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SUMMARY

The objective of this study was to model the age–time-dependent incidence of hepatitis B while

estimating the impact of vaccination. While stochastic models/time-series have been used before

to model hepatitis B cases in the absence of knowledge on the number of susceptibles, this paper

proposed using a method that fits into the generalized additive model framework. Generalized

additive models with penalized regression splines are used to exploit the underlying continuity of

both age and time in a flexible non-parametric way. Based on a unique case notification dataset,

we have shown that the implemented immunization programme in Bulgaria resulted in a

significant decrease in incidence for infants in their first year of life with 82% (79–84%).

Moreover, we have shown that conditional on an assumed baseline susceptibility percentage,

a smooth force-of-infection profile can be obtained from which two local maxima were observed

at ages 9 and 24 years.

INTRODUCTION

Hepatitis B (HB) is a major health problem in most

parts of the world. It is a DNA virus of the

Hepadnaviridae family of viruses and it replicates

within infected liver cells. Most of the hepatitis B

virus (HBV) disease burden is due to long-term

chronic sequelae of HB, which can culminate in severe

inflammation of the liver, leading to cirrhosis and

hepatocellular carcinoma.

Essentially a relatively virulent pathogen borne by

bodily fluids such as blood, semen, vaginal fluid and

in some circumstances saliva, HBV transmission can

occur via multiple routes. Perinatal transmission

may occur from an infected mother to her child.

Horizontal transmission from person-to-person

(mostly from child-to-child) may occur at any time

when very small amounts of saliva or blood from an

infectious person are transferred via small skin

wounds such as impetigo, scabies lesions, abrasions

or leg ulcers. Transmission may occur during sexual

intercourse for which the rate of sexual partner

change and receptive anal intercourse are important

risk factors. Finally, parenteral transmission occurs

when the virus is spread by penetration of the skin

with an infected object, i.e. by needle stick, mucous

membrane splash, tattooing, ear piercing, etc. Health-

care workers and injecting drug users are generally
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considered key risk groups for this transmission

route.

As chronic HB does not become symptomatic until

many years (often decades) after the infection, the link

with the initial cause, infection with HBV, is often not

made. The course of the infection is highly age-

dependent. A symptomatic HB case is seldom seen in

infected neonates or infants (<10–15%), whereas

30–35% of adults will develop an acute hepatitis

subsequent to HBV infection. Thus, on the whole HB

is more likely to be an asymptomatic infection [1, 2].

Carriage and chronicity of pathology (cirrhosis and

liver cancer) is also age-related with more than

35–50% of neonates, infants or children developing

chronic hepatitis after exposure to HB, vs. 6–10% in

infected adults [3].

Initially it was mainly low endemic countries that

introduced universal HB vaccination, because fi-

nancial resources are lacking in HBV high endemic

countries. Since the beginning of 2005, 168 countries

have initiated universal immunization programmes in

neonates, infants or adolescents [4].

In Europe, Bulgaria was one of the first countries to

introduce mandatory universal immunization for all

newborns, health-care workers and patients at high

risk and has implemented further measures in the

programme to eliminate HBV by 2020. Due to this

programme a significant decrease in the disease inci-

dence is registered, especially in the 0, 1–3 and 4–7

years age groups. The pre-universal vaccination

epidemiological conditions in Bulgaria were: (1)

a prevalence of HBsAg carriers of 3–5% and a sero-

prevalence of o20% for HBV markers, (2) perinatal

transmission of HBV infection, with 0.87% risk of

creating new carriers (18.8–23.4% of HBsAg-positive

pregnant women were HBeAg positive), (3) signifi-

cant acute HBV infection incidence rate with up to 25

deaths per year, as well as causing chronic infections,

cirrhosis and primary liver carcinoma.

In 1992, the HBV vaccine was included in the

National Immunization Calendar as part of routine

infant immunizations. These immunizations are

mandatory and free of charge in Bulgaria (funded

by the Ministry of Health) and the programme is

supervised and monitored by theMinistry. During the

8-year period of universal infant immunization (star-

ted in August 1991 in Bulgaria), a total of 541 943

newborns have completed their HBV vaccination

schedule (average vaccination coverage of 92.65%

for the period). This vaccination coverage is com-

parable with the coverage of other routine infant

immunizations. In addition to routine infant im-

munization, HBV immunization of risk groups is

carried out in Bulgaria for health-care workers and

medical students, as well as haemodialysis patients,

haemophiliacs and HIV-positive persons.

While stochastic models/time-series have been used

before to model HB counts in the absence of knowl-

edge on the number of susceptibles [5, 6], this paper

proposes to use a method that fits into the generalized

additive model (GAM) framework. GAM models

with penalized regression splines [7–9] are used to

model age–time-dependent incidence rates of HB in

Bulgaria, where underreporting was not an issue be-

cause of the rigid mandatory surveillance system. The

use of GAMs facilitates multi-dimensional flexible

semi-parametric modelling exploiting the natural

ordering in age and time. GAM modelling for age–

time-dependent incidence rates has been addressed

previously to analyse cancer rates and mortality

rates [10, 11]. We will apply the technique to our data

and estimate the impact of vaccination on the popu-

lation.

We first introduce the Bulgarian HB data and ad-

vocate the use of GAMs to model the age–time de-

pendence in a continuous way rather than categorical,

while the effect of vaccination is explicitly taken into

account. Since only symptomatic cases were recorded,

a correction towards asymptomatic cases is needed.

Although, we lack information on the number of

susceptibles, we show that conditional on an assumed

baseline susceptibility percentage, incidence rates can

be used to get a smooth estimated profile of the force

of infection (FOI). A sensitivity analysis on this

baseline susceptibility percentage showed its impact

on the estimated profile.

DATA

The dataset consists of age-specific acute HB notifi-

cations, registered in Bulgaria from 1983 to 2000,

while taking note of the implementation of a selective

and universal infant immunization programme. At

the start of the study period, the total population of

Bulgaria was 8 950 144 while by 2000 it had decreased

to 8 149 468. The main reasons for this reduction were

an increase in emigration after 1989 and a decrease in

the birth rate. The number of live births, gradually

reducing after 1980, reached a minimum of 7.7/1000

population in 1997. As a result of the downward trend

in the birth rate, the natural population growth (i.e.

number of live birth minus the number of deaths) is
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a negative value. In addition, there were changes in

the age structure of the population, with an increase

of the relative proportion of people aged >60 years

from 16.84% in 1983 up to 21.77% in 2000 and,

conversely, a reduction of the proportion of children

aged 0–7 years from 11.49% in 1983 down to 7.05%

in 2000.

Age–time dependence

HB has been a notifiable disease in Bulgaria since

1982. All clinically manifested acute cases with jaun-

dice are subject to mandatory hospitalization in an

infectious disease unit, following laboratory confir-

mation and mandatory notification and registration.

The National HB Surveillance System established

in 1982 requires that notification of cases of acute

HB is done by age group, i.e. : 0, 1–3, 4–7, 8–13,

14–19, 20–29, 30–39, 40–49, 50–59 and o60 years

(www.Eurohep.net). The whole study period is div-

ided into three parts : before the introduction of HBV

immunization (1983–1987), the period of selective

immunization of newborns to HBsAg-positive

mothers (1988–1991), and the period of universal in-

fant immunization (1992–2000). Figure 1 displays the

acute HB rates as a function of time and age and

shows a clear dependence on both.

Epidemiological and serological investigations

show that various modes of transmission of HBV

infection (sexual, perinatal and horizontal) have

changed in importance over time. The significance of

the sexual mode increased proportionally with the

number of cohorts immunized against HB, to become

the main mode since 1983.

Following a similar pattern over the years, the rates

increased reaching a peak in the 4–7, 8–13, 14–19

or 20–29 years age groups, with most peaks observed

at either 14–19 or 20–29 years. More than 50% of

acute cases were in persons aged 14–29 years.

Similarly, within age groups, the rates increased

over time to a peak (although not monotonically) and

then decreased again over the study period (Fig. 2,

upper panels). For persons aged >40 years, only a

slight increase of rates occurred in 1984 (40–49 and

o60 years) or 1985 (50–59 years), rates then gradu-

ally decreased. Children, aged between 0 and 3 years,

showed the highest reduction in rate of acute cases

at the end of the study period compared to the be-

ginning, with the highest decreases starting around

1992, i.e. the time the vaccination programme started.

For the 14–19 and 20–29 years age groups local

peaks in the number of acute cases are observed at

the beginning of the 1990s and in 1998; they are the

only age groups observed to have high peaks after

1990.

Immunization programme

The vaccination programme was conducted in two

stages: (1) between 1988 and 1991 immunization of

newborns born to HBsAg (HB surface antigen)-

positive mothers and (2) from August 1991, the

Bulgarian Ministry of Health decided to administer

HBV vaccine to all newborns in order to achieve

a higher effectiveness. In 1992, the HBV vaccine

was included in the National Immunization Cal-

endar as part of routine infant immunizations.

These immunizations are mandatory and free of

charge.

All newborns are immunized according to the

0–1–6 month schedule with the first dose given during

the first 24 h after birth, since pregnant women are

not tested for HBsAg, without co-administration of

HB immune globulin (HBIG). Coverage information

about HBV vaccination is presented in Table 1.

During the 8-year period of universal infant im-

munization, 1993–2000, a total of 541 943 newborns

completed the HBV vaccination schedule. Vacci-

nation coverage ranged from 93.54% to 97.28%,

except for 1997 (due to a vaccine shortage). This

vaccination coverage is comparable with the 1997
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Fig. 1. Age–time perspective plot of the observed sympto-
matic hepatitis B rates per 105.
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coverage of other routine infant immunizations in

Bulgaria.

Asymptomatic cases

The system of registration of HBV infections does not

include cases with silent or asymptomatic acute in-

fection (without jaundice, see Introduction). The

proportion of clinically manifested cases to all infec-

tions depends on the age at infection and ranges from

<10% to 35%. In the forthcoming analyses, the

number of symptomatic infections is the response

used and the age-specific ratios are then used to derive

the total number of HBV infections.

METHODS

Modelling incidence rates and the impact of

vaccination

About two decades ago, the use of Poisson regression

had already proved useful in modelling incidence

rates. It has the attractive property of allowing pos-

tulated aetiological mechanisms of exposures and/or

disease expression characteristics to be linked to the

observed rates [12].

Poisson regression models are part of the general-

ized linear model (GLM) framework of McCullagh &

Nelder [13], where the response is a Poisson random

variable of which the mean is related to a systematic
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Fig. 2. Time trends for the different age categories based on the crude rates (top row), based on estimated rates using
model (6) (middle row) and model (7) (lower row). Symptomatic cases are in the left column, and infected cases in the right
column.
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component via a link function. The systematic com-

ponent for a GLM specifies the explanatory variables

used in a linear predictor function.

The data are number of acute cases of HB for per-

sons in a specified age group for a given year. Let us

denote Yij, the number of cases in age group i (i=1,

…, 10) at year j ( j=1, …, 18), referred to hereafter as

bins, being Poisson with mean E(Yij)=hij, where

E(Yij)=Nij exp(mij): (1)

Here Nij is the number of persons at risk (population)

in the ijth bin. Nij is included in the mean structure to

account for the different population sizes in the bins

(demographic changes). We consider an additive form

for the linear predictor term mij of the following form

mij=m0+ai+bj+
X6

k=0

ckI
Uk

ij +
X9

l=0

dlI
Sl

ij , (2)

where ai represents the effect of age group i, bj the

effect of year j. IUk

ij represents an indicator variable

taking value 1 if the kth universal immunization pro-

grammeUk (k=0, …, 6) took place in age group i and

year j and 0 otherwise in accordance with Table 2.

Similarly, ISl

ij is an indicator variable for the lth selec-

tive immunization programme, l=0, …, 9. When the

corresponding coefficients ck=c, for all k (dl=d for

all l), there is no distinction between different pro-

portions immunized for the universal (selective) im-

munization programme.

Using model (2), age and year are treated as cat-

egorical variables, ignoring the underlying natural or-

dering of these variables. An alternative is to include

year and age as continuous variables in the model.

A first approach is to supplement model (2) with an

interaction term ciuj, cjui or cuiuj, where ui denotes the

midpoint of the ith age category [14] and uj denotes

year j. Adding cuiuj, we assume the interaction to

have a linear effect on the incidence rates, while ciuj
and cjui allow for more flexibility in the interaction at

the cost of the number of parameters used. Note that

we cannot add a discrete interaction term cij to model

(2) since this would lead to an overparametrized

model. A second approach to exploit the underlying

continuity is to treat age (midpoints) and year as

continuous predictors. Specifying the parametric

functional relationship, including interactions, to re-

late these predictors to E(Yij) is, however, difficult.

A generalization, replacing the linear predictor of a

GLM by smooth functions of the predictors, splines,

is provided by using GAMs as originally introduced

by Hastie & Tibshirani [15]. Splines are generally

defined as piecewise polynomials in which curve (or

line) segments are constructed individually and pieced

together at what are called ‘knots’. A large number

of knots allows more flexible forms to be taken but

results in a non-smooth function. Using penalized

regression splines, a penalty on the roughness of the

corresponding coefficient vector is set. This penalty,

controlled by a smoothing parameter regulates the

trade-off between the fit of the data and the smooth-

ness. There are many methods to select the optimal

smoothing parameter, e.g. the Akaike Information

Criterion (AIC [16]) and generalized cross-validation

(GCV [17]).

The GAM methodology was further developed by

Wood (see e.g. [8, 18, 19]), who has done a great deal

Table 2. Universal (U) and selective (S) immunization programmes with dummies indicating the different

proportion immunized

Year 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

0 S0 S0 S0 U0 U0 U0 U0 U0 U0 U0 U0 U0

1–3 S1 S2 S0 U1 U2 U0 U0 U0 U0 U0 U0

4–7 S3 S4 S5 S0 U3 U4 U5 U0 U0

8–13 S6 S7 S8 S9 U6

Table 1. Hepatitis B vaccination coverage in infants in Bulgaria after introduction of universal immunization

(1993–2000)

Year 1993 1994 1995 1996 1997 1998 1999 2000

HBV3 coverage (%) 95.67 94.19 95.45 93.54 77.18 97.06 97.28 93.67

HBV3 coverage denotes the coverage for a completed three-dose hepatitis B vaccination schedule.
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of work on the application of the technique using

penalized regression splines [7, 8, 20, 21]. The motiv-

ation of Wood’s work was to overcome the difficulties

associated with model selection and inference when

backfitting with linear smoothers [22]. The math-

ematically elegant work of Wahba [21] on generalized

spline smoothing provides a rigorous framework for

model selection and inference with GAMs. A ‘middle

way’ between these approaches was the use of penal-

ized regression splines to construct GAMs. The

availability of the R package mgcv [23, 24] has made

the use of GAMs very popular. The systematic com-

ponent of the GAM version of model (2) is given by

log (hij)= log (Nij)+m0+f(ai)+g(yi)+te(ai, yi)

+
X6

k=0

ckI
Uk

ij +
X9

l=0

dlI
Sl

ij , (3)

where f and g denote penalized regression splines of

predictor age (a) and year (y), respectively and te(a, y)

is a tensor-product spline, which can be looked upon

as a smooth interaction between two variables [21].

The GAM method uses GCV to select the smoothing

parameter.

Note that in model (3), we used the usual thin plate

spline penalty as the measure of smoothness for f(a)

and g(y) and from a model-building perspective added

to this a cubic tensor product spline, i.e. the proposed

model uses different measures of smoothness, and

is therefore different from the model with merely

te(a, y).

A key feature of the Poisson distribution is that

its variance equals its mean. In practice, count obser-

vations often exhibit variability exceeding that pre-

dicted by Poisson. This phenomenon is called

overdispersion and is often caused by subject hetero-

geneity. There are several ways to deal with over-

dispersion [25], e.g. the use of a scaling factor and

random-effects models. The approach presented here

replaces the Poisson distribution by the negative bi-

nomial which is a gamma mixture of Poisson dis-

tributions. A negative binomial distribution has mean

h and variance h+h2/k where 1/k is often referred to

as the dispersion parameter. As 1/kp0, the negative

binomial distribution converges to the Poisson distri-

bution with mean and variance h.

Selecting the optimal model among the set of sub-

models from models (2) and (3), is done using the AIC

criterion [15, 16]. The AIC value of a model is given

by x2LL+2K, where LL denotes the log-likelihood

and K the number of (effective) parameters in that

model. The model with the lowest AIC value is chosen

to be the optimal model among the set of models un-

der consideration, i.e. the model with optimal balance

between goodness of fit (measured by x2LL) and

complexity (measured by 2K).

Deriving a FOI profile

A fundamental parameter, describing infectious dis-

ease dynamics is the FOI, i.e. the rate at which a sus-

ceptible individual becomes infected. This rate is

known to be age-dependent and different methods

have been developed to estimate it from serological

data. It is not possible to estimate the FOI from case-

notification data alone, due to the lack of knowledge

on susceptibility in the population at hand. However,

starting from an assumed percentage of susceptibility

for newborns, it is possible to obtain a conditional

FOI estimate. Varying the percentage of susceptibility

then results in a sensitivity analysis on the estimated

curve.

As is done for serological data, we assume time

homogeneity, i.e. we assume a cohort passes through

different age classes ignoring the effect of changes

within age classes over time. One could state this to be

too strong an assumption. On the one hand, we only

have time-dependent data for the period 1983–2000,

which is too limited for HB, since the disease is not

only transmitted horizontally, typically around the

age of 10 years, but also sexually, typically around

ages 20–30 years. On the other hand, the estimates of

FOI based on the year-specific data over a period of

18 years, can give us a good idea of the variability on

the estimated curve over time.

Fixing time t, the aim is to calculate the FOI l(a),

given the incidence rates Ia=Xa/Na, where Xa is the

number of infections and Na is the population size in

age class a at time t (omitted from notation). The FOI

is given by

l(a)=Xa=Sa, (4)

where Sa (a=1, 2, …) is the number of susceptibles at

age a. Sa can be calculated recursively as

Sa=
Sax1xXax1

Nax1
Na, (5)

with S0=psN0wpsN1 and X0w0. ps denotes the pro-

portion susceptible at birth, referred to as the baseline

susceptibility proportion hereafter. Note that equa-

tion (5) takes the age distribution of the population

into account.
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Similar to modelling the incidence rates, using

model (3), we can model the susceptibility rates cal-

culated from the crude data using equation (5) con-

ditional on the assumed proportion of susceptibility

ps. Using the estimated incidence and susceptibility

rates the FOI is given by equation (4). ps is unknown

and could optimally be estimated from serological

data (see e.g. [26]). Since these data are not available,

we let ps vary over a range of values and look at the

effect on the FOI estimate.

To eliminate the influence of vaccination from our

FOI estimate, the number of susceptibles and infec-

tions is estimated while putting the immunization ef-

fects in the estimated models to zero. In this way, one

mimics the situation where no immunization would

have occurred.

RESULTS

Modelling incidence rates and the impact of

vaccination in Bulgaria

From all candidate models starting from model (2),

the model with a minimal AIC value of 1789.83 (on

144 D.F.)

log (hij)= log (Nij)+m0+ai+bj+
X6

k=0

ckI
Uk

ij +dISij ,

(6)

includes both the bin-specific universal and the selec-

tive immunization programme.

Exploiting the underlying continuity by including

civj, cjui or cuivj into model (6), using the midpoints

(0.5, 2.5, 6, 11, 17, 25, 35, 45, 55 and 65 years) for the

age categories (see e.g. [14]), improves the AIC value

to 1652.64, 1653.26 and 1678.33, respectively. Further

exploiting the underlying natural ordering of age and

time, candidate models based on a GAM model, as

described by model (3), were used. In Table 3, candi-

date models are shown again with their (empirical)

degrees of freedom (edf) and AIC value. Here, f() and

g() denote penalized regression splines and te(,) a

tensor-product spline (the smooth version of an in-

teraction).

The model with lowest AIC value is the continuous

version of model (6), where the bin-specific universal

immunization programme and the selective im-

munization programme are included again

log (hij)= log (Nij)+m0+f(ai)+g(yj)+te(ai, yi)

+
X6

k=0

ckI
Uk

ij +dISij : (7)

The AIC value of the latter model is substantially

lower than that of model (6). Trying to reduce the

model leaving out the tensor-product spline worsens

the fit, so does leaving out the one-dimensional spline

functions of age and year. The overdispersion par-

ameter k in model (7) was estimated at 5h (P value

0.0002). In Figure 2 (left panel), time trends for the

different age categories are shown for both models

together with the observed rates. Using model (7)

produces smoother curves compared to using model

(6). The sudden drop in 1992 for the youngest age

class (0 years) deviates from the corresponding crude

profile. This effect is enlarged when applying the age-

specific factor to obtain an estimate of the total

Table 3. Candidate models together with their empirical degrees of freedom (edf ) and AIC value based on model (3)

Model edf AIC

log (hij)=log (Nij)+m0 178.0 22761.93
log (hij)=log (Nij)+m0+f (ai) 170.2 2019.95

log (hij)=log (Nij)+m0+g(yi) 176.2 2198.80
log (hij)=log (Nij)+m0+f (ai)+g(yi) 165.0 1883.16
log (hij)=log (Nij)+m0+f (ai)+g(yj)+te(ai, yj) 147.3 1713.12

log (hij)=log (Nij)+m0+f (ai)+g(yj)+te(ai, yj)+cIij
U 146.5 1714.47

log (hij)= log (Nij)+m0+f (ai)+g(yi)+te(ai, yi)+
P6

k=0 ckI
Uk

ij 143.2 1659.76
log (hij)=log (Nij)+m0+f (ai)+g(yi)+te(ai, yi)+dIij

S 146.1 1714.48
log (hij)= log (Nij)+m0+f (ai)+g(yi)+te(ai, yi)+

P9
l=0 dlI

Sl

ij 138.0 1730.36

log (hij)=log (Nij)+m0+f (ai)+g(yi)+te(ai, yi)+cIij
U+dIij

S 144.8 1710.27
log (hij)= log (Nij)+m0+f (ai)+g(yi)+te(ai, yi)+cIUij +

P9
l=0 dlI

Sl

ij 136.6 1725.54
log (hij)= log (Nij)+m0+f (ai)+g(yi)+te(ai, yj)+

P6
k=0 ckI

Uk

ij +dISij 141.4 1633.92

log (hij)= log (Nij)+m0+f (ai)+g(yi)+te(ai, yj)+
P6

k=0 ckI
Uk

ij +
P9

l=0 dlI
Sl

ij 132.0 1637.67
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number of infections and is a direct result of the

model approach where IU0
ij in model (7) is responsible

for this behaviour since it comprises not only the im-

plemented universal immunization programme in the

0 years age group from 1992 onwards but also in age

groups 1–3 years and 4–7 years from, respectively,

1995 and 1999 onwards (Table 2). Alternatively, using

the model

log (hij)= log (Nij)+m0+f(ai)+g( yi)+te(ai, yi)

+c01I
U01
ij +c02I

U02
ij +c03I

U03
ij +

X6

k=1

ckI
Uk

ij +dISij ,

where c01I
U01
ij +c02I

U02
ij +c03I

U03
ij replaces c0I

U0
ij in model

(7) to distinguish between these age categories re-

sulted in a fitted profile close to the crude one for the

0 years age group but has a corresponding AIC value

of 1644.57 which is considerably higher than the AIC

value 1633.92 of model (7). Model (7) is therefore re-

tained as the best model among this set of candidate

models.

In Figure 3 bin-specific parameter estimates and

95% confidence intervals (CIs) are shown for the

universal programme for both model (6) (left panel)

and model (7) (right panel). While the circle represents

the point estimate, the dashed line represents the 95%

CI. Using the underlying continuous nature of both

age and time results in a more dramatic immunization

effect. The implementation of the mandatory

vaccination resulted in a significant decrease in inci-

dence among infants in their first year of life with

82% [based on model (7) with 95% CI 79–84%],

showing the benefits of immunization. One has to

take care in using these estimates to make predictions

for the situation where no immunization had oc-

curred. Indeed, since we do not model the underlying

dynamic transmission process, and our observations

are based on acute symptomatic infections only, our

vaccine-free estimates do not account for all possible

aspects of herd immunity. Herd immunity reduces the

FOI in non-vaccinated individuals (i.e. reduces their

risk of infection per unit time), and therefore increases

the average age at infection of residual infections [27,

28]. For HB, this age shift will lead to proportionately

more acute infections, but fewer chronic infections.

Our model is based on observations related to acute

infections only, which we inflated to obtain the total

number of infections, by applying an independent

age-specific factor to these observations. Therefore,

our model underestimates the infection-reducing im-

pact of vaccination. However, since our model com-

bines age- and time-specific observations on both

incidence and vaccination status, we expect this im-

plicit age-related distortion caused by herd immunity

to be limited.

Turning to the infected cases, i.e. correcting for the

asymptomatic cases by multiplying with age-specific

ratios, model (7) again produces smoother curves

Discrete modelling
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Fig. 3. Parameter estimates and confidence intervals for the bin-specific universal immunization programme according to
model (6) (left panel) and model (7) (right panel).
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(Figure 2, right panel). The correction for asympto-

matic cases clearly shows the benefit of immunization.

The number of infected children aged 0–1 year

decreases enormously in 1992, the year universal

immunization programmes started. Analogously, de-

creases through the years are noticed for the success-

ive age categories showing also a herd immunity

effect, especially for the lower age categories.

Deriving a FOI profile in Bulgaria

Putting immunization effects to zero to mimic the

effect of no vaccination, the resulting incidence and

susceptibility rates are used to derive the FOI using

equations (4) and (5) for different baseline pro-

portions of susceptibility ps.

In Figure 4 the estimated year-specific FOI profiles

(conditional on ps=1) are shown for acute cases (left

panel) and infected cases (right panel). Figure 5 shows

aggregated FOI curves based on different values of ps,

the baseline susceptibility percentage. While ps ranges

from 0.2 to 1.0, the shape of the FOI curve remains

about the same, while the magnitude decreases with

increasing percentage susceptibility.

The age-specific FOI profiles give two local maxima

which are located around the age of 9 years and 24

years, respectively. These findings have also been de-

scribed in other countries [29]. The first local maxi-

mum illustrates the importance of horizontal

transmission between children. The second local

maximum shows the importance of sexual trans-

mission and potentially also parenteral transmission

by, e.g. needle sharing for injecting drug use among

young adults. The importance of horizontal trans-

mission should not be underestimated, and becomes

particularly apparent when observing the true FOI

(i.e. based on the total number of infections).
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Fig. 4. Force-of-infection (FOI) profiles for the whole period 1983–2000 based on the estimated symptomatic hepatitis B (HB)
cases (left panel) and estimated HB infections (right panel).
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Fig. 5. Plot of the aggregated force-of-infection (FOI) pro-
files for different baseline susceptibility percentages.
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DISCUSSION

In this paper, the evolution of HB in Bulgaria is de-

scribed for the period 1983–2000. Bulgaria was one of

the first countries in Europe to introduce mandatory

universal immunization for all newborns and data

recorded included age-category-specific acute symp-

tomatic cases and population sizes. This setting is

unique, since accurate information of the number of

acute clinically manifested cases is obtained, making

underreporting no longer an issue. From there, by

using approaches new to the field of infectious dis-

eases, not only incidence rates were estimated, but

also qualitative insights in the FOI were obtained.

A maximal FOI was found around ages 9 years and

24 years, illustrating the importance of horizontal

transmission between children and of sexual and

parenteral (e.g. drug-related) transmission among

young adults.

A GAM with penalized splines on the number of

acute cases was used to smooth over the different age

categories, exploiting the underlying continuous nat-

ure of age and time. Age-specific ratios were used to

include asymptomatic cases, resulting in a four- to

ten-fold increase in incidence. The proposed method

supplements the existing stochastic models/time-series

that have been proposed to analyse case notification

data and is, thanks to existing open source software,

easy to apply.

This research illustrates that the HB vaccination

programme in Bulgaria has had a rapid and substan-

tial impact on HBV incidence and thus can be con-

sidered as successful. Moreover, the approach

presented in this paper, shows that case notification

data can be used to obtain qualitative insights in the

behaviour of the FOI with age, even in the presence of

a vaccination programme.
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