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Dynamical Systems Background

The need for a universal language:
from steady patterns to turbulence

Fluid transitions, such as those described in the previous chapter, are associ-
ated with the change in stability of flow patterns. Intuitively, an equilibrium flow
(such as the Couette flow in the Taylor–Couette problem of Section 1.3) is sta-
ble when initial perturbations to the flow decay to zero in time. When critical
values of parameters, such as the Reynolds numbers in the Taylor–Couette prob-
lem, are exceeded, perturbations on the flow will grow in time and eventually
lead to a different equilibrium flow. In this chapter, we provide the background
of this stability problem in the language of dynamical systems theory. It is writ-
ten mostly as a refresher and to define the terminology which will be used in later
chapters.

2.1 Stability of Fluid Flows

A general framework on the loss of stability of a fluid flow is given in Landau and
Lifshitz (1987).

2.1.1 Stability Boundaries

We follow Joseph (1976) on stability boundaries, using the concept of asymptotic
stability in the mean. Consider a constant-density (ρ) steady flow with an equilib-
rium velocity field ū, referred to as the basic state, in a fixed flow domain V . For a
velocity perturbation ũ on ū, the volume-averaged perturbation kinetic energy E is
given by

E(t) =
∫
V

ρ

2

∥∥ũ
∥∥2

d3x. (2.1)
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20 2 Dynamical Systems Background

Figure 2.1 Plot of the different stability regimes, with 1: monotonic stability, 2:
global stability, 3: conditional stability, and 4: instability. The control parameter
is λ and the values of λE, λG, and λL are the energy, global, and linear stability
boundaries, respectively. The curve δ(λ) bounds the region of conditional stabil-
ity. Typical trajectories of the volume-averaged perturbation kinetic energy are
sketched to illustrate the different behaviour in each domain.

For isothermal flows, such as the Lid-Driven Cavity flow and the Taylor–Couette
flow, an equation for E can be obtained from the mechanical energy balance
equation (Joseph, 1976).

The solution ū is said to be asymptotically stable in the mean if

lim
t→∞

E(t)

E(0)
= 0, (2.2)

where E(0) is the initial value of E at t = 0. If there exists a positive constant
δ such that (2.2) holds only when E(0) < δ, then the basic state is said to be
conditionally stable. If δ → ∞, then the basic state is globally stable; and if (2.2)
is satisfied and dE(t)/dt < 0 holds for all t > 0, then the basic state is said to be
monotonically stable. Note that this definition of stability does not a priori assume
that the perturbations should be small compared to the basic state.

Let one of the parameters in a particular model be indicated by λ, for example,
the Reynolds number in the Lid-Driven Cavity flow. Based on the concept of
asymptotic stability in the mean, four regions can be distinguished (Fig. 2.1):

l In region 1, the basic state is monotonically stable; all perturbations, what-
ever their initial amplitude, have a monotonically decaying perturbation
kinetic energy.

l In region 2, there may be perturbations which initially grow (not necessarily
exponentially), but the perturbation kinetic energy eventually decays to zero
for all initial amplitudes of the perturbations.
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2.1 Stability of Fluid Flows 21

l Region 3 is a region of conditional instability. If the initial amplitude of the
perturbations is small enough (E(0) < δ(λ)), the perturbation kinetic energy
decays to zero, whereas if it is larger than some particular value δ(λ), the
perturbation kinetic energy will increase. In the latter case, the perturbed
state will evolve to a different state (than ū), and the state ū is said to be
(non-linearly) unstable to finite amplitude perturbations.

l In region 4, even infinitesimally small perturbations grow and the basic state
is said to be (linearly) unstable.

From Fig. 2.1, stability boundaries have been defined (Joseph, 1976) according
to the evolution of the perturbation kinetic energy E . When λ < λG, then the basic
state is globally stable and every perturbation decays to zero in time; λG is the glo-
bal stability boundary and provides sufficient conditions for stability. If λ < λE,
the basic state is monotonically stable; λE is called the energy stability boundary.
If λG < λ < λL, then the basic state is conditionally stable: small amplitude dis-
turbances decay, whereas excessively large perturbations grow. Beyond the linear
stability boundary λL, infinitesimally small perturbations will grow, and this stabil-
ity bound therefore provides sufficient conditions for instability. In summary, there
are two cases of instability:

(i) Sub-critical instability: λG < λ < λL, the basic state is not globally stable.
(ii) Super-critical instability: λ > λL, the basic state is not linearly stable.

The linear stability boundary is obtained by linearizing the governing equations
for the perturbations in their infinitesimally small amplitude. This linear stability
problem leads to an eigenvalue problem which, except in some specific cases, also
has to be solved numerically.

Additional Material

l Determination of the global and energy stability boundaries has to be
done with the full non-linear equations. Use is made of variational prin-
ciples, and many examples, also for the flows in Chapter 1, are provided
in Joseph (1976) and Straughan (2004).

2.1.2 Linear Stability Boundary: An Example

As an example of a linear stability boundary, we present the famous (Rayleigh,
1916) result for pure Rayleigh–Bénard flow in a horizontally unbounded rect-
angular container (Ax → ∞, Ay → ∞) where the two horizontal solid walls are
assumed to satisfy slip boundary conditions.
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22 2 Dynamical Systems Background

The governing equations (Section 1.4), for Ma = 0, Bi → ∞, are non-
dimensionalized using scales κ/D for velocity, D2/κ for time, and D for length.
Moreover, a dimensionless temperature ϑ is introduced through T = (TB−TA)ϑ+
TA and a dimensionless pressure P through p = −gρ0z+ (µκ/D2)P, where the first
term is the hydrostatic component. This leads to the non-dimensional problem

Pr−1

(
∂u
∂t
+ u · ∇u

)
=−∇P+∇2u+ Ra ϑ e3, (2.3a)

∇ · u = 0, (2.3b)
∂ϑ

∂t
+ u · ∇ϑ = ∇2ϑ , (2.3c)

where e3 is the unit vector in vertical direction and with boundary conditions

z = 0: ϑ = 1 ;
∂u

∂z
=
∂v

∂z
= w = 0, (2.4a)

z = 1:
∂u

∂z
=
∂v

∂z
= w = ϑ = 0. (2.4b)

In Equations (2.3)–(2.4), the two dimensionless parameters Pr (Prandtl) and Ra
(Rayleigh) appear which are defined as

Ra =
αT g(TB − TA)D3

νκ
; Pr =

ν

κ
.

The dimensionless motionless solution (the basic state) is given by

ū = v̄ = w̄ = 0 ; ϑ̄(z) = 1− z, (2.5a)

P̄(z)= !Ra(z−
z2

2
), (2.5b)

being a solution for all values of Ra and Pr.
Infinitesimal perturbations on this basic state are assumed next, that is, u =

ū + ũ with similar expressions for the other variables, where the tilde indicates
the perturbation quantities. Linearizing the equations around the background state
(neglecting products of perturbation terms) leads to

Pr−1 ∂ũ
∂t
= −∇P̃+∇2ũ+ Ra ϑ̃ e3, (2.6a)

∇ · ũ = 0, (2.6b)

∂ϑ̃

∂t
− w̃ = ∇2ϑ̃ (2.6c)

with boundary conditions

z = 0, 1 :
∂ ũ

∂z
=
∂ṽ

∂z
= w̃ = ϑ̃ = 0. (2.7)

https://doi.org/10.1017/9781108863148.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108863148.003


2.1 Stability of Fluid Flows 23

Next, a normal mode expansion is employed, that is, for w̃, See example Ex. 2.1

w̃ = eσ tH(x)W (z), (2.8a)

H(x) =
j=N∑

j=−N ,j 6=0

cje
ikj·x, (2.8b)

with similar expressions for the other quantities. Here x = (x, y, 0) and k =
(kx, ky, 0) are the horizontal coordinate and wavenumber vector, respectively. The
wavenumber vectors kj differ only in orientation, k−j = −kj, c−j = c∗j (where the ∗
indicates the complex conjugate) and |kj| = k. The function H represents possible
two-dimensional space-filling patterns such as roll cells and hexagons.

Expressing P̃, ũ, ṽ, and ϑ̃ in terms of w̃ using the equations in (2.6) leads to the
following problem (Getling, 1998):

∂2H

∂x2
+
∂2H

∂y2
+ k2H = 0, (2.9a)

(D2
z − k2

− σ )(D2
z − k2

−
σ

Pr
)(D2

z − k2)W = −k2Ra W , (2.9b)

where Dz = d/dz. The boundary conditions for W become

W (0) = W (1) = D2
z W (0) = D2

z W (1) = D4
z W (0) = D4

z W (1) = 0. (2.10)

The eigenfunctions for W are given by

Wn(z) = sin nπz, n = 1, 2, . . . (2.11)

and the eigenvalues σ (labelled by the vertical structure of the eigenfunctions) are
given by

σn = −
Pr + 1

2
(n2π2

+ k2)±

√
(
Pr − 1

2
)2(n2π2 + k2)2 +

RaPrk2

n2π2 + k2
. (2.12)

As Ra ≥ 0, the eigenvalues are real and there is always a positive eigenvalue when

Ra > Ran(k) =
(n2π2

+ k2)3

k2
. (2.13)

The so-called neutral curve for n = 1 (σ1 = 0), showing Ra1(k) versus k, is
plotted in Fig. 2.2. This curve has a minimum at (kc, Rac) given by

kc =
π
√

2
; Rac =

27

4
π4. (2.14)

Hence, for Ra > Rac, there is a band of wavenumbers with σ > 0 and so these per-
turbations will grow exponentially. The value of Rac therefore provides sufficient
conditions for instability and is the linear stability boundary. Note that multiple pat-
terns (hexagons, rolls, represented by the function H(x, y)) become unstable under
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Figure 2.2 Neutral curve for pure Rayleigh–Bénard convection, showing Ra1(k)
from (2.13) versus k (for σ1 = 0) in a horizontally unbounded rectangular liquid
layer with slip conditions at the top and bottom walls.

the same conditions, as the stability boundary depends only on the norm k of the
wavenumber vector k. See example Ex. 2.2

Additional Material

l Linear stability theory of fluid flows is standard material in textbooks on
hydrodynamic stability theory, such as Chandrasekhar (1961) and Drazin
and Reid (2004).

l Specific focus on the stability of the Rayleigh–Bénard–Marangoni flow
and related flows can be found in Getling (1998) and Platten and Legros
(1984).

2.2 Beyond Criticality: Weakly Non-linear Theory

When the control parameter λ is slightly above the linear stability boundary λc,
such as Ra > Rac in the Rayleigh–Bénard problem of the previous subsection,
a band of wavenumbers destabilizes the basic flow as the associated spatial pat-
terns grow exponentially in time. At some later time, the linear theory is no longer
valid because the amplitude of the non-linear terms can no longer be neglected. In
this section, the so-called weakly non-linear theory is presented where non-linear
effects are taken into account in the regime

|λ− λc|

|λc|
< ε, (2.15)

where ε � 1.
When at least one of the horizontal dimensions is unbounded, and hence the

importance of boundary conditions in this direction on the finite amplitude flows
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2.2 Beyond Criticality: Weakly Non-linear Theory 25

is neglected, the weakly non-linear analysis leads to a Ginzburg–Landau equation.
When the effects of horizontal boundary conditions cannot be neglected, the weakly
non-linear approach will lead to a set of amplitude equations. We will describe both
approaches in what follows for a general flow problem for the state vector 8 (e.g.,
u, p) with governing equations

M
∂8

∂t
+ G(8) = f, (2.16)

with appropriate boundary conditions on the boundary of the flow domain. Here
M is a linear operator, G is a non-linear operator, and f represents the forcing. Note
that the operator M does not need to the identify, as in the incompressible general
fluid dynamics equations there is an equation without a time derivative (i.e., the
continuity equation).

2.2.1 Ginzburg–Landau Equations

Consider first the case where one of the horizontal dimensions of the problem is
unbounded, which allows the existence of traveling wave solutions of the linear
stability problem. The background state 8̄ is assumed to be steady and satisfies

G(8̄) = f. (2.17)

We next now consider perturbations φ = 8 − 8̄, and the system of equations for
the perturbations φ can be written in general as

(M
∂

∂t
+ L)φ +N (φ)φ = 0 (2.18)

with appropriate boundary conditions. Here L is a linear operator and N a non-
linear operator which we assume to represent a quadratic non-linearity (as in the
governing equations in Section 1.1). The linear stability problem (where non-linear
interactions of the perturbations are neglected) is formulated as

(M
∂

∂t
+ L)φ̃ = 0 (2.19)

for infinitesimally small perturbations φ̃.
Assume that the x-direction is unbounded such that traveling wave solutions of

(2.19) exist with wavenumber k and complex growth factor σ . For convenience, we
will consider the two-dimensional Cartesian case (coordinates (x, z)), with

φ̃(x, z, t) = φ̂(z)eikx+σ t
+ c.c. (2.20)

where c.c. indicates complex conjugate. Substitution of (2.20) into (2.19) gives a
boundary value problem for the eigenpair (σ , φ̂), that is,

(M̂(k)σ + L̂(k))φ̂ = 0 (2.21)
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26 2 Dynamical Systems Background

with appropriate boundary conditions. Here the operators M̂ and L̂ are the Fourier
transforms of the original operators in the x-direction.

The eigenvalue is written as σ = σR + iσI and considered as a function of
the wavenumber k and the control parameter λ. The neutral curve σR(k, λ) = 0
provides sufficient conditions for instability, and in many applications, the neutral
curve has a minimum at (kc, λc) (see Fig. 2.2) at which

σR(kc, λc) = 0 ;
∂σR

∂k
(kc, λc) = 0 ;

∂2σR

∂k2
(kc, λc) < 0. (2.22)

In what follows we will use ωc = σI (kc), and also assume that the mode k = 0 is
damped.

Assume now conditions just above criticality, that is,

λ = λc + mε2, (2.23)

where ε � 1 and m = O(1). As the neutral curve can be approximated by a
parabola λ−λc ∼ (k−kc)2, this implies that |k−kc| = O(ε). The unstable traveling
waves are hence limited to a narrow band around kc which can be interpreted as
a wave packet with central wavenumber kc. This wave packet evolves on a time
scale which is large compared to typical wave periods 2π/ωc and is characterized
by scales

T = ε2t ; X = ε(x− cgt), (2.24)

where cg = ∂σI/∂k is the group velocity. The long spatial variable X is a slowly
moving coordinate, traveling with the group velocity of the growing wave packet.

The scaling leads to transformations for φ(x, X (x, t), z, t, T(t)) as

∂

∂t
→

∂

∂t
− εcg

∂

∂X
+ ε2 ∂

∂T
, (2.25a)

∂

∂x
→

∂

∂x
+ ε

∂

∂X
. (2.25b)

The final amplitude of the perturbations will be small compared to that of the
background state (for λ close to λc), so the solution vector is expanded in terms
of the small parameter ε and Fourier modes of the marginally stable wave E =
exp(i(kcx+ ωct)), that is,

φ = ε8(11)E + ε2(8(02)
+8(12)E +8(22)E2)+ ε38(13)E + . . .+ c.c. (2.26)

where the8(ij)
= 8(ij)(X , z, T) depend on the slow time scale and long spatial scale.

Substitution of (2.26) into (2.18) and collecting terms of the same order (in ε
and E) gives at O(εE) the linear stability problem
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2.2 Beyond Criticality: Weakly Non-linear Theory 27

(iωcM̂(kc)+ L̂(kc))8(11)
= 0. (2.27)

As the left-hand side does not operate on the large scales of X and T , we can write
8(11)

= A(X , T)9, where 9 = φ̂(z) is the eigenvector at k = kc from (2.20) and
(2.20). The weakly non-linear analysis eventually leads to an equation for the scalar
(but complex) amplitude A(X , T). At O(ε2E), the equations are

(iωcM̂(kc)+ L̂(kc))8(12)
= −(iωcM̂k(kc)+ L̂k(kc)− cgM̂(kc))

∂8(11)

∂X
, (2.28)

where the subscript k indicates differentiation to k. At O(ε2) and O(ε2E2), one
finds

L̂(0)8(02)
= −2R(N (8(11))8(11)∗), (2.29a)

(2iωcM̂(2ikc)+ L̂(2ikc))8(22)
= −N (8(11))8(11), (2.29b)

where R indicates real part and ∗ again complex conjugate. Using the relation
8(11)

= A(X , T)9 in the equations of (2.28) and (2.29) leads to

8(12)
=
∂A

∂X
9 (12) ; 8(02)

= |A|29 (02) ; 8(22)
= A29 (22), (2.30)

where the vectors 9 (12), 9 (02), and 9 (22) satisfy

(iωcM̂(kc)+ L̂(kc))9 (12)
= −(iωcM̂k(kc)+ L̂k(kc)

−cgM̂(kc))9, (2.31a)

L̂(0)9 (02)
= −2R(N (9)9∗), (2.31b)

(2iωcM̂(2ikc)+ L̂(2ikc))9 (22)
= −N (9)9 (2.31c)

and these equations are complemented with the appropriate boundary conditions
at each order of the expansion.

Differentiation of the eigenvalue problem (2.21) to k and use of the group
velocity at criticality gives 9 (12) from (2.31a) as

9 (12)
= −i

∂9

∂k
(2.32)

evaluated at criticality. The left-hand sides of (2.31b,c) are non-singular and hence
can be solved for 9 (02) and 9 (22). At O(ε3E2) a singular problem is obtained for
9 (13), that is,

(iωcM̂(kc)+ L̂(kc))9 (13)
= −(M(kc)9

∂A

∂T
+ m0A+6

∂2A

∂X 2
+3A|A|2), (2.33)
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28 2 Dynamical Systems Background

where

0 = (L̂λ(kc)− iωcM̂λ(kc))9, (2.34a)

6 =
1

2
(iωcM̂kk(kc)− L̂kk(kc)− 2cgM̂k(kc))9 (2.34b)

+ i(iωcM̂k(kc)− cgM̂(kc)− L̂k(kc))9k ,

3 = N (9)9 (02)
+N (9 (02))9 +N (9 (22))9∗ +N (9∗)9 (22). (2.34c)

See example Ex. 2.3
In general, the right-hand side of (2.33) is not contained in the range of the linear

operator on the left-hand side. Since the kernel of the operator iωcM̂(kc) + L̂(kc)
has dimension 1, it is spanned by one vector, here indicated by �; this implies that

�H (iωcM̂(kc)+ L̂(kc))W = 0, (2.35)

where W is the right-hand side of (2.33) and the superscript H indicates Hermitian
transposed. The resulting amplitude equation derived from (2.33) and (2.35) is the
Ginzburg–Landau equation

∂A

∂T
= γ1A+ γ2

∂2A

∂X 2
− γ3A|A|2, (2.36)

where

γ1=m
�H0

�HM̂(kc)9
, (2.37a)

γ2=
�H6

�HM̂(kc)9
, (2.37b)

γ3=−
�H3

�HM̂(kc)9
. (2.37c)

In the remainder of the book, we will use the Ginzburg–Landau equation (2.36) as a
one-dimensional partial differential equation for the complex amplitude A(X , T) to
illustrate bifurcation behaviour of typical fluid flows. As we will see, the behaviour
of the solutions of this equation is very rich.

2.2.2 Amplitude Equations

In case the geometry of the problem is such that no traveling wave solutions exist
(e.g., a bounded geometry in all directions), we can still obtain a reduced model
near criticality through a Galerkin-type projection using the eigenfunctions of the
linear operator.

Suppose that the original problem (2.16) is discretized (see Chapter 4) using a
spectral, finite difference or finite element method. The set of discretized non-linear
differential equations is rewritten in the general form,
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M
d8

dt
+ L8+ N(8,8) = f, (2.38)

to explicitly show the linear part L, the non-linear part N and the forcing f. Let 8̄
be the solution to the steady problem, that is,

L8̄+ N(8̄, 8̄) = f. (2.39)

The solution to (2.38) is now decomposed into this steady state and a remainder
time-dependent part,

8 = 8̄+ φ. (2.40)

After substitution into (2.38), the linearized flow φ is governed by

M
dφ

dt
+ Jφ = 0, (2.41)

where the total Jacobian J is defined as

J = L+ N(8̄, ·)+ N(·, 8̄). (2.42)

The linear operators have an eigenvector decomposition,

3H JR = 6 ; 3H MR = I . (2.43)

Here R and3 denote the right- and left-hand eigenspaces of the linear operator J , I
is the identity, and the diagonal matrix 6 contains the corresponding eigenvalues,
that is,

R =
(
r1 r2 · · · rr

)
, (2.44a)

3 =
(
l1 l2 · · · lr

)
, (2.44b)

6 = diag(σ1 σ2 · · · σr), (2.44c)

where r = rank(6) ≤ d, with d being the number of degrees of freedom of the
dynamical system; the preceding inequality is due to the singular nature of M .
Relation (2.43) states that3 and R are a bi-orthogonal set of eigenvectors, and this
property will be used in the Galerkin projection that follows.

With the use of this eigenbasis, the perturbation φ is expanded in n right-hand
eigenvectors:

φ = Rna =
n∑

j=1

rjaj(t). (2.45)

The matrix Rn denotes the n-dimensional subspace of R of suitably chosen right-
hand vectors, and 3n is its adjoint subspace.
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Substitution of (2.40) into (2.38) and using (2.39) and (2.45) yields

MRn
da

dt
+ JRna+ N(Rna, Rna) = 0. (2.46)

Projection onto the left-hand eigenbasis 3n and the use of the bi-orthogonality
relation (2.43) results in the set of coupled amplitude equations,

da

dt
− Sa+ n(a, a) = 0. (2.47)

The operators in the projected system are defined as

S = 3H
n JRn, (2.48a)

n(a, a) = 3H
n N(Rna, Rna). (2.48b)

In terms of the individual components, the evolution of amplitudes aj(t), j =
1, . . . , n is governed by

daj

dt
−

n∑
k=1

bjkajk +

n∑
k=1

n∑
l=1

cjklakal = 0 , j = 1, . . . , n. (2.49)

The coefficients in the projected system are defined as

bjk = lHj Jrk , (2.50a)

cjkl = lHj N(rk , rl). (2.50b)

The main frustration with these amplitude equation models is the non-
correspondence in dynamical behaviour between the reduced model and the full
model when the order of truncation of the reduced model is changed (Van der
Vaart et al., 2002). An enormously rich behaviour may be found in many reduced
models, which has fascinated researchers so much that critically examining the
relation between the full and reduced models is often omitted. An example hereof
is the famous Lorenz model (Lorenz, 1963), where the dynamics bear little resem-
blance to that of the underlying full model of Rayleigh–Bénard convection (Curry
et al., 1984). Hence, while this approach is fairly standard, the domain in param-
eter space where a close correspondence exists between the dynamical behaviour
contained in (2.49), for a chosen value of n, and the full model is a priori
unclear.

Additional Material

l Amplitude equations and the Ginzburg–Landau equation play an import-
ant role in theories in the broad research area of pattern formation; see
Rabinovich et al. (2000) and Hoyle (2006).
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2.3 Dynamical Systems

The stability bounds do indicate where (in parameter space) flows become sensi-
tive to perturbations, but do not give any answer on what new patterns can arise.
Dynamical systems theory, and in particular bifurcation theory, is a systematic
approach to determine which equilibrium flow patterns are possible near a stabil-
ity boundary. Although dynamical systems theory can in general be formulated
for infinite-dimensional systems, such as the Navier–Stokes equations, we pre-
sent here the necessary concepts for finite-dimensional systems. The reason is that
in a numerical approach, eventually (often high-dimensional) finite-dimensional
dynamical systems are handled.

2.3.1 Continuous versus Discrete Systems

A general first-order system of ordinary differential equations (ODEs) can be
written as the continuous time dynamical system

dx
dt
= f(x, λ, t), (2.51)

where x is the state vector in the state space Rd, f is a smooth (sufficiently differ-
entiable) vector field, λ is a real parameter, and t denotes time. The number d is
referred to as the dimension or the number of degrees of freedom of the dynamical
system. When the vector field f does not depend explicitly on time, that is,

dx
dt
= f(x, λ), (2.52)

the dynamical system is called autonomous; otherwise, it is called non-
autonomous. A trajectory of the dynamical system, starting, for example, at x0,
is a curve x(t) satisfying (2.51). Hence, at each point the vector field f is tangent to
the curve and x(t) is a solution of the equations of (2.51).

When time is discrete, with counter k, we obtain a discrete dynamical system of
the form

xk+1 = fk(xk , λ). (2.53)

A continuous time dynamical system can be analyzed as a discrete time dynamical
system through a so-called Poincaré map. To define a Poincaré map, a hypersurface
6+ in the state space Rd, for example a line segment in two-dimensional state space
or a plane in three-dimensional state space, is chosen such that each trajectory is
not tangent to it for all time t, that is, when

n · f 6= 0. (2.54)
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Σ
+

Q f

n

x ( t )

Figure 2.3 Sketch of a Poincaré section 6+. A periodic orbit is sketched which
intersects the Poincaré section at the point Q. The vector f is the tangent to the
trajectory at Q and n is the outward normal to 6+.

Here, n is the normal to the hypersurface (Fig. 2.3) and f the right-hand side of
(2.51); this hypersurface is called a Poincaré section. Let a trajectory intersect a
Poincaré section at successive intersections indicated by {x1, x2, x3, . . .}; then the
Poincaré map P : 6+→ 6+ is defined as

xk+1 = Pxk . (2.55)

2.3.2 Stability Theory of Fixed Points

A solution x̄ ∈ Rd of an autonomous continuous dynamical system at a parameter
value λ is a fixed point if

f(x̄, λ) = 0, (2.56)

and hence any trajectory with initial conditions on the fixed point will remain
there forever. In this section, we are interested in the transient behaviour of small
perturbations on such a fixed point.

In the analysis of the linear stability of a particular fixed point x̄, small
perturbations y are assumed to be present, that is,

x = x̄+ y, (2.57)

and linearization of (2.52) around x̄ gives

dy
dt
= J (x̄, λ)y, (2.58)

where J is the Jacobian matrix given by

J =


∂f1
∂x1
· · ·

∂f1
∂xd

· · · · · · · · ·
∂fd
∂x1
· · ·

∂fd
∂xd

 . (2.59)
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The solution of (2.58) with initial condition y0 is given by

y(t) = eJty0, (2.60)

and hence the time behaviour depends on the eigenvalues of the Jacobian matrix J .
The corresponding eigenvectors are usually referred to as the normal modes.

If J is decomposed as J = U6U−1, where 6 contains the eigenvalues of J , eJt

is given by

eJt
=

∑∞

k=0

1

k!
(Jt)k
= U

[∑∞

k=0

1

k!
(6t)k

]
U−1
= Ue6tU−1. (2.61)

If all eigenvalues of J , say σ1, . . . , σd have negative real parts, that is, R(σj) < 0
for all j, then the fixed point is linearly stable. For this case, indeed all trajectories
of (2.58) will approach y = 0 asymptotically, that is, for t → ∞. When at least
one of the eigenvalues σk has a positive real part, R(σk) > 0, the fixed point is said
to be unstable.

2.4 Bifurcation Theory of Fixed Points

Bifurcation theory addresses changes in the qualitative behaviour of a dynamical
system as one or several of its parameters vary. If J in (2.59) has no purely imagin-
ary eigenvalues, x̄ is called a hyperbolic fixed point. Near such a fixed point, the
local solution structure of the linearized system is the same as that of the non-linear
system. This is a consequence of the so-called Hartman–Grobman theorem (Guck-
enheimer and Holmes, 1990). When qualitative changes occur in the fixed-point
solutions of the dynamical system, such as the changes in type or number of solu-
tions, the dynamical system is said to have undergone a bifurcation. This can only
occur at non-hyperbolic fixed points. In the state-parameter space formed by (x, λ),
locations at which bifurcations occur are called bifurcation points. A bifurcation
that needs at least k parameters to occur is called a co-dimension-k bifurcation.

The center manifold theorem (Guckenheimer and Holmes, 1990) implies that it
is possible to (locally) reduce the dynamics. Typically, taking x̄ = 0 for simplicity,
one has

dx
dt
= Lx+ N(x), (2.62)

where N , which depends on the parameter λ, has a Taylor expansion starting with at
least quadratic terms, x ∈ Rm and L has m eigenvalues with zero real part. Having
reduced the system (2.51) into the system (2.62), it is possible to find a change
of coordinates so that the system becomes ‘as simple as possible’. The resulting
vector field thus obtained is called the normal form. This procedure is an extension
of the reduction to Jordan form for matrices to the non-linear case. Normal form
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Figure 2.4 Super-critical (a) and sub-critical (b) saddle-node bifurcation. The
solid (dash-dotted) branches indicate stable (unstable) solutions.

theory (Guckenheimer and Holmes, 1990) provides a way to classify the different
kind of bifurcations that may occur with only knowledge of the eigenvalues that lie
on the imaginary axis, that is, those of L.

In the case m = 1, there are three important normal forms:

1. Saddle-node bifurcation: this corresponds to the case where the system (2.62),
when reduced to its normal form, is

dx

dt
= λ± x2. (2.63)

The sign characterizes super-criticality (λ − x2) or sub-criticality (λ + x2). In
the super-critical case, it is straightforward to check that the branch of solutions
x =
√
λ is linearly stable and the branch x = −

√
λ is unstable (see Fig. 2.4).

2. Trans-critical bifurcation: in this case the normal form is given by

dx

dt
= λx± x2. (2.64)

In both sub-critical and super-critical cases, there is an exchange of stability
from stable to unstable fixed points and vice versa as the parameter λ is varied
through the bifurcation at λ = 0 (see Fig. 2.5).

3. Pitchfork bifurcation: the normal form is

dx

dt
= λx± x3. (2.65)

In the super-critical situation (dx/dt = λx − x3), there is a transfer of stability
from the symmetric solution x = 0 to the pair of conjugated solutions x = ±

√
λ

https://doi.org/10.1017/9781108863148.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108863148.003


2.4 Bifurcation Theory of Fixed Points 35

(a) (b)

Figure 2.5 Super-critical (a) and sub-critical (b) trans-critical bifurcation.

(a) (b)

Figure 2.6 Super-critical (a) and sub-critical (b) pitchfork bifurcation.

(Fig. 2.6a). The system remains in a neighbourhood of the equilibrium so that
one observes a soft or non-catastrophic loss of stability. In the sub-critical case
(dx/dt = λx+x3), the situation is very different, as can be seen in Fig. 2.6b. The
domain of attraction of the fixed point (the set of initial conditions which end
up at the fixed point for infinite time) is bounded by the unstable fixed points
and shrinks as the parameter λ approaches zero. The system is thus pushed out
from the neighbourhood of the now unstable fixed point leading to a sharp or
catastrophic loss of stability. Decreasing again the parameter to negative values
will not necessarily return the system to the previously stable fixed point, since
it may have already left its domain of attraction.

Whereas in cases 1–3, the number of fixed points changed as the parameter was
varied, it is also possible that a steady solution becomes unstable to time-periodic
disturbances. This so-called Hopf bifurcation occurs only in dynamical systems
with m > 1 and corresponds to the special case of a simple conjugate pair of pure
imaginary eigenvalues σ = ±iω crossing the imaginary axis, leading to the normal
form (for m = 2)
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(a) (b)
xx

yy

Figure 2.7 Phase portraits for a super-critical Hopf bifurcation (at λ = 0) where
the arrows indicate the slope dy/dx at each location. (a) For λ = −1 < 0, there
is only one stable fixed point. (b) A stable limit cycle x2

+ y2
= 1 appears for

λ = 1 > 0.

dx

dt
= λx− ωy± x(x2

+ y2), (2.66a)

dy

dt
= ωx+ λy± y(x2

+ y2). (2.66b)

Phase portraits of the super-critical Hopf bifurcation (− sign in (2.66)) show that
for λ < 0, the fixed point (x = 0, y = 0) is stable (Fig. 2.7a). For λ > 0, a
periodic orbit (with period 2π/ω) appears (Fig. 2.7b), which is called a limit cycle
(an isolated periodic orbit).

The normal form (2.66) can also be written in polar coordinates x = r cos θ , y =
r sin θ as

dr

dt
= λr ± r3, (2.67a)

dθ

dt
= ω. (2.67b)

Similar to the pitchfork bifurcation case, the sign determines whether the Hopf
bifurcation is super-critical or sub-critical. See example Ex. 2.4

Example 2.1 Consider the following particular case of the Ginzburg–Landau equation

∂A

∂t
= (α + iβ)A+ γ2

∂2A

∂x2 − γ3A|A|2 (2.68)

with real α,β, γ2 > 0 and γ3 > 0. Assume first that γ2 = 0. To find an x-independent
solution, which is called the Stokes wave, we substitute A = ρ exp(iθ ) into (2.68), where ρ
and θ are both real. After cancelling the common factor exp(iθ ), one obtains the equation

https://doi.org/10.1017/9781108863148.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108863148.003


2.5 Bifurcation Theory of Limit Cycles 37
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Figure 2.8 (a) Trajectories of (2.68) for γ2 = 0, γ3 = 1, β = 1 and values of (a)
α = −0.25 and (b) α = 0.25.

dρ

dt
+ iρ

dθ

dt
= iρβ + ρ(α − γ3ρ

2). (2.69)

Collecting real and imaginary parts, we obtain two equations:

dρ

dt
= ρ(α − γ3ρ

2), (2.70a)

dθ

dt
= β. (2.70b)

For α < 0, the steady state ρ̄ = 0 is stable (Fig.2.8a). Clearly ρ̄ = 0 is unstable if α > 0,
but then stable states ρ̄ =

√
α/γ3 exist. For ρ 6= 0, θ is a linear function of t, that is,

θ = c+ βt. So, the solution is

A =
√
α/γ3 exp(ic+ iβt). (2.71)

This periodic solution with period 2π/β is also a limit cycle for α > 0 (Fig. 2.8b). Now, if
we choose γ2 > 0, then this has a stabilizing effect, so α needs to be larger than a certain
positive value for the periodic solution to exist.

Additional Material

l The text in these sections is meant as a very short recap of dynam-
ical systems theory. Other books are much more suitable to learn about
this theory. Introductions with many examples can be found in Stro-
gatz (1994), Verhulst (2000), and Perko (2013). More advanced texts
are Guckenheimer and Holmes (1990) and Kuznetsov (1995).

2.5 Bifurcation Theory of Limit Cycles

In this section, we provide a brief overview of bifurcations of periodic orbits of
autonomous dynamical systems when a single parameter is varied.

Assume that one has a limit cycle, say indicated by γ , of the original system
(2.52) for a parameter λ that we omit in the notations for simplicity, and whose
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corresponding solution is x̄(t) = x̄(t + p), where p is the period of the orbit. We
consider an infinitesimal perturbation y(t) of γ , that is, we let x(t) = x̄(t)+ y(t) in
(2.52), and neglecting quadratic terms, one then obtains

ẏ = J (x̄(t))y, (2.72)

and J (x̄(t)) is a p-periodic matrix.
It can be shown (Guckenheimer and Holmes, 1990) that, using the fundamental

solution matrix Y of the system (2.72), it follows that

Y (t + p) = 8Y (t). (2.73)

With Y (0) = I , it follows that 8 = Y (T). The matrix 8 is called the mon-
odromy matrix, and its eigenvalues ρ1, . . . , ρd are called the Floquet multipliers.
The monodromy matrix is not uniquely determined by the solutions of (2.72),
but its eigenvalues are. Since the perturbation y(t) = x̄(t + ε) − x̄(t), ε small,
is p-periodic, it immediately implies that 8 has an eigenvalue ρ1 = +1, that is,
perturbations along γ neither diverge nor converge. The linear stability of γ is thus
determined by the remaining d − 1 eigenvalues.

Let 6+ be a (fixed) local cross section of dimension d − 1 (see Fig. 2.3) of the
limit cycle γ such that the periodic orbit is not tangent to this hypersurface, and
denote x? the intersection of 6+ with γ . There is a nice geometrical interpretation
of the monodromy matrix in terms of the Poincaré map defined as P(x) = φτ (x),
where x is assumed to be in a neighbourhood of x?, and τ is the time taken for
the orbit φt(x) to first return to 6+ (as x approaches x?, τ will tend to p). After a
change of basis such that the matrix 8 has a column (0, · · · 0, 1)T corresponding to
the unit eigenvalue, the remaining block (d−1)× (d−1) matrix corresponds to the
linearized Poincaré map. These remarks show that the bifurcations of limit cycles
are related to the behaviour of a discrete dynamical system (from the Poincaré map)
xn+1 = Pxn.

As an example, consider the system of equations for the supercritical Hopf
bifurcation, in polar coordinates given by (2.67) as

dr

dt
= λr − r3,

dθ

dt
= ω.

At λ = 0, a Hopf bifurcation occurs and, for λ > 0, a periodic orbit having a period
p = 2π/ω exists and is described by

r =
√
λ ; θ = ωt. (2.75)
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To determine the stability of the periodic orbit coming from (2.66) for λ > 0
and ω 6= 0, we write the solution as

x̄(t) =
√
λ cosωt,

ȳ(t) =
√
λ sinωt.

The Jacobian matrix at the periodic orbit can be obtained from (2.66) and is
given by

J (x̄(t), λ) =
(
λ− 3x2(t)− y2(t) −ω − 2x(t)y(t)
ω − 2x(t)y(t) λ− 3y2(t)− x2(t)

)
. (2.76)

Next, to determine the monodromy matrix, the system dyj/dt = J (x̄(t), λ)yj has to
be solved for j = 1, 2 with y1(0) = (1, 0) and y2(0) = (0, 1) as initial conditions.
This has to be done numerically, and the monodromy matrix 8 is found from

8 = (y1(
2π

ω
), y2(

2π

ω
)). (2.77)

The Floquet multipliers are determined as the two eigenvalues of the matrix 8.
The first one (ρ1 = 1) is unity, and the second one determines the stability of the
periodic orbit, and in this case it is within the unit circle (| ρ2 |< 1) for λ > 0; so
the periodic orbit is stable.

The value of ρ2 can be analytically determined by first defining a Poincaré
section (for certain θ0) as

6+ = {(r, θ ) ∈ R× [0, 2π ) | θ = θ0} . (2.78)

In this case, the normal in polar coordinates is given by n = (0, 1) and (on the
periodic orbit) f = (0,ω) such that 6+ is a one-sided Poincaré section if ω 6= 0. If
we choose θ0 = π/2, then in Cartesian coordinates, the Poincaré section is parallel
to the y-axis. For example, one could take the interval y ∈ (0, 1] as a Poincaré
section.

The Poincaré map can in this case be explicitly computed because explicit solu-
tions exist of the trajectories for all initial conditions (r0, θ0) at t = t0. Using the
indefinite integral, ∫

dx

α1x3 + α2x
=

1

2α2
ln |

x2

α1x2 + α2
|, (2.79)

the closed-form solution (r(t), θ (t)) is

r(t; t0) =
[

(
1

r2
0

−
1

λ
)e−2λ(t−t0)

+
1

λ

]− 1
2

,

θ (t; t0) = ω(t − t0)+ θ0.
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Figure 2.9 (a) Intersections rk of the two trajectories for λ = 0.1 and ω = 1.0
with the one-sided Poincaré section r > 0, θ0 = π/2. Subsequent intersections
are labelled with k; the diamonds and triangles represent the intersections of the
trajectories starting in (0,2) and (0,0.1), respectively. (b) Plot of the Poincaré map
P(r) as in (2.81) together with the intersections rk as in (a), but replotted as rk+1

versus rk . The fixed point of the Poincaré map P(r) is at r∗ =
√
λ = 0.3162.

A trajectory with initial conditions at (r0, θ0) intersects 6+ at times tk = t0 +
2kπ/ω. As the time difference between subsequent intersections (needed for the
Poincaré map) is 2π/ω, this gives

rk+1 = P(rk) =
[

(
1

r2
k

−
1

λ
)e
−4πλ
ω +

1

λ

]− 1
2

. (2.81)

Fixed points of the Poincaré map P(r) are defined by P(r∗) = r∗, and a short
calculation gives that r∗ =

√
λ. The Poincaré map P is plotted as the dotted curve

in Fig. 2.9b for the case λ = 0.1, ω = 1. The intersections rk of the two trajectories
with the Poincaré section defined by r > 0, θ0 = π/2 are plotted versus k (which
monitors the subsequent intersections) in Fig. 2.9a. They are replotted in Fig. 2.9b
as rk+1 versus rk and indeed move along the Poincaré map; with increasing k, the
fixed point r∗ is reached. See example Ex. 2.5

To determine the stability of the periodic orbits, the stability of the fixed point
of the Poincaré map is considered. The Jacobian of the Poincaré map will indicate
whether intersections of trajectories drift away (if positive) or are attracted to (if
negative) the fixed point of the Poincaré map. For the periodic orbit the stability
can be determined from

dP
dr

(r =
√
λ) =

d

dr

[
(

1

r2
−

1

λ
)e
−4πλ
ω +

1

λ

]− 1
2

(r =
√
λ) = e

−4πλ
ω . (2.82)
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Figure 2.10 State space view associated with (a) a saddle-node and (b) a pitchfork
bifurcation of a periodic orbit, (c) a period-doubling or flip bifurcation of a peri-
odic orbit, and (d) a Neimark–Sacker or torus bifurcation. The original periodic
orbit is shown as the dashed curve in (a), (b), and (c).

The norm of the right-hand side of this equation is smaller than unity for λ > 0
and hence the periodic orbit is stable.

The bifurcation theory for fixed points of the iterative map with an eigenvalue
having unit norm is completely analogous to the bifurcation theory for fixed points
of continuous systems with an eigenvalue on the imaginary axis. Periodic orbits
become unstable when Floquet multipliers ρi cross the unit circle as the parameter
λ is changed.

There are three important cases (Kuznetsov, 1995):

1. A real Floquet multiplier is crossing the unit circle ρ(λ̄) = 1 at λ = λ̄,
which gives a saddle-node bifurcation of a periodic orbit, also called a cyclic-
fold bifurcation (Fig. 2.10a). This situation can be shown to be topologically
equivalent to the one-dimensional discrete dynamical system

xn+1 = P(xn), with P(x) = λ+ x± x2. (2.83)
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Consider the super-critical case P(x) = λ + x − x2 and assume that λ̄ = 0 for
simplicity. As λ becomes positive, two fixed points x?1 and x?2 of the iterative
map (2.83) appear which are solutions of P(x) = x. These two fixed points
correspond to the appearance of two new families of periodic orbits. One family
is stable (P ′(x?1) < 1), while the other is unstable (P ′(x?2) > 1). Like in the case
of fixed points, particular constraints (such as symmetry) may lead to trans-
critical or pitchfork bifurcations (see Fig. 2.10b).

2. A real Floquet multiplier is crossing the unit circle at λ = λ̄ with ρ(λ̄) = −1.
This situation is called flip or period-doubling bifurcation and has no equivalent
for fixed points. The system is topologically equivalent to

xn+1 = P(xn), with P(x) = −(1+ λ)x± x3. (2.84)

This situation corresponds to the pitchfork case for the second iterate P2 map.
Again consider (with λ̄ = 0) the super-critical case P(x) = −(1 + λ)x + x3.
As λ becomes positive, two fixed points of the second iterate P2 appear which
are not fixed points of the first iterate. This means that another stable peri-
odic orbit of period 2p arises, whereas the original periodic orbit γ becomes
unstable (Fig. 2.10c). The corresponding trajectories alternate from one side of
γ to the other along the direction of the eigenvector associated with the Floquet
multiplier ρ = −1.

3. A pair of complex conjugate Floquet multipliers ρ crosses the unit circle at
λ = λ̄ such that |ρ(λ̄)| = |eiϕ

| = 1. This bifurcation is called a Neimark–
Sacker or torus bifurcation (Fig. 2.10d). If one assumes after reduction on a
two-dimensional invariant manifold that dρ(λ)/dλ 6= 0 at λ = λ̄, then there is
a change of coordinates such that the Poincaré map takes the following form in
polar coordinates (r, θ ):

Pr(r, θ ) = r + c(λ− λ̄)r + ar3,
Pθ (r, θ ) = θ + ϕ + br2,

(2.85)

where a, b, and c are parameters. Provided a 6= 0, this normal form indicates
that a closed curve generically bifurcates from the fixed point; this closed curve
corresponds to a two-dimensional invariant torus.

2.6 Summary

l Based on the concept of asymptotic stability in the mean, fluid flows
are either monotonically stable, globally stable, conditionally stable, or
unstable.
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l The linear stability boundary provides sufficient conditions for instabil-
ity and it can, in general, be computed by solving an eigenvalue
problem. The energy stability boundary can be determined by solving a
non-linear optimization problem (not discussed here).

l The non-linear behaviour of the flow near the linear stability bound-
ary can be studied using weakly non-linear theory. If the geometry is
unbounded in one direction, Ginzburg–Landau theory can be used. If
not, the theory of amplitude equations can be used.

l Dynamical systems theory for finite-dimensional autonomous systems
provides a framework to understand transition behaviour in fluid flows
when parameters are changed. When only one parameter is involved,
only four types of bifurcations occur: saddle-node, trans-critical, pitch-
fork, and Hopf bifurcations. The first three bifurcations lead to
multi-stable systems, and the Hopf bifurcation leads to oscillatory
behaviour.

l Periodic orbits in autonomous dynamical systems, such as those arising
at Hopf bifurcations, can become unstable when a parameter is var-
ied. Apart from saddle-node, trans-critical, and pitchfork bifurcations,
period doubling and torus bifurcations also can occur.

2.7 Exercises

Exercise 2.1 For the Rayleigh–Bénard convection problem, the so-called principle
of exchange of stability holds, which states that the eigenvalue σ is real at
criticality.

a. Multiply (2.6a) with ũ and (2.6c) with ϑ̃ and integrate the result over the flow domain,
substitute solutions proportional to eσ t, and derive an equation for the eigenvalue σ =
σR + iσI .

b. Prove that σI = 0.

Exercise 2.2 Consider the pure Bénard–Marangoni problem in a horizontally unbounded
configuration, with Ra = 0, as discussed in Section 1.3.

a. Show that the background solution for Bi → ∞ is the same as that for the Rayleigh–
Bénard problem.

b. Determine in this case, the critical value of Ma associated with the linear stability
boundary as a function of k.
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Exercise 2.3 A crucial step in the derivation of the Ginzburg–Landau equation (2.36) is the
application of the Fredholm alternative to the singular non–self-adjoint system at O(ε3E)
and in particular the determination of the vector� in (2.37). Numerically, this can be done
by first computing a Singular Value Decomposition (SVD) of the linear operator as follows:

iωcM̂(kc)+ L̂(kc) = WSV H ,

where S = diag(s1, . . . , sd) is the diagonal matrix of singular values with sd = 0.
The matrices W and V are orthonormal, and the superscript H indicates the Hermitian
transpose.

Define C = σdM̂ + L̂, where σd is the eigenvalue near criticality.

a. Show that � can be determined efficiently from the problem

CCH� = 0.

b. Show that in the Ginzburg–Landau equation, the coefficients γi, i = 1, 2 can be
determined from

γ1 = m
∂σ

∂λ
; γ2 = −

1

2

∂2σ

∂k2 .

c. How can the group velocity cg be efficiently computed using the SVD given at the begin-
ning of this exercise?

Exercise 2.4 Consider the following system of equations:

dA

dt
= AB− A,

dB

dt
= −A2

− B+ γ ,

for real functions A(t) and B(t) with t ∈ [0,∞); γ ≥ 0 is a real number.

a. Determine the fixed points (Ā, B̄) of these equations with γ as a control parameter.

b. Determine the linear stability of the fixed points (Ā, B̄). What special phenomenon occurs
at γ = 9/8 on the branches for which Ā 6= 0?

Exercise 2.5 With a scaling τ = ρ∗T, χ = ηX , and a(χ , τ ) = a−1
∞ A(X , T)exp(−imωλT),

with

ρ∗ = m(σR)λ ; η =

√
−

2m(σR)λ
(σR)kk

; a∞ =

√
m

(σR)λ
R(γ3)

,
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the Ginzburg–Landau (2.36) can be transformed into

∂a

∂τ
= a+ (1+ iα1)

∂2a

∂χ2 − (1+ iα2)a|a|2.

a. Show that the Ginzburg–Landau equation has only bounded solutions when R(γ3) > 0.

b. Determine the coefficients α1 and α2.

c. Determine the Stokes wave solution aS(τ ) of the Ginzburg–Landau equation.
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