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Abstract

This paper generalizes the theory of imperfect bifurcation via singularity theory as developed by M.
Golubitsky and D. Schaeffer to a Banach space setting. Like the parameter-free potential
catastrophe theory, where similar generalizations have been discussed in the literature, Banach
control spaces allow useful uniform control of function parameters through the universal unfolding.
Among the results are tests for various germ properties and a discussion of their reducibility under a
Liapunov-Schmidt type splitting, as well as a generalization of the finite dimensional unfolding and
germ classification theory.
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0. Introduction

Many applications of catastrophe theory are naturally set in an infinite dimen-
sional Fredholm context. In the parameter-free potential case such a generaliza-
tion has been considered in [l]-[3], [6], [7]. A similar setting seems to be of
interest in the case of imperfect bifurcation via singularity theory as developed
in [5] by Golubitsky and Schaeffer.

In an example, the paper [5] analyzes the Brusselator modelled by

D,x = n^X + X2Y - (B + l)X + AQ,

D,Y = i^D^Y - X2Y + BX
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12 ] Imperfect bifurcation 295

on (0, IT), with Dirichlet boundary data

X(0) = X{TT) = A* Y(0) = Y(v) = B/Ao,

near a double eigenvalue. Instead of modelling the concentration of the chemi-
cal A as a constant A^it might be interesting to use the perturbation consisting
of the solution A of the equation

D\A - eA = 0, | e (0, TT), with A(0) = A (IT) = v40.

(This perturbation is used by Golubitsky and Schaeffer in another paper [4],
which is dealing with the extra complication of symmetry restrictions on the
Brusselator.) For such perturbations (with, as well as without, symmetry restric-
tions) it would be interesting to obtain a uniform control through the versal
unfolding of all concentration functions A(g)> which in some sense are near A(g).
This requires a setting with an infinite dimensional control space By. The present
paper contains such an infinite dimensional (Banach space) version of the
catastrophe analysis of [5], that is for the case of no symmetry restrictions. The
main point of the present paper is the proof of the uniformity of the factoring of
infinite dimensional perturbations through the universal unfolding.

The paper [5] attacks the versality question directly using induction on the
dimension of By. Instead we follow the path from [1] with the equivalence of
transversal unfoldings as the central theorem. A special feature with the unfold-
ing techniques in a parametrized version is that only certain sub-spaces of the
germ tangent spaces are modules over C°°(50, R)Q, thereby allowing a germ to
jet reduction by Nakayama's Lemma.

Our strategy is to reduce the analysis as much as possible to the finite-
dimensional situation, where the proofs often can be patterned on the parame-
ter-free potential case along the lines of for example the exposition [8]. For the
reduction we use a Liapunov-Schmidt type splitting. A suitable version is
presented in Section 1. That section also contains some continuity properties of
the splitting, as well as most definitions and notations needed in the rest of the
paper.

Section 2 is concerned with finitely determined germs. The results can be used
to test for various determinacy and codimension properties. The section also
contains a discussion of the reducibility of some germ properties under the
splitting introduced in Section 1. Finally, unfoldings and germ classification are
the topics of Section 3, and it is proved that the finite-dimensional theory
generalizes, just as one would expect.
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1. Preliminaries

This section contains notations and definitions, as well as some fairly stan-
dard results about splitting of functions and germs to be used in the present
paper.

Let

B = Bx ® B^ © By

be the direct topological sum of three real Banach spaces Bx, Bx (dim Bx < oo),
and B , with norm ||| • |||. Denote by

LJ(B, B')

the set of continuous, symmetries-linear mappings

A: B -> B',

where B' is a Banach space with norm | • |. Write L instead of L1 as usual. V
becomes a complete, normed, linear space under the norm

\\A\\j - sup\Ax<n\,

where the supremum is taken over all sequences

*W = (*„ . . . , Xj) With IHX.III : = |||X,||| = 1.

The cartesian product

B X B' X L\B, B') X • • • XLk(B, B')

is the Banach space of k-jets Jk(B, B') with norm || • \\k, and Jp
k(B, B') is the

corresponding Banach space of fc-jets at/? G B.
The R-linear space of germs at 0 e B of C "-functions from B to B' defined

on some neighborhood of 0 in B (that is functions in C,~ Q(JB, B')) is denoted by
E(B, B') or C°°(fi, B\, or sometimes simply by E when B' = R. Whenever
suitable, elements of the two spaces will be confused without further comment.
The mapping from B to Jk(B, B')

p -» *-jet of F txp (F £ C£(2?, B'))

is denoted by jkF.
A topology on C°°(C/, B1) (with U c B open), relevant for the present local

studies, W™, can be defined using as a basis all sets

V(k, e, K,F)={F'<E CX(U, B'); sup \\jk{F - F'){p)\\ < e),

where K c U is closed, /t > 0 is an integer, e > 0, and F e C°°(f/, B').
The maximal ideal of E is
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With

MkE(B, B') = {F e E{B, B');jk~lF{Q) = 0},

evidently

mkE(B, B') C MkE(B, B').

Set 5 0 = £x © iBA. For G £ F,(50, 5') we introduce

f G = <G>fi, + A(G),

TG = TG + Ax,

together with the following two codimensions

cod G = dim* E(Bo, B')/ TG,

cod G = dim* £(£<,, B')/TG.

A germ F G £(/?, 5') (sometimes written (F, By)) is called an unfolding of G,
if

Let rioc denote the pseudogroup of local dif f eomorphisms

( £ , 0 ) ^ ( 5 , 0 ) ,

and T the group of germs at 0 e B of elements of Tloc. Define To (Tx)
analogously with respect to Bo (Bx). Finally T(B', B') stands for the the group of
invertible elements in L{B', B').

We get a category of unfoldings for G G E(B0, B'), with morphisms

(r,<!>):(F',By)-*(F,By)

between unfoldings (F, By) and (F', By) of G. Here

T e C °°(fi0 © By, T(B\ B'))^ f £ C ~(B0 © By, Bo © By)v

<j>: (x, \,y')^(<p(x, X,y'), A(\,y'), fty')),

with T, (<p, A) reducing to the appropriate identities for y' = 0, and F ' factors
through F, that is

F' = T • F ° <J>.

An unfolding F is said to be versal, if every unfolding of G factors through F.
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The relevant equivalences in the present paper are
a) for germs G, G' E £(£,» B'); G~G'if there are

^ ) , , , and <t>er0,

such that

G' = T • G ° <f>;

b) for unfoldings (F, By), (F', By) e E(B, B') of G G E(Bo, B'); F^ F' if
there is a morphism

(r,<t>):(F,By)-+(F',By)

with 4> e T.
The germ G £ E(B0> B') is fc-determined, if

JkG(0)=jkG'(0)

implies G ~ G'. The least k, if any, such that G is ^-determined, is called the
determinacy of G, denoted det G. A germ is finitely determined, if it is
A>determined for some k < oo.

We shall say that the unfolding F of G satisfies Condition T, if

?o, B') =TG + Z>,/V<,B,-

LEMMA 1.1. Suppose that

FGE(B0®By,B'), F'<EE(B0®By.,B'),

where

r(EC°°(B0®By,T(B',B'))0,

<*>: (x, \y') ^ (<p(x, X,^'

= 0.

Then

) « <̂ o' - TG, ( T O - T G ' ) « ĉ o1 = TG,

f + Dy.F'\y.0By,)] . ^ C T G + D^l^ .o

/« particular F satisfies Condition T, if F' does.
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The proof is an easy check using the previous definitions.
As in the corresponding potential case ([1], [2]), we reduce most of the proofs

in the present paper 50-wise to a finite-dimensional context using a splitting
lemma. Let

F G C,~ 0 (5 , B')

be given, such that under the splitting

Bx = 5 , © B2, B' = B\ © B'2

with continuous projections EjB' = B'j,

EXDXF\O G L(Bt, B\)

is bijective. Under this hypothesis and with

B3 — B2® Bx® By,

the following lemma holds.

LEMMA 1.2. / / £,F(0) = 0, then there are <t> G rioc with

<f>: (x,, x3) -> (^(x,, x3), x3),

and

r G CSJ.B, T{B\ B%

such that
T • F o 4> = f:,̂ ,̂ + / (x 3 ) .

Here A = ^Glo , and F(x3) = F(h(x3), x3), with h&J = <p(0, x3). Moreover

(1.1) A(0) = 0, £ , F = 0.

REMARK, a) The map h is uniquely determined by (1.1) in some neighbour-
hood of zero.

b) If B\ = range A, then T = idB- + 0(x, X,y).
c) If B2 = ker A, then Z)2/t(0) = 0, and D2F(0) = 0.

PROOF. By the implicit function theorem there is a unique <f>, G FIoc

<*>,: (x,, x3) - • (x, + ^(xj), x3), w(0) = 0,

such that
EtF o ̂ | x i . o = 0.

Define </>2 G Floc by

<#>21; (-«i, ^3) -^ ( ( ^ l ^ r ' ^ F o «h(jc,, x3), JC3) = (x,, x3).

Then

/ ° «J>1 ° «*>2(̂ l. ^3) = (ElA*\> E2F ° *1 ° ^ ( ^ l - ^3))-
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Now

E2F o $, o ^{xx, x3) = E2F o 4,, o ^ ( 0 , JCJ) + # ( * „ J C J J ^ J C , .

And so

with

id,, 0, ,T . „

id.

From here the remaining assertions of the lemma and following remarks are
easily checked.

The same proof also yields the following refinement, used below to compare
two unfoldings (Fu By) and (F2, By) of the same G G C^J^BQ, B') satisfying the
hypotheses of the previous lemma.

LEMMA 1.3. There exist <$>F, rF (J = 1, 2) ay in the previous lemma, such that

(1.2) TFJ • F o ^ = ElAxl + Ffa).

Moreover

^FJy-O = <t>F2\y-O> TF,\y-0 = TF2\y-O-

Enough continuity properties of the above splitting for our purposes, can be
derived by easy but tedious checking of the relevant isomorphisms using nothing
more exciting than the inverse function theorem. Let F be given as in Lemma
1.2 together with corresponding Bp Bj, TF, <f>F, and hF, and denote by Uj = Uj(r)
a spherical neighbourhood of 0 G Bj of radius r.

LEMMA 1.4. There are rf, such that for r) < rf (J = 1, 3)

range <> D Ul - Ut(rl) 0 t/3(rj),

and such that the following holds;
a) If r\ < rj, fAe« fAere is r\ < r] ande2 > 0, SMC/I //iar /o

F ' e V{\,t2,U\F)

corresponds a unique

Pr = PF,I © 0 G U2 = i/,2(rf) © f/3
2(/-3

2)

-yF'^pp) = 0. / o r /Ae corresponding hF, of Lemma 1.2 H>/f/z hF,(0)

domain ^ D t^, V(^32) C f/,2.
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b) For k > 1 and e > 0, there are 8 > 0 and r\ < r\, such that

F' G V(k, e, U3(rl), P),

ifF' G V(k, S, U\ F). Here F' = F'(hF,(x3), x3).

2. Finitely determined genus

In this section we consider tests for various germ properties as well as their
reducibility under the splitting defined by Lemma 1.2. Properties are reducible
provided they are satisfied for a germ F if and only if they hold for F.

LEMMA 2.1. Let G \ G2 G E(B0, B') be given as in Lemma 1.2. / /

jkG\0) =jkG\0)

for some k > 1, then for the corresponding parametrization

(2.1) T > G V = E{Axx + &{x2, X)

it follows that

(2-2) /G'(0) = jkG2(0).

PROOF. For convenience we use the parametrization (2.1) withy = 1 for the
proof. By hypothesis

(2.3) G2 - Gl = Q G Mk+lE(Bp B').

Evidently (2.2) follows from

G\-) = E2G2(h\-), •) = E2G\h\), •) + E2Q(h2(-), •)

= G,(.) + E2Q(h2(-), •),

since

E2Q{h\), •) G Mk+lE{B2 © Bx, B')

by (2.3) and (1.1).

We shall only discuss germs G e ME(BQ, 5') and their unfoldings, since
E(B0, B') = (G> if G(0) ¥= 0. Now germs G G ME(Bo, B') with a Fredholm
x-derivative at the origin, and their unfoldings F, satisfy Lemma 1.2 with
B2 = ker DxG(0). Our first theorem considers reducibility with respect to such a
splitting.
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THEOREM 2.2. The following properties are reducible;
a) cod G = c,
b) cod G = c,
c) det G = k,
d) /" satisfies Condition T,
e) F is a versai unfolding of G.

PROOF. TO get an idea of the easy proof of a), b), compare the analogous
result in the parameter-free potential case in [1].

As for c) it follows from Lemma 2.1 that A>determinacy of G implies
/fc-determinacy of G. To prove the converse, given

G' e E(B2 0 Bx, B'2)

with

jkG'(0) =jkG(0),

we shall construct a — -equivalence between G and G'. We work in the
parametrization (2.1) of G, and set

G' = ExAxx + G'(x2, X).

By hypothesis there are germs T and <j> giving the —equivalence

T - ' G ' = G°<j>,

and so by Remark c of Lemma 1.2, on Bx

(2.4) T\0)EXA = ZV-'G'(O) = E^ADwiiO).

Using dim B'2 < oo we conclude that T ^ O ) ^ G T(B\, B\). It follows that
^ T C O J E J G T(B'2, B'2). Also by (2.4) £>,<p,(0) is bijective, and so

(xu x2, X) -> (<p,, x2, X), (<p,, x2, X) -> (<p,, <p2, A),

as well as

(x2,X)->(<p2(0,x2,X),A)

define —equivalences. It follows that

<x)G(<t>)\^0 = r ( x ) G W | 9 i . o = ElAxl + G'(*2(<P2, A), X(A))

is well-defined in terms of the (<pj, A)-variables. Together with an ^-projection
this defines the desired — -equivalence between G and G'.

To prove d) we notice that by Lemma 1.1, Condition T is invariant for
transformations as in (1.2). As is easily checked, that parametrization of F
satisfies Condition T if and only if F does. Finally e) is proved in Section 3
below.

From here it is easy to deduce a test for A>detenninacy in terms of
MkE(B0, B'). As in the previous theorem we only consider G G ME(BQ, B')
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with DxG(0) Fredholm. Take B2 = ker DxG(0) and define

MTG = ~ {H= HXG + DXGH2 G TG; //,(()) = 0, H2(0) = 0},

MTG = {H = H+ DXGH3 e TG; H € MTG, #3(0) = 0}.

THEOREM 2.3. a) / /

(2.5) MkE(Bo, B') C MTG,

then G is k-determined.
b) If G is k-determined, then

(2.6) Mk+lE(B0,B')QMTG +MJE(Bo,B')

for any j .

REMARK. It seems likely that (2.6) should hold without MJE.

PROOF, a) Write G = G \ and let G2 be any element in £(£,> B') with

JkG\0) =j"G\Q).
By Lemma 2.1 it follows that (2.1) and (2.2) hold, and by Lemma 1.1, (2.1), and
(2.5) that

MkE(B2 © Bx, B'2) C MTG'.

But this is the condition for the well-known finite-dimensional version of a), so
G2 is —equivalent to G' (see [5]). This together with (2.1) proves part a).

b) Just like the parameter-free potential case (see [1]), we use the parametriza-
tion (2.1) and Theorem 2.2.c to conclude that it is enough to prove (2.6) in the
finite-dimensional case. There the well-known arguments from the correspond-
ing parameter-free potential situation lead to (2.6). Notice, however, that the
final touch of Nakayama's lemma to remove MiE{Ba> B') cannot be applied,
due to the Ax-term in TG.

Codimension and determinacy are related as in the following theorem.

THEOREM 2.4. / / G e ME{B0, B') has DxG(0) Fredholm, then

(2.7) det G < 1 + cod G.

PROOF. Using Theorem 2.3.a, the estimate (2.7) follows in the finite-dimen-
sional case by the usual arguments from the corresponding parameter-free
potential situation. Together with the reducibility properties of Theorem 2.2b,c,
this implies the general case.

Also cod G < oo can be expressed in terms of M^^BQ, B').
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THEOREM 2.5. IfG e M£(£o, B') has DxG(0) Fredholm, then the following are
equivalent;

a) cod G < oo,
b) MkE(B0, B') C TGfor some k.

PROOF. A finite-dimensional proof can be patterned on the corresponding
parameter-free potential situation. From here the general case follows, since a) is
reducible by Theorem 2.2.b, and b) is also reducible, as is easily proved using
Lemma 1.1.

THEOREM 2.6. IfG e ME(B0, B') has DXG(O) Fredholm and cod G = k < oo,
then there is a neighbourhood N of G in ME(BQ, B') with the (k + l)-jet topology,
such that cod G' < k if G' £ N.

PROOF. In the finite-dimensional case, a proof can be patterned on the
corresponding parameter-free potential situation. From here the general case
follows by Theorem 2.2.b together with a suitable germ version of Lemma 1.4.

3. Unfoldings and classification

THEOREM 3.1. Let G £ ME(B0> B') be given with cod G < oo, and DXG(O)
Fredholm. If the unfoldings (/"„ By) and (F2, By) of G both satisfy Condition T,
then they are equivalent.

LEMMA 3.2. The full Theorem 3.1 follows from the special case of

(3.1) dim Bo + dim B' < oo, DXG(O) = 0.

PROOF. Introduce a splitting as in Lemma 1.3 with B2 = ker DxG(0) and
B\ = range DxG(0). By the Fredholm property

dim B2 + dim B'2 < oo,

and by Theorem 2.2.d the unfoldings Ft and F2 of G satisfy Condition T. From

here Fx c^ F2, thus /", ^ F2, provided Theorem 3.1 holds under (3.1).

Let us make a few remarks before we continue the proof of the theorem under

(3.1). The condition cod G < oo implies cod G < oo, hence the existence of

«„ . . . , uc e E(Bo, B')

projecting onto a c-component basis for E/ TG. Evidently
c

(3.2) H = G + 2 VJUJ = G + <t>, «>
l
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satisfies Condition T. Also d im By > c for any unfolding (F, By) satisfying
Condition T.

LEMMA 3.3. Let G G ME(B0, B') be given with cod < oo, and DxG(0) Fred-
holm. If the unfolding (F, Gy) of G is versal, then it satisfies Condition T.

PROOF. The unfolding H of (3.2) satisfies Condition T and factors through F,

H = T • F o </>,

since F is versal. And so by Lemma 1.1, F satisfies Condition T.

LEMMA 3.4. The full Theorem 3.1 follows from the special case (3.1) and

(3.3) DyFx\y_ow = DyF2\y_0w mod TG w G By, F2 =* H,

where H is given by (3.2).

A proof of Lemma 3.4 can be closely modelled on the corresponding parame-
ter-free potential case (see [1]). As in that paper the proof of Theorem 3.1 will be
completed with the help of the flow-method. Set

K, = (1 - t)F2 + tFlt I={t e [ 0 , 1 ] ; K, =* H).

LEMMA 3.5. Given t0 G [0, 1], there is a neighbourhood fl,o of *„, and germs at

(o, a
a) T,Q of a map(B®R, {0} 0 {/„}) -+(T(B', B'\ id^),
b) <p,o o/a map {B © rt, {0} © B/o) -»(5^, 0),
c) A," of a map (Bx ® By ® R, {0} © fl,3 -* (5X, 0),

d) t//,o o/a »u?p (fi,, © /?, {0} ffi Ql{)^>(By, 0),such that

\(*> x> y. 'o) = idB-' ("Pj-, 'o)). A,o(-, t0), ^/o(-, /0) = idfi,

and

(3.4) r, #,(?,„, A v ^ J l , = Klo (t £ fl/o).

Moreover
(3-5) Tj^-o^fav A

v °)l«j-o - H(x, X, «).
REMARK, a) Evidently (3.4) does not quite define equivalences between un-

foldings for t G S2/o, since

\(->')>(<P,0. Aj l^ .o
are invertible without necessarily being the required identities.

b) Theorem 3.1 under (3.1) and (3.3) means that 1 G / . This follows from
0 G /, and / being both open and closed, which in turn is a consequence of (3.3)
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and Lemma 3.5. The easy argument goes as follows. Set

\(x> ^>y> *) = T/o(*> K 0, t),

XtJ,x, Ky) = (<P,0(X, K 0, /), A,o(X, 0, t),y).

By (3.4)

and so by (3.5)

K,=*H ( / e Q j if *, ,=*// ,

Klo^H if K,^H (t<tQ).

LEMMA 3.6. Given t0 € [0, 1], there is a neighbourhood of tQ and germs at (0, t^,
*)fofamapB<SR^> T(B', B'),
b)Uofa map B® R^>BX,
c)Lofa map (Bx © By® R,BX® {0} © flj -+ (Bx, 0),
d)Sofa map (By © R, {0} © Qt) -* (By, 0), such that

F2- Fx = TK+ DXKU + DXKL + DyKS.

We proceed with a proof of Lemma 3.5 and get by standard calculus
arguments, that (dropping the index t^ (3.4) is equivalent to

(3.6) -rDtK = JK + T[ DX K<p + DXKA + DyKxp],

and from (3.6) that Lemma 3.5 is a consequence of Lemma 3.6. We sketch a
proof for completeness.

To obtain (3.4) as well as a), c), d), solve in the given order

<p = U(q>, A, ^, /), <p(x, \,y, t0) = x,

i = rf(<p, A, +, t), T(X, \,y, t0) = idjr.

For b) we notice that by (3.4) in particular

(3.7) G(x, \) = r(x, X, 0, t)G(<p, A)\ym0.

The assumption cod G < oo implies by Theorem 2.5 that MkE(B0> B') c TG
for some k. So the origin is an isolated zero for {G, DXG), and by (3.7) also for
(G(q>, A), D^Giv, A)). Hence <p(0, /) = 0, and b) holds.

It remains to prove (3.5). Now

(3.8) TM,(«P, A)|y_o, . . . , TMC(<P, A)|>,_0,
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project onto a basis for E/ TG when t = <0, and by continuity also for t in some
neighbourhood fi, of f0, since for some k

MkE c f G c TG.
It follows that rH(q>, A, u) satisfies Condition T in Q,o, and so (3.5) follows by
the known finite-dimensional version (see [5]) of Theorem 3.1.

Now a proof of Lemma 3.6 will complete the proof of Theorem 3.1. Contrary
to the rest of the paper, throughout that proof germs means germs at 0 © t0 (and
not at 0 © 0 as previously). By (3.3) we cand find

» „ . . . , tv £ By, vc,+ ,, . .., vc G E{BX ®By®R, Bx),

with the property that

Uj=DyK\y.0tl_loVj 0 = 1, . . . , c ' )

project onto a basis for E(B0, B')/TG, and

Uj 0 = 1 , C), DxGvj 0 = C + 1, . . . , c)

project onto a basis for E(B0> B')/ TG. Set

f Klo = E(B ® R, L(B', B'))Kt + DxKtE{B © R, Bx),

and introduce the E(By ffi R, /?)-module F on c variables, with elements

Y = ( y 1 ; . . . , yc) ( y , , . . . , yc e £ ( 3 , © /*, *) ) ,

as well as the mapping/: V -> E(B © /?, 5') given by

fY = 2 1}/) Aby + 2 y,DAAc,.
1 c'+l

LEMMA 3.7. £ (5 © /?, B') = / F + fA,o.

This follows from the division lemma similarly to the parameter-free potential
case (see [1]).

PROOF OF LEMMA 3.6. By Lemma 3.7

-D,K=F2-

that is there are germs

f (EE(B® R,
U G E(B © /?, Bx),
y,, . . . , Yc G £(£ , © R, R),

such that

F2 - F, = f*, + z)x/s:r{/ + 2 y^A,«7. + 2 ^
1 c'+l
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In particular
c'

0 = F2{x, X, 0) - Ft(x, \, 0) = TG + DxGU + 2

(3-9)
2 jxJ[y0

c'+l

Arguing as in (3.8) we obtain that

D y K t \ y - < P i > • • • > D y K t \ y - < P c > D \ G v c + 1 , . . . . D x G v c

project onto a basis for E(B0, B')/ TG in a neighbourhood S2, of t0. This implies
in (3.9) that

r, Yc = 0 {y = 0, / G BJ,

which completes the proof of Lemma 3.6.
We finally discuss the usual unfolding consequences of the above results for a

germ G £ ME(B0, B') with cod G < oo, and Z)xG(0) Fredholm.

PROPOSITION 3.8. Two versal unfoldings. (F,, By) and (F2, By) of G are equiva-
lent.

PROOF. This is immediate by Lemma 3.3 and Theorem 3.1.

PROPOSITION 3.9. The unfolding (F, By) of G is versal, if and only if F satisfies
Condition T.

PROOF. Versality implies Condition T by Lemma 3.3. For the converse we
suppose (/", By) is another unfolding of G. Then by (3.2)

F" = F' + 2 VJUJ

satisfies Condition T. By Theorem 3.1 F" and F are equivalent considered as
unfoldings over By © By © Rc. Hence there is an equivalence (T, <>)

c
F' + 2 VjUj = T • F ° <f>

holding in particular for 7 = 0, v = 0, that is F is versal.
Introduce a splitting parametrization

G = f ^ x , + G(x2, X)

with 2?2 = ker A, B\ = range A. Then D2G(0) = 0 by Remark c)of Lemma 1.2.
Also

dim B2 + dim 52 < 00,
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since DxG(0) is Fredholm. Set

d i m 5 2 = n, dim B'2 = ri, cod G = c, KF - {(x, X,y); F = 0) .

KF is the catastrophe set of the unfolding (F, By) of G.

PROPOSITION 3.10. There is an unfolding (F, Rc), such that KF is diffeomorphic
to a neighbourhood of zero in R" X ^?c~". In particular if the Fredholm index of
DxG(0) equals zero, then KF is diffeomorphic to By = RC.

PROOF. It is evidently enough to unfold G. Since G(0) = 0, D2G(0) = 0, we
can define H of (3.2) taking M, (J < n') as a basis for B'2. We notice that
By = Rc. Under this choice of the uj, KH is given as the graph

+ 2 ml
n'+l I

where Pj denotes the «,-coordinate in the « „ . . . , wn--basis. The graph KH is
diffeomorphic to its source B2 X Rc~"', and thus to R" X Rc~"'.

This proposition implies that KF is a manifold if (F, By) is versal. The
corresponding catastrophe map XF 1S defined by the composition of the embed-
ding KF C B and the natural projection B -» By. In particular if DXG(O) is
Fredholm of index zero then XF can be parametrized as a map Rc —» Rc.

PROPOSITION 3.11. The equivalence class of XF depends only on the equivalence
class of G.

This can be proved as in the parameter-free potential case (see [8]).
Finally a few words about stability. For this we define F, and F2 in E(B, B')

to be si equivalent, if

for some

>: (x, \,y)-^(<p(x, X,y), A(X,y),

Functions are in the present stability context considered on open neighbour-
hoods U of the origin in B. Suppose F' is a representative on U of the germ
F e E(B, B'). Set

G = -^1^-0' G' = F'\y_0.

As always in this paper we assume G G ME(B0, B'), cod G < oo, and that
DxG(0) is Fredholm.
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DEFINITION. F is strongly stable if for every open neighbourhood U of 0, and
for every representation F' of F on U, there is a neighbourhood V(k, X, K, F')
of F' with k < cod ( 7 + 1 , such that for every function F" G V, there is a point
(x, X, y) G U, such that F " at (x, X, y) is » -equivalent to F' at 0.

REMARK, This stability is a property of the as -equivalence classes, as is easily
checked.

PROPOSITION 3.12. Under the above hypotheses F is strongly stable, if F satisfies
Condition T.

PROOF. By the previous remark and Lemma 1.1, we can work in the splitting
parametrization of Lemma 1.2. The proof can be reduced to the case of
dim Bx < oo, using Theorem 2.2 and the continuity of the splitting given by
Lemma 1.4. When dim Bx < oo, the proof can be carried through close to the
corresponding one in [9], where the parameter-free potential situation is consid-
ered. The methods and results of Sections 2 and 3 above are used in the proof in
the relevant places. The steps in [9] employing compact subsets of the control
variables are actually consequences of only the continuity properties in our
By -context. We leave the somewhat lengthy details to the reader.

REMARK, a) Also the (F, f/)-stability properties of [5] can be obtained in our
infinite dimensional context.

b) The converse of Proposition 3.12 is in the context of [9] proved using
Thorn's transversality theorem. Without extra restrictions on By, it is not evident
to the present author how to adapt that proof to the present situation.
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