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1 Introduction

1.1 Overview of this Volume

In recent decades, the number of archaeometric investigations that make use

of physical‒chemical techniques for the analysis of the composition of

various archaeological materials continues to grow, as evidenced by the

increasing number of publications in this area. One example of this type of

studies is provenance analysis, which tries to relate archaeological materials

to their original natural sources by discriminating their characteristic chem-

ical fingerprint. In brief, it tries to determine the geological or natural origin

of materials found in different archaeological contexts to establish the

places of acquisition and production of the raw materials. We have chosen

to approach this complex subject in two different ways, both based on very

similar datasets.

In this Element, we take an applied, practical approach, allowing the

reader to experiment with the provided datasets and scripts to be used in

the R software package. In Statistical Processing of Quantitative Data of

Archaeological Materials, we take a more theoretical and mathematical

avenue, allowing the reader to amend and apply the discussed methods

freely. These two Volumes can be used independently as well as complemen-

tary, throughout both ample cross-references are provided to facilitate the

latter. As an introduction to the subject, let us first remember that the

methods, basic principles and when to apply different statistical processing

depends on three data scenarios: (1) when dealing with high-dimensional

spectral data, (2) when employing compositional data, and (3) when managing

a combination of compositional and spectral data.

Case 1 considers high-dimensionality data (n ≪ p, where n relates to the

number of observations and p are the number of variables) using full

spectrum readings, such as those obtained with Fourier transform infrared

spectroscopy (FT-IR), Raman spectroscopy, or X-ray fluorescence (XRF)

spectroscopy. For this type of data, the suggested approach is to apply

chemometric techniques and unsupervised machine learning methods.

First, the spectra are preprocessed by filtering the additive and multiplica-

tive noise, correcting misaligned peaks, and detecting outliers by robust

methods. Afterwards, the data are clustered using a parametric Bayesian

model that simultaneously conducts the tasks of variable selection and

clustering. The variable selection employs mixture priors with a spike and

slab component, which make use of the Bernoulli distributions and the

Bayes factor method to quantify the importance of each variable in the

clustering.
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Case 2 contemplates low-dimensional data (n > p) where the recorded data

have been converted to chemical compositions. For this case, the recom-

mended approach is to adopt the methodology proposed by Aitchison (1986),

which discusses some of the algebraic–geometric properties of the sample

space of this type of data and implements log-ratio transformations.

Respecting adequate preprocessing of compositional data, such as robust

normalization and outlier detection, the use of model-based clustering that

fits a mixture model of multivariate Gaussian components with an unknown

number of components is proposed. This allows choosing the optimal num-

ber of groups as part of the selection problem for the statistical model.

Mixture models have the advantage of not depending on the distance matrix

used in traditional clustering analyses. Instead, the key point of the model-

based clustering is that each data point is assigned to a cluster from several

possible k-groups according to its posterior probabilities, thus determining

the membership of each of the observations to one of the groups.

For Case 3, if reliable calibrations are available to obtain compositional

data, this information can be combined with the spectra to obtain groups. For

handling the data, a combination of chemometric techniques is used. In this

case, a dependent variable y (or compositional values) is related to the

independent variables x (or spectral values). The preprocessing is performed

similarly as in Case 2; this allows calibrating a model of predictive purposes

that can discriminate those variables that provide significant information to

the analysis and eliminating the redundancy of information as well as collin-

earity. Once the selection of variables has been made, a new methodology

called Databionic Swarm (DBS; implemented by Thrun, 2018) is applied for

clustering the data.

To fully understand how the proposed methods work and how to apply

them to your own data, these are exemplified in this Element with different

case studies using quantitative data acquired from archaeological materials.

The datasets used in the examples are provided in the electronic format of

this Element as worksheet files with the “csv” extension. To process the data

according to the exercises, the selected dataset must be imported and the

source code executed in the R environment (R Development Core Team,

2011); we used version 3.6.1 on a 64-bit Windows system, although more

recent versions of R are now available. R is a programming language for

statistical analysis and data modeling that is used as a computational envir-

onment for the construction of predictive, classification, and clustering

models. R allows you to give instructions sequentially to manipulate, pro-

cess, and visualize the data. The instructions or scripts employed for each

part of the process are detailed in the case studies. To learn how to employ the
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scripts in each step of the data processing, we encourage the reader to consult

the videos associated with this Element in the electronic format of the

Element.

1.2 Introduction to R

R is a public domain language and environment managed by the R Foundation

for Statistical Computing (© 2016 The R Foundation) that has the virtue of

being an exceptional tool for data statistical analysis and projection. This

project contains a large collection of software, codes, applications, documenta-

tion, libraries, and development tools that users are free to copy, study, modify,

and run. Therefore, it can be seen as a collaborative project in which anyone is

invited to contribute. Although initially written by Robert Gentleman and Ross

Ihaka, since 1997, it has been operated by the R Development Core Team. From

early 2000 until now, it has become a kind of “standard of the scientific

community.” There are many publications and tutorials on its use aimed at all

levels of different areas and specializations, some of which focused on the most

technical and computational aspects of the language.

1.2.1 Getting Started

First, search online for CRAN R (the Comprehensive R Archive Network) or

follow the link http://cran.r-project.org/ that will direct you to the web page and

the instructions to download and install the latest version of R in various

platforms (Linux, MacOS and Windows).

1.2.2 Data Import

Once R is installed, the next step is to call our data in the R window to be able to

process them. In the screen, the indicator “>” appears and is where we must

define what task we want to perform. The most commonly used configurations

to perform data analysis in R are data frames, which are two-dimensional

(rectangular) data structures. As in this case, we deal with datasets of low or

high dimensionality, which must be arranged so that the rows in a data frame

represent the cases, individuals or observations, and the columns represent the

attributes or variables (see example in Table 1). These data frames must be

prepared in a folder available for import and analysis.

The working directory is the place on our computer where the files we are

working with are located. You can find what the working directory is with the

function “> getwd()”. You only have to write down the function and execute

it. You can change the working directory using the function “setwd()”,
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defining the path of the directory you want to use [e.g., setwd(”C:\obsid-

ian”)]. Although there is extensive documentation on how to import/export

data to R, we use the traditional method, as our data are usually in a spreadsheet

with a csv extension. In R, it is sufficient to use the following command:

> data <- read.csv(”C:\\obsidian\\mydataset.csv”, header=T)

This command line provides the path to the folder where the data are found;

the command “read.csv” indicates that a file with a “csv” extension is read

from the “obsidian” folder located in the C root directory, and it is indicated

that the data contain a name for each variable with the command

“header=T”. The symbol “<-” is only used for assignment; in the previous

example, the file name “mydataset.csv” refers to the name of the data

frame that you are going to work with in R. To see the structure of the data,

write down the next command.

str (data)

Another way is by selecting the option “Change directory” from the File menu

and navigating to the folder where our file is located. Once this path is

established, you must go to the folder where your dataset is, select it and

drag it with the mouse to the R console and, later, copy that path from the

console and paste it into the command “read.csv”. To see the dimensions

of the dataset, you can write the function “dim (data)”; “names()” shows

the names of the columns. In R, the “summary” function shows a general

summary of the data frame variables (minimum, maximum, mean, median,

first, and third quartile).

To perform an algebraic operation on a data frame such as the one exempli-

fied in Table 1, the first column containing the identifier of each sample would

have to be excluded; this is achieved by typing the following command:

Table 1 Example of a data frame of chemical concentrations
of obsidian samples.

ID Mn Fe Zn Ga Th Rb Sr Y Zr Nb Source

Ahuisculco 378 7468 47 18 10 109 45 20 143 19 1

Ahuisculco 379 7889 166 19 9 113 50 19 146 21 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

El Chayal 476 8162 33 17 11 146 154 20 100 9 12

El Chayal 486 8799 45 18 11 151 158 20 104 8 12

El Chayal 545 8309 36 17 10 140 151 19 101 9 12
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data1 <- data [, 2:11]

In this way, only numerical variables are considered. Now you can transform all

the data in the data frame, such as base 10 logarithms:

data2 <- log10 (data1)

If you also would like to transform negative values with logarithms you can use

DataVisualizations::SignedLog(). Depending on the application this can be

meaningful (cf, Aubert et al., 2016), even if in a strictly mathematical sense it

is not allowed. If you want to see the values of a specific variable, you can do it

with the following command:

data2$Na.

Some analyses require that the data be recognized as a matrix. In R, a

matrix is a data structure that stores objects of the same type, conversely to

a data frame, which is a rectangular array of data consisting only of

numeric values. To convert a data frame to a matrix, you can use the

following command:

newdata <- as.matrix(data2).

To save a file that has been transformed, just type the following command:

write.csv (newdata, file=”my_data.csv”).

This will save the file named “my_data” with a “.csv” extension to the working

folder.

1.2.3 Functions

Once a dataset has been loaded, a large number of operations can be

performed on it. If, for example, you have a variable “Na” from which you

want to produce a histogram, it is enough to write the “hist (Na)” function

to produce a bar graph of the variable. In R, the “plot()” function is

generally used to create graphs. This function always asks for an argument

for the axis of the abscissa (x) and another for the ordered (y). If two

variables, x and y are available, say Sr and Zr, and you want to see how

these variables relate, “plot(Data2$Sr, Data2$Zr)” is enough to get

the graph. The “plot()” function allows you to customize the graph by

entering titles or changing the size of the dots, the color, etc.

In addition to the “plot()” function, there are other functions that

generate specific types of graphs. In Windows, right clicking the graph

can be copied to the clipboard, either as a bitmap or as a metafile. There
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are a variety of graphic packages for R that extend their functionality or

are intended to optimize things for the user. If you have any questions

about any other function, you can always access Help documentation

using the “help()” command. For example, “> help(mean)” directs

us to a web page where we can obtain information about the concept

“mean” that corresponds to the arithmetic average.

1.2.4 Packages

R has a large number of packages that offer different statistical and graphical

tools. Each package is a collection of features designed to meet a specific task.

For example, there are specialized packages for data grouping, others for

visualization or for data mining. These packages are hosted on CRAN

[https://cran.r-project.org/]. A small set of these packets is loaded into the

processor’s memory when R is initialized. You can install packages using

the “install.packages()” function, and typing in quotation marks the

name of the package you want to install. They can also be installed directly from

the console by going to the Rmenu and then selecting “Packages.” For example,

to install the “cluster” package, type the following:

install.packages(”cluster”).

After you complete the installation of a package, you can use its functions by

calling the package with the “library(cluster)” command. Every time

an operation is performed in R, it is important to use the “rm(list = ls

())” command to delete all objects in the session and to be able to start

without any remaining objects stored in the program memory. Additionally,

when calling any file, it is recommended to use the “str ()” command to

know the structure of the data object.

1.2.5 Scripts

Scripts are text documents with the “.R” file extension. The scripts are the

same as any text documents, but R can read and execute the code they contain.

Although R allows interactive use, it is advisable to save the code used in an R

file; this way, it can be used as many times as necessary. In this Element, we

made use of the scripts published by the authors of the packages available for

R. An advantage of these scripts and packages is that you can make use of the

tutorials available for each. For example, to transform the data to the isometric

log-ratio (ilr), go to CRAN [https://cran.r-project.org/] and look for the “com-

positions” package of van den Boogaart, Tolosana-Delgado and Bren (2023).

You will find that the related script is the following:
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## log-ratio analysis

# transformation of the data to the ilr log-ratio

library(compositions)

xxat1 <- acomp(data) # “acomp” represents one closed composition;

with this

#command the dataset is now closed

xxat2 <- ilr(xxat1) # isometric log-ratio transformation of the

data

str(xxat2)

write.csv(xxat2, file=”ilr-transformation.csv”)

In this script, the command “acomp” tells the system to consider the argument

as a set of compositional values, implicitly forcing the data to close to 1.

Subsequently, following Egozcue et al. (2003), the “ilr” command is used to

transform the data to the isometric log-ratio, which produces compositions

that are represented in Cartesian coordinates.

A more complex task can be done with R. For example, let us say that you

want to implement a Principal Component Analysis with the idea of exploring

the data and seeing if the first components can reveal the existence of a pattern

in the data. By installing the “ggfortify” package (Horikoshi et al., 2023), it is

easy to perform the analysis and graphical display of the data. For example,

suppose we have a matrix of n x p with untransformed data and whose

eleventh column indicates the natural source from which some obsidian

samples come, such as the one in Table 1. The first step is to call the package

“ggfortify” and read the data.

library(ggfortify)

data <- read.csv(”Sources.csv”, header=T) ## Sources.csv is an

example file name

str(data)

autoplot(stats::prcomp(data[-11])) ## PCA without labels; the

11th column ##is

deleted

In this script, the function “prcomp”will perform a principal component analysis

of the data matrix and return the results as a class object; in turn, the “autoplot”

function will provide the graph of the first two components. To produce a plot of

the first two components that includes the provenance label for each sample and a

color assignation to each group, use the following command line:

autoplot(stats::prcomp(data[-11]), data1 = data, colour =

‘Source’)

## ‘ Source’ specifies column name keyword in your dataset
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A biplot of the components that explain most of the variance of the data using

the loading vectors and the PC scores is obtained through the following

command line:

autoplot(stats::prcomp(data[-11]),label=TRUE,

loadings=TRUE,loadings.label=TRUE)

Assuming the grouping variable is available, the following command line

automatically locates the centroid of each group and performs a PCA with 95

percent confidence ellipses:

autoplot(stats::prcomp(datos[-11]),data1=data,frame=TRUE,

frame.type=‘t’,frame.colour=‘ Source’)

## ‘ Source’ specifies column name keyword in your dataset

In R, there are numerous clustering algorithms ranging from distance-based

algorithms (e.g., to determine whether the data present a clustering structure) to

more formal statistical methods based on probabilities, such as Bayesian

methods or model-based clustering. For instance, for conventional clustering,

the package “cluster” can be used (Maechler et al., 2022). With this package,

several classical classifications can be performed by selecting both the metric

used to calculate the differences between the observations and the grouping

method, among which are average, single, weighted, ward, and others.

This Element provides the scripts to perform all the proposed preprocessing

and clustering techniques so that the user can easily execute the commands by

copying and pasting them into the R environment. For example, in Section 3, we

worked with model-based clustering; for this, we employed the R libraries

“Rmixmod” (Lebret et al., 2015) and “ClusVis” (Biernacki et al., 2021):

library (Rmixmod)

out_data<-mixmodCluster(data2,nbCluster=2:8)

summary(out_data)

plot(out_data)

library(ClusVis)

clusvisu<-clusvisMixmod(out_data)

plotDensityClusVisu(clusvisu)

By using the command “mixmodCluster”, an unsupervised classification

based on Gaussian models with a list of clusters (from two to eight clusters) is

performed, determining which model best fits the data according to the BIC

information criterion. In turn, the “plot()” command provides a 2D repre-

sentation with isodensities, data points, and partitioning. . Alternatively, two-

dimensional density-based structures can be visualized with “ScatterDensity”
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(Brinkmann et al., 2023). Similarly, the “ClusVis” package (Biernacki et al.,

2021) is used to obtain a graph of Gaussian components that supplies an

entropic measure on the quality of the drawn overlay compared to the

Gaussian clustering of the initial space. For this, only two commands are

needed, “clusvisMixmod” and “plotDensityClusVisu”, which are

provided by the package authors.

Thus, the user has free access to the tutorials and scripts of each of the algorithms

used in this Element. Inmany cases, the only thing that needs to be done is to replace

the author’s data with your own. You can also experiment with other strategies for

the analysis by changing the parameters, such as the number of iterations, the

initialization method, and the model selection criteria. The instructions to do so,

as well as a variety of examples that the same user can reproduce, can be consulted

in the documentation associated with each R package or script. It is very important

to remember that the theoretical assumptions of each model must be respected;

unfortunately, the data do not always conform to these. That is why it is recom-

mended that the reader pay close attention to the theory of each method and to the

behavior of his data, since a violation of the theoretical assumptions can lead to an

incorrect interpretation of the data.

2 Processing Spectral Data

2.1 Applications and Case Studies

This section presents the numerical experiments conducted on archaeological

materials using spectral data and the Bayesian approach. Although only examples

of X-ray fluorescence data are used in this Element, the proposed methods can be

applied in the same way to any other spectrometric technique such as Raman or

FT-IR. To exemplify the performance of the proposedmethods, two analyses were

carried out, one with 156 obsidian geological samples that served as a control test

(matrix available in the supplementary material as file ‘Obsidian_sources.csv’)

and a second one using 185 ceramic fragments of archaeological interest (matrix

available in the supplementary material as file ‘NaranjaTH_YAcim.csv’). For the

analysis of all samples, we employed a TRACER III-SD XRF portable analyzer

manufactured by Bruker Corporation, with an Rh tube at an angle of 52°, a drift

silicon detector and a 7.5 μm Be detector window.

The instrument was set with a voltage of 40 kV, a current of 30 μA, and a

measurement time of 200 live seconds. Only for the case of the obsidian

samples was employed a factory filter composed of 6 μm Cu, 1 μm Tl and 12

μm Al. A spectrum of each sample was obtained by measuring the photon

emissions in 2048 channel intervals (corresponding to the energy range of 0.019

to 40 keV of the detector resolution). Is important to remember that portable

9Machine Learning for Archaeological Applications in R

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009506625
Downloaded from https://www.cambridge.org/core. IP address: 3.139.240.47, on 25 Dec 2024 at 07:37:37, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009506625
https://www.cambridge.org/core


XRF is more effective for detecting Na to U elemental concentrations, which is

the range that corresponds to 1.040 (in the K-alpha layer) to 13.614 keV (in the

L-alpha layer). Therefore, any peaks outside of this range supply no useful

information. That is the reason why the original 2,048 channels were reduced by

cutting the tails of the spectra that corresponded to noninformative regions, such

as low Z elements (lower than Na), the Compton peak, and the palladium and

rhodium peaks (K-alpha and K-beta). For example, in the obsidian exercise, the

data that were not in the range from channel 38 to channel 900 were manually

deleted, leaving only the central 862 channels that correspond to the energy

range of 0.74 to 17.57 keVof the detector resolution (Figure 1).

Using the numerical values obtained from the photon counts in each energy

interval or channel, two n x p matrices were constructed (where n refers to the

samples and p to the channel count interval):

1. An n = 149 x p = 862 matrix for the obsidians (available in the supplemen-

tary material as file ‘Obsidian_Sources_38_900.csv’).

2. An n = 185 x p = 791 matrix for the pottery fragments (available in the

supplementary material as file ‘NaranjaTH_YAcim40_830.csv’).

The spectral intensities (photon counts) sampled at the given intervals (chan-

nels) represent the quantitative data employed in the statistical analysis instead

of the major and trace element concentrations traditionally used for this pur-

pose. Both datasets were preprocessed the same way. First, the EMSC algo-

rithm, to filter the dispersion effects, and the smoothing procedure with the

Savitzky‒Golay algorithm were applied. With this methodology, it is not

necessary to standardize each variable before using the model-based clustering

since applying the EMSC filter to the data are equivalent to normalizing it. If

your own spectra show any peak displacement, you should apply at this point

the CluPa algorithm for peak alignment. Before developing the classification

model, the atypical values were detected, removing from the matrix the samples

that recorded high values in their orthogonal and score distances with the

ROBPCA algorithm. It is important to note that the clustering model presup-

poses that all the variable-wise centers equal zero.

2.2 Exercise 1: Obsidian Samples

As mentioned in Section 2.1, the control set consisted of 149 obsidian samples

of known origin and p = 862 energy intervals (channels). These obsidian

samples were collected from 12 Central Mexico (Figure 2). The number of

samples analyzed from each source is specified in Table 2. A full description of

the geological setting of the obsidian sources can be found in Argote Espino et
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al. (2010), Argote-Espino et al. (2012), Cobean (2002), and López-García et al.

(2019). These samples served as a controlled experiment for assessing the

efficiency of the proposed method. The procedure is described step by step in

the supplementary video “Video 1.”

Figure 1Comparison between the full spectrum of an obsidian sample (top) and

a reduced spectrum containing only the informational region (bottom). Color

version available at www.cambridge.org/argote_machine-learning
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Video 1 Step-by-step video on how to process spectral data of obsidian samples

used in Video 1. Video files available at

www.cambridge.org/argote_machine-learning

Figure 2 Geographical location of the obsidian deposits. The numbers

correspond to the following sources: (1) El Chayal, (2) Ixtepeque, and (3) San

Martín Jilotepeque in Guatemala; (4) La Esperanza in Honduras; and (5–6)

Otumba volcanic complex, Edo. México; (7) Ahuisculco, Jalisco; (8) El

Paredón, Puebla; (9) El Pizarrín-Tulancingo, Hidalgo; (10) Sierra de Pachuca,

Hidalgo; (11) Zacualtipán, Hidalgo; (12) Zinapécuaro, Michoacán. Color

version available at www.cambridge.org/argote_machine-learning
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The reduced obsidian sample spectra were filtered using a combination of

the EMSC + Savitzky-Golay filters; the script to perform this task is presented

below.

## Script to filter with the EMSC algorithm version 0.9.2 (Liland

and Indahl, 2020)

rm(list = ls())

library(EMSC) #Package EMSC (Performs model-based background

correction and

# normalisation of the spectra)

dat <- read.csv(”Obsidian_source_38_900.csv”, header=T) # To

call the spectral data file

str(dat) # to see the data structure

dat1 <- dat[2:863] # To eliminate the first column related to the

sample identifier

str(dat1)

Obsidian.poly6 <- EMSC(dat1, degree = 6) #Filters the spectra

with a 6th order

#polynomial

str(Obsidian.poly6)

write.csv(Obsidian.poly6$corrected, file=”Obsidian_EMSC.csv”)

# to save the data file

# filtered with the EMSC. The User can choose other file names

#To filter the spectra with the SG filter, use the ‘prospectr’ pack-

age (Stevens and

Table 2 Number of obsidian samples per location.

Source name Sample ID n

1 El Chayal (Guatemala) 1−17 17
2 La Esperanza (Honduras) 18−33 16
3 Ixtepeque (Guatemala) 34−50 17
4 San Martin Jilotepeque (Guatemala) 51−67 17
5 Ahuisculco (Jalisco) 68−76 9
6 Otumba (Soltepec) 77−86 10
7 Otumba (Ixtepec-Pacheco-Malpaís) 87−110 24
8 El Paredon (Puebla) 111−117 7
9 El Pizarrin-Tulancingo (Hidalgo) 118−122 5

10 Sierra de Pachuca (Hidalgo) 123−132 10
11 Zacualtipán (Hidalgo) 133−142 10
12 Zinapecuaro (Michoacán) 143−149 7

Total: 149
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#Ramirez–Lopez (2015)

library(prospectr)## Miscellaneous functions for processing and

sample selection of

## spectroscopic data (Stevens et al., 2022)

dat2 <- read.csv(”Obsidian_EMSC.csv”, header=T) # Calls the file

with EMSC filtered

#data

str(dat2)

sg <- savitzkyGolay(Obsidian.poly6$corrected, p = 3, w = 11, m = 0)

write.csv(sg, file=”Obsidian_EMSC_SG.csv”) # The user can choose

another file name

Figure 3 shows the result of the filtered spectra compared to the untransformed

raw data. Notice that the information was not altered. It is important to note that

because we determined a polynomial of the sixth order for the SG filter, the

initial matrix with p = 862 was reduced to p = 852, eliminating five channel

intervals from each extreme of the data matrix.

Because the original spectra were not shifted or the intensity peaks were

misaligned, it was not necessary to apply the CluPa algorithm. Nevertheless, if

anyone finds it necessary, the peaks can be aligned with the following script

(published by López-García et al., 2019):

# Run the whole script at one time

devtools::install_github(”Beirnaert/speaq”) # download latest

“speaq” package once!

library(speaq)

# Change file folder

your_file_path = “/Users/”

# Get the data (spectra in matrix format)

matrix3 = read.csv2(file.path(your_file_path, “your_file.csv”),

header = F, sep = “,”,colClasses = “numeric”, dec = ”.”)

spectra.matrix = as.matrix(matrix3)

index.vector = seq(1, ncol(spectra.matrix))

# Plot the spectra

speaq::drawSpec(X = spectra.matrix, main = ‘mexico’, xlab =

“index”)

# Peak detection

peaks <- speaq::getWaveletPeaks(Y.spec = spectra.matrix,

X.ppm = index.vector,

nCPU = 1,

raw_peakheight = TRUE)

# Grouping
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groups<- PeakGrouper(Y.peaks = peaks)

# If the peaks are well formed and the peak detection threshold is

set low, the filling step

Figure 3 Raw data (above) and EMSC + Savitzky‒Golay filtered spectra

(below). Color version available at

www.cambridge.org/argote_machine-learning
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#is not necessary and can be omitted

peakfill <- PeakFilling(groups_rawIntensity,

spectra.matrix,

max.index.shift = 5,

window.width = “small”,

nCPU = 1)

Features <- BuildFeatureMatrix(Y.data = peakfill,

var = “peakValue”,

impute = “zero”,

delete.below.threshold = FALSE,

baselineThresh = 1,

snrThres = 0)

# Aligning the raw spectra

peakList = list()

for(s in 1:length(unique(peaks$Sample))){

peakList[[s]] = peaks$peakIndex[peaks$Sample == s]

}

resFindRef<- findRef(peakList);

refInd <- resFindRef$refInd;

Aligned.spectra <- dohCluster(spectra.matrix,

peakList = peakList,

refInd = refInd,

maxShift = 5,

acceptLostPeak = TRUE,

verbose=TRUE);

drawSpec(Aligned.spectra)

write.csv (Aligned.spectra, file =” aligned.csv”)

After preprocessing the spectra, it is important to diagnose the data and detect

outliers. For this task, use the following script extracted from the “rrcov”

package (Todorov, 2020):

## Script to diagnose outliers

rm(list=ls())

library(rrcov)

dat <- read.csv(File_X, header=T)

str(dat)

pca <- PcaHubert(dat, alpha = 0.90, mcd = FALSE, scale = FALSE)

pca

print(pca, print.x=TRUE)

plot(pca)

summary(pca)
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The results can be observed in Figure 4. Hubert et al. (2005) define this figure as

a diagnostic plot based on the ROBPCA algorithm; it allows distinguishing

regular observations and different types of outliers under the assumption that

the relevant information is stored in the variance of the data (López-García et

al., 2020; Thrun et al., 2023). In Figure 4, a group of orthogonal outliers (located

at the top left quadrant of the graphic) that correspond to El Pizarrin-Tulancingo

and Zinapecuaro source samples can be discriminated. According to this figure,

there are ten observations with distances beyond the threshold of X2 that can be

considered bad leverage points or outliers; the rest are regular observations. The

bad leverage points correspond to the samples from Sierra de Pachuca, which

have contrasting higher chemical concentrations of Zr, Zn, and Fe than the rest

of the sources (Argote-Espino et al., 2010). Therefore, they cannot be con-

sidered properly as outliers, but observations with a different behavior should

not be deleted.

Once the earlier steps were concluded, we can now classify the samples. In

the Bayesian paradigm, the allocation of the samples in a cluster is regarded as

a statistical parameter (Partovi Nia and Davison, 2012). In general, it is better

to work with the Gaussian distribution and set the default values of the

hyperparameters given by the “bclust” algorithm. For this step, use the

following script for R:

## bclust algorithm

rm(list = ls())

library(bclust) # Partovi Nia and. Davison (2015)

datx <- read.csv(File_X, header=T)

str(datx)

dat2x <- as.matrix(datx)

str(dat2x)

Obsidian.bclust<-bclust(x=dat2x,

transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68))

par(mfrow=c(2,1))

plot(as.dendrogram(Obsidian.bclust))

abline(h=Obsidian.bclust$cut)

plot(Obsidian.bclust$clust.number,Obsidian.bclust$logpos-

terior,

xlab=”Number of clusters”,ylab=”Log posterior”,type=”b”)

abline(h=max(Obsidian.bclust$logposterior))

str(Obsidian.bclust)

Obsidian.bclust$optim.alloc # optimal partition of the sample

Obsidian.bclust$order

# produces teeth plot useful for demonstrating a grouping on

clustered subjects
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Obsidian.bclust<-bclust(dat2x,

transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68))

dptplot(Obsidian.bclust,scale=10,varimp=imp(Obsidian.

bclust)$var,

horizbar.plot=TRUE,plot.width=5,horizbar.size=0.2,ylab.

mar=4)

#unreplicated clustering

wildtype<-rep(1,55) #initiate a vector

wildtype[c(1:3,48:51,40:43)]<-2 #associate 2 to wildtypes

dptplot(Obsidian.bclust,scale=10,varimp=imp(Obsidian.

bclust)$var,

horizbar.plot=TRUE,plot.width=5,horizbar.size=0.2,vert-

bar=wildtype,

vertbar.col=c(”white”,”violet”),ylab.mar=4)

Figure 4 Diagnostic plot of the obsidian samples based on the ROBPCA

algorithm. Color version available at

www.cambridge.org/argote_machine-learning
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The result is displayed in the dendrogram of Figure 5, as well as in the partition

of the sample space of Table 3. As expected, the Bayesian method clustered the

obsidian samples into twelve groups (going from bottom to top in the dendro-

gram), all related to their geological sources: [1] Zacualtipan (ID. 133–142),

which, according to the dendrogram, is subdivided into two subsources: [2]

Zinapecuaro (ID. 143–149); [3] Ahuisculco (ID. 68–76); [4] El Paredon (ID.

111–117); [5] Otumba-Ixtepec, Pacheco, and Malpais (ID. 87–110); [6]

Otumba-Soltepec (ID. 77–86); [7] El Pizarrin (ID.118–122); [8] Sierra de

Pachuca (ID. 123–132), [9] El Chayal (ID. 1–17), which is also subdivided

into two subsources: [10] La Esperanza, Honduras (ID.18–33); [11] San Martín

Jilotepec (ID. 51–67), also subdivided into two subsources; and [12] Ixtepeque

(ID. 34–50).

The Bayes factor (B10) can be regarded as a measure of the importance that

each variable holds in the classification. To determine which oligo-elements

are important, the algorithm provides a list of the potentially important

variables that contribute to the grouping. The following script is used for

this purpose:

# This function plots variable importance using a barplot

Obsidian.bclust<-bclust(dat2x,

transformed.par=c(-1.84,-0.99,1.63,0.08,-0.16,-1.68),

var.select=TRUE)

Obsidian.imp<-imp(Obsidian.bclust)

#plots the variable importance

par(mfrow=c(1,1)) #retrieve graphic defaults

mycolor<-Obsidian.imp$var

mycolor<-c()

mycolor[Obsidian.imp$var>0]<-”black”

mycolor[Obsidian.imp$var<=0]<-”white”

viplot(var=Obsidian.imp$var,xlab=Obsidian.imp$labels,

col=mycolor)

Table 3 Partition of the sample space
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#plots important variables in black

viplot(var=Obsidian.imp$var,xlab=Obsidian.imp$labels,

sort=TRUE,col=heat.colors(length(Obsidian.imp$var)),

xlab.mar=10,ylab.mar=4)

mtext(1, text = “Obsidian”, line = 7,cex=1.5)# add X axis label

mtext(2, text = “Log Bayes Factor”, line = 3,cex=1.2) # adds Y

Figure 5 Dendrogram and optimal grouping found by the Gaussian model for

the obsidian source data. The dendrogram visualizes the ultrametric portion of

the selected distance (Murtagh, 2004). The method proposed twelve groups.

Color version available at www.cambridge.org/argote_machine-learning
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axis labels

#Sorts the importance and uses heat colors; adds some labels to

the X and Y axes

str(Obsidian.imp)

Obsidian.imp$var

Obsidian.imp$order

The relevant variables can be separated from the nonrelevant variables by looking

for the inflection point in the Gaussian variable selection model, such as the one

observed in Figure 6, that is, the point in the distribution curve where the factor

value of the variables stabilizes or staysmore constant. For this case, the inflection

point is presented at Log B10> 1.57E+07; therefore, values of B10 > 1.57E+07 are

considered relevant variables. The higher Bayes factors correspond to the posi-

tions of Zr, Nb, and Sr peaks (Figure 7), indicating the relative importance of

these elements in the classification task. The rest of the elements had negligible

and negative Bayes factors (B10 <1.57E+07) and hence were irrelevant.

Although discriminating groups of samples with a similar spectral profile

is not a simple task, the results obtained with this clustering algorithm leave

no doubt of its accuracy. First, the structure of the dendrogram was clear, and
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Figure 6 Log Bayes factor of variables (logB10) for the Gaussian variable

selection model of the obsidian data. Color version available at

www.cambridge.org/argote_machine-learning
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atypical values were not observed. Second, it is possible to observe that the

samples are not mixed with other groups and that each group remains

characterized by its place of origin. Third, the number of groups calculated

by the algorithm is correct, corresponding to the number of geological

sources introduced. This allows us to conclude that each geological source

has its own spectral signature, which is different from those of the other

sources. It should be noted that to accurately identify the groups, it is

necessary to always refer to the observations that serve as control samples

(e.g., known sources).

2.3 Exercise 2: Thin Orange Pottery Samples

Thin orange ware, as its name says, is a light orange ceramic with very thin

walls that became one of the main interchange products of the Classic period in

Central Mexico. Its distribution over a large expanse of Mesoamerica has been

considered to be closely related to the strong cultural dominion of Teotihuacan.

Its wide geographical circulation has been documented in many places far from

Teotihuacan (Kolb, 1973; López Luján et al., 2000; Rattray, 1979), including

Western Mexico, Oaxaca, and the Mayan Highlands (i.e., Kaminaljuyú, Tikal,

and Copán). The use of this ware type had a broad extension over time, starting

in the Tzacualli phase (ca. 50–150 AD), peaking at the Late Tlamimilolpa and

Early Xolalpan phases (350–550 AD), and declining at approximately 700 AD

(Kolb, 1973; Müller, 1978).

According to Rattray (2001), the suggested chronology of the different ceramic

forms of the Thin orange ware is the following. In the Tzacualli–Miccaotli phase
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Figure 7 XRF spectrum of an obsidian sample. Color version available at

www.cambridge.org/argote_machine-learning
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(ca. 1–200 AD), some of the common forms are vessels with composite silhou-

ettes, everted rims and rounded bases, vases with straight walls, pedestal base

vessels, pots and a few miniatures; simple incised lines and red color decorations

are present in some pieces. Some sherds found in archaeological contexts from

theMiccaotli phase suggest that hemispherical forms were present. Nevertheless,

the hemispherical bowls with ring bases, the most representative form in Thin

orange, occur in the Early Tlamililolpan phase (ca. 200–300 AD) and continue

until the end of the Metepec phase (ca. 650 AD).

Archaeological and petrographic studies performed in the 1930s (Linné,

2003) found that the components of Thin orange pastes were homogeneous

and of a nonvolcanic origin. Therefore, if Teotihuacan city was settled

within a volcanic region, then the production center (or at least the raw

material source) should be somewhere else. These findings opened the

discussion about why the most distinctive ware of Teotihuacan culture was

not produced there. In the 1950s, Cook de Leonard proposed that the natural

clay deposits were located south of the state of Puebla based on the material

excavated from some tombs in an archaeological site near Ixcaquixtla

(Brambila, 1988; Cook de Leonard, 1953).

Rattray and Harbottle performed neutron activation and petrographic ana-

lyses on samples classified as fine Thin orange ware and a coarse version of

this ware called San Martin orange (or Tlajinga), the last one locally produced

in Acatlán de Osorio, south of Puebla state (Rattray and Harbottle, 1992). In

their conclusions, they proposed that the clay deposits and the production

centers of Thin orange pottery were in the region of Río Carnero, 8 km south

of Tepeji de Rodriguez town, south of Puebla state. Summarizing several

former investigations about the compositional pattern of Thin orange ware,

the following groups have been established:

1. A main ‘Core’ group, with clay and temper of homogeneous characteristics.

Rattray and Harbottle (1992) and López Luján et al. (2000) mentioned that

its chemical profile is characterized mainly by high concentrations of Rb, Cs,

Th, and K. This group was acknowledged as “Core Thin orange” by Abascal

(1974), “Thin Orange” by Shepard (1946), “group Alfa” by Kolb (1973),

and “group A” by Sotomayor and Castillo (1963).

2. A coarser second group, used for utilitarian purposes (domestic ware), is

characterized by having different percentages of the minerals present in the

first group. This group corresponds to the “group Beta” (Kolb, 1973) and the

“Coarse Thin orange” group (Abascal, 1974). Rattray and Harbottle (1992)

assume that this group is formed by local imitations of the original Thin

orange ware.
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In this exercise, the purpose of this application is to determine possible

differences in the manufacturing techniques of the Thin Orange pottery,

providing a better understanding of the underlying production processes.

The focus is on identifying natural groups with homogeneous chemical com-

positions within the data, leading to the determination of whether this ceramic

type was crafted following a unique recipe (clay and temper) or if there were

several ways to produce it. By comparing our results with those obtained by

other researchers on the conformation of a single ‘core’ group (Abascal, 1974;

Harbottle et al., 1976; Rattray and Harbottle, 1992; Shepard, 1946), new

evidence could be provided that might help refine the current classification

of this significant ware.

The procedure is shown step by step in the supplementary video

“Video 2”. The archaeological pottery set consisted of 176 ceramic frag-

ments and 9 clay samples (extracted from a natural deposit near the Rio

Carnero area). Both sets of materials were analyzed with a portable X-ray

fluorescence spectrometer. To conduct the comparative analysis with

adequate variability, it was necessary to collect several samples of the

same ceramic type from different locations and contexts. Therefore, the

pottery samples were provided by different research projects that performed

systematic excavations at various Central Mexico archaeological sites

(Figure 8; Table 4).

Video 2 Step-by-step video on how to process spectral data

of ceramic samples used in Video 2. Video files available at

www.cambridge.org/argote_machine-learning
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Pottery is a very heterogeneous material; therefore, the ceramic samples were

treated differently. Following the recommendations of Hunt and Speakman

(2015), the ceramic samples were prepared as pressed powder pellets. From

each pottery sherd, a fragment weighing approximately 2 g was cut. The

external surfaces of each fragment were abraded with a tungsten carbide

handheld drill, reducing the possibility of contamination from depositional

processes. The residual dust was removed with pressurized air, and the frag-

ments were pulverized in an agate mortar. After grinding and homogenizing, the

powder was compacted into a 2-cm diameter pellet by a cylindrical steel plunger

with a manually operated hydraulic press. No binding agent was added. These

pellets provided samples that were more homogeneous and with a uniformly flat

analytical surface.

Figure 9 displays an example XRF spectrum of one Thin orange pottery

sample. The main elements in the ceramic matrix are iron (Fe), followed by

calcium (Ca), potassium (K), silicon (Si), and titanium (Ti); aluminum (Al),

manganese (Mn), nickel (Ni), rubidium (Rb), and strontium (Sr) are also present

at lower intensities. Sulfur (S), chromium (Cr), copper (Cu), and zinc (Zn) can

be considered trace elements.

In this case, the matrix has many more variables than observations (n ≪ p),

with p = 2,048; thus, much of the information contained was irrelevant for

clustering. As mentioned at the beginning of this section, it was decided to

manually cut some readings as they contained values close to zero or corres-

ponded to undesirable effects, such as light elements below detection limits, the

Compton peak, Raleigh scattering and palladium and rhodium peaks (produced

by the instrument). The cuts were made at the beginning (from channel 1 to 39)

and end (from channel 831 to 2,048) of the spectrum, retaining the elemental

information corresponding to the analytes between channels 40 and 830, related

to the energy range of 0.78 to 16.21 keVof the detector resolution. In this way,

Table 4 Number of Thin orange pottery samples and locations

Archaeological site Mexican state N

Teteles de Santo Nombre Puebla 23
Izote, Mimiahuapan, Mapache, and other sites Puebla 22
Huejotzingo Puebla 6
Xalasco Tlaxcala 53
Teotihuacan Mexico 72
Clay source Puebla 9

Total: 185
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only p = 791 channel intervals were kept. This matrix can be found in the

supplementary material as file ‘NaranjaTH_YAcim40_830’. It should be noted

that because there were no displacements in the spectra, it was not necessary to

use the peak alignment algorithm.

The next step was to filter the spectra as in the previous study case, using only

the EMSC, as the spectrum did not contain scattering effects. For this purpose,

use the following script:

Figure 8 Geographical location of the archaeological sites from

which the Thin orange pottery samples were collected. Color version available

at www.cambridge.org/argote_machine-learning
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## Script to filter with the EMSC algorithm

rm(list = ls())

library(EMSC) #Package EMSC (Performs model-based background

correction and

# normalization of the spectra)

dat <- read.csv(“C:\\NaranjaTH_YAcim40_830.csv”, header=T) #

Calls the spectral data

#file

str(dat) # to see the structure of the data

dat1 <- dat[2:792] # Eliminates the first column related to the

sample identifier

str(dat1)

pottery.poly6 <- EMSC(dat1, degree = 6) #Filter spectra with a

6th-order polynomial

str(pottery.poly6)

write.csv(pottery.poly6$corrected, file=”pottery_EMSC.csv”)

# to save the data file

# filtered with the EMSC

Once filtering was performed, the diagnosis of outliers was performed with the

following script:

## Script to diagnose outliers (Todorov, 2020)

rm(list=ls())

library(rrcov)

Figure 9 XRF spectrum of a representative sample of Thin orange pottery.

Color version available at www.cambridge.org/argote_machine-learning
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dat <- read.csv(File_X, header=T)

str(dat)

pca <- PcaHubert(dat, alpha = 0.90, mcd = FALSE, scale = FALSE)

pca

print(pca, print.x=TRUE)

plot(pca)

summary(pca)

In the outlier detection with the ROBCA algorithm (Figure 10), most of the

ceramic sample data vectors have regular patterns with normal punctuation and

orthogonal distances. We can distinguish seventeen orthogonal outliers in the

upper left quadrant of the graph, one observation with an extreme orthogonal

distance (observation no. 126), and a small group of ten bad leverage points in

the upper right quadrant. The robust PCA high-breakdown method treats this

last group as one set of outliers. An interesting fact about the set of detected bad

Figure 10 Outlier map of the Thin Orange pottery dataset computed with

ROBPCA based on five principal components. Color version available at

www.cambridge.org/argote_machine-learning
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leverage points is that nine of them correspond to clay deposits (cases no. 177

to 185); only one sample (case no. 115) is related to an archaeological site in

Puebla that shows a low amount of manganese content. Therefore, instead of

just being measurement errors, outliers can also be seen as data points that

have a different origin from regular observations, such as the case of the pure

clay samples. According to this, no observations were removed from the

analysis.

For the Bayesian clustering, the model parameters were set the same way as

in the obsidian case. The algorithm provides a list of the potentially important

variables that contribute to the clustering. In this case, the variable selection

extension of the Gaussian model (Figure 11) selected 22 of the 791 initial

variables as the most important ones. These twenty-two variables (channels)

corresponded to the energy ranges of Fe (6.3 to 6.55 and 7 to 7.11 KeV) and Ca

(3.7 to 3.75 KeV) chemical elements. Calcium and iron oxides (such as hema-

tite) are two components that are commonly found in pottery and mudrock

composition at variable concentrations depending on the parental material

(Callaghan et al., 2017; Minc et al., 2016; Ruvalcaba et al, 1999; Stoner,

2016). These results are different from Rattray and Harbottle (1992) analysis

in which the pottery was mainly determined by high concentrations of Rb, Cs,

Th and K. On the other hand, Kolb (1973) found that Fe and Ti were important

elements present in his Alpha and Beta groups.

Figure 11 Log Bayes factor (logB10) for the Gaussian variable selection model

of Thin orange data. The Bayes factors are computed for the optimal grouping

found by agglomerative clustering using the Gaussian model. Color version

available at www.cambridge.org/argote_machine-learning
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The resulting dendrogram (Figure 12) grouped the data into two main clusters

(I and II) subdivided into six (1 to 6) and two subgroups (7 and 8), respectively.

Subgroups 7 and 8 showed chemical differences that distinctively separated them

from the rest of the groups. The number of samples (n) assigned to each subgroup

were as follows: Group 1 = 23, Group 2 = 51, Group 3 = 16, Group 4 = 36, Group

5 = 13, Group 6 = 12, Group 7 = 18, and Group 8 = 16. Samples from group 1

come mostly from the archaeological site of Xalasco. Samples from Groups 2, 3,

6, 7, and 8 come from Teotihuacan, Xalasco, and several Puebla sites. Group 4

contains samples from some sites in Puebla State and the northeastern sector of

Teotihuacan city. Group 5 has samples mainly from Teteles del Santo Nombre

and a few fromXalasco and Teotihuacan. Groups 4 and 6 contain the clay samples

from the Rio Carnero area. Table 5 summarizes the ceramic shapes included in

each group, showing a great variability of forms in each group.

The results obtained in this spectral analysis revealed the existence of two large

groups subdivided into several subgroups that exhibit a certain degree of chemical

differentiation, indicating that different raw materials were used to produce the

Thin Orange ware. Pottery is produced by mixing clays and aplastic particles or

temper, with the clay predominating over the temper. In this case, the clay deposit

Figure 12 Dendrogram and optimal grouping found by the Gaussian model for

the Thin Orange samples. The horizontal bar at the bottom refers to

the optimal grouping found by the Gaussian model. Color version available at

www.cambridge.org/argote_machine-learning
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Table 5 Number of samples (n) and ceramic forms included in each subgroup:

Group 1 Group 2 Group 3 Group 4

(n = 23) (n = 51) (n = 16) (n = 36)

Hemispherical bowl with ring
base (13 sherds)

Hemispherical bowl with ring
base (12 sherds)

Bowl with ring base
(4 sherds)

Bowl with ring base (11 sherds)

Vase with incised exterior
decoration (1 sherd)

Hemispherical bowl
(6 sherds)

Cylindrical vase (4 sherds) Hemispherical bowl (3 sherds)

Tripod vase with nubbin supports
( 1 sherd)

Vessel with convex wall
(4 sherds)

Jar with incised exterior
decoration (2 sherds)

Cylindrical vase (4 sherds)

Jar with incurved rim and incised
simple double-line (1 sherd)

Cylindrical vase (5 sherds) Tripod vase with nubbin
supports ( 1 sherd)

Incense burner (1 sherd)

Jar with incised exterior
decoration (1 sherd)

Tripod vase with nubbin
supports ( 2 sherds)

Undetermined shape
(5 sherds)

Basin (1 sherd)

Pot (1 sherd) Vase with small appliqués
(1 sherd)

Vessel with pedestal base (1
sherd)

Undetermined shape (5 sherds) Tripod vessel with deep
parallel grooves (1 sherd)

Vessel with incised exterior
decoration (1 sherd)

Vessel with pedestal base
(1 sherd)

Tzacualli phase Pot (1 sherd)

Miniature vessel (1 sherd) Undetermined shape (12 sherds)
Undetermined shape

(18 sherds)
Natural clay deposit (1 sample)
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Table 5 (cont.)

Group 5 Group 6 Group 7 Group 8

(n = 13 ) (n = 12 ) (n = 18 ) (n = 16 )

Bowl with ring base (4 sherds) Hemispherical bowl with ring
base (3 sherds)

Hemispherical bowl with ring
base (7 sherds)

Hemispherical bowl with ring
base (5 sherds)

Vessel with pedestal base
(1 sherd)

Jar with incised exterior
decoration (1 sherd)

Hemispherical vessel
(2 sherds)

Annular-based hemispherical
bowls and incised exterior
decoration (1 sherd)

Vessel with incised exterior
decoration (1 sherd)

Natural clay deposit
(8 samples)

Vessel with recurved
composite wall (1 sherd)

Tripod vessel with everted rim
(1 sherd)

Cylindrical vase (3 sherds) Vessel with exterior punctate
decoration (1 sherd)

Vessel with red pigment and
incised exterior decorat
ion (1 sherd)

Vessel with convex wall and
flat-convex base (1 sherd)

Pot (1 sherd) Jar with incised exterior
decoration (1 sherd)

Undetermined shape (3 sherds) Undetermined shape (6 sherds)
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samples were classified inside the main group I (in subgroups 1 and 6); thus, it can

be assumed that, for manufacturing the pieces related to this main group, clay

banks from the same geological region were used. The Rio Carnero region is

shaped by a set of deep barrancas (canyons) predominantly from the Acatlán

Complex, the geological vestige of a Paleozoic ocean formed between theCambro-

Ordovician and late Permian periods (Nance et al., 2006). This region contains

banks of schists rich in hematite located in the ravines of Barranca Tecomaxuchitl

and Rio Axamilpa. On the other hand, the chemical differences of main group II

(with only 34 samples) indicate the extraction of clay from a different region.

According to the results, an interpretation can be as follows. The division of the

samples into two main groups seems to be associated with two different clay

deposit regions fromwhich the rawmaterial was exploited. The internal differences

in their chemical composition, probably related to differences in temper, influenced

the clustering algorithm to classify them into separate subgroups. This could mean

that the aplastic particles used in the mixture for manufacturing the ceramic pieces

did not naturally occur in the clay and were added by the artisans. The last

observation is consistent with Kolb (1973), who stated that the temper was

deliberately added and is not found in situ in the natural clay deposit.

The considerable variety of patterns presented by each of the eight subgroups

suggests that the recipe for manufacturing the pieces was not used uniformly and

that multiple ceramic production centers existed, employing their own and

specific production recipes. In other words, each center would have produced

its version of the Thin orange pottery with a standardized composition, and this

was different to some extent from the ceramic made in other workshop centers.

The results also support the idea that there was compositional continuity through

time, despite the different shapes of the analyzed pieces.

3 Processing Compositional Data

3.1 Applications and Case Studies

In this section, data from published case studies were used to illustrate the

techniques for processing compositional data. In summary, the steps for handling

all datasets are as follows. First, the data are rescaled in such a way that the sum of

the elemental concentrations row is equal to 100 percent. Afterwards, the data are

transformed to log-ratios using the ilr transformation, translating the geometry of

the Simplex into a real multivariate space. Once the ilr coordinates are obtained,

data are standardized using a robust min/max-standardization. Any observation

with a value equal to zero is imputed. As a diagnosis method, an MCD estimator

is applied to identify the presence of outliers in the data. Then, model-based

clustering is employed for the classification and visualization of the data. Finally,
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an SBP is calculated and graphically represented using the CoDa-dendogram for

understanding differences in the composition of the clusters.

3.2 Exercise 1: Unsupervised Classification of Central Mexico
Obsidian Sources

In this case study, the compositional values of obsidian samples collected from

different natural sources (Table 6) located in Central Mexico, published by Lopez-

Garcia et al. (2019), and Guatemala, retrieved from Carr (2015), were processed.

The procedure is described step by step in the supplementary video “Video 3”. The

intention of this analysis is to demonstrate the performance of the model-based

clustering and an unbiased visualization system in a controlled environment. The

dataset was ideal for the analysis because the correct number of clusters and the

cluster to which each of the observations belonged were known.

Video 3 Step-by-step video on how to process compositional data of the

obsidian samples used in Video 3. Video files available at

www.cambridge.org/argote_machine-learning

The dataset consisted of n = 136 samples with p = 10 variables containing the

elemental composition of the samples (Mn, Fe, Zn, Ga, Th, Rb, Sr, Y, Zr, and

Nb), obtained with a portable X-ray fluorescence (pXRF) instrument. This

matrix is available in the supplementary material as file “Mayas_sources_onc.

csv”. In this example, we considered the problem of determining the structure of

the data without prior knowledge of the group membership. The estimation of

the parameters was performed with the maximum likelihood, and the best

34 Current Archaeological Tools and Techniques

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009506625
Downloaded from https://www.cambridge.org/core. IP address: 3.139.240.47, on 25 Dec 2024 at 07:37:37, subject to the Cambridge Core terms of

http://www.cambridge.org/argote_machine-learning
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009506625
https://www.cambridge.org/core


model was selected using the ICL criterion, resulting in K = 12 components.

Compositional data are constrained data and therefore must be translated into

the appropriate geometric space. To convert the data to completely compos-

itional data, the following code from the “compositions” package in R is used

(van den Boogaart et al., 2023):

rm(list=ls()) # Delete all objects in R session

## log-ratio analysis

# load quantitative dataset. The name of the file for this example

is Sources.csv. You can

#change it for the location and name of your own data file.

data <- read.csv(”C:\\obsidian\\Mayas_sources_onc.csv”,

header=T)

str(data) # displays the internal structure of the file, including

the format of each column

dat2 <- data[2:11] # delete data identification column

str(dat2)

# transformation of the data to the ilr log-ratio

library(compositions) ## van den Boogaart, Tolosana-Delgado and

Bren (2023)

xxat1 <- acomp(dat2) # the function “acomp” representing one

closed composition.

Table 6 Samples collected from Mesoamerican obsidian sources.a

Source name
Geographic
region

Sample ID
no. N

Ahuisculco Jalisco 1−9 9
El Chayal Guatemala 10−25 17
San Martin Jilotepeque Guatemala 26−39 14
Ixtepeque Guatemala 40−55 16
Otumba (Soltepec) Edo. de México 56−65 10
Otumba (Ixtepec-

Malpais)
Edo. de México 66−88 23

Oyameles Puebla 89−95 7
Paredon Puebla 96−102 7
Tulancingo-El Pizarrin Hidalgo 103−107 5
Sierra de Pachuca Hidalgo 108−117 10
Zacualtipan Hidalgo 118−127 10
Zinapécuaro Michoacán 128−134 8

a The compositional values of samples from El Chayal, San Martin Jilotepeque, and
Ixtepeque were retrieved from Carr (2015).
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# With this command, the dataset is now closed.

xxat2 <- ilr(xxat1) # isometric log-ratio transformation of the

data

str(xxat2)

write.csv(xxat2, file=”ilt-transformation.csv”) #You can

choose a personalized file name

In the isometric transformation output file, the geometric space is D – 1. Once

the data have been taken to the Simplex geometry, it is important to normalize

them robustly so that there are no variables with greater weight. This is achieved

by loading the clusterSim package in R with the normalization option = na3

using the code presented below:

# Robust normalization

# In our case, the file “xxat2” that contains the isometric

transformation of the #compositional data was normalized with

the robust equation presented in the #transformations section.

library(clusterSim) ## Walesiak and Dudek (2020)

z11<- data.Normalization(xxat2,type=”n3a”,normalization=

”column”,na.rm=FALSE)

# This corresponds to the robust normalization described in

‘Compositional and

#Completely compositional data’ Section of Volume I.

# n3a positional unitization ((x-median)/min(x)- max(x))

z12 <- data.frame(z11) # After the previous operations, it is

necessary to convert the

#data output to a data frame to tell the program that the

observations are in the

#rows and columns represent the attributes (variables)

str(z12)

After transforming the data through robust normalization, it is convenient to verify

that there are no values equal to 0. In this example, no zero values were present;

thus, no imputationwas needed. In the case that your data have values equal to zero,

it is recommended to employ an imputation algorithm such as Amelia II:

# Imputation of data

# Loads the user interface to perform the imputation of values

Library (Amelis)

AmeliaView()

Afterwards, to identify the presence of outliers in the data, a diagnosis is

performed through the MCD estimator of the rrcov package (Todorov and

Filzmoser, 2009):
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# Parameters of the model

# kmax maximal number of principal components to compute. The

default is kmax=10.

# Default k= 0; if we do not provide an explicit number of compo-

nents, the algorithm

# chooses the optimal number. alpha: 0.7500; this parameter

measures the fraction

# of outliers the algorithm should resist (default).

# The matrix dimension in this example is n = 136 and p = 10

library(rrcov) ## Todorov (2020)

MCD_1D <- data.matrix(z12[, 1:9])

cv <- CovClassic(MCD_1D)

plot(cv)

rcv <- CovMest(MCD_1D)

plot(rcv)

summary(MCD_1D)

Figure 13 shows the distance–distance plot, which displays the robust

distances versus the classical Mahalanobis distances (Rousseeuw and van

Zomeren, 1990), allowing us to classify the observations and to identify the

potential outliers. Note that the choice of appropriate distance metric is

essential (Thrun, 2021a). The dotted line represents points for which the

classical and robust distances are equal. Vertical and horizontal lines are

plotted in values x = y = √X 2
ρ ; 0:975; points beyond this threshold are con-

sidered outliers. While the robust estimation detects many observations whose

robust distance is above the threshold, the Mahalanobis Distance classifies all

points as regular observations. Observations with large robust distances are not

candidates for outliers because they do not have an impact on the estimates. The

only two observations that exceed the values of X2 are those with ID numbers 9

and 136, which are convenient to eliminate from the estimate and leave only

n = 134 samples in the dataset.

Once the preprocessing of the data has concluded, the mixed model of

multivariate Gaussian components is adjusted for clustering purposes using

the Rmixmod and Clusvis packages:

# Classification with Mixture Modeling: Clustering in Gaussian

case

# To fit the mixture models to the data and for the classification,

two additionaL

#programs must be loaded.

rm(list=ls())

library(Rmixmod) ## Lebret et al., 2015)
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library(ClusVis) ## (Biernacki et al., 2021)

fammodel <- mixmodGaussianModel(family=”general”,equal.

proportions=FALSE)

Mod1<-mixmodCluster(data,12, strategy = mixmodStrategy(algo =

“EM”, nbTryInInit = 50, nbTry=25))

#EM (Expectation Maximization) algorithm

# nbTryInInit: integer defining the number of tries in the

initMethod algorithm.

# nbTry: integer defining the number of tries

summary(Mod1)

Mod1[”partition”] # partition output made by mixing model

## Gaussian-Based Visualization of Gaussian and Non-Gaussian

Model-Based Clustering

library(ClusVis) ## (Biernacki et al., 2021)

resvisu <- clusvisMixmod(Mod1) # Gaussian-Based Visualization

Figure 13 Distance–distance plot of the samples from obsidian sources.

Color version available at

www.cambridge.org/argote_machine-learning
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of Gaussian Model-Based #Clustering

plotDensityClusVisu(resvisu) # probabilities ofclassification

are generated by using the model #parameters.

In this script, the command mixmodGaussianModel is an object defining the list

of models to run. The function mixmodCluster computes an optimal mixture

model according to the criteria supplied and the list of models

defined in [Model] using the algorithm specified in the command ‘strategy’

[strategy = mixmodStrategy (algo = “CEM”, nbTryInInit = 50,

nbTry=25)] (Lebret et al., 2015). The estimation of the mixture parameters can

be carried out with a maximum likelihood using the EM algorithm (Expectation

Maximization), the SEM (Stochastic EM), or by maximum likelihood classifica-

tion using the CEM algorithm (Clustering EM). In this example, we use the EM

algorithm. With the general family command, it is possible to give more flexibil-

ity to the model that best fits the data by allowing the volumes, shapes, and

orientations of the groups to vary (Lebret et al., 2015).

Because our groups had different proportions (each group had a different

sample size), the FALSE command was established as Z12 in the data frame.

As an output of this estimation step, the program provides a partition and

other parameters, including the proportions of the mixed model in each

group, their averages, variances and likelihood, and the associated source

of each group obtained for this example. Table 7 shows the output of the

algorithm; in this table, it can be observed that although the analysis was

carried out without labeling the observations, they were correctly assigned

to their corresponding source group, except for a single observation of

the Otumba (Ixtepec-Mailpais) subsource that was assigned to Otumba

(Soltepec).

In this case, the model that best fitted the data turned out to be

“Gaussian_pk_Lk_C” with the following cluster properties: Volume = Free,

Shape = Equal, and Orientation = Equal. It is also possible to analyze the

clustering results graphically. It is important to note that the graphics produced

by the “ClusVis” package may vary in the output. The authors state that, for

some specific reproducibility purposes, the Rmixmod package allows the ran-

dom seed to be exactly controlled by providing the optional seed argument

(“set.seed: number”). However, despite having performed multiple tests with

different seeds, the resulting graphics tend to vary. Figure 14 displays the

bivariate spherical Gaussian visualization associated with the confidence

areas; the size of the gray areas around the centers reflects the size of the

components. The accuracy of this representation is given by the difference

between entropies and the percentage of inertia of the axes.
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Table 7 Assignation of the mixing proportions with Rmixmod (z-partition of the obsidian sources).

Cluster Proportion Group assigned n Source

1 0.1269 6,6,6,6,6,6,6,6 8 Ahuisculco
2 0.0746 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 17 El Chayal
3 0.0522 4,4,4,4,4,4,4,4,4,4,4,4,4,4 14 San Martin Jilotepeque
4 0.1045 12,12,12,12,12,12,12,12,12,12,12,12, 12,12,12,12 16 Ixtepeque
5 0.0522 8,8,8,8,8,8,8,8,8,8,8 11 Otumba (Soltepec)
6 0.0597 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 22 Otumba (Ixtepec-Malpais)
7 0.1642 5,5,5,5,5,5,5 7 Oyameles
8 0.0821 11,11,11,11,11,11,11 7 Paredon
9 0.0746 10,10,10,10,10 5 Tulancingo-El Pizarrin
10 0.0373 2,2,2,2,2,2,2,2,2,2 10 Sierra de Pachuca
11 0.0522 9,9,9,9,9,9,9,9,9,9 10 Zacualtipan
12 0.1194 3,3,3,3,3,3,3 7 Zinapécuaro
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In the graph, it can be observed that the mapping of f is accurate because the

difference between entropies is zero: δE f ; ĝð Þ ¼ 0. The first dimension provided

by the LDA mapping was the most discriminative, with 55.7 percent of the

discriminant power; the sum of the inertia of the first two axes was 55.7 + 23.22

= 78.92 percent of the discriminant power; thus, most of the discriminant

information was present on this two-dimensional mapping. Components

12, 7, 4, and 2 contain most of the observations. The components that show

the greatest difference in their chemical composition are the samples from

Components 1 and 6 (El Chayal and Ahuisculco, respectively) and Components

2 and 10 (Pachuca and Pizarrin) in the other extreme. Components 5 and 11

(Oyameles and El Paredon) are the ones that are closest to each other (regarding

their mean vectors) and slightly join without meaning that the observations

are mixed, as seen in the partition results of Table 7. An important

observation about these results is that there are no overlaps between any of

the sources used in the classification, hence fulfilling all the conditions of a

good classification.

3.3 Exercise 2: Obsidian Sources in Guatemala

Carr (2015) performed a study to identify obsidian sources and subsources in the

Guatemala Valley and the surrounding region. In his project, he analyzed a total of

215 samples from El Chayal, San Martin Jilotepeque, and Ixtepeque geological

depositswith pXRF spectrometry. Of these samples, n= 159were collected from36

different localities in El Chayal, n = 34were gathered from eight sampling localities

in San Martin Jilotepeque, and n = 22 were collected from four sampling locations

in Ixtepeque. The data matrix for this example can be found in the supplementary
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Figure 14 Component interpretation graph of the obsidian sources. Color

version available at www.cambridge.org/argote_machine-learning
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file “Obs_maya.csv”. To discriminate between these three main obsidian sources,

Carr (2015) used bivariate graphs, plotting the concentrations of Rb versus Fe

(see the graphic reproduced from his data in Figure 15). In the figure, it is

possible to discriminate three different groups, but it is difficult to distinguish

between different subsources. In addition, there is a great dispersion of the

points from the El Chayal and Ixtepeque sources.

Carr (2015) also intended to examine the chemical variability of the samples to

discriminate subsources within each of the main sources. For this purpose, the

author analyzed the samples from each of the regions separately. For the El Chayal

region, he used Rb versus Zr components in a bivariate display that resulted in five

different subsources. Using this procedure, the author determined the existence of

two distinct geochemical groups for the SanMartin Jilotepeque obsidian source and

two for Ixtepeque. To support the bivariate classification, Carr calculated the

Figure 15 Bivariate plot using Rb (ppm) and Fe (ppm) concentrations of El

Chayal, San Martin Jilotepeque, and Ixtepeque obsidian source systems

(graphic reproduced with data from Carr, 2015). Color version available at

www.cambridge.org/argote_machine-learning
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Mahalanobis distances (MD) to obtain the group membership probabilities of the

observations, making use of the following set of variables: Sr/Zr, Rb/Zr, Y/Zr, Fe/

Mn, Mn, Fe, Zn, Ga, Rb, Sr, Y, Zr, Nb, and Th. It should be noted that this was not

possible for El Chayal Subgroups 4 and 5 because their sample size was too small,

preventing the calculation of their probabilities.

From his study, several observations can be made. First, the data were

processed without any transformation. Therefore, it is advisable to open the

data to remove the constant sum constraint. Second, the author managed to

establish a total of nine obsidian subsources using bivariate graphs for each

of the regions separately. Third, the calculation of probabilities to determine

group memberships using the MD was not possible in all cases due to the

restrictions imposed by the sample size. Furthermore, if Carr (2015) data

were processed according to one of the commonly established methodolo-

gies, that is, transforming the data to log10 and applying a PCA, the

explained variance of the first two components would have been only

56.53 percent, and six PCs would have been needed to explain 95.58 percent

of the variance.

By plotting all the data of the nine subsources together using a PCA

(Figure 16), including the information about the origin of the samples, it

can be observed that the overlap between the different groups is unavoid-

able. In this way, it can be concluded that this methodology is not able to

differentiate the chemical characteristics of the samples. Therefore, the

discrimination of sources using concentrations is a procedure that requires

nonconventional methods. According to this, we can assume that many of

the published classifications that follow preestablished methods have

incurred serious classification errors.

Employing the same data contained in Carr (2015), it was applied the

methodology described in the associated section in Statistical Processing of

Quantitative Data of Archaeological Materials www.cambridge.org/Argote.

The entire procedure is described step by step in the supplementary video

“Video 4”. First, as part of the preprocessing, the data were transformed to the

isometric log-ratio and then robustly standardized. Afterward, and as an

essential step, the diagnosis of the data was made with the robust MCD

estimator (see the scripts for this part of the procedure in the previous exer-

cise). Figure 17 shows the distance-distance plot in which eleven outliers were

detected (92, 115, 142, 150, 166, 189, 190, 191, 192, 193, 204), displayed in

the right half of the graph. In this case, it was decided not to exclude them from

the analysis because part of these observations (190 to 193) corresponded to

the samples identified by Carr (2015) as belonging to the Jilotepeque 2

subsource (FP01, SAI01, SAI03, SAI04).
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Video 4 Step-by-step video on how to compositional

data of the obsidian samples used in Video 4. Video files available at

www.cambridge.org/argote_machine-learning

Once the diagnosis was performed, unsupervised classification was carried

out using the Gaussian mixture model with the Rmixmod and clusVis packages.

The data matrix for this example consisted of n = 215 observations and D = 10

parts representing the Simplex. If the number of components is unknown and is

to be estimated from the data, Rmixmod includes the parameter nbCluster to run

a cluster analysis with a list of clusters (from 2 to n clusters). In this example,

this parameter was set to “1” for the minimum number of components and “9”

as the maximum number. Using the Gaussian mixture model, the Maximum

likelihood inference was performed, and model selection was performed by the

ICL criterion, detecting nine components. The output of the Rmixmod algorithm

can be found in Table 8. The model that best fitted the data turned out to be

Gaussian_pk_Lk_C, with clusters with the following properties: Volume =

Free, Shape = Equal, and Orientation = Equal. The script used is the following:

rm(list=ls())

library(Rmixmod)

library(ClusVis)

data <- read.csv(”C:\\Cobean\\Nueve_grupos\\robust_n-imp5.

csv”,header=T)

str(data)

fammodel <- mixmodGaussianModel(family=”general”,equal.

proportions=FALSE)

Mod1<-mixmodCluster(data, 1:9, criterion = “ICL”, strategy =

mixmodStrategy(algo = “CEM”, nbTryInInit = 50, nbTry=25))
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Figure 16 Plot of the two principal components of the samples from nine

subsources in Guatemala valley. Color version available at

www.cambridge.org/argote_machine-learning
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Figure 17 Distance–Distance plot of the samples of obsidian sources. Color

version available at www.cambridge.org/argote_machine-learning
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Table 8 Output of the Rmixmod algorithm.

*******************************************************
* Number of samples = 215
* Problem dimension = 9
*******************************************************
* Number of cluster = 9
* Model Type = Gaussian_pk_Lk_C
* Criterion = ICL(−3126.1685)
* Parameters = list by cluster
truncated output

z-partition
88 88 88 88 888 88 88 88 555 55 55 55 555 55 55 55 555 55 55 55 959 55 55 55 555 99 99 59 999 99 99 55
55 55 95 55 995 55 55 95 555 95 59 55 999 95 59 99 999 99 99 99 955 55 55 55 555 55 52 22 242 22 22 24
25 22 44 44 444 44 59 99 111 13 13 11 111 11 11 11 111 11 11 13 113 77 77 66 666 66 66 66 666 66 66 66
6 6
ICL(−3117.1847)
Log-likelihood = 1963.1254
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summary(Mod1)

Mod1[”partition”]

resvisu <- clusvisMixmod(Mod1)

plotDensityClusVisu(resvisu, add.obs = F, positionlegend =

“topleft”)

The partition of the sample space of Figure 18 presents the Gaussian-like

component overlap on the most discriminativemap, where the difference between

entropies is almost zero [δE f ; ĝð Þ ¼ �0:01]. The sum of the inertia of the first

two axes is 61.62 + 18.93 = 80.55 percent of the discriminant power. The groups

with more observations are numbers 8, 3, 1, and 6. The most isolated groups are

1, 6, and 7; their position on opposite sides suggests that their chemical signa-

tures are entirely different with respect to the rest of the subsources, with

Component 7 differing the most. This component corresponds to Jilotepeque 2.

Figure 18 Component interpretation graph of the Mayan obsidian sources.

The component numbers indicate the following subsources: [1] Jilotepeque 1,

[2] El Chayal 3, [3] El Chayal 2*, [4] El Chayal 4, [5] Ixtepeque 2, [6] Ixtepeque

1, [7] Jilotepeque 2, [8] El Chayal 2, and [9] El Chayal 1. Color version

available at www.cambridge.org/argote_machine-learning
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The first thing that we can observe in these results is that the algorithm

estimates the optimal number of groups as K = 9 components, which would

correspond to the 9 subsources registered for the region. Therefore, it can be

concluded that the chemical variability of each subsource is sufficiently differ-

ent from the others, allowing recognition of its origin with adequate accuracy.

However, the assignments of the samples to the components are different than

the assignment made by Carr, as seen in the assignment of the units to each one

of the components or subsources displayed in Table 9. This is because the

mixture model is more robust for modeling group analysis.

Table 9 shows the z-partition of the Gaussian mixture model. In the first

column are the nine subsources classified by Carr (2015). In the second column,

the sample size of each subsource estimated by the author is tabulated. In the

third column, the z-partition of nine components of the sample can be observed.

The number of observations assigned to each component is recorded in the

fourth column, and the proportions of each component are recorded in the fifth

column. In the last column are the differences between the algorithm assigna-

tion and the classification provided by Carr.

In this example, the first component coincides with Carr’s classification; that

is, the same 17 sample units were assigned to the El Chayal 1 subsource. For the

El Chayal 2 subsource, Carr classified 113 samples to this subsource, while the

mixture model assigns only 78 observations to this component and 40

Table 9 Assignation of the mixture proportions with Rmixmod (z-partition of
Guatemala obsidian sources and subsources).

Carr (2015)
Subsource

Carr (2015)
sample size (n)

Rmixmod
component
group ID

Rmixmod
sample
assignation Proportion z-partition

El Chayal 1 17 8 17 0.0791 El Chayal 1

El Chayal 2 113 5 78 0.3628 El Chayal 2

9 40 0.1860 El Chayal 2*

El Chayal 3 16 2 13 0.0605 El Chayal 3

El Chayal 4 10 4 11 0.0512 El Chayal 4

El Chayal 5 3

Jilotepeque 1 30 1 26 0.1209 Jilotepeque 1

3 4 0.0186 Jilotepeque
1*

Jilotepeque 2 4 7 4 0.0186 Jilotepeque 2

Ixtepeque 1 17 6 22 0.1023 Ixtepeque 1

Ixtepeque 2 5

Total = 215 215 1.0000

Log-likelihood = 1963.1254 ICL(-3117.1847)
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observations to component 9, now marked as El Chayal 2*. In other words, the

original El Chayal 2 subsource was divided into two subsources by the mixture

model, separating 35 samples from the original El Chayal 2 and transferring two

samples from El Chayal 3 and three from El Chayal 5 to the new El Chayal 2*

subgroup. Carr classified 16 observations in the El Chayal 3 group and 10

samples in the El Chayal 4 group, but the mixing model classification assigned

only 13 samples to the El Chayal 3 group and 11 to the El Chayal 4 group. Due

to the new assignations, the original El Chayal 5 subsource in Carr’s classifica-

tion was eliminated.

For Jilotepeque, Carr identified two subsources: Jilotepeque 1 and

Jilotepeque 2, with 30 and 4 observations, respectively. The mixture model

also identified two subsources but with slight differences in sample size for the

case of Jilotepeque 1, with 26 observations in one component and 4 observa-

tions in another subsource marked as Jilotepeque 1*. The case of Jilotepeque 2

still consisted of four samples. For the Ixtepeque subsources, Carr identified two

subsources: Ixtepeque 1 with 17 observations and Ixtepeque 2 with five obser-

vations. Conversely, the mixture model did not find significant differences to

divide this source into two subsources, so the 22 original observations were

assigned to a single component (Ixtepeque 1).

The Mahalanobis distance (MD) has been widely used as a classification

technique in archaeometry to estimate relative probabilities of group member-

ship. However, as discussed in the introduction of Statistical Processing of

Quantitative Data of Archaeological Materials www.cambridge.org/Argote,

this statistic presents several drawbacks that can cause serious problems in the

calculation of group memberships. For example, Glascock et al. (1998) ana-

lyzed the provenance of obsidian samples from Central Mexico using the first

three principal components, which explained approximately 92 percent of the

variance. The author used the MD to calculate relative probabilities for the assign-

ment of samples to the groups and obtained erroneous results for the sources of

Santa Elena (Hidalgo) and the subsources of Pachuca. This exhibits that using a

technique such as MD to make assignments can force some observations to belong

to one of the groups. Furthermore, it was shown that multimodal distance distribu-

tions are preferable (Thrun, 2021b), which is a property that MD rarely possesses.

In contrast, model-based clustering produces an association weight based on

a formal probability, called the posterior probability of each observation belong-

ing to each group. The partition is derived from a maximum likelihood estima-

tor using the MAP procedure (see the section on model-based clustering in

Statistical Processing of Quantitative Data of Archaeological Materials

www.cambridge.org/Argote). This procedure is carried out through the EM

algorithm or one of its variants. Parameter estimation using the EM algorithm
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calculates the weights for each observation, given the parameter values of the

mixture components and the overall mixture weights (Kessler, 2019). These

weights are used as measures of the strength of the association between each

observation and the groups in the model in such a way that, in the model-based

method, the observations in the same cluster are generated from the same

probability distribution of the cluster (Grün, 2019).

To exemplify this procedure, the groups established by Carr (2015) were

contrasted according to his scatter diagrams and the probabilities obtained from

the calculation of the MD made by the same author and the probabilities

calculated using the mixture model. The reader can directly contrast the results

of the calculation of the probabilities of membership obtained with both

methods by directly consulting the work of Carr (2015) and computing the

model-based clustering probabilities with the following command:

(Mod1@bestResult@proba) # Calculation of probabilities with

the mixture model

Bymaking this comparison, one can appreciate that the memberships calculated

with the MD do not coincide with the groups designated by Carr for each of the

localities in the region. It is important to note that, in some cases, the MD

underestimates and, in others, overestimates the probabilities of belonging to a

group. The MD sometimes assigns the observations to the groups even when

their probability of membership to a group is well below 50 percent. This fact

has to do with the clear violation of the assumption of normality established by

the MD method. On the other hand, the probabilities obtained by the mixture

model are usually above 90 percent, except for three cases.

If the number of components is small and the sample size is large, the ClusVis

program allows a pseudoscatter plot of the observation memberships to be

obtained. In this plot, each observation is projected as colored dots representing

the partition membership z; the information about the uncertainty of the classi-

fication is given by the curves of the iso-probability of classification, and

information about the visualization accuracy is given by the difference between

entropies and the percentages of inertia (Biernacki et al., 2021). In this case, it

was considered to use only the five subsources belonging to El Chayal, forming

a data matrix with n = 159 andD = 10; the processing was done the same way as

for the previous case.

In Figure 19, we can see that the difference between entropies is almost zero

[δE f ; ĝð Þ ¼ �0:01]. The sum of the inertia of the first two axes is 61.94 + 26.98

= 88.92 percent of the discriminant power. Three probability levels of classifi-

cation were obtained for El Chayal samples (0.50, 0.80, and 0.95); the observa-

tions are represented with the label of the component maximizing the posterior
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probability of classification. Only four of the 159 observations were misclassi-

fied into component 4; in the rest of the components, there are no misclassified

observations, and the membership of the observations is above 0.80 percent and

0.95 percent. To obtain the pseudoscatter plot of the observation memberships,

the following command is used:

plotDensityClusVisu(resvisu, add.obs = T, positionle-

gend = “ topleft”)

At times it is important to have an idea of the chemical variation of each of the

existing subsources and, for this, it is not enough to compare the vectors ofmeans or

their standard deviations. To obtain a better notion of the variability between

Figure 19 Bivariate scatter plot of the observation memberships of samples

from El Chayal, Guatemala. Component 1 corresponds to El Chayal 3,

component 2 to El Chayal 1, component 3 to El Chayal 2, component 4 to El

Chayal 4, and component 5 to El Chayal 2 *. Color version available at

www.cambridge.org/argote_machine-learning
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subsources, one can turn to the definition of Binary Sequential Partition (SBP) of

parts that defines an orthonormal basis in the Simplex (see the section on

Compositional and Completely Compositional Data in Statistical Processing of

Quantitative Data of Archaeological Materials www.cambridge.org/Argote). The

partition criterionmust be based on awide knowledge of the association and affinity

between parts (van den Boogaart and Tolosana-Delgado, 2013) but can also be

obtained through the variation matrix of the log-ratios or the implementation of

compositional biplots obtained from the variance and covariance matrices using the

clr transformation (Pawlowsky-Glahn and Egozcue, 2011).

Another option is to group the parts by means of a hierarchical cluster analysis,

such as the Ward method, and use the variation matrix to calculate the distances

between the parts. With this method, a signed matrix is built, containing the bases

fromwhich an ilr definitionmatrix is obtained. The employment of the SBP allows

the bases to be obtained to generate a CoDa-dendogram (Parent et al., 2012). To

calculate the SBP and the CoDa-dendogram, it is necessary to include in the data

matrix a column that identifies the group to which each of the samples belongs. As

an example, the matrix in Table 10 illustrates the ordering of the groups.

To obtain the SBP, use this script:

rm(list=ls())

dat1 <- read.csv(X,header=T) #uploads the data file X arranged by

groups

str(dat1)#view the file structure

library(compositions)#uploads the package

x = acomp(dat1[,-c(1:2)]) #applies the closure operator only to

numeric data

x#to see the closed data

gr = dat1[,2] #assigns the variable class to gr= to identify the

obsidian groups (useful afterwards)

gr#to observe if the variable was correctly assigned

#Use an ilr basis coming from a clustering of parts

dd = dist(t(clr(x))) #computes the Euclidian distances of the

variation matrix

hc1 = hclust(dd,method=”ward.D2”) #builds the dendrogram with

the Ward method

plot(hc1)#dendogram

mergetree=hc1$merge#basis to use, described as a merging tree

color=c(”green3”,”darkviolet”,”red”, “blue”, “orange”)

CoDaDendrogram(X=acomp(x),mergetree=mergetree,col=”black”,

range=c(-6,6),type=”l”)

xsplit = split(x,gr)

for(i in 1:5){
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Table 10 Example of the matrix to obtain the SPB bases and the CoDa-dendogram.

ID Class Mn Fe Zn Ga Th Rb Sr Y Zr Nb

CH01 group2 651 5844 30 17 9 137 133 17 101 9
CH02 group2 712 6075 32 17 10 140 139 20 105 9
CH03 group2 687 5943 33 17 10 138 138 20 106 10
CH04 group2 662 6009 34 17 9 136 135 19 105 9
CH05 group2 680 6029 37 18 10 136 139 21 107 9
CH06 group2 656 6084 34 17 12 140 140 19 106 9
CH07 group2 679 6115 33 17 10 137 138 18 106 10
CH08 group2 667 5994 30 17 9 135 137 19 108 10
CH09 group2 656 6042 33 17 10 138 134 19 105 9
CH10 group2 617 6155 34 17 10 139 140 20 103 10
LM13 group2 680 6399 31 17 8 132 132 18 105 9
LJ01 group5 703 7829 36 18 11 159 165 22 120 12
LJ02 group5 668 7920 35 18 12 152 161 20 116 10
LJ03 group5 651 8352 43 18 12 157 172 23 115 9
AC13 group5 516 6675 29 17 10 129 125 18 103 7
KM01 group5 597 6999 37 18 11 141 149 19 107 9
KM02 group5 712 7243 31 17 10 141 153 21 111 9
KM03 group5 669 8248 32 17 10 147 154 20 109 10
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CoDaDendrogram(X=acomp(xsplit[[i]]),border=color[i],

type=”box”,box.pos=i-2.5,box.space=1.5,add=TRUE)

CoDaDendrogram(X=acomp(xsplit[[i]]),col=color[i],

type=”line”,add=TRUE)

}

The CoDa-dendogram of the El Chayal dataset, following the SBP, is

represented in Figure 20. In the electronic version of this Element, the

colors assigned to the subsources can be appreciated, which were the

following: El Chayal 1 = red, El Chayal 2* = green, El Chayal 2 = purple,

El Chayal 3 = blue and El Chayal 4 = orange. The length of the vertical bars

represents the variability of each ilr coordinate. In this case, we have nine

balances with D = 10 parts (components). As seen, the third balance has the

largest variance and involves the Fe (iron) part; this implies that this

balance explains a great portion of the total variance. The location of the

mean of an ilr-coordinate is determined by the intersection of the vertical

segment with the horizontal segment (variance); when this intersection is

not centered, it indicates a major or minor influence of one of the groups of

the parts.

For this example, we can see in the first balance (b1) that the median of

the five groups does not coincide. In the first balance, the box plot shows a

certain asymmetry and a greater dispersion than the second balance. This is

due to the low variability given by Fe, Mn, Zr, Rb, and Sr concentrations in

the second group of parts. In balance 1 (b1), El Chayal 4 (orange) deviates

slightly from the other groups and shows a greater contribution in the

Fe–Mn–Zr–Rb‒Sr parts. Conversely, El Chayal 2* (green) shows smaller

amounts in the Th–Nb–Zn–Ga–Y parts. The other groups contain slight

variations between the two major groups of the parts. In balance 2 (b2), El

Chayal 1 (red) has a lower variance, and as it is loaded to the left, it would

have smaller quantities of Th and Nb parts and a greater contribution of

Zn–Ga–Y parts.

In balance 3 (b3), El Chayal 2 (purple) shows a lower content of Fe and

minimal variations in Mn-Zr-Rb‒Sr with respect to the other groups. Balance 7

(b7) also displays a similar aspect, but El Chayal 1 shows a slight increase in the

Zr, Rb, and Sr parts, followed by El Chayal 2* and El Chayal 4. The effect is

null in the rest of the balances because there is good symmetry in the parts. El

Chayal 4 registers a greater variance in balances b4 and b5, as does El Chayal 3,

so these two subsources would present a greater dispersion in this group of parts

(Th–Nb–Zn–Ga–Y). The parts that play a greater role in the classification are

those to the right of the CoDa-dendogram (Fe–Mn–Zr–Rb‒Sr).
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Figure 20 CoDa-dendrogram for the El Chayal dataset using SBP. The vertical

bars correspond to the decomposition of the variance by balances. Color version

available at www.cambridge.org/argote_machine-learning
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In summary, it can be said that the range of chemical variability of each of the

subsources is different and that the discrimination between them is because

the material does not correspond to the same lava flow, which would explain the

variation in the chemical elements that compose the samples. In general, one

can speak of the existence of five different systems that could correspond to

different eruptions or volcanic events.

4 Processing a Combination of Spectral and Compositional Data

4.1 Application and Case Studies

Let us remember that chemometry is directly related to all those methods that

transform relatively complex analytical signals and data to provide the maximum

amount of relevant chemical information; it is strongly connected to multivariate

quantitative analysis and pattern recognition. From the point of view of chemo-

metry, spectral data can be represented in a matrix form (Figure 21) for further

classification with multivariate methods. This matrix (i.e., spectral data) com-

bined with a compositional data vector can be used for the classification of

archaeological samples combining spectral preprocessing techniques (such as

that described in Section 2 of this Element), variable selection methods, and

projection-based clustering analysis. In this section, the proposedmethods will be

applied to datameasured from obsidian samples and to a hypothetical “human-in-

the-loop” cluster analysis

4.2 Exercise 1: Mesoamerican Obsidian Deposits

In this example, geological samples from eight different obsidian sources (enlisted

in Table 11) were analyzed with a pXRF spectrometer, employing a TRACER III-

SDXRFportable analyzermanufactured byBruker Corporation,with anRh tube at

an angle of 52°, a drift silicon detector, a 7.5 μmBe detector window and a factory

filter composed of 6 μmCu, 1 μmTl, and 12 μmAl. The instrument was set with a

Figure 21 Matrix representation of the spectra. Color version available at

www.cambridge.org/argote_machine-learning
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voltage of 40 kV, a current of 30 μA, and a measurement time of 200 live seconds.

The measured spectra were used to construct a matrix that consisted of n = 136

[samples] and p = 2,048 [channels], available in the supplementary material as file

“Obsidian_chp4.csv”. The spectral and compositional data from these sources are

similar to the data used in the first exercise of Sections 2 and 3 of this Element. The

procedure is described step by step in the supplementary video “Video 5.”

Video 5 Step-by-step video on how to process a combination of spectral and

compositional data used in Video 5. Video files available at

www.cambridge.org/argote_machine-learning

In this case, the spectra showed a high number of noisy signals that are more

visible at higher keV values (Figure 22). Moreover, at the beginning and the end

Table 11 Number of samples collected from eight Mesoamerican
obsidian sources.

Source name Geographic region n

Ahuisculco Jalisco 9
El Chayal Guatemala 34
San Martin Jilotepeque Guatemala 17
Ixtepeque Guatemala 17
La Esperanza Honduras 16
Otumba (Soltepec) Edo. de México 10
Otumba (Ixtepec-Malpais) Edo. de México 23
Sierra de Pachuca Hidalgo 10

Total = 136
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of the spectra are areas that contain no relevant information, either because they

contain values close to zero or correspond to undesirable effects such as the

Compton peak or Raleigh scattering. Therefore, columns 1 to 38 and 903 to

Figure 22 (Top) Full spectra of the obsidian samples. (Bottom) Selection of

useful channels from the pXRF spectra. Color version available at

www.cambridge.org/argote_machine-learning
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2,048 were manually deleted from the original matrix, reducing the dimension

of the newmatrix to n = 136 obsidian samples by p = 865 channel counts (matrix

available in the supplementary material as file ‘Ixtq_2_38_865.csv’).

The second step was to filter the spectra to maximize the quality of the

information. The raw spectra were processed using the EMSC and SG filters

separately; the two resulting matrices were saved in different files. Afterward,

the EMSC-filtered data were processed using the Savitzky‒Golay filter, and the

SG-filtered matrix was treated with the EMSC algorithm to obtain two other

files, one with a combination of EMSC + SG and one with SG + EMSC filters. It

is important to note that these procedures eliminate five columns from both

extremes of the matrix, leaving only 855 variables in our final matrix. The

filtering systemwith the best performance is chosen by evaluating the parameter

values that are calculated later in the procedure. The script below allows

filtering with the EMSC algorithm and then filtering with the SG algorithm.

Note that to perform the inverse action, first use the script for the SG filter and

afterward the code for the EMSC. For individual filtering systems, that is, only

EMSC or only SG, the scripts are used separately. Just remember to update the

file names to call and run the proper one.

## Script to filter with the EMSC algorithm

rm(list = ls())

library(EMSC) #Package EMSC. Performs model-based background

correction and

# normalization of the spectra (Liland and Indahl, 2020)

dat <- read.csv(”C: \\Ixtq_2_38_865.csv’”, header=T) # To call

the spectral data file

str(dat) # to see the data structure

dat1 <- dat[,2:866] # To eliminate the first column related to the

sample identifier

str(dat1)

EMSC.basic <- EMSC(dat1)

EMSC.poly6 <- EMSC(dat1, degree = 6) #Filters the spectra with a

6th order

# polynomial

str(EMSC.poly6)

write.csv(EMSC.poly6$corrected, file=”FEmsc.csv”) # to save

the data file

# filtered with the EMSC. The user can choose other file names

##–––––––––––––––––––––––––––-

## Script to filter with the SG algorithm

library(prospectr)## Miscellaneous Functions for Processing

and Sample Selection of
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## Spectroscopic Data (Stevens et al., 2022)

data <- read.csv(”FEmsc.csv”, header=T) # Calls the file with

EMSC filtered data

# data <- read.csv(“C: \\Ixtq_2_38_865.csv’”, header=T) #Use

this instead for only SG

str(data)

# data1 <- dat[,2:866] #Add this when applying only SG

#str(data1) #Add this when applying only SG

sg <- savitzkyGolay(data, p = 3, w = 11, m = 0)

# sg <- savitzkyGolay(data1, p = 3, w = 11, m = 0) #Use this instead

for only SG

write.csv(sg, file=” FEmsc _SG.csv”) # or ‘SG.csv’. The user can

choose other file names

In the third step, the data were processed using the iPLS algorithm to select the

interval(s) within the data that would provide the most significant variables. In

the model, the photon counts in each of the spectrum channels measured with

the pXRF instrument were used as the explanatory variables (X). To obtain the

response variable (y), the luminescent data were converted to concentration

values according to the Empirical Coefficients method (Rowe et al., 2012) using

a variant of the Lukas-Tooth and Price (1961) equation. Once the chemical

concentrations were obtained, the resulting matrix contained the following

components: Mn, Fe, Zn, Ga, Th, Rb, Sr, Y, Zr, and Nb; this matrix is provided

in the supplementary material of the electronic version of this volume as file

“analitos.csv”. The data were then moved to their native geometric space

according to Aitchison’s theory (Aitchison, 1986) employing the centered

log-ratio (clr) transformation using the following script:

rm(list=ls())

data <- read.csv (”C:\\analitos.csv”, header=T) #You can use

your own file

str(data) # displays the internal structure of the file, which

includes the format of each#column

dat2 <- data[2:11] # delete data identification column

str(dat2)

# transformation of the data to the clr log-ratio

library(compositions) ## van den Boogaart, Tolosana-Delgado

and Bren (2023)

xxat1 <- acomp(dat2) #the function “acomp” representing one

closed composition.

#With this command, the dataset is now closed.

xxat2 <- clr(xxat1) # Centered logratio transformation

str(xxat2)
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write.csv(xxat2, file=”Clr-transformation.csv”) ##From this

resulting output file

#(”Clr-transformation.csv”), extract Sr (strontium) vector

and save it as a separate.cvs

# file

From the resulting output file, the values obtained for the variable Sr (strontium)

are copied to a separate .cvs file for its posterior use in the iPLS calibration

model as the response variable (y = Sr). It is important to note that the selection

of the response variable will depend on the material you are working with. For

example, pottery, Fe or Ca could be relevant; for some Roman glasses, Na, Ca,

Sb, and Pb can differentiate the real origin of the pieces (López-García and

Argote, 2023); for obsidian, Sr is a discriminatory element, so it was chosen for

the analysis. For this exercise, the file “Stroncio.csv” is provided in the supple-

mentary material. Table 12 shows an example of the difference between the raw

values of Sr composition of some samples and its clr transformed values.

For iPLS regression analysis, the full spectrum (1–855) was divided into 10

equidistant subintervals, each containing approximately 85 variables. Then, a

PLS calibration model was developed for each subinterval. The iPLS algorithm

was applied to the four filtering systems (EMSC, SG, ESMC+SG, and SG

+EMSC), and the one with the best performance was chosen according to the

Table 12 Example of the raw compositional data and the data after
the clr transformation.

ID Raw data Clr transformation
Sr Sr

1 129.36 0.465173738
2 132.46 0.507479359
3 131.64 0.504697572
4 132.17 0.474821295
5 127.27 0.439785067
6 133.33 0.488857386
7 137.82 0.502847437

———————— ————————————
———————— ————————————
———————— ————————————

134 4.61 −3.303411956
135 5.60 −3.137748288
136 7.23 −2.938981779
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values observed in the RMSECV, RMSE, and R2 parameters. The EMSC + SG

combination turns out to be the best for filtering the data. To run the iPLS

algorithm using the next script, the output was the following:

## Interval variable selection

rm(list=ls()) ## To remove all objects from memory

library(mdatools) # Kucheryavskiy (2020)

X <- read.csv(”C:\\FEmsc_SG.csv”, header=T) #Call the filtered

spectra data file

str(X)

# mean centering, in case you want to autoscale the spectrum

#X1 = prep.autoscale(X, center = T, scale = F)

# Call the concentration data file of Sr (“Stroncio.csv”) or the y

variable you selected

y <- read.csv(”C:\\Stroncio.csv”, header=T)

str(y)

# ipls model

# for a model without mean centering, use X instead of X1

m = ipls(X, y, glob.ncomp = 4, int.num = 10)

# Model parameters

# glob.ncomp = maximum number of components for a global PLS

model

# int.num = number of intervals

summary(m)

plot(m)

plotRMSE(m)

show(m$int.selected)

show(m$var.selected)

par(mfrow = c(1, 2))

The output details information about the selected intervals, the number of

variables at both ends, and the value of R2:

Model with all intervals: RMSECV = 0.107, nLV = 4

Iteration 1/ 10 . . . selected interval 9 (RMSECV = 0.125, nLV = 4)

Iteration 2/ 10 . . . selected interval 8 (RMSECV = 0.105, nLV = 4)

Iteration 3/ 10 . . . selected interval 2 (RMSECV = 0.105, nLV = 4)

Iteration 4/ 10 . . . selected interval 5 (RMSECV = 0.105, nLV = 4)

Iteration 5/ 10 . . . selected interval 3 (RMSECV = 0.105, nLV = 4)

Iteration 6/ 10 . . . selected interval 1 (RMSECV = 0.105, nLV = 4)

Iteration 7/ 10 . . . no improvements, stop.

In this case, the global model has an RMSECV = 0.107 with four components.

Interval 9, with RMSECV = 0.125, gave the best performance for building
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local models with individual intervals. On the other hand, the second iteration

selected interval 8 as the best local model with an RMSECV = 0.105, and

according to the cross-validation, four components were optimal. In the

subsequent iterations, more intervals were included; nevertheless, the

RMSECV value did not vary at all, so it was no longer convenient to add

more intervals. Intervals 8 and 9 present an R2 similar to the global PLS model

using the entire spectrum, suggesting a meaningless variation of the RMSE or

R2 values if any other intervals were included. In this way, it was possible to

determine that intervals 8 and 9 contained the most informative variables of

the spectrum; these intervals included the range of variables from columns

601 to 685 and from 686 to 770, respectively.

The iPLS variable selection results were as follows:

Validation: venetian blinds with 10 segments

Number of intervals: 10

Number of selected intervals: 6

RMSECV for global model: 0.107508 (4 LVs)

RMSECV for optimized model: 0.105035 (4 LVs)

Summary for selection procedure:

n start end selected nComp RMSE R2

1 0 1 855 FALSE 4 0.107 0.988 Global Model

2 9 686 770 TRUE 4 0.125 0.984

3 8 601 685 TRUE 4 0.105 0.988

4 2 87 172 TRUE 4 0.105 0.988

show(m$int.selected)

[1] 9 8 2 5 3 1

Method: forward

Figure 23 shows the performance of individual models and the selected

interval or intervals, interpreted as follows. The average spectrum can be

appreciated along the bars. Green or dark gray bars are the local intervals

selected by the iPLS model; the height of each bar corresponds to the

RMSECV value for the local model using variables from this interval as

predictors (X). The number within each bar is the number of PLS components

used in the local model. A dashed horizontal line indicates the RMSECV

obtained by using all variables, and the number 4 at the end of that line is the

number of latent variables (LV).

Finally, it is convenient to check the existence of outliers using the ROBPCA

algorithm of the ‘rrcov’ package:

rm(list=ls())

library(rrcov) ## Scalable Robust Estimators with High

63Machine Learning for Archaeological Applications in R

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009506625
Downloaded from https://www.cambridge.org/core. IP address: 3.139.240.47, on 25 Dec 2024 at 07:37:37, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009506625
https://www.cambridge.org/core


Breakdown Point (Todorov, 2020)

dat <- read.csv(”C:\\FEmsc_SG.csv”, header=T)

str(dat)

rpca <- PcaGrid(~., data=dat)

rpca

plot(PcaHubert(dat, k=0), sub=”data set: dat, k=4”)

str(rpca)

rpca$flag

In this case, to establish the optimal number of components to retain, we set k = 0

such that lk= l1 >¼ 10. E − 3 and
Xk

j¼lj=
Xr

j¼1lj >¼ 0:8. Refer to Hubert et al.

(2005) and the ‘rrcov’ package (Todorov, 2020) in R for more information.

Figure 23 iPLS model for 10 intervals. Color version available at

www.cambridge.org/argote_machine-learning
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In the diagnosis of the data (Figure 24), eleven observations exceeded the

cutoff value: ten forming a small group of bad leverage points at the top of the

quadrant and the isolated case 119 at the far right of the graph. The bad

leverage points correspond to the Pachuca samples; their separation from

the rest of the sources is because these samples register significantly higher

concentrations of Fe, Zr, and Zn and lower amounts of Sr compared to the

other deposits. Therefore, they cannot be considered outliers. Conversely, the

isolated sample (no. 119) belongs to Otumba (Ixtepec-Malpais); it is possible

that it has some measurement error or contamination because it completely

departs from the group of normal observations; thus, it is convenient to

eliminate it from the analysis.

Now that the preprocessing has concluded, the next stage of the analysis is

to perform the projection-based clustering. For this, we used a reduced matrix

of n = 135 by p = 170 that included only the range from 601 to 770 channel

counts (intervals 8 and 9 selected by the iPLS) and eliminated sample 119.

Figure 24 Robust diagnostic plot for the obsidian data with k = 4. Color version

available at www.cambridge.org/argote_machine-learning
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Although, in fact, the provenance of the sources is known, we considered this

exercise as a nonsupervised classification, that is, where the data are

unlabeled. The first thing we want to know is whether the data exhibit a

clustering structure according to the information recorded in the variables.

If this is true, then we will need to determine the optimal number of groups and

the correct assignment of the observations using the projection-based cluster-

ing method (Thrun, 2018).

The first module of the script (see “Introduction into the Usage of

Projection-based clustering” in Statistical Processing of Quantitative

Data of Archaeological Materials www.cambridge.org/Argote) allows us

to visually appreciate the existence of groups and determine the optimal

number of these through a topographic map (Thrun et al., 2016). The colors

presented by the topographic elements depend on their elevation and are

based on the U-matrix principle (Ultsch, 2003; Ultsch and Siemon, 1990).

The greater the spacing of the partitions in the high dimensional space, the

higher the mountains on the topographic map. If two high-dimensional data

points are in the same partition, both points end up in a blue lake or on a

green meadow. Blue lakes indicate partitions with particularly high dens-

ities. Green grasslands represent homogeneous partitions. Conversely, if the

two data points belong to different partitions, the landscape folds and a

mountain range is created between the two points; depending on the real

distance, the ranges can go from brown to white. Outliers land on volcanoes

or mountaintops.

Here, we assume that the data was preprocessed appropriately and that the

Euclidean distance is the best choice of similarity. Then the following code can

be used:

rm(list = ls())

library(DatabionicSwarm)

datos <- read.csv(”C:\\Two_intervals.csv”, header=T)

str(datos)

datos=as.matrix(datos)

library(DatabionicSwarm)

InputDistances = as.matrix(dist(datos))

projection = Pswarm(InputDistances)

library(DatabionicSwarm)

library(GeneralizedUmatrix)

genUmatrixList=GeneratePswarmVisualization(

Data=datos,

projection$ProjectedPoints,

projection$LC)
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GeneralizedUmatrix::plotTopographicMap(

genUmatrixList$Umatrix,

genUmatrixList$Bestmatches,

NoLevels = 10)

Figure 25 displays the topographic map computed for the obsidian samples,

where we can identify the existence of eight groups well separated by topo-

graphical barriers. The observations are clustered according to the position of

the projected points. In this way, the points in each of the sections of the map

correspond to observations that are similar between them and different from the

rest of the groups according to their characteristics. In contrast to other multi-

variate methods, there is no overlap of the groups.

Once the existence of groups in the data is determined, the number of groups

is specified in the script (with k = 8), and it is run again:

#Use previously loaded data

library(DatabionicSwarm) ## (Thrun, 2021a)

library(GeneralizedUmatrix) ## (Thrun et al., 2021a)

Cls = DBSclustering(

k = 8,

InputDistances,

genUmatrixList$Bestmatches,

Figure 25 Topographic map of the DBS projection of the obsidian dataset with

the Generalized U-matrix. Color version available at

www.cambridge.org/argote_machine-learning
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genUmatrixList$LC,

PlotIt = FALSE

)

GeneralizedUmatrix::plotTopographicMap(

genUmatrixList$Umatrix,

genUmatrixList$Bestmatches,

Cls,

NoLevels = 10)

library(DatabionicSwarm)

library(ProjectionBasedClustering)

library(GeneralizedUmatrix)

Imx = ProjectionBasedClustering::interactiveGeneralized

UmatrixIsland(

genUmatrixList$Umatrix,

genUmatrixList$Bestmatches,

Cls)

GeneralizedUmatrix::plotTopographicMap(

genUmatrixList$Umatrix,

genUmatrixList$Bestmatches,

Cls = Cls,

Imx = Imx)

Cls # provides the labels of the instances

In this first part of the analysis, it is important to remember that the data continue

to be processed as a nonsupervised classification, where there is no a priori

information of the data. By setting k = 8, the algorithm labels the observations

according to the distance and the density of each data point, assigning a different

color to each group. In this way, a group can be distinguished from the others by

their high-dimensional distances from the original dataset on a map by hypso-

metric tints defined by the generalized U matrix (see Figure 26). What is

important in this map is that the groups are clearly visible with a more compact

structure defined by the valleys. Similarly, it is possible to perceive the absence

of outliers in the data.

In the last code, the “Cls” command allows you to see to which group was

assigned each sample, as in Table 13.

In this example, all the samples were correctly assigned to their respective

sources. As seen in Table 13, the first n = 34 samples were assigned to group 1

related to the El Chayal source, observations 35 to 50 (n = 16) were assigned to

group 2 related to the La Esperanza source (Honduras), and so on. Therefore, it

can be concluded that both the filtering system and the selection of the most

informative intervals were appropriate procedures for partitioning the data into
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natural or significant groups. The final step is validating the model. As men-

tioned before in this Element, it is important to confirm the obtained results in a

quantitative and objective manner to establish if the model fits the data well or if

only represents a spurious solution. Oneway is to calculate the percentage of the

accuracy, a supervised index defined by the ratio of the number of true positives

to the number of cases (see Section 4 in Statistical Processing of Quantitative

Data of Archaeological Materials www.cambridge.org/Argote). Another

approach is to validate a clustering with the help of domain experts (e.g., López-

García et al., 2020; Thrun et al., 2021b; Thrun et al., 2022). A third option is to

evaluate if clustering is useful for a specific application (Thrun, 2022).

For simplicity, we compute the cluster accuracy in the dataset. For this, it is

necessary to add a column in the data matrix with the header “Cls”, which

refers to the class or group assigned by the algorithm to each of the observations

(use the assignations of Table 13). Once this column has been added to the data

matrix, the algorithm is rerun with the following script:

## with labeled data

rm(list=ls())

library(DatabionicSwarm) ## Thrun (2021a)

DataRaw <- read.csv(”C:\\Two_intervals_cls.csv”, header=T)

##Call the csv file with the #two intervals and add the Cls column.

The user can choose a personalized file name

Figure 26 Topographic map of the DBS projection of the obsidian dataset with

Generalized U-matrix using k = 8, interactively cropped. Color version

available at www.cambridge.org/argote_machine-learning
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Table 13 Assignation of samples to groups.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8
127 128 129 130 131 132 133 134 135
8 8 8 8 8 8 8 8 8
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str(DataRaw)

Cls_prior=DataRaw$Cls

Cls_prior

# if you want the full unsupervised way

ind=which(colnames(DataRaw)!=&quot;Cls&quot;)

Data=as.matrix(DataRaw[,ind])

library(DatabionicSwarm)

projection = Pswarm(Data,

Cls = Cls_prior,

PlotIt = T,

Silent = T)

library(DatabionicSwarm)

library(GeneralizedUmatrix)

visualization = GeneratePswarmVisualization(Data = Data,

projection$ProjectedPoints,

projection$LC)

GeneralizedUmatrix::plotTopographicMap(visualization

$Umatrix,

visualization$Bestmatches)

library(DatabionicSwarm)

library(GeneralizedUmatrix)

Cls = DBSclustering(k = 8,

Data,

visualization$Bestmatches,

visualization$LC,

PlotIt = FALSE)

FCPS::ClusterCount(Cls)

GeneralizedUmatrix::plotTopographicMap(visualization

$Umatrix,

visualization$Bestmatches,

Cls)

FCPS::ClusterAccuracy(PriorCls = Cls_prior, Cls)

library(DataVisualizations) #(Thrun, 2021a)

Heatmap(as.matrix(dist(Data)),Cls = Cls)

Silhouetteplot(Data,Cls =Cls)

In this case, the accuracy was 100 percent, so the assignments were made

without error. Other exemplary validation indexes, known as nonsupervised

indexes, used for evaluating the quality of the clustering are the silhouette

index (Kaufman and Rousseeuw, 2005), the Dunn index (Dunn, 1974), and the
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Davies Bouldin index (Davies and Bouldin, 1979). Furthermore, visualization

techniques like the heatmap (Wilkinson and Friendly, 2009) or the Silhouette

plot can be used. Some of these are called in the last part of the previous script.

For example, in the silhouette plot, the ideal number of clusters is displayed as

separated silhouettes within a range of values that go from –1 to +1, where +1

indicates that the samples are correctly assigned to a cluster, 0 shows that the

observations are very close to the decision limit between two neighboring

clusters, and negative values indicate that the samples might have been

assigned to the wrong cluster. The result of the silhouette plot (Figure 27,

left image) clearly marks the presence of eight clusters as the optimal number,

with no negative observations and no zero values. Therefore, we can sustain

with confidence the existence of eight groups.

Another graphical representation for visualizing high-dimensional data is

the heatmap. A heatmap visualizes the distances ordered by the clustering

through variations in color; this display simultaneously reveals row and

column hierarchical cluster structure in a data matrix (Wilkinson and

Friendly, 2009). In this example, the heatmap (Figure 27, right image) con-

firmed the DBS clustering of eight separated clusters; it also showed that this

dataset was defined by discontinuities with small intracluster distances and

large intercluster distances. Hence, the obsidian set is a high-dimensional

dataset with natural clusters that are specified by the values represented in

the two intervals of the spectra.

Figure 27 (Left) Silhouette plot of the obsidian dataset indicates a cluster

structure. (Right) Heatmap of the obsidian dataset showing the existence of

eight groups, where the intracluster distances are distinctively smaller than the

intercluster distances. Color version available at

www.cambridge.org/argote_machine-learning
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The clustering is also evaluated by means of a contingency table, whose rows

are the source groups and whose columns are the results of the clustering. This

contingency table is computed by the last part of the script of the projection-

based clustering algorithm, copied below:

## With the following script, the contingency table is calcu-

lated

Cls_prior=DataRaw$Cls

Cls_prior

ind=which(colnames(DataRaw)!=“Cls”)

Data=as.matrix(DataRaw[,ind])

ContingencyTableSummary=function (RowCls, ColCls)

{

# contingency table of two Cls

# INPUT

# RowCls,bCls vector of class identifiers (i.e., integers or

NaN’s) of the same length

# OUTPUT list with these elements:

# cTab cTab(i,j) contains the count of all instances where the i-

th class in RowCls

#equals the j-th class inColCls

# rowID the different classes in RowCls, corresponding to the

rows of cTab

# colID the different classes inColCls, corresponding to the

columns of cTab

# RowClassCount, RowClassPercentages instance count and per-

centages of classes in

#RowCls sorted according rowID

# ColClassCount, ColClassPercentages instance count and per-

centages of classes #inColCls sorted according colID

RowID = length(unique(RowCls))

ColID = length(unique(ColCls))

Ctable = table(RowCls, ColCls)

AllinTab = sum(Ctable)

ColumnSum = colSums(Ctable)

ColPercentage = round(ColumnSum/AllinTab * 100, 2)

RowSum = rowSums(Ctable)

RowPercentage = round(RowSum/AllinTab * 100, 2)

Rows <- rbind(round(Ctable), ColumnSum, ColPercentage)

Xtable <- cbind(Rows, c(RowSum, AllinTab, 0), c(RowPercentage,

0, 100))

colnames(Xtable) = c(1:ColID, “RowSum”, “RowPercentage”)

return(Xtable)
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}

Table=ContingencyTableSummary(Cls_prior,Cls)

Table

Table 14 shows that all the elements of the main diagonal are well classified and

that there are no misclassified observations. According to the overall results, it

was shown that the analyzed obsidian samples had a clear cluster structure

linked to their geological origin.

In sum, DBS is a nonlinear projection that displays the structure of the high-

dimensional data into a low-dimensional space, preserving the cluster structure

of the data. This model exploits the concepts of self-organization and emer-

gence, game theory and swarm intelligence (Thrun, 2018; Thrun and Ultsch,

2021). Pswarm does not require any input parameters other than the dataset of

interest and is able to adapt itself to structures of high-dimensional data such as

natural clusters characterized by distance and/or density-based structures in the

data space. The result of the clustering consists of a 3D landscape with hypso-

metric tints, where observations with similar characteristics are represented as

valleys while differences are represented as mountain ranges. In addition, the

procedure can detect outliers that are represented as volcanoes on the 3D display

and can be interactively marked on the display after the automated grouping

process.

Another advantage of the method is that it is not necessary to have a

priori knowledge of the classes to which the observations belong; the

number of clusters and the cluster structure can be estimated by counting

the valleys in the 3D topographic map and from the silhouette plot. Unlike

other clustering algorithms, Pswarm does not impose any type of geometric

structure in the formation of clusters, and the user does not need to specify

any parameters. The results are evaluated using supervised and unsuper-

vised validation indexes and visualization techniques, as well as a contin-

gency table, confirming the goodness of the model to detect natural groups

in the dataset. The example confirmed that the method proposed here is

suitable for handling unbiased quantitative spectral analysis of archaeo-

logical materials.

4.3 Exercise 2: Human-in-the-Loop Cluster Analysis

The practical case study below serves as motivation to outline an alternative to

investigate the detection and recognition of cluster structures using a human-in-

the-loop. In this context, higher-level structures are detected in the data by

enabling recognition of structures by the human-in-the-loop (HIL) at critical

decision points. The authors thus follow the reasoning of Holzinger (2018) in
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Table 14 Contingency table computed from the data of the obsidian sources.

1 2 3 4 5 6 7 8 Rowsum RowPercentage

1 34.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 34 25.19
2 0.00 16.00 0.00 0.00 0.00 0.00 0.00 0.00 16 11.85
3 0.00 0.00 17.00 0.00 0.00 0.00 0.00 0.00 17 12.59
4 0.00 0.00 0.00 17.00 0.00 0.00 0.00 0.00 17 12.59
5 0.00 0.00 0.00 0.00 9.00 0.00 0.00 0.00 9 6.67
6 0.00 0.00 0.00 0.00 0.00 10.00 0.00 0.00 10 7.41
7 0.00 0.00 0.00 0.00 0.00 0.00 22.00 0.00 22 16.3
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.00 10 7.41
Columsum 34.00 16.00 17.00 17.00 9.00 8.00 24.00 10.00 135 0.00
ColPercentage 25.2 11.9 12.6 12.6 6.7 5.93 17.8 7.41 0 100

use, available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/9781009506625

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. IP address: 3.139.240.47, on 25 D

ec 2024 at 07:37:37, subject to the Cam
bridge Core term

s of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009506625
https://www.cambridge.org/core


that “the integration of an HIL’s knowledge, intuition, and experience can

sometimes be indispensable, and the interaction of an HIL with the data can

significantly improve the overall ML pipeline. Such interactive ML uses the

HIL to make possible what neither a human nor a computer could do alone

(Holzinger, 2018). The HIL is an agent that interacts with algorithms, allowing

the algorithms to optimize their learning behavior (Holzinger et al., 2019). This

perspective fundamentally integrates humans into an algorithmic loop with the

goal of opportunistically and repeatedly using human knowledge and skills to

improve the quality of ML systems (Holzinger et al., 2019; see also Mac Aodha

et al., 2014; Zanzotto, 2019).

An HIL is usually necessary because automatic detection pipelines (see

example in Wiwie et al., 2015) have pitfalls and challenges that are systemat-

ically highlighted by Thrun (2021b). The work shows that parameter opti-

mization on datasets without distance-based structures, algorithm selection

using unsupervised quality measures on biomedical data, and benchmarking

of detection algorithms with first-order statistics or box plots or a small

number of repetitions of identical algorithm calls are biased and often not

recommended (Thrun, 2021b). Hence, an alternative is proposed in Thrun et

al. (2020; 2021a). Unlike typical approaches, the HIL is not overwhelmed

with extensive parameter settings or evaluation of many complex quality

measures (see examples in Choo et al., 2013; Müller et al., 2008; Yang et

al., 2019; Zhang et al., 2002).

The coexistence of nonlinear projection methods and automatic detection of

structures in projection-based clustering allows – apart from estimating whether

there is a tendency for separable high-dimensional structures – estimating the

number of partitions in the data as well as the correct choice of only one Boolean

parameter for projection-based clustering. The HIL extension of the projection-

based clustering incorporates user decisions in the detection process to visually

discriminate structures. HIL-projection-based clustering is an open-source

method that integrates the HIL at critical decision points through an interactive

topographic map to detect separable structures.

Comparable interactive approaches fall into the category of visual analytics,

which use visualizations to assist in manually searching for partitions in various

types of datasets or to check the results of detection algorithms (e.g., Cavallo

and Demiralp, 2018; Jeong et al., 2009; Kwon et al., 2017; Müller et al., 2008;

Rasmussen and Karypis, 2004). However, the Johnson-Lindenstrauss lemma

states that two-dimensional similarities in a scatter plot do not necessarily

represent high-dimensional structures (Dasgupta and Gupta, 2003; Johnson

and Lindenstrauss, 1984). In praxis, projections of several datasets with dis-

tance- and density-based structures show a misleading interpretation of the
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underlying structures and unsupervised quality measures for dimensionality

reduction are biased toward assumed underlying structures (Thrun et al., 2023).

The HIL-projection-based clustering is proposed in a toroidal 2.5D represen-

tation, where a zoom out is preferred instead of other possible alternatives such

as the four-tile of the toroidal projection. Toroid means that the boundaries of

the topographic map are cyclically connected (Ultsch, 1999), which avoids

problems of projections at the edges and therefore edge effects. In the four-

tile representation, each projection point and structure would be represented

four times. The HIL detects the number of partitions as the number of valleys.

After the automatic detection phase, the HIL interactively rectifies the result on

the topographic map via its own detection of high-dimensional structures. Using

the 2.5D representation of the topographic map avoids the drawbacks of 3D

representations and eliminates the challenge of the Johnson–Lindenstrauss

lemma. The performance of HIL-projection-based clustering outperforms

other accessible methods both qualitatively and quantitatively (Thrun et al.,

2020, 2021b).

The GUI for the HIL-projection-based clustering is called with the following

script:

rm(list=ls())

library(FCPS)

library(ProjectionBasedClustering) ## (Thrun et al., 2020)

data(”Chainlink”,package = “FCPS”)

str(Chainlink)

Data <- Chainlink$Data

str(Data)

V= IPBC (Data)

#with prior classification

Cls=Chainlink$Cls

V=IPBC(Data,Cls)

The interfaces of the HIL-projection-based clustering algorithm (Thrun et al.,

2021a) are presented in Figures 28 (‘Projection’ menu) and 29 (‘Clustering’

menu), in which every parameter setting is listed and numbered. In the

‘Projection’ menu, after loading the Chainlink dataset in listing (1), selecting

the NeRV projection in (2), and clicking on the button in (4), the topographic

map shown in (10) is obtained. The user can select another projection method

in (2) and click in (4) to visualize a new topographic map. The user can

automatically cluster the data with (15) by setting the number of clusters in

(13) as the number of valleys. If the automatic clustering does not overlap with

the valleys, the critical parameter for the clustering in (14) can be changed and
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a second trial of clustering can be performed. The user can frame points with

the mouse either in the borderless view or the toroidal view (8); with “Add

Cluster” in (12), a new cluster is assigned. Be aware that the assumption is that

the data had been preprocessed properly and that the parameter of the selected

projection method had been chosen wisely. If parameter setting of a projection

method seems to be a challenge, the parameter-free projection method

Pswarm can be selected.

Figure 28 Screenshot of the interface of the “Projection” menu of the IPBC

method. Color version available at

www.cambridge.org/argote_machine-learning

Figure 29 Screenshot of the interface of the “clustering” menu of the IPBC

method. Color version available at

www.cambridge.org/argote_machine-learning
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5 Final Comments

One of the problems faced by archaeologists is that of data classification, which

is defined by a series of attributes. Both clustering and classification have in

common creating a model capable of recognizing instances according to their

attributes by assigning them to different classes or groups. Both are complex

tasks in archaeological data, since they involve the choice between many

methods, the transformation and diagnosis of data, the selection of parameters

and different metrics. Traditional unsupervised and supervised methods per-

form poorly at uncovering the underlying group structure in the data because

they lack a formal statistical model. This Element compares the performance of

different supervised and unsupervised classification methods that improve the

outcome in clustering and classification of archaeological data.

If the data is high-dimensional, as in the case of pXRF spectral quantification,

pre-processing is an essential part of comprehensive analysis to improve data

quality. For example, spectra can show noise, displacements, or overlap

between elements. To correct these problems in the related examples, a simple

method for peak alignment was proposed using the hierarchical Cluster-based

Peak Alignment (CluPA) algorithm. CluPa takes care of bringing all the peaks

to the same origin, showing that the peaks from different origins are not

misaligned. To eliminate unwanted interference in the spectra, model-based

pre-processing techniques allow to quantify and separate different types of

physical and chemical variations in the spectra. The recommended filtering

was the use of a combination of the Savitzky–Golay and Extended

Multiplicative Scatter Correction (EMSC) algorithms, which are filters that

allow the preservation of the main characteristics of the function such as

width and height of the spectral peaks.

The diagnosis of the data was another point to consider since extreme

values can seriously distort the behavior of statistical estimators. To detect

outliers, a robust estimator was proposed by replacing the covariance matrix

obtained with the classical method with the covariance matrix obtained with

the Minimum Covariance Determinant (MCD) robust method. On the other

hand, a feature selection procedure is essential to separate variability related to

relevant information from non-relevant information. In the high-dimensional

(spectral) data scenarios, two variable selection methods were proposed. One

approach based on Bayesian models and the other based on Partial Least

Squares Interval (iPLS). The Bayesian approach allows for the selection of

relevant variables and clustering simultaneously; at the same time is able to

automatically determine the memberships of instances to their respective

groups and to determine the optimal number of groups in the data. On the
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other hand, the iPLS method allows the selection of specific spectral regions

for further analysis.

Continuing with the spectral analysis, Databionic swarm (DBS) algorithm

propose an approach in which dimensionality reduction methods coexist with

clustering algorithms, using a swarm-based AI system. The resulting groups

define different generating processes related to the chemical composition of

each group, which can be visualized with a topographic map of high-dimen-

sional structures. The central problem in clustering is the correct estimation of

the number of clusters; this is also addressed by the topographic map, which

evaluates the optimal number of clusters. This is important because most

clustering algorithms can detect clusters even if the distribution of the data is

random. Unlike traditional methods, DBS is not going to force a cluster if there

really are not natural clusters in the data.

When dealing with compositional data, first, it is important to consider that

geometric space is different from real Euclidean space. In general, standard

statistical methods are designed to work with classical Euclidean geometry

(RD) or unconstrained p-dimensional spaces, so it is advisable to use a suitable

transformation for compositional data whose geometric space is the simplex (SD).

This is a bounded space with a constant-sum constraint, in which Aitchison’s

geometry is applied; so only by working with the ratios between the parts do the

problems of the constant-sum constraint disappear. There are many clustering

methods in the literature without any specific method being uniformly better. To

select themost suitable one, it is important to understand the intrinsic nature of the

data and the strengths and weaknesses of the different algorithms.

To classify compositional data, an alternative is to model the data using

components of the Gaussian mixture distributions, which assumes that the

sample to be classified is divided into G groups or components. The estimation

of parameters for each group is estimated by the maximum likelihood method,

allowing us to estimate the probability that each of the instances has of belong-

ing to one of the classes. To find the right number of groups, information criteria

are considered, which are statistical criteria for evaluating models in terms of

their posteriori probabilities. These statistics allow you to select from among

the competing models and determine the optimal from a finite family of models.

Because of the excellent performance in partitioning the experimental data-

sets, the suggested algorithms and methodologies applied in this Element have

proved to work well in the difficult task of clustering when the number of groups

is unknown. The advantage of the proposed methods is that they allow the

creation of a model for the determination of groups of well-defined characteris-

tics that allows the optimization of the classification of the data. It is worth

mentioning that the software for the implementation of the proposed methods is
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freely accessible, which allows the implementation to be established in an easy

and simple way. We believe that these methods can be of great use to the

archaeological community, as well as being applicable to a large number of

cases beyond those described here. We encourage readers to practice with the

proposed techniques and try new ways to solve their research problems.
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Abbreviations

alr Additive Log-ratio

BIC Bayesian Information Criterion

CA Cluster Analysis

CAIS Center for Applied Isotope Studies

CEM Classification Expectation Maximization

clr Centered Log-ratio

CluPA Cluster-based Peak Alignment

CRM Certified Reference Material

DA Discriminant Analysis

DBS Databionic Swarm

DR Dimensionality Reduction

EM Expectation-Maximization

EMSC Extended Multiplicative Signal Correction

FAST-MCD Fast Minimum Covariance Determinant

FCPS Fundamental Clustering Problems Suite

FT-IR Fourier Transform Infrared Spectroscopy

HIL Human-in-the-Loop

ICP‒MS Inductively Coupled Plasma‒Mass Spectrometry

ICL Integrated Complete Likelihood

ilr Isometric Log-ratio

iPLS Interval Partial Least Squares

LDA Linear Discriminant Analysis

LV Latent Variables

MAP Maximum a Posteriori Probability

MCD Minimum Covariance Determinant

MD Mahalanobis Distance

MD-plot Mirrored Density plot

ML Maximization of Log-likelihood

n Number of observations or samples

NAA Neutron Activation Analysis

NEC Normalized Entropy Criterion

NPE Neighborhood Proportion Error

ODi Orthogonal Distance

p Number of variables or components

PBC Projection-based clustering

PCA Principal Component Analysis
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PC Principal Component

PDE Pareto Density Estimation

PDF Probability Density Function

PLS Partial Least Squares

PP Projection Pursuit

pXRF Portable X Ray Fluorescence

QDA Quadratic Discriminant Analysis

RMSECV Root Mean Squared Error of Cross-Validation

RMSEP Root Mean Square Error of Prediction

ROBPCA Robust Principal Component Analysis

SBP Sequential Binary Partition

SDi Score Distance

SEM Stochastic Expectation-Maximization

SG Savitzky‒Golay filter

SNE Stochastic Neighbor Embedding

SVD Singular Values Decomposition

XRF X Ray Fluorescence
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