic semantics is a variety of
algebras.

Definition 4.8. A Lewis variably strict conditional algebra, or V-algebra for short, is
an algebra C = (C,∧,∨,→,�, 0, 1) where (C,∧,∨,→, 0, 1) is a Boolean algebra and
� is a binary operation such that, for all x, y, z ∈ C :

1. x� x = 1
2. (x� y) ∧ (y� x) ≤ (x� z) ↔ (y� z)
3. ((x ∨ y)� x) ∨ ((x ∨ y)� y) ∨ (((x ∨ y)� z) ↔ ((x� z) ∧ (y�
z))) = 1

4. x� (y ∧ z) = (x� y) ∧ (x� z)

We denote the variety of V-algebras with VA.

Theorem 4.9. VA is the equivalent algebraic semantics of GV.

Proof. Note that since algebras in VA have a Boolean algebra reduct, for C ∈ VA,
and x, y ∈ C , x → y = 1 iff x ≤ 1; then by Corollary 4.7, the equivalent algebraic
semantics of GV is axiomatized by the axioms of VA plus the quasi-equations:

(x ≈ 1 & x → y ≈ 1) ⇒ y ≈ 1, and

x → y ≈ 1 ⇒ (z� x) → (z� y) ≈ 1.
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20 GIULIANO ROSELLA AND SARA UGOLINI

The result then follows from the fact that the latter are easily seen to hold given the
other axioms; in particular, note that the fact that� is order-preserving on the right
follows from the distributivity over the meet operation on the right: if x ≤ y then
x = x ∧ y, and so z� x = z� (x ∧ y) = (z� x) ∧ (z� y) and so z� x ≤
z� y. �

Recall that x� y := ¬(x� ¬y). Let VCA be the subvariety of VA further
satisfying:

x ∧ y ≤ x� y ≤ x → y (10)

and VCSA the subvariety of VCA of Lewis conditional algebras, satisfying:

(x� y) ∨ (x� ¬y) = 1. (11)

Corollary 4.10. VCA and VCSA are the equivalent algebraic semantics of,
respectively, GVC and GVCS.

Let us consider again the unary connective � in the language as �ϕ := ¬ϕ� ϕ,
and its iteration �nϕ. We can show that, analogously to the case of modal algebras,
the operator � can be used to characterize congruence filters.

Definition 4.11. Let A ∈ VA; a nonempty lattice filter F ⊆ A is said to be open if
x ∈ F implies �x ∈ F .

Proposition 4.12. Let A ∈ VA; a nonempty lattice filter F ⊆ A is a congruence filter
if and only if it is open.

Proof. The proof is based on the fact that, as a consequence of the fact that
VA is the equivalent algebraic semantics of GV, congruence filters coincide with the
deductive filters induced by the logic. In other words, for every rule Γ � ϕ and every
homomorphism f from Fm� to A, if f[Γ] ⊆ F , then f(ϕ) ∈ F . It is clear that every
deductive filter is an open lattice filter. For the converse, consider an open lattice filter
F ; F respects the axioms because it is nonempty (i.e., it contains 1, where all the
instances of the axioms are mapped as a direct consequence of the algebraizability
result, Corollary 4.7), and it respects modus ponens since it is a lattice filter. We only
need to prove that it respects the rule ϕ → � � (�� ϕ) → (�� �).

Suppose there is an assignment h to A ∈ VA such that h(ϕ) = a, h(�) = b, h(�) = c,
with a, b, c ∈ A, and assume that a → b ∈ F . From the fact thatϕ → � � (�� ϕ) →
(�� �) holds, by the deduction theorem of the global consequence (Theorem 3.25)
and the strong completeness (Theorem 3.23) we obtain that there is some n ∈N such
that

�GV

⎛
⎝ ∧
m≤n

�m(ϕ → �)

⎞
⎠ → ((�� ϕ) → (�� �)).

This implies that the element (
∧
m≤n �

m(a → b)) → ((c� a) → (c� b)) =
1 ∈ F . Now, since a → b ∈ F and F is open, �k(a → b) ∈ F for all k ∈N. Thus,
since filters are closed under finitary meets, the element (

∧
m≤n �

m(a → b)) ∈ F .
Since lattice filters respect modus ponens, also ((c� a) → (c� b)) ∈ F , which
shows that open lattice filters respect the rule (C).

We have then shown that open filters coincide with deductive filters, and therefore
with congruence filters. �
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We remind the reader that the proposition above describes the Gumm–Ursini ideals
[13] of VA, which are also the GV-deductive filters of the algebras in VA. The following
is an interesting observation:

Corollary 4.13. Let A ∈ VA; then the congruence filters of A are exactly the
congruence filters of its modal reduct (A,∧,∨,→,�, 0, 1).

The corollary above entails for instance that one can characterize subdirectly
irreducible algebras in VA by the subdirect irreducibility of their modal reduct; we
leave this purely algebraic investigation of V-algebras to future work.

4.2. Local algebraic semantics. In this section we focus on the weaker logic LV;
in particular, we will show that the latter is not algebraizable, however it can still be
studied by means of V-algebras. We will indeed see that �LV coincides with the logic
preserving degrees of truth of VA. Let us be more precise.

We call an ordered algebra a pair (A,≤), where A is an algebra and ≤ is a partial
order on its universe. Note that all algebras with a (semi)lattice reduct can be seen as
ordered algebras, and thus in particular Boolean algebras and V-algebras are ordered
algebras.

Definition 4.14. Let K be a class of ordered algebras over a language L; the logic
preserving degrees of truth of K, in symbols L≤K = (L,�≤

K ), is defined as follows: for every
set Γ ∪ {ϕ} of formulas in the language of K, Γ �≤

K ϕ if and only if for all (A,≤) ∈ K,
and assignment h : FmL → A, a ∈ A,

a ≤ h(�) for every � ∈ Γ ⇒ a ≤ h(ϕ).

Remark 4.15. If K is an elementary class of algebras (in particular, if K is a variety)
with a lattice reduct, one can rephrase the above definition and say that

Γ �≤
K ϕ iff K � �1 ∧ ... ∧ �n ≤ ϕ

for some {�1, ... , �n} ⊆ Γ and n ∈N (see [20, remark 2.4]).

Example 4.16. Intuitionistic logic is the logic preserving degrees of truth of Heyting
algebras, and the local consequence of the modal logic K is the logic preserving degrees
of truth of modal algebras.

Logics preserving the degrees of truth have been studied in generality in [9, 22], and
in residuated structures in [8]. In order to prove the analogous result for LV, let us first
state a useful lemma.

Lemma 4.17. For all L�-formulas ϕ,�, �, and n ∈N:

1. �LV �n+1(ϕ → �) → �n((�� ϕ) → (�� �));
2. �LV �n+1(ϕ ↔ �) → �n((ϕ� �) → (�� �)).

Proof. We will show that the two statements hold in sphere models, which implies the
claim by the completeness Theorem 3.8. We start with (1), and proceed by induction
on n. Let n = 0, we want to prove that:

�l �(ϕ → �) → ((�� ϕ) → (�� �));

consider a sphere model M = 〈W,S, v〉 and let w ∈W . Suppose w � �(ϕ → �), or
equivalently via Lemma 3.17

⋃
S(w) ⊆ v(ϕ → �). Now, if w � �� ϕ, it means
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22 GIULIANO ROSELLA AND SARA UGOLINI

that there is S ∈ S(w) such that ∅ � S ∩ v(�) ⊆ v(ϕ); but since
⋃

S(w) ⊆ v(ϕ → �),
S ∩ v(ϕ) ⊆ v(�), i.e., there is S ∈ S(w) such that ∅ � S ∩ v(�) ⊆ v(�), and thus
w � �� �. The inductive step follows from the fact that � is a modal operator,
more precisely that theorems are closed under � and � distributes over the implication
(Proposition 3.18). Let us now show (2), again by induction on n; for n = 0, we prove:

�l �(ϕ ↔ �) → ((ϕ� �) → (�� �)).

Consider then a sphere modelM = 〈W,S, v〉, letw ∈W , and supposew � �(ϕ ↔ �),
or equivalently by Lemma 3.17,

⋃
S(w) ⊆ v(ϕ ↔ �). If w � ϕ� �, it means that

there is S ∈ S(w) such that ∅ � S ∩ v(ϕ) ⊆ v(�); but since
⋃

S(w) ⊆ v(ϕ ↔ �), we
get that S ∩ v(ϕ) = S ∩ v(�), and therefore there is S ∈ S(w) such that ∅ � S ∩
v(�) ⊆ v(�), and thus w � �� �. The inductive step follows again from the fact
that � is a modal operator. �

We are now ready to prove that LV can also be studied by means of V-algebras, via
the following (strong) completeness result.

Theorem 4.18. LV is the logic preserving degrees of truth of VA; i.e., for all Γ ∪ {ϕ} ⊆
Fm�:

Γ �LV ϕ ⇔ Γ �≤
VA ϕ.

Proof. The forward direction is a usual soundness proof; note that the axioms are
mapped to 1 by the algebraizability result (Corollary 4.7), (MP) holds in the form
x ∧ (x → y) ≤ y, and (wC) becomes x → y = 1 implies (z� x) ≤ (z� y) which
holds in VA.

For the converse, we reason by contraposition; assume Γ �LV ϕ. Then consider the
relation  defined as follows:

 := {(�, �) ∈ Fm� × Fm� : Γ �LV �n(� → �) and

Γ �LV �n(� → �) for all n ∈N}.

We can show that  is a congruence relation. In particular, while reflexivity
and symmetry are trivial, transitivity follows the fact that � distributes over →
(Proposition 3.18); the Boolean operations are also easily shown to be respected:
for ∧, as a consequence of the fact that � distributes over ∧ (Proposition 3.18), and
for ¬, by the observation that ¬�nx = �n(¬x). Let us then prove that  preserves the
binary operation�. Assume ��, it suffices to show that

(�� �, �� �), (�� �, �� �) ∈ ;

that is to say, we need prove that:

(i) Γ �LV �n((�� �) → (�� �)); (ii) Γ �LV �n((�� �) → (�� �));

(iii) Γ �LV �n((�� �) → (�� �)); (iv) Γ �LV �n((�� �) → (�� �)).

Given the assumption that Γ �LV �n(� → �) and Γ �LV �n(� → �) for all n ∈N, and
thus also Γ �LV �n(ϕ ↔ �) (since � distributes over ∧ by Proposition 3.18), (i)–(iv)
follow by Lemma 4.17. Therefore,  is a congruence, and we can consider the quotient
Fm�/; let us verify that the latter is an algebra in VA. Consider the axiomatization
of VA, we show that for every equation ε ≈ � appearing in it, (ε, �) ∈ . By the
algebraizability of VA, for each such ε ≈ � and the completeness result of Theorem 3.23,
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�GV ε ↔ �; thus also �LV ε ↔ � (since they have the same theorems by Theorem 2.4),
and then �LV �n(ε ↔ �) for all n ∈N by the fact that theorems are closed under �

(Proposition 3.18). Thus, each (ε, �) ∈ , and Fm�/ ∈ VA.
We now show that for all (nonempty) finite subsets Δ ⊆ Γ, Δ �≤VA ϕ. By Remark 4.15,

this implies that Γ �≤VA ϕ which would complete the proof. Given that Δ �≤
VA ϕ iff VA �∧

Δ ≤ ϕ, it is enough to show that in particular Fm�/ �
∧

Δ ≤ ϕ. Consider Δ =
{�1, ... , �n} ⊆ Γ, and let� be the natural epimorphism� : Fm� → Fm�/; assume by
way of contradiction that �(�1) ∧ ··· ∧ �(�n) ≤ �(ϕ); thus �((�1 ∧ ··· ∧ �n) → ϕ) = 1.
By the definition of , this implies that in particular Γ �LV (�1 ∧ ··· ∧ �n) → ϕ. But
since Δ ⊆ Γ, it follows that Γ �LV �1 ∧ ··· ∧ �n; by modus ponens we would get Γ �LV ϕ,
a contradiction. This completes the proof. �

Actually, the same proof works for any axiomatic extension of LV.

Corollary 4.19. Let Γ be a set of formulas; LV+ Γ is the logic preserving degrees of
truth of VA + 
(Γ).

As a corollary of the above theorem, we get that:

Corollary 4.20. Let Γ be a set of formulas. For all ϕ,� ∈ Fm�, �VA+
(Γ) ϕ ≈ � if
and only if ϕ �LV+Γ � and � �LV+Γ ϕ.

We are now going to conclude that the local calculus is not algebraizable. In fact,
it follows from a general theory regarding (semi)lattice-based logics that have an
algebraizable assertional companion5. We recall the relevant notions from [10, §7].

Given a class of algebras K that have a constant 1 in their language L, we define the
1-assertional logic of K as the logic L1

K = (L,�1
K) such that for all Γ ∪ {ϕ} ⊆ FmL

Γ �1
K ϕ ⇔ {� ≈ 1 : � ∈ Γ} �K ϕ ≈ 1.

Let now K be a variety of algebras with semilattice reducts, and such that the
associated order in algebras of K has a maximum defined by some term 1. The two
associated logics L≤K and L1

K are said to be companions of each other, i.e., L1
K is the

assertional companion of L≤K , and the latter in turn is the semilattice-based companion
of L1

K. Moreover, L≤K is algebraizable if and only if it coincides with L1
K [10, Theorem 4.2].

It is clear that K = VA satisfies the above assumptions; moreover, it follows
from Theorem 4.6 that GV is the (algebraizable) 1-assertional logic of VA, and by
Theorem 4.18 that LV is its semilattice based companion. Since GV and LV do not
coincide, we get at once:

Corollary 4.21. LV is not algebraizable.

Given Corollary 4.19, we can actually extend this result to all the axiomatic
extensions of Lewis’s logics where global and local consequence do not collapse.

Corollary 4.22. If Γ is a set of axioms such that LV+ Γ does not coincide with
GV+ Γ, then LV+ Γ is not algebraizable.

One can actually show that all the local variably strict conditional logics considered
by Lewis’s in his hierarchy are not algebraizable, since the global and local calculi do
not coincide, except for LVCA, which collapses to classical logic [17].

5 We thank an anonymous referee for bringing this general approach to our attention, which
helped simplify the presentation of the following results.
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Corollary 4.23. No axiomatic extension of LV by the axioms in {W, C, N, T, S, U, A} is
algebraizable, except (the ones coinciding with) LVCA. The strong and weak calculi GVCA
and LVCA coincide, and they are both algebraizable with respect to the subvariety of VA
where the identity x� y ≈ x → y holds.

§5. Conclusions. The main objective of this paper is to provide a logico-algebraic
analysis of Lewis’s variably strict conditional logics, a subject that has been notably
lacking in the literature. Our efforts have clarified several ambiguities surrounding
these logics, explicitly defined and refined their properties, brought to light the deep
connection with the modal logic framework, and introduced a novel general algebraic
framework for their technical analysis. By doing so, this work aims to foster a fruitful
synergy between a classical theme in formal philosophy and the advancements in
abstract algebraic logic.

To the best of our knowledge, the model-theoretic tools and the techniques proper
of the abstract algebraic logic framework we have used were not employed before to
analyze these logics; these powerful tools proved instrumental in establishing several
logical results, e.g., a deduction theorem, the representation of one logical consequence
in terms of the other, and the strong completeness with respect to the algebraic
structures for both versions of the calculi. These results collectively offer a deeper
and more comprehensive understanding of the properties of Lewis’s logics and the
features of their models.

Moreover, while filling a notable void in the literature, this work is just the start of
a formal investigation of Lewis’s logics. The logico-algebraic machinery indeed offers
a variety of tools to study logical properties from the algebraic point of view, the
so-called bridge theorems. These are the core results of the field of algebraic logic;
they allow one to study metalogical properties algebraically, concerning in particular
the entailment of the logic, answering questions about its expressivity, or formalizing
notions that can be relevant in applications [10, 15, 25]. These allow the study of,
e.g.,: the lattice of (axiomatic) extensions of the logics; definability properties, i.e., to
what extent implicit properties of the logic can be made explicit [5] and interpolation
properties [19]; admissible rules [27], those that added to the logic do not change the
theorems, and whether a logic is structurally complete (i.e., whether its admissible rules
are also derivable) like classical logic but unlike intuitionistic logic [1, 3].

This work also lays the foundation for a deeper conceptual understanding of Lewis’s
logics beyond the technical sphere. In a forthcoming work, we will focus on the fact
that to properly consider infinite models one should not simply consider sets of worlds,
but topological spaces; i.e., the subsets of the universe that are meant to represent the
formulas (the clopen sets of the topology) play a special role. In technical terms, we will
show that the variety of algebras introduced in this work enjoys a categorical duality
with respect to topological spaces based on Lewis’s sphere models. From a conceptual
standpoint, this will provide a fresh perspective into the similarity relationship among
worlds and spheres, and the nature of the so-called limit assumption, stating the
existence of most similar antecedent worlds.
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