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Abstract

A system of interacting multi-class finite-state jump processes is analyzed. The model
under consideration consists of a block-structured network with dynamically changing
multi-color nodes. The interactions are local and described through local empirical mea-
sures. Two levels of heterogeneity are considered: between and within the blocks where
the nodes are labeled into two types. The central nodes are those connected only to nodes
from the same block, whereas the peripheral nodes are connected to both nodes from
the same block and nodes from other blocks. Limits of such systems as the number of
nodes tends to infinity are investigated. In particular, under specific regularity conditions,
propagation of chaos and the law of large numbers are established in a multi-population
setting. Moreover, it is shown that, as the number of nodes goes to infinity, the behavior
of the system can be represented by the solution of a McKean–Vlasov system. Then, we
prove large deviations principles for the vectors of empirical measures and the empirical
processes, which extends the classical results of Dawson and Gärtner (Stochastics 20,
1987) and Léonard (Ann. Inst. H. Poincaré Prob. Statist. 31, 1995).
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1. Introduction

Since McKean’s seminal paper [51], mean-field theory has been widely used to study large
stochastic interacting particle systems arising in various domains such as statistical physics
[21, 37, 51, 52], biological systems [23, 53], communication networks [8, 39, 41, 42], math-
ematical finance [38, 47], etc. This theory, first initiated in connection with the mathematical
foundation of the Boltzmann equation, aims for a mathematically rigorous treatment of the
time evolution of stochastic systems with weak long-range interaction where the interaction
between the particles is realized via the empirical measure of the particle configuration. For
such scenarios, it is then natural to investigate the behavior of the empirical process instead
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of considering the particle configuration itself. In particular, one is interested in investigating
laws of large numbers, limit theorems, and large deviations for the empirical process in the
limit as the number of particles tends to infinity. Another concept that plays an important role
is chaos propagation, first introduced by Kac as part of kinetic theory [45], and then widely
studied in the literature since; see, e.g., [37] and [61] for detailed developments on the subject.

Classically, the systems studied are homogeneous with complete interaction graphs; that is,
the particles are exchangeable and each particle interacts with all the others. In such a setting,
the big picture is well understood and various asymptotic results have been established for a
variety of models. One can consult [22], [37], or [61] for an overview. However, though such
assumptions are reasonable in statistical physics and accurately describe a variety of phenom-
ena, this may no longer be the case when considering other applications. Researchers have
therefore studied many new interacting particle systems where the homogeneity or complete
interaction assumptions are not tenable; this is the direction in which this paper proceeds.

Systems in which particles carry intrinsic distinguishing features lead naturally to heteroge-
neous models. Thus, one cannot presume the particles to be identically distributed. Instead, one
relies on additional conditions to establish limiting results. For instance, in [34, 35, 38], models
for the activities of heterogeneous economic agents were proposed and laws of large numbers
were proved under some regularity conditions. In [18], the authors investigated systems of
interacting stochastic differential equations with two kinds of heterogeneity: one originating
from different weights of the linkages, and the other concerning their asymptotic relevance
when the system becomes large. The authors then introduced a partial mean-field system by
averaging only over the particles with weak interactions and proved a law of large numbers
together with a large deviations principle.

A particular instance of heterogeneity, with which our current work is in line, is the multi-
population paradigm, also known as multi-types or multi-species. Here, the particles of the
system are divided into groups, within which they are homogeneous or partially homogeneous.
The interest in these structures is motivated by their ubiquity in different fields (see references
below). We thus propose in this paper to take a step forward in the understanding of their
behavior by studying the large-scale asymptotics of interacting particle systems with jumps on
block-structured networks. Specifically, we will set up a model for block-structured networks
with dynamically changing multi-color nodes. The evolution of node colors is described by
a sequence of finite-state pure-jump processes interacting through local empirical measures
describing the neighborhood of each node. The nodes of the network are divided into a finite
number of blocks. In addition, the nodes within each block are divided into two subgroups:
central and peripheral nodes. The central nodes are those connected only to nodes from the
same block, whereas the peripheral nodes interact with both particles from the same block
and some particles from other blocks. Thus, our model describes two levels of heterogeneity:
between blocks and within blocks.

Block-structured networks are ubiquitous in various interacting particle systems composed
of different communities, where a given community consists of a group of agents densely
connected to each other but sparsely connected to the other dense groups of the population. For
instance, a community in a social network might refer to a circle of friends, a community on the
World Wide Web might include a group of pages on closely related topics, and a community
in a cellular or genetic network might be related to a functional module. The study of the
grouping patterns of communities, together with their detection, is an active field of research
among physicists and applied mathematicians, and the study of what has become known as
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community structure is now one of the most prominent areas of network science. The reader
can consult [59] and the references therein for an overview of the subject.

Our idea builds on the results in several existing works. The authors of [19, 20] studied a bi-
populated Curie–Weiss model and established, via a large deviations approach, the propagation
of chaos and the asymptotic dynamics of the pair of group magnetizations in the infinite-
volume limit. Laws of large numbers and a central limit theorem were proved in [46] for an
extension of this model to the case of heterogeneous coupling within and between groups.
A related paper [50] studied high-temperature fluctuations for a block spin Ising model and
established a central limit theorem. A variant of this model was analyzed in [48], where the
vertices are divided into a finite number of blocks and pair interactions are given according
to their blocks. The authors proved a large deviations principle and a central limit theorem. In
the same spirit, limiting results were established in [56] for a system of reflected diffusions
segregated into two groups of blue and red particles and subject to a reflection condition.
These results were extended in [57] to the case with drift coefficients not of average form.
Other recent related works are [54], which studied the two-community noisy Kuramoto model,
and [4], which studied opinion dynamics in a model with Lotka–Volterra-type interactions.
Among other instances of the multi-population paradigm, we mention in particular the works
[14, 17], which considered mean-field game models with a single major player and statistically
identical minor players. Propagation of chaos was proved for the minor players conditioned on
the major player.

Another closely related model was proposed in [7], where systems of weakly interacting
jump processes on time-varying random graphs with dynamically changing multi-color edges
were studied. In [7], the dynamics of a node depend on the joint empirical distribution of all
other nodes and the edges to which it connects. In contrast, the dynamics of an edge depend
only on the corresponding nodes to which it connects. The paper [7] established the law of
large numbers, propagation of chaos, and central limit theorems for these systems. Despite
certain similarities, the class of models which we are considering in the current paper differs
in several aspects from the models contemplated in [7]. First, the interacting particle systems
that we study are on static block-structured graphs, whereas the ones considered in [7] are on
time-varying random graphs with edge-structure dynamics. Moreover, in the current work, we
consider a multi-population setting where the interaction between the nodes is local, i.e. each
node interacts only with its neighbors, whereas in [7] the interaction between nodes is global,
since the dynamic of a given node depends on the empirical distribution of all the other nodes.
Finally, the analysis carried out and the results obtained in our current work are established
on the vector of local empirical measures adapted to the multi-population context, and thus on
product spaces, which allows us to overcome the heterogeneity due to the block structure of
the graph. Furthermore, note that the current paper addresses the topic of interacting particle
systems on large (random) networks, which has attracted increasing attention in recent years;
see, e.g., [6, 7, 9] and the references therein.

Alongside the papers listed above, the multi-population framework has also been considered
for systems of interacting diffusions. We mention for instance [47] for an analysis of a system
of interacting Ornstein–Uhlenbeck processes on a heterogeneous network of credit-interlinked
agents, [13, 16, 62] and the references therein for studies of neuronal networks composed of
separate populations, or [58] and the references therein for mean-field multi-class interacting
diffusions models in a general setting. (Note that some erroneous results that were originally
stated in [62] were corrected in [63].)
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The goal of the current work is to develop limiting results for interacting finite-state pure-
jump processes on a class of block-structured networks. Our first main result, Theorem 5.1,
and its consequence Corollary 5.1 give propagation of chaos and a law of large numbers under
some regularity conditions on the degrees of the nodes. We show that in the mean-field limit,
the asymptotic behavior of the node colors can be represented by the solution of a McKean–
Vlasov system. Because of the lack of symmetry, we make use of the extension of the notion of
chaoticity and Sznitman coupling methods to multi-class systems developed in [40, 43]. The
existence and uniqueness results for the limiting system are established in Theorem 4.1. The
regularity conditions which we impose (cf. Condition 4.1) can be compared to the uniform
degree property introduced in [28] for a model of interacting diffusions on random graphs and
to the one introduced in [15] for a model of interacting pure-jump processes on sparse graphs.

Another aspect which we are interested in is the large deviations properties of the system.
For this purpose, with the aim of simplicity, we will restrict ourselves to the case where the
blocks are cliques and the peripheral subgraph is complete, that is, the case where all periph-
eral nodes of the system are connected and all the central nodes within the same block are
connected. We then state our next main results in Theorem 6.1, which establishes the large
deviations principle for the empirical measure vector over finite time duration, followed by
Theorem 6.2, which gives the large deviations principle for the empirical process vector. These
results generalize those of [12, 49] to the multi-population context. Also, unlike [49] and simi-
larly to [12], we do not impose chaotic initial conditions, but only converging initial conditions.
The proofs of the large deviations principles, which provide tools for handling the technicali-
ties arising from the multi-population context, generalize the classical approach developed in
[24] and its adaptation to the context of jump processes in [49].

In summary, the current work is a contribution to the multi-population paradigm and a move
towards heterogeneity for mean-field models and their large deviations behavior. The rest of
this paper is organized as follows. The detailed model for interacting finite-state pure-jump
processes on block-structured graphs is introduced in Section 2. Section 3 provides some prac-
tical examples of applications of the class of models studied in this paper. In Section 4, we
introduce the McKean–Vlasov limiting system, and we prove the existence and uniqueness
of its solution under specific regularity conditions introduced in Condition 4.1. Then, under
the same conditions, in Section 5 we prove propagation of chaos (Theorem 5.1) and the law
of large numbers (Corollary 5.1). Next, in Section 6, we present the large deviations prin-
ciples for the empirical measure vector (Theorem 6.1) and for the empirical process vector
(Theorem 6.2).

2. Formulation of the model

This section introduces the model and related notation.

2.1. The setting

A block-structured network:

• Consider an undirected block-structured graph G = (V, �), where V is the set of nodes
and � is the set of edges. The set V is partitioned into r (finite) blocks C1, . . . ,Cr of
sizes N1, . . . ,Nr, respectively. Denote by |V| := N1 + · · · + Nr = N the cardinality of
the set V , which corresponds to the total number of nodes in the network.

• The nodes of each block Cj are divided into two categories:
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• Central nodes Cc
j are connected to some nodes from the same block but not to any

nodes from any other blocks. We set |Cc
j | = Nc

j .

• Peripheral nodes Cp
j are connected to some nodes from the same block and some

nodes from other blocks. We set |Cp
j | = Np

j .

Multi-color nodes: Let Z := {1, 2, . . . ,K} ⊂N be a set of K colors. Suppose that each node
of the graph G = (V, �) is colored by one of these colors at each time. One can associate
each node to a particle whose state space is Z . Thus, we will use the denominations ‘node’ and
‘particle’ interchangeably to refer to the same thing. Denote by (Z, E) the directed graph where
E ⊂Z ×Z\{(z, z)|z ∈Z} describes the set of admissible jumps for each particle. Moreover,
whenever (z, z′) ∈ E , a particle colored by z is allowed to move from z to z′ at a rate that
depends on the current state of the node and the state of its neighbors (adjacent nodes).

For each 1 ≤ j ≤ r and n ∈ Cc
j (resp. n ∈ Cp

j ), let us define by (Xc
n,j(t), t ≥ 0) (resp.

(Xp
n,j(t), t ≥ 0)) the stochastic process that describes the state (color) of the central (resp. periph-

eral) node n at time t. In addition, we denote by μN
j (t) the local empirical measure describing

the state of the jth block at time t, which is given by

μN
j (t) := 1

Nj

( ∑
n∈Cc

j

δXc
n,j(t)

+
∑
n∈Cp

j

δXp
n,j(t)

)

= Nc
j

Nj

1

Nc
j

∑
n∈Cc

j

δXc
n,j(t)

+ Np
j

Nj

1

Np
j

∑
n∈Cp

j

δXp
n,j(t)

= :
Nc

j

Nj
μ

c,N
j (t) + Np

j

Nj
μ

p,N
j (t),

(1)

whereμc,N
j (t) = 1

Nc
j

∑
n∈Cc

j
δXc

n,j(t)

(
resp.μp,N

j (t) = 1
Np

j

∑
n∈Cp

j
δXp

n,j(t)

)
is the empirical measure

describing the state of the central (resp. peripheral) nodes of the jth block at time t. The frac-

tions
Nc

j
Nj

(resp.
Np

j
Nj

) thus represent the proportion of central (resp. peripheral) nodes in the block
j. Denote by M1(Z) the set of all probability measures over Z , endowed with the topology of
weak convergence.

The random dynamics: The process X(t) =
(

Xc
n,j(t), Xp

m,j(t), n ∈ Cc
j ,m ∈ Cp

j , 1 ≤ j ≤ r
)

describing the evolution of the entire system is a continuous-time Markov chain with state
space ZN . The transition rate of each node depends on its current state and the state of its
neighbors, together with the block to which it belongs. To characterize these neighborhoods,
we introduce a set of local empirical measures describing the state of the star-shaped subgraph
centered at each node n and composed of the nodes connected to it. To lighten the formulas
and for ease of reading, we introduce the following shorthand notation: for any two nodes
n,m ∈ V , m ∼ n means that {m, n} ∈�. Moreover, for any block 1 ≤ j ≤ r and ι ∈ {c, p}, we
denote by Nι

j(n) := {n′ ∈ Cιj : n ∼ n′} the set of nodes in Cιj that are connected to n. Let deg(n)
denote the degree of the node n, and let Mι

i (n) := |Nι
i(n)| for ι ∈ {c, p} and 1 ≤ i ≤ r be the

cardinality of the set Nι
i(n). Thus, one notices that for n ∈ Cc

j , deg(n) = Mc
j (n) + Mp

j (n), and

for n ∈ Cp
j , deg(n) = Mc

j (n) +∑r
k=1 Mp

k (n).
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Now, for any n ∈ Cc
j and 1 ≤ j ≤ r, let us define

ℵc
n,j(t) := 1

1 + Mc
j (n)

∑
m∈{n}∪Nc

j (n)

δXc
m,j(t)

, ℵp
n,j(t) := 1

Mp
j (n)

∑
m∈Np

j (n)

δXp
m,j(t)

, (2)

and

�c
n,j := 1 + Mc

j (n)

1 + deg(n)
, �

p
n,j := Mp

j (n)

1 + deg(n)
, (3)

and finally

μ
c,N
n,j (t) := �c

n,jℵc
n,j(t) + �

p
n,jℵp

n,j(t). (4)

Equivalently, for any n ∈ Cp
j , 1 ≤ j ≤ r, and j′ �= j, define

�c
n,j(t) := 1

Mc
j (n)

∑
m∈Nc

j (n)

δXc
m,j(t)

, �
p
n,j,j(t) := 1

1 + Mp
j (n)

∑
m∈{n}∪Np

j (n)

δXp
m,j(t)

,

�
p

n,j,j′ (t) := 1

Mp

j′ (n)

∑
m∈Np

j
′ (n)

δXp

m,j
′ (t),

(5)

and

ςc
n,j := Mc

j (n)

1 + deg(n)
, ς

p
n,j,j := 1 + Mp

j (n)

1 + deg(n)
, ς

p

n,j,j′ :=
Mp

j′ (n)

1 + deg(n)
, (6)

and finally

μ
p,N
n,j (t) := ςc

n,j�
c
n,j(t) +

r∑
j′=1
j′ �=j

ς
p

n,j,j′�
p

n,j,j′ (t). (7)

Therefore, the random dynamic in each block 1 ≤ j ≤ r is described as follows:

• The central nodes dynamic. For each central node n ∈ Cc
j , its color Xc

n,j(t) goes from z
to z′, for (z, z′) ∈ (Z, E), at rate

λc
j,z,z′

(
ℵc

n,j(t), ℵp
n,j(t), �

c
n,j, �

p
n,j

)
, (8)

which depends on its current state and on the states of its neighbors through the functions
λc

j,z,z′ : M1(Z) ×M1(Z) × [0, 1] × [0, 1] →R+.

• The peripheral nodes dynamic. For each peripheral node n ∈ Cp
j , its color Xp

n,j(t) goes
from z to z′, for (z, z′) ∈ (Z, E), at rate

λ
p

j,z,z′
(
�c

n,j(t),�
p
n,j,1(t), . . . ,�p

n,j,r(t), ςc
n,j, ς

p
n,j,1, . . . , ς

p
n,j,r

)
, (9)

which also depends on its state and the states of its neighbors through the functions
λ

p

j,z,z′ :
(M1(Z)

)r+1 × [0, 1]r+1 →R+.
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The explicit forms of the rate functions will be introduced in Condition 4.1. To avoid
cluttering our notation, let us introduce the following vectors:

υ
c,N
n,j (t) :=

(
ℵc

n,j(t), ℵp
n,j(t), �

c
n,j, �

p
n,j

)
, (10)

υ
p,N
n,j (t) :=

(
�c

n,j(t),�
p
n,j,1(t), . . . ,�p

n,j,r(t), ςc
n,j, ς

p
n,j,1, . . . , ς

p
n,j,r

)
. (11)

Thus, we will write λc
j,z,z′

(
υ

c,N
n,j (t)

)
instead of (8) and λp

j,z,z′
(
υ

p,N
n,j (t)

)
instead of (9).

Remark 2.1. One can see the model under investigation as a multi-species system where each
block Cj represents a separate species. In particular, the rate functions λc

j,z,z′ and λp

j,z,z′ being

block-dependent, the dynamic of each particle depends on its species, i.e., the block to which it
belongs. This idea has been extensively used in the literature on multi-type systems; see, e.g.,
[1, 3, 5, 16] and the references therein. The specificity here is the existence of heterogeneity
even across particles of the same species/block. Indeed, the central/peripheral paradigm creates
two sub-types of particles within the same species whose rate functions differ. This construc-
tion appears to be natural in certain multi-group systems where only a few particles from the
different groups interact; detailed examples are given below. Also, the interaction structure dif-
fers even for the central (resp. peripheral) particles of the same species/block, given that the
rate functions depend on the node-centered local empirical measures, which differ even within
the same block.

2.2. The infinitesimal generator

For any T ∈ (0,+∞), the processes Xc
n,j : [0, T] →Z for n ∈ Cc

j and Xp
m,j : [0, T] →Z for

m ∈ Cp
j , which respectively describe the evolution of the central and the peripheral parti-

cles over the time interval [0,T], are càdlàg paths, and thus are elements of the Skorokhod
space D([0, T],Z) equipped with the Skorokhod topology. Let XN = (

Xc
n,j, Xp

m,j, n ∈ Cc
j ,m ∈

Cp
j , 1 ≤ j ≤ r

) ∈D([0, T],ZN) denote the full path description of all N particles. Thus the pro-

cess XN is a Markov process with càdlàg paths, with state space ZN , and with the infinitesimal
generator LN acting on the bounded measurable functions φ on ZN according to

LNφ
(
xN) :=

r∑
j=1

[ ∑
n∈Cc

j

∑
z′ : (z,z′)∈E

λc
j,z,z′

(
1

Mc
j (n) + 1

∑
m∈{n}∪Nc

j (n)

δxm,j,
1

Mp
j (n)

∑
m∈Np

j (n)

δxm,j, �
c
n,j, �

p
n,j

)

×
(
φ
(
xN

n,z,z′
)− φ

(
xN))

+
∑
n∈Cp

j

∑
z′ : (z,z′)∈E

λ
p

j,z,z′

(
1

Mc
j (n)

∑
m∈Nc

j (n)

δxm,j,
1

Mp
1(n)

∑
m∈Np

1(n)

δxm,1, . . . ,

1

Mp
j (n) + 1

∑
m∈{n}∪Np

j (n)

δxm,j, . . .
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. . . ,
1

Mp
r (n)

∑
m∈Np

r (n)

δxm,r , ς
c
n,j, ς

p
n,j,1, . . . , ς

p
n,j,r

)

×
(
φ
(

xN
n,z,z′

)
− φ

(
xN)) ]

,

where xN = (
xn,j, xm,j, n ∈ Cc

j ,m ∈ Cp
j , 1 ≤ j ≤ r

) ∈ZN and xN
n,z,z′ describes the new configu-

ration of the system when the state of the nth node has changed from z to z′.

2.3. Stochastic differential equation representation

Recall that, for each central node n ∈ Cc
j (resp. peripheral node n ∈ Cp

j ) from a given block
1 ≤ j ≤ r, the evolution of its color is described by the continuous-time stochastic process
(Xc

n,j(t), t ≥ 0)
(
resp.

(
Xp

n,j(t), t ≥ 0
))

that takes values in the finite state space Z , and whose

dynamic is given by the time-dependent transition rate matrix
(
λc

j,z,z′ (υ
c,N
n,j (t))

)
(z,z′)∈E

(resp.(
λ

p

j,z,z′ (υ
p,N
n,j (t))

)
(z,z′)∈E

). Therefore, using a classical approach (see e.g. [60, p. 104]), the pro-

cesses Xc
n,j and Xp

n,j can be represented, at least weakly, by the following system of stochastic
differential equations:

Xc
n,j(t) = Xc

n,j(0) +
∫

[0,t]×R+

∑
(z,z′)∈E

1Xc
n,j(s−)=z(z′ − z)1[

0,λc

j,z,z
′ (υc,N

n,j (s−))

](y)N c
n,j(ds, dy),

Xp
n,j(t) = Xp

n,j(0) +
∫

[0,t]×R+

∑
(z,z′)∈E

1Xp
n,j(s−)=z(z

′ − z)1[
0,λp

j,z,z
′ (υp,N

n,j (s−))

](y)N p
n,j(ds, dy),

(12)

where {N c
n,j, n ∈ Cc

j , 1 ≤ j ≤ r} and {N p
n,j, n ∈ Cp

j , 1 ≤ j ≤ r} are collections of Poisson random

measures on R2 whose intensity measures are Lebesgue on R2+. We will use the representation
(12) in the analysis of the asymptotic behavior of the system when the total number of nodes
N goes to infinity.

3. Examples

As mentioned in the introduction, mean-field block models have been proposed to inves-
tigate various phenomena arising in fields such as physics, engineering, biology, etc. This
section presents some examples of applications of the model analyzed in the current paper,
with the goal being to illustrate its usefulness and its flexibility to capture various phenomena.
Of course, it remains a toy model that should be appropriately adapted to different applications,
but we believe that the insights from the current study are of great interest for both theoretical
and practical purposes.

3.1. Load-balancing networks

Load-balancing protocols are often used in queueing networks to improve system perfor-
mance by shortening the queue length, reducing the waiting time, and increasing the system
throughput. In this regard, the mean-field approach has been proven to be useful; see, e.g.,
[55, 65, 66]. In particular, interesting work in this direction was proposed in [26], where the
authors considered a queueing network with N nodes in which queue lengths are balanced
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through mean-field interactions using an interaction function. Here we summarize their model
and then describe how our current model can be used to generalize the ideas in [26].

Consider a system consisting of N queues with a mean-field interaction. At t = 0, for
1 ≤ n ≤ N, the arrival rate to the nth queue occurs according to ζXn(0), and the service rate
at queue n is ϑXn(0). Let h(x) : R+ ×R+ →R be a continuous nondecreasing interaction
function satisfying certain regularity conditions (see [26, p. 339]). This function makes it
possible to capture the mean-field interaction between queues as follows: for each queue
n = 1, 2, . . . ,N, the arrival rate at time t is given by ζXj(t) − h(Xj(t), 〈μN(t)(dx), x〉), where

μN(t) := 1
N

∑N
j=1 δXj(t) is the empirical measure corresponding to the N queues at time t, and

〈μN(t)(dx), x〉 = 1
N

∑N
j=1 Xj(t) is the mean queue length of the N queues at time t. Roughly

speaking, the arrival rate at each queue depends on the current size of the queue and on the
mean size of its neighbors (which is the entire set of queues in this case). The authors of [26]
studied the performance of this system when the number of queues N goes to infinity.

The model proposed in the current paper can be seen as a generalization of the model in
[26] to heterogeneous queueing networks, namely, to block-structured networks. To see this,
let us consider the graph G = (V, �) as a queueing network where the particles (nodes) are
finite-buffer server queues of maximum size K (arbitrarily large), and the corresponding states(

Xc
n,j(t), Xp

m,j(t), n ∈ Cc
j ,m ∈ Cp

j , 1 ≤ j ≤ r, t ≥ 0
)

represent the number of customers waiting

in each queue at each time t. Again, at t = 0, for 1 ≤ n ≤ N, the arrival rate to the nth queue
occurs according to ζXιn,j(0), and the service rate at queue n is ϑXιn,j(0), for ι ∈ {c, p}. Since
the network now is heterogeneous, the mean-field interaction is local. Thus, the arrival rate

at a central node queue n ∈ Cc
j at time t is given by ζ c

Xc
n,j(t)

− hc
(

Xc
n,j(t),

〈
μ

c,N
n,j (t)(dx), x

〉)
,

whereas the arrival rate at a peripheral node queue n ∈ Cp
j at time t is given by ζ p

Xp
n,j(t)

−
hp
(

Xp
n,j(t),

〈
μ

p,N
n,j (t)(dx), x

〉)
, where μ

c,N
n,j (t) and μ

p,N
n,j (t) are the local empirical measures

respectively given by (4) and (7). The service rates ϑc
Xc

n,j(t)
and ϑp

Xp
n,j(t)

depend only on the

queue sizes Xc
n,j(t) and Xp

n,j(t) at time t. Hence, the transition rates λc
j,z,z′ and λp

j,z,z′ are specified

as follows:

• The size Xc
n,j(t) of each central queue n ∈ Cc

j at time t goes from z to z′ at rate

λc
j,z,z′ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ζ c
Xc

n,j(t)
− hc

(
Xc

n,j(t),
1

deg(n)

∑
ι∈{c,p}

∑
m∈Nι

j(n)
Xιm,j(t)

)
if z′ = z + 1 and z′ ≤ K,

ϑc
Xc

n,j(t)
if z′ = z − 1 and Xc

n,j(t) ≥ 1,

− ∑
y �=z

λc
j,z,y if z′ = z,

0 otherwise.

• The size Xp
n,j(t) of each peripheral queue n ∈ Cp

j at time t goes from z to z′ at rate

λ
p

j,z,z′ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ
p
Xp

n,j(t)
− hp

(
Xp

n,j(t),
1

deg(n)

∑
1≤k≤r
ι∈{c,p}

∑
m∈Nι

k(n)
(Xιm,k(t))

)
if z′ = z + 1 and z′ ≤ K,

ϑ
p
Xp

n,j(t)
if z′ = z − 1 and Xp

n,j(t) ≥ 1,

− ∑
y �=z

λ
p
j,z,y if z′ = z,

0 otherwise.
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It is worth mentioning that the sparse graph topologies have been considered in applica-
tions in response to some issues encountered when implementing load-balancing protocols. In
particular, many service systems are geographically constrained; therefore, when a task arrives
at any specific server, it may be impossible to collect instantaneous state information from all
the servers. In addition, executing a task commonly involves the use of some data, and storing
such data for all possible tasks on all servers requires an excessive amount of storage capacity.
The use of sparser graph topologies is then considered, such that tasks that arrive at a specific
server can only be forwarded, following a specific load-balancing scheme, to the servers that
possess the data required to process the tasks. In other words, a specific server can only inter-
act with its neighbors in a suitable sparse topology; see, e.g., [15] and the references therein
for more insights about the subject. The block-structured topology with the central/peripheral
paradigm can for instance be considered to overcome the geographic constraint by allowing
central nodes to rely only on the information collected locally on nodes from the same block,
which may represent nodes within the same geographic area, while the peripheral nodes are
those relying on information from both within and outside the block. To increase system effi-
ciency, one could restrict the number of peripheral nodes allowed. The results obtained in
the current work allow us to understand the behavior of such systems when the number N of
servers of the network is very large. In particular, the multi-chaotic property established in
Theorem 5.1 tells us that the queue lengths at any finite collection of tagged servers are statis-
tically asymptotically independent, and the queue-length process for each server converges in
distribution to the corresponding McKean–Vlasov process given by (14). Also, Condition 4.1
and Remark 4.1 tell us that the multi-chaoticity result holds even when the peripheral subgraph
is not complete, which means that one can achieve similar asymptotic performance even with
far fewer connections between the peripheral nodes than when all the peripheral nodes are
connected and all the central nodes of the same block are connected.

3.2. Multi-population SIS epidemics

The susceptible–infected–susceptible (SIS) model, originally used in epidemiology, is also
convenient to model the spread of information in networks, since the two phenomena are
similar. The SIS model can be summarized as follows: consider a piece of information, or
an infectious disease, that propagates across a population. A member that has a copy of the
information/disease is said to be infected, and a member that does not have a copy of the
information/disease is said to be susceptible. When an infected member comes into contact
with a susceptible one, the former transmits a copy of the information (disease) to the lat-
ter, which gets infected. Moreover, an infected member may spontaneously get rid of the
information/disease, a phenomenon called curing, and become susceptible again.

In both epidemiology and network information diffusion, the population often consists of
relatively isolated subgroups such that members of the same subgroup interact a great deal,
but only a few pairs of members from different subgroups are connected. One might think, for
instance, of countries as isolated communities connected by travelers across the globe, or of
interactions in social media, which often happen in almost closed communities, with only a few
influential members interacting across groups. Our model allows one to study the spreading
dynamics of information or of a disease among the members of a population structured as
separate communities.

Consider a population consisting of r isolated communities and a ‘mobile’ community.
The members of each isolated community interact only among themselves and with members
of the mobile community. Thus, there is no direct interaction between members of different
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communities. However, indirect inter-community interactions happen via the set of mobile
members. This idea was used in [2], where the authors considered an optimal control problem
to find the optimal resource allocation strategy that maximizes information spread over a multi-
community population. Their objective was to obtain a good tradeoff between the information
spread in the network and the use of system resources.

Now, let Z := {0, 1} be the state space that indicates whether the particle is susceptible
( = 0) or infected ( = 1). Recalling the model description introduced in Section 2, one might
think of the central nodes of each block as an isolated community that interacts with other
communities only through the members of the mobile community represented by the periph-
eral nodes. Note that in contrast to [2], the central nodes of a given block interact only with
peripheral (mobile) nodes from the same block, and not with all the peripheral/mobile nodes, as
stipulated in [2]. Also, the interaction graph for the peripheral members is not complete; thus,
not all the peripheral nodes interact with each other. Nevertheless, the fact that the multi-chaotic
property holds under Condition 4.1 (cf. Theorem 5.1) tells us that systems with full connections
among the peripheral components and among the components of each block are asymptotically
close to those with fewer connections, as specified by Condition 4.1 and Remark 4.1. This is
of interest, for example, in resource allocation problems where a cost is attributed to each
connection; however, such considerations are beyond the scope of the present paper.

Denote by Xc
n,j(t), for n ∈ Cc

j , and Xp
m,j(t), for m ∈ Cp

j , the state (‘susceptible’ or ‘infected’)
of the nth central particle and the mth peripheral particle, respectively, in the jth community.
Two connected central members of the same community j come in contact with each other at
rate γj. Connected peripheral and central nodes from the same community interact with each
other at rate νj. Two connected peripheral nodes come in contact with each other at rate η.
Finally, an infected node in the jth community spontaneously gets rid of the infection at rate
ζj. Therefore, the transition rates λc

j,z,z′ and λp

j,z,z′ , which sum up the dynamics that we are

interested in, are specified as follows:

• The state Xc
n,j(t) of each central member n ∈ Cc

j at time t goes from z to z′ at rate

λc
j,z,z′ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
m∈Nc

j (n)
Xc

m,j(t)γj + ∑
m∈Np

j (n)

Xp
m,j(t)νj if z = 0 and z′ = 1,

ζj if z = 1 and z′ = 0,
− ∑

y �=z
λc

j,z,y if z′ = z,

0 otherwise.

• The state Xp
n,j(t) of each peripheral (mobile) member n ∈ Cp

j at time t goes from z to z′ at
rate

λ
p

j,z,z′ :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
m∈Nc

j (n)
Xc

m,j(t)νj +
r∑

k=1

∑
m∈Np

k (n)

Xp
m,k(t)η if z = 0 and z′ = 1,

ζj if z = 1 and z′ = 0,
− ∑

y �=z
λ

p
j,z,y if z′ = z,

0 otherwise.

Note that the large deviations properties established in Section 6 constitute a step towards
the study of the large-time behavior of such systems. Indeed, the large deviations of the empir-
ical measures established in Theorem 6.2 can be used to investigate the large deviations of the
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invariant measure, from which one can study the large-time behavior of the system and related
phenomena such as metastability and convergence to the invariant measure. The interested
reader can consult, e.g., [25, 36, 44, 67] and the references therein for further insight.

4. Existence and uniqueness of the limiting system

This section aims to introduce and prove the existence of the limiting equation that describes
the behavior of the interacting particle system detailed in Section 2, as the total number of
particles N in the system tends to infinity. In particular, this equation is of McKean–Vlasov
type as explained below. The main result of this section is Theorem 4.1, which establishes
the existence and uniqueness of the solution of the limiting McKean–Vlasov equation. The
convergence of the system towards this equation will then be investigated in Section 5.

4.1. Notation and conventions

Let (S, d) be a Polish space. For any y ∈ Sd, for some d ∈N, one writes ‖y‖ :=
max (y1, . . . , yd). For any x ∈D([0, T], Sd), ‖x‖T denotes sup0≤t≤T ‖x(t)‖. Let M(S) be the
set of all measures on S. Given μ, ν ∈M(S), the bounded-Lipschitz metric dBL(·, ·) is defined
by

dBL(μ, ν) := sup
g∈Lip(S)

∣∣〈μ, g〉 − 〈ν, g〉∣∣, (13)

where

Lip(S) :=
{

g ∈ Cb(S) : sup
x∈S

|g(x)| ≤ 1, sup
x �=y

|g(x) − g(y)|
d(x, y)

≤ 1

}
.

Recall that the bounded-Lipschitz metric metrizes the weak convergence of probability mea-
sures on S with respect to bounded continuous test functions Cb(S). For p ≥ 1, let Pp(S) be the
collection of all probability measures on S with finite pth moment. Then, for any μ and ν in
Pp(S), the pth Wasserstein distance between μ and ν is defined as

Wp(μ, ν) :=
(

inf
γ∈�(μ,ν)

∫
E×E

d(x, y)pdγ (x, y)

)1/p

,

where �(μ, ν) denotes the collection of all measures on S× S with marginals μ and ν.
Moreover, for M1,M2 in Pp

(D([0, T], S) × · · ·D([0, T], S)
)
, the pth Wasserstein distance

between M1 and M2 is given, for any t ∈ [0, T], by

Wp,t(M1,M2) := inf

{[
E‖Y1 − Y2‖p

t
]1/p : Y1, Y2 ∈D([0, T], S) × · · ·D([0, T], S),M1 =

L(Y1),M2 =L(Y2)

}
.

4.2. The limiting system

We use in the sequel the convention that N goes to infinity when both min1≤j≤r Nc
j and

min1≤j≤r Np
j go to infinity. Given the multi-population setting, one describes the state of the

system at each time t using the following empirical measure vector:

μN(t) :=
(
μ

c,N
1 (t), μp,N

1 (t), · · · , μc,N
r (t), μp,N

r (t)
)
,
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where we recall that for each 1 ≤ j ≤ r, μc,N
j (t) (resp. μp,N

j (t)) is the empirical measure
describing the states of the central (resp. peripheral) nodes of the jth block at time t. Under
some regularity conditions (cf. Condition 4.1), we will prove in Section 5 the convergence,
as N tends to infinity, of the empirical measure vector μN towards the distribution μ ∈
M1(D(

[0, T],Z2r
)
), the solution of an appropriate limiting system. Namely, the empirical

vector μN should converge weakly to μ with

μ := (
μc

1, μ
p
1, · · · , μc

r, μ
p
r

) ∈ (M1(D([0, T],Z))
)2r
,

where μc
j := L(X̄c

n,j

)
for n ∈ Cc

j and μp
j := L(X̄p

m,j) for m ∈ Cp
j , with

(
X̄c

n,j, X̄p
m,j, n ∈ Cc

j ,m ∈
Cp

j , 1 ≤ j ≤ r
)

being the solution of the following system of stochastic differential equations:

X̄c
n,j(t) = X̄c

n,j(0) +
∫

[0,t]×R+

∑
(z,z′)∈E

1X̄c
n,j(s−)=z(z

′ − z)1[
0,λc

j,z,z
′
(
υc

j (s−)
)](y)N c

n,j(ds, dy),

X̄p
m,j(t) = X̄p

m,j(0) +
∫

[0,t]×R+

∑
(z,z′)∈E

1X̄p
m,j(s−)=z(z

′ − z)1[
0,λp

j,z,z
′
(
υ

p
j (s−)

)](y)N p
m,j(ds, dy).

(14)

The vectors υc
j (t) and υp

j (t) are defined by

υc
j (t) := (

μc
j (t), μp

j (t), pc
j , pp

j

)
,

υ
p
j (t) := (

μc
j (t), μp

1(t), . . . , μp
r (t), αc

j , qj,1, . . . , qj,r
)
,

(15)

where pc
j , pp

j , α
c
j , qj1, . . . , qjr ∈ (0, 1) are parameters satisfying

pc
j + pp

j = 1 and αc
j + qj1 + · · · + qjr = 1 for each 1 ≤ j ≤ r;

these parameters will later be chosen appropriately (cf. Condition 4.1). The link between the
initial conditions of the systems (12) and (14) will be introduced in the sequel. Observe that the
solution of (14) depends not only on its sample path but also on the distribution of the process
itself. Thus, the system (14) is McKean–Vlasov.

4.3. Regularity assumptions

We introduce and discuss here the regularity conditions under which the existence and
uniqueness of the limiting system (14), together with the propagation of chaos and laws of
large numbers investigated in Section 5, hold.

Condition 4.1.

1. For all 1 ≤ j ≤ r and (z, z′) ∈ E , there exist measurable functions γ j,c

z,z′ : Z →R+ and

γ
j,p

z,z′ : Z →R+ such that the following hold:

• For any probability measures ν, μ ∈M1(Z) and any real numbers a1, a2 satisfying
0< a1, a2 < 1 and a1 + a2 = 1, we have

λc
j,z,z′ (ν, μ, a1, a2) = a1

∫
Z
γ

j,c

z,z′ (x)ν(dx) + a2

∫
Z
γ

j,p

z,z′ (x)μ(dx). (16)
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• For any ν, μ1, . . . , μr ∈M1(Z) and any real numbers a, b1, . . . , br satisfying 0<
a, b1, . . . , br < 1 and a + b1 + · · · + br = 1, we have

λ
p

j,z,z′ (ν, μ1, . . . , μr, a, b1, . . . , br) = a
∫
Z
γ

j,c

z,z′ (x)ν(dx)

+ b1

∫
Z
γ

1,p

z,z′ (x)μ1(dx) + · · · + br

∫
Z
γ

r,p

z,z′ (x)μr(dx). (17)

2. For each block 1 ≤ j ≤ r, there exist pc
j , pp

j ∈ (0, 1) such that, as N → ∞,

Np
j

Nj
→ pp

j ,
Nc

j

Nj
→ pc

j , and pp
j + pc

j = 1. (18)

3. For each block 1 ≤ j ≤ r, as N → ∞,

sup
n∈Cc

j

∣∣∣�c
n,j − pc

j

∣∣∣→ 0 and sup
n∈Cc

j

∣∣∣�p
n,j − pp

j

∣∣∣→ 0. (19)

4. For each block 1 ≤ j ≤ r, there exist αc
j , qj1, . . . , qjr ∈ (0, 1) with αc

j + qj1 + · · · + qjr =
1 such that the following conditions hold for each block 1 ≤ i ≤ r, as N → ∞:

sup
n∈Cp

j

∣∣∣∣ςc
n,j − αc

j

∣∣∣∣→ 0 and sup
n∈Cp

j

∣∣∣∣ςp
n,j,i − qji

∣∣∣∣→ 0. (20)

5. For all nodes n ∈ V , deg(n) → ∞ as N → ∞.

Remark 4.1.

1. Since Z is a finite state space, the functions γ j,c

z,z′ and γ j,p

z,z′ are bounded on Z . Moreover,

since Z ⊂N and since every bounded function on N is automatically Lipschitz, γ j,c

z,z′
and γ j,p

z,z′ are also Lipschitz. Denote by γ̄ > 0 the maximum bound and by Lγ the max-

imum Lipschitz coefficient of the sequences of functions
{
γ

j,c

z,z′ , 1 ≤ j ≤ r, (z, z′) ∈ E
}

and
{
γ

j,p

z,z′ , 1 ≤ j ≤ r, (z, z′) ∈ E
}

.

2. The conditions in (19) and (20) are satisfied if, for instance, for all 1 ≤ j ≤ r, the
following hold:

• For each n ∈ Cc
j , we have Mc

j (n)/Nc
j → 1 and Mp

j (n)/Np
j → 1 as N → ∞.

• For each n ∈ Cp
j , we have Mc

j (n)/Nc
j → 1 and Mp

i (n)/Np
i → 1 as N → ∞ for all 1 ≤

i ≤ r.

Indeed, under this assumption one can define

αc
j = lim

N→∞
Nc

j

Nc
j + Np

1 + · · · + Np
r

∀1 ≤ j ≤ r, (21)

qji = lim
N→∞

Np
i

Nc
j + Np

1 + · · · + Np
r

∀1 ≤ j, i ≤ r, (22)

and thus, one can easily verify that, as N → ∞, the following hold:
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FIGURE 1. Example of a block-structured graph with a complete peripheral subgraph. Here we have a
4-block-structured graph linked by a set of peripheral nodes. For the first block, the set of central nodes
is Cc

1 = {1, 2} and the set of peripheral nodes is Cp
1 = {3, 4}. The set of all peripheral nodes of the graph

is given by the set of nodes Cp = {3, 4, 5, 10, 11, 14, 18}.

• For all n ∈ Cc
j ,

1 + Mc
j (n)

1 + deg(n)
→ pc

j and
Mp

j (n)

1 + deg(n)
→ pp

j . (23)

• For all n ∈ Cp
j and i �= j,

Mp
i (n)

1 + deg(n)
→ qji,

1 + Mp
j (n)

1 + deg(n)
→ qjj, and

Mc
j (n)

1 + deg(n)
→ αc

j . (24)

3. A special case where the conditions (19) and (20) are satisfied is when the blocks are
cliques and the peripheral subgraph is complete—that is, when all peripheral nodes are
connected (see Figure 1) and all the nodes in the same block are connected. In such a
case, the central (resp. peripheral) nodes in the same block are exchangeable.

4. Even though the conditions (19) and (20) are somewhat restrictive, the construction of
the model allows one to have very different degrees in each block. One might further
compare these conditions with existing conditions in the literature. Consider for example
the condition imposed in [15] for a supermarket model on sparse graphs to asymptot-
ically behave as on cliques. The condition in [15] relies on the local properties of the
graph by requiring direct neighbors of any node to have asymptotically similar degrees;
see [15, Condition 1(ii)]. This condition is violated in our model. Indeed, the condi-
tions (19) and (20) allow central and peripheral nodes from the same block to have very
different degrees, even if they are neighbors, which goes beyond [15, Condition 1(ii)].
In addition, under our condition, degmax(G)/degmin(G) should not go to 1 as N → ∞,
nor does maxj

∣∣(degmin(Cj)/degmax(Cj)
)− 1

∣∣ go to zero as proposed in [15, Remark 1]
(here degmin(Cj) and degmax(Cj) refer to the minimum and maximum degrees of nodes
within the same block j). In this sense, the family of graphs which we are considering
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in the present work is sparser than the ones covered by [15, Condition 1(ii)]. Another
condition with which to compare ours is the one proposed in [28], under which an n-
dimensional diffusion system converges to a limiting Fokker–Planck equation; see [28,
Equations (1.1) and (1.3)]. Note that [28, Equations (1.5) and (1.7)] impose global reg-
ularity conditions in the sense that the degrees of all the nodes should converge to the
same limit; such conditions are not imposed here.

5. While the current paper considers deterministic graphs, one can investigate the case
where the underlying graph topology is random. For example, it is of interest for some
applications to have a scenario where the connections between the peripheral nodes are
random. One can then search for adequate conditions to impose on the edge dynamics
for the propagation-of-chaos property to hold. This, however, goes beyond the scope of
the current paper.

4.4. Existence and uniqueness

We now prove the existence and uniqueness of the solution of the limiting McKean–Vlasov
system introduced in (14).

Theorem 4.1. Suppose that Condition 4.1 holds. Then, for a given initial condition((
X̄c

n(0), X̄p
m(0)

)
, n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
, the McKean–Vlasov system (14) has a unique

solution over any finite time interval [0,T]. In addition, this solution depends continuously
on the initial condition in the following sense: if (X̄1(t), t ∈ [0, T]) and (X̄2(t), t ∈ [0, T]) are
two solutions of (14) with two different initial conditions (X̄1(0)) and (X̄2(0)), respectively, then
there exists a constant AT , depending on the time horizon T, such that

max
1≤j≤r

max
n∈Cc

j

E

[∥∥∥X̄1,c
n,j − X̄2,c

n,j

∥∥∥
T

]
+ max

1≤j≤r
max
n∈Cp

j

E

[∥∥∥X̄1,p
n,j − X̄2,p

n,j

∥∥∥
T

]

≤
(

max
1≤j≤r

max
n∈Cc

j

E

[∣∣∣X̄1,c
n,j (0) − X̄2,c

n,j (0)
∣∣∣]+ max

1≤j≤r
max
n∈Cp

j

E

[∣∣∣X̄1,p
n,j (0) − X̄2,p

n,j (0)
∣∣∣])eAT .

(25)

Proof. For 1 ≤ j ≤ r, with a slight abuse of notation, let

ej,c :
(
xc

1, xp
1, . . . , xc

r, xp
r

) ∈ (Z2r)→ xc
j ∈Z

and
ej,p :

(
xc

1, xp
1, . . . , xc

r, xp
r

) ∈ (Z2r)→ xp
j ∈Z

be the cth and the pth component, respectively, of the jth projection. Moreover, for t ≤ T , let
pt : f ∈D(

[0, T],Z2r
)→ f (t) ∈Z2r.

For M ∈M1
(D(

[0, T],Z2r
))

, let M(t) := M ◦ p−1
t . Consider the system starting at X̄0 =

(X̄1,c
0 , X̄1,p

0 , . . . , X̄r,c
0 , X̄r,p

0 ) and given, at each t ∈ (0, T], by

X̄c
j (t) = X̄c

j (0) +
∫

[0,t]×R+

∑
(z,z′)∈E

1X̄c
j (s−)=z(z

′ − z)1[
0,λc

j,z,z
′
(
υc

j (s−)
)](y)N c

j (ds, dy),

X̄p
j (t) = X̄p

j (0) +
∫

[0,t]×R+

∑
(z,z′)∈E

1X̄p
j (s−)=z(z

′ − z)1[
0,λp

j,z,z
′
(
υ

p
j (s−)

)](y)N p
j (ds, dy),

(26)
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for 1 ≤ j ≤ r, where μc
j (t) = M(t) ◦ e−1

j,c and μp
j (t) = M(t) ◦ e−1

j,p , the vectors υc
j (t) and υp

j (t) are

given by (15), and
{N c

j , 1 ≤ j ≤ r
}

and
{N p

j , 1 ≤ j ≤ r
}

are collections of Poisson random

measures on R2 whose intensity measures are Lebesgue on R2+. Denote by ψ and φ the
mappings that associate to M the solution of this system and its corresponding law. Thus,
ψ(M) = (

X̄c
j , X̄p

j , 1 ≤ j ≤ r
)

and φ(M) =L(X̄c
j , X̄p

j , 1 ≤ j ≤ r
)
. Observe that if X̄ is a solution

of (14), then its law is a fixed point of φ. Conversely, if M is a fixed point of φ for the system
(26), then the corresponding solution ψ(M) defines a solution of the limiting system (14). The
idea is then to prove the existence of a fixed point of φ.

Take M1,M2 ∈M1
(D(

[0, T],Z2r
))

. Set X̄1 := (
X̄1,c

1 , X̄1,p
1 . . . , X̄1,c

r , X̄1,p
r

)=ψ(M1)

and X̄2 := (
X̄2,c

1 , X̄2,p
1 . . . , X̄2,c

r , X̄2,p
r

)=ψ(M2). Thus, L(X̄1) = φ(M1) and L(X̄2) = φ(M2).

Moreover, for all t ∈ [0, T], define μ1(t) := (μ1,c
1 (t), μ1,p

1 (t), . . . , μ1,c
r (t), μ1,p

r (t)) and

μ2(t) := (μ2,c
1 (t), μ2,p

1 (t), . . . , μ2,c
r (t), μ2,p

r (t)) with μ
1,c
j (t) := M1(t) ◦ e−1

j,c , μ
1,p
j (t) :=

M1(t) ◦ e−1
j,p , μ2,c

j (t) := M2(t) ◦ e−1
j,c and μ

2,p
j (t) := M2(t) ◦ e−1

j,p for 1 ≤ j ≤ r. According to
(15), we introduce the following notation:

υ
1,c
j (t) := (

μ
1,c
j (t), μ1,p

j (t), pc
j , pp

j

)
,

υ
2,c
j (t) := (

μ
2,c
j (t), μ2,p

j (t), pc
j , pp

j

)
,

υ
1,p
n,j (t) := (

μ
1,c
j (t), μ1,p

1 (t), . . . , μ1,p
r (t), αc

j , qj,1, . . . , qj,r
)
,

υ
2,p
n,j (t) := (

μ
2,c
j (t), μ2,p

1 (t), . . . , μ2,p
r (t), αc

j , qj,1, . . . , qj,r
)
.

(27)

We first prove that φ is a contraction mapping on M1
(D(

[0, T],Z2r
))

; that is, for any t ∈
[0, T],

W1,t
(
φ(M1), φ(M2)

)≤ C(t)E

[ ∫
[0,t]

W1,s(M1,M2)ds

]
. (28)

To this end, for ease of reading, let us introduce the following notation:

�c
j (t) := ∥∥X̄1,c

j − X̄2,c
j

∥∥
t, �

p
j (t) := ∥∥X̄1,p

j − X̄2,p
j

∥∥
t. (29)

Indeed, for any 1 ≤ j ≤ r we have that

�c
j (t) ≤

∫
[0,t]×R+

∣∣∣∣ ∑
(z,z′)∈E

(z′ − z)

{
1X̄1,c

j (s−)=z1
[

0,λc

j,z,z
′
(
υ

1,c
j (s)

)](y)

− 1X̄2,c
j (s−)=z1

[
0,λc

j,z,z
′ (υ2,c

j (s))

](y)

}∣∣∣∣N c
j (ds, dy).

(30)

Using a martingale argument (see (63)) and taking the expectation, by adding and subtracting
terms (see (65)) one gets, for any t ∈ [0, T],

E

[
�c

j (t)
]
≤ KE

[ ∫
[0,t]

∑
(z,z′)∈E

∣∣∣∣(1X̄1,c
j (s)=z − 1X̄2,c

j (s)=z

)
λc

j,z,z′
(
υ

1,c
j (s)

)

+ 1X̄2,c
j (s)=z

(
λc

j,z,z′
(
υ

1,c
j (s)

)
− λc

j,z,z′
(
υ

2,c
j (s)

))∣∣∣∣ds

]
.

(31)
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Recall the definition of the functions λc
j,z,z′ in (16). Given that μc

j (t) and μp
j (t) are probability

measures and using the boundedness of the functions γ j,c

z,z′ and γ j,p

z,z′ , one easily gets that

λc
j,z,z′

(
υ

1,c
j (s)

)
≤ γ̄ , (32)

and∣∣∣∣λc
j,z,z′

(
υ

1,c
j (s)

)
−λc

j,z,z′
(
υ

2,c
j (s)

)∣∣∣∣≤ pc
j

∣∣∣∣〈γ c
z,z′ , μ

1,c
j (s) −μ

2,c
j (s)

〉∣∣∣∣+ pp
j

∣∣∣∣〈γ p

z,z′ , μ
1,p
j (s)−μ2,p

j (s)
〉∣∣∣∣

≤ pc
j γ̄ dBL

(
μ

1,c
j (s), μ2,c

j (s)
)

+ pp
j γ̄ dBL

(
μ

1,p
j (s), μ2,p

j (s)
)

.

(33)

Therefore one obtains

E
[
�c

j (t)
]≤ K|E |γ̄E0

[ ∫
[0,t]

(∣∣X̄1,c
j (s) − X̄2,c

j (s)
∣∣+ pc

j dBL

(
μ

1,c
j (s), μ2,c

j (s)
)

+ pp
j dBL

(
μ

1,p
j (s), μ2,p

j (s)
))

ds

]
. (34)

Using (17) and the same steps as previously, one finds, for any 1 ≤ j ≤ r,

E
[
�

p
j (t)

]≤ K|E |γ̄E
[ ∫

[0,t]

(∣∣X̄1,p
j (s) − X̄2,p

j (s)
∣∣+ αc

j dBL

(
μ

1,c
j (s), μ2,c

j (s)
)

+ qj1dBL

(
μ

1,p
1 (s), μ2,p

1 (s)
)

+ · · · + qjrdBL

(
μ1,p

r (s), μ2,p
r (s)

))
ds

]
.

(35)

On the one hand, from the Kantorovich–Rubinstein theorem, one has that for 1 ≤ j ≤ r and
α ∈ {c, p},

W1

(
μ

1,α
j (s), μ2,α

j (s)
)

= sup
‖g‖L≤1

∣∣∣〈μ1,α
j (s), g

〉
−

〈
μ

2,α
j (s), g

〉∣∣∣, (36)

where the supremum is taken over the functions g with Lipschitz constant 1. Therefore,

dBL

(
μ

1,α
j (s), μ2,α

j (s)
)

≤W1

(
μ

1,α
j (s), μ2,α

j (s)
)

. (37)

On the other hand, one can easily verify that

W1

(
μ

1,α
j (s), μ2,α

j (s)
)

≤W1,s
(
M1,M2

)
. (38)

Thus, using (37) and (38) and taking the supremum over 1 ≤ j ≤ r in (34) and (35), one obtains

E

[
sup

1≤j≤r
�c

j (t)

]
≤ K|E |γ̄E

[ ∫
[0,t]

(
sup

1≤j≤r
�c

j (s) +W1,s(M1,M2)

)
ds

]
(39)
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and

E

[
sup

1≤j≤r
�

p
j (t)

]
≤ K|E |γ̄E

[ ∫
[0,t]

(
sup

1≤j≤r
�

p
j (s) +W1,s(M1,M2)

)
ds

]
. (40)

Adding the two last inequalities side by side and applying Grönwall’s lemma leads to

E

[
sup

1≤j≤r
�c

j (t) + sup
1≤j≤r

�
p
j (t)

]
≤ K|E |γ̄E

[ ∫
[0,t]

W1,s(M1,M2)ds

]
eK|E |γ̄ t. (41)

Hence,

E
[‖X̄1 − X̄2‖t

]≤ C(t)E

[ ∫
[0,t]

W1,s(M1,M2)ds

]
, (42)

with C(t) = K|E |γ̄ eK|E |γ̄ t. From the definition of the Wasserstein distance, it is easy to observe
that

W1,t
(
φ(M1), φ(M2)

)≤E
[‖X̄1 − X̄2‖t

]
,

from which one deduces (28).
Consider now the following recursive scheme:

• M0 ∈M1
(D(

[0, T],Z2r
))

;

• Mk+1 = φ(Mk), k ≥ 0.

By iterating the formula in (28) and using the fact that W1,t(M1,M0) is increasing in t, one
finds that for all k ≥ 0,

W1,t(Mk+2,Mk+1) ≤ (tC(t))k

k! W1,t(M1,M2).

Moreover, it is easy to verify that E[‖X̄‖T ]<∞, where X̄ =ψ(M) for any M ∈
M1

(D(
[0, T],Z2r

))
, from which we deduce that W1,t(M1,M2)<∞ and thus the sequence

{Mk}k≥0 is a Cauchy sequence. Note that the space P1
(D(

[0, T],Z2r
))

endowed with the
Wasserstein distance Wp,T is complete (see [11]). Hence the sequence {Mk}k≥0 converges to
some measure M in P1

(D(
[0, T],Z2r

))
which is a fixed point of φ on P1

(D(
[0, T],Z2r

))
.

This proves the existence of the solution of the equation in (26) and thus that of the equation
in (14). Uniqueness follows from again using (28) and Grönwall’s lemma.

Let
(
X̄1(t)

)
:=

(
X̄1,c

n,j (t), X̄1,p
m,j(t), n ∈ Cc

j ,m ∈ Cp
j , 1 ≤ j ≤ r

)
and

(
X̄2(t)

)
:=(

X̄2,c
n,j (t), X̄2,p

m,j(t), n ∈ Cc
j ,m ∈ Cp

j , 1 ≤ j ≤ r
)

be two solutions of (14) with respective initial

conditions (X̄1(0)) and (X̄2(0)). Denote by μ1,c
j (t) := L

(
X̄1,c

n,j (t)
)

and μ1,p
j (t) := L

(
X̄1,p

m,j(t)
)

,

for 1 ≤ j ≤ r, the probability measures corresponding to the first solution. Similarly, denote by

μ
2,c
j (t) := L

(
X̄2,c

n,j (t)
)

and μ2,p
j (t) := L

(
X̄2,p

m,j(t)
)

the probability measures corresponding to

the second solution. Again, for ease of reading, let us introduce the following notation:

�c
n,j(t) := ∥∥X̄1,c

n,j − X̄2,c
n,j

∥∥
t, �

p
n,j(t) := ∥∥X̄1,p

n,j − X̄2,p
n,j

∥∥
t. (43)
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Using this together with the notation in (27), one finds that for any n ∈ Cc
j ,

�c
n,j(t) ≤

∣∣∣X̄1,c
n,j (0) − X̄2,c

n,j (0)
∣∣∣

+
∫

[0,t]×R+

∣∣∣∣∣
∑

(z,z′)∈E
(z′ − z)

{
1X̄1,c

n,j (s−)=z1
[

0,λc

j,z,z
′
(
υ

1,c
j (s)

)](y)

− 1X̄2,c
n,j (s−)=z1

[
0,λc

j,z,z
′
(
υ

2,c
j (s)

)](y)

}∣∣∣∣∣N c
n,j(ds, dy).

(44)

Using a martingale argument (see (63)), taking the conditional expectation E0 given
(X̄1(0), X̄2(0)), and finally adding and subtracting terms (see (65)), one gets that for t ∈ [0, T],

E0
[
�c

n,j(t)
]
≤

∣∣∣X̄1,c
n,j (0) − X̄2,c

n,j (0)
∣∣∣

+ KE0

[ ∫
[0,t]

∑
(z,z′)∈E

∣∣∣∣(1X̄1,c
n,j (s)=z − 1X̄2,c

n,j (s)=z

)
λc

j,z,z′
(
υ

1,c
j (s)

)

+ 1X̄2,c
n,j (s−)=z

(
λc

j,z,z′
(
υ

1,c
j (s)

)
− λc

j,z,z′
(
υ

2,c
j (s)

))∣∣∣∣ds

]
.

(45)

Since μ1,c
j (t) and μ

1,p
j (t) are probability measures, it is easy to see using (16) and the

boundedness of the functions γ j,c

z,z′ and γ j,p

z,z′ that

λc
j,z,z′

(
υ

1,c
j (s)

)
≤ γ̄ . (46)

Additionally, the Lipschitz property of the functions γ j,c

z,z′ leads to

∣∣∣∣λc
j,z,z′

(
υ

1,c
j (s)

)
− λc

j,z,z′
(
υ

2,c
j (s)

)∣∣∣∣≤ pc
j γ̄E

[∣∣∣X̄1,c
n,j (s) − X̄2,c

n,j (s)
∣∣∣]+ pp

j γ̄E
[∣∣∣X̄1,p

1,j (s) − X̄2,p
1,j (s)

∣∣∣].

(47)

Therefore one obtains

E0
[
�c

n,j(t)
]
≤�c

n,j(0) + Kγ̄ |E |
∫

[0,t]

(
E0

[
�c

n,j(s)
]
+ pc

j E

[
�c

n,j(s)
]
+ pp

j E

[
�

p
1,j(s)

])
ds.

(48)

Taking the expectation on both sides of the last inequality, and recalling that pc
j + pp

j = 1 for
all 1 ≤ j ≤ r, one gets

E

[
�c

n,j(t)
]
≤E

[
�c

n,j(0)
]+ 2Kγ̄ |E |

∫
[0,t]

(
E

[
�c

n,j(s)
]
+E

[
�

p
1,j(s)

])
ds. (49)
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Thus,

E

[
�c

n,j(t)
]
≤ max

1≤j≤r
max
m∈Cc

j

E

[
�c

m,j(0)
]

+ 2Kγ̄ |E |
∫

[0,t]

(
max
1≤j≤r

max
m∈Cc

j

E

[
�c

m,j(s)
]
+ max

1≤j≤r
max
m∈Cp

j

E

[
�

p
m,j(s)

])
ds. (50)

Taking the maximum over n ∈ Cc
j and 1 ≤ j ≤ r gives

max
1≤j≤r

max
n∈Cc

j

E

[
�c

n,j(t)
]
≤ max

1≤j≤r
max
m∈Cc

j

E

[
�c

m,j(0)
]
+ 2Kγ̄ |E |

∫
[0,t]

(
max
1≤j≤r

max
m∈Cc

j

E

[
�c

m,j(s)
]

+ max
1≤j≤r

max
m∈Cp

j

E

[
�

p
m,j(s)

])
ds.

(51)

Using similar arguments, one finds that for any 1 ≤ j ≤ r and n ∈ Cp
j ,

E0
[
�

p
n,j(t)

]
≤ |X̄1,p

n,j (0) − X̄2,p
n,j (0)| + KE0

[ ∫
[0,t]

∑
(z,z′)∈E

∣∣∣∣
(

X̄1,p
n,j (s) − X̄2,p

n,j (s)

)
λ

p

j,z,z′
(
υ

1,p
j (s)

)

+
(
λ

p

j,z,z′
(
υ

1,p
j (s)

)
− λ

p

j,z,z′
(
υ

2,p
j (s)

) )∣∣∣∣
]

ds. (52)

By (17) and the Lipschitz boundedness property of the functions γ j,c

z,z′ and γ j,p

z,z′ one finds that

E0
[
�

p
n,j(t)

]
≤�p

n,j(0) + Kγ̄ |E |
∫

[0,t]

(
E0

[
�

p
n,j(s)

]
+ αc

j E

[
�c

1,j(s)
]
+ qj1E

[
�

p
1,1(s)

]
+ . . .

+ qjrE

[
�

p
1,r(s)

])
ds. (53)

Taking the expectation on both sides of the last inequality gives

E

[
�

p
n,j(t)

]
≤E

[
�

p
n,j(0)

]
+ Kγ̄ |E |

∫
[0,t]

(
E

[
�

p
n,j(s)

]
+ αc

j E

[
�c

1,j(s)
]
+ qj1E

[
�

p
1,1(s)

]
+ . . .

+ qjrE

[
�

p
1,r(s)

])
ds. (54)

Recall that, for all 1 ≤ j ≤ r, αc
j + qj1 + · · · + qjr = 1. Therefore

E

[
�

p
n,j(t)

]
≤ max

1≤j≤r
max
m∈Cp

j

E

[
�

p
m,j(0)

]

+ Kγ̄ |E |
∫

[0,t]

(
max
1≤j≤r

max
m∈Cc

j

E

[
�c

m,j(s)
]
+ (r + 1) max

1≤j≤r
max
m∈Cp

j

E

[
�

p
m,j(s)

])
ds.

(55)
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Taking the maximum over n ∈ Cp
j and 1 ≤ j ≤ r gives

max
1≤j≤r

max
n∈Cp

j

E
[
�

p
n,j(t)

]≤ max
1≤j≤r

max
m∈Cp

j

E
[
�

p
m,j(0)

]

+ Kγ̄ |E |
∫

[0,t]

(
max
1≤j≤r

max
m∈Cc

j

E
[
�c

m,j(s)
]+ (r + 1) max

1≤j≤r
max
m∈Cp

j

E
[
�

p
m,j(s)

])
ds.

(56)

Now (51) and (56) together lead to

max
1≤j≤r

max
n∈Cc

j

E

[
�c

n,j(t)
]
+ max

1≤j≤r
max
n∈Cp

j

E

[
�

p
n,j(t)

]

≤ max
1≤j≤r

max
m∈Cc

j

E

[
�c

m,j(0)
]
+ max

1≤j≤r
max
m∈Cp

j

E

[
�

p
m,j(0)

]

+ 4Kγ̄ |E |(r + 2)
∫

[0,t]

(
max
1≤j≤r

max
m∈Cc

j

E

[
�c

m,j(s)
]
+ max

1≤j≤r
max
m∈Cp

j

E

[
�

p
m,j(s)

])
ds.

(57)

Then Grönwall’s lemma gives

max
1≤j≤r

max
n∈Cc

j

E

[
�c

n,j(t)
]
+ max

1≤j≤r
max
n∈Cp

j

E

[
�

p
n,j(t)

]

≤
(

max
1≤j≤r

max
m∈Cc

j

E

[
�c

m,j(0)
]
+ max

1≤j≤r
max
m∈Cp

j

E

[
�

p
m,j(0)

])
exp

{
t4Kγ̄ |E |(r + 2)

}
.

(58)

Defining At = 8Kγ̄ |E |(2 + r)t leads to (25). The theorem is proved. �

5. Laws of large numbers and propagation of chaos

This section investigates the weak convergence of the finite particle system represented by
the stochastic differential equation in (12) towards the limiting McKean–Vlasov system (14) as
the total number of particles N tends to infinity. In particular, as the main results of this section,
we establish propagation of chaos in Theorem 5.1 and laws of large numbers in Corollary 5.1.

Let us start this section by recalling the notions of multi-exchangeability and multi-
chaoticity introduced in [40].

Definition 5.1. A sequence of random variables (Xn,k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) indexed by
(Nk, 1 ≤ k ≤ K) ∈NK is said to be multi-exchangeable if its law is invariant under permutation
of the indexes within the classes; that is, for any permutations σk of {1, . . . ,Nk} for 1 ≤ k ≤ K,
the following equality holds in distribution:

(Xσk(n),k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K)
dist= (Xn,k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K).

A sequence of random variables (Xn,k, 1 ≤ n ≤ Nk, 1 ≤ k ≤ K) indexed by (Nk, 1 ≤ k ≤ K) ∈
NK is P1 ⊗ · · · ⊗ PK-multi-chaotic if, for any m ≥ 1, the convergence in distribution

lim
N→∞ (Xn,k, 1 ≤ n ≤ m, 1 ≤ k ≤ K)

dist= P⊗m
1 ⊗ · · · ⊗ P⊗m

K

holds for the topology of uniform convergence on compact sets, where Pk, for 1 ≤ k ≤ K, is a
probability distribution on R+, and with the convention that N goes to infinity when min Nk

goes to infinity.
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5.1. Propagation of chaos

The following result establishes the weak convergence of the pre-limiting system (12)
towards the McKean–Vlasov system (14) as the number of particles N goes to infinity, and
thus its multi-chaoticity.

Theorem 5.1. Suppose that Condition 4.1 holds true. Moreover, suppose that the initial con-

ditions
(

Xc
n,j(0), Xp

m,j(0), n ∈ Cc
j ,m ∈ Cp

j ; 1 ≤ j ≤ r
)

are multi-exchangeable and ν1,c ⊗ ν1,p ⊗
· · · νr,c ⊗ νr,p-multi-chaotic. Then, for any t ∈ [0, T], as N → ∞,

max
1≤j≤r

max
n∈Cc

j

E

[∥∥Xc
n,j − X̄c

n,j

∥∥
t

]
+ max

1≤j≤r
max
n∈Cp

j

E

[∥∥Xp
n,j − X̄p

n,j

∥∥
t

]
→ 0, (59)

and the sequence of processes
((

Xc,N
n (t), Xp,N

m (t), t ≥ 0
)
, n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
, the solu-

tions of the stochastic differential equation (12) with initial conditions
(

Xc,N
n (0), Xp,N

m (0), n ∈
Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
, is PX̄-multi-chaotic, where PX̄ =μc

1 ⊗μ
p
1 ⊗ · · ·μc

r ⊗μ
p
r is the distri-

bution of the process
((

X̄c
n(t), X̄p

m(t), t ≥ 0
)
, n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
, the solution of the

limiting stochastic differential equation (14) with initial distribution ν1,c ⊗ ν1,p ⊗ · · · νr,c ⊗
νr,p.

Before proceeding to the proof, we recall, without proof, an elementary result on (condi-
tionally) independent and identically distributed (i.i.d.) random variables.

Lemma 5.1. Let {Si : i = 1, . . . , n} be a collection of S-valued random variables defined on
some probability space (�,F , P), where S is a Polish space. Suppose that S1, . . . , Sn are
conditionally i.i.d. given some σ -algebra G ⊂F . Then, for any k ∈N, there exists a positive
and finite constant 0< ak <∞ such that

sup
‖f ‖∞≤1

E

∣∣∣∣1

n

n∑
i=1

(
f (Si) −E[f (Si)|G]

)∣∣∣∣
k

≤ ak

nk/2
. (60)

Proof of Theorem 5.1. We use a coupling method. Let X(t) =
((

Xc
n,j(t), Xp

m,j(t)
)
, n ∈

Cc
j ,m ∈ Cp

j ; 1 ≤ j ≤ r
)

be the solution of the stochastic differential equation (12) with ini-

tial conditions X(0) =
((

Xc
n,j(0), Xp

m,j(0)
)
, n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
. Moreover, let Y(t) =((

Yc
n,j(t), Yp

m,j(t)
)
, n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
be the solution of the limiting stochastic differ-

ential equation (14) with the same initial conditions as X(t), i.e., Y(0) = X(0). Also, let the
processes Y(t) and X(t) be defined on the same probability space by taking the same sequences
of Poisson random measures

{N c
n,j

}
and

{N p
n,j

}
in both cases. We first prove that these two

processes are asymptotically close, that is, for any t ∈ [0, T],

max
1≤j≤r

max
n∈Cc

j

E

[∥∥∥Xc
n,j − Yc

n,j

∥∥∥
t

]
+ max

1≤j≤r
max
n∈Cp

j

E

[∥∥∥Xp
n,j − Yp

n,j

∥∥∥
t

]
→ 0, as N → ∞. (61)

To this end, we treat the central and peripheral nodes in two separate steps. For convenience,
define

o(n) := 1

deg(n) + 1
.
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Step 1. Fix 1 ≤ j ≤ r. For each central node n ∈ Cc
j and any t ∈ [0, T],

E

[∥∥Xc
n,j − Yc

n,j

∥∥
t

]
=E

[
sup

0≤s≤t

∣∣∣Xc
n,j(s) − Yc

n,j(s)
∣∣∣
]

≤E

[∣∣∣∣∣
∫

[0,t]×R+

∑
(z,z′)∈E

1Xc
n,j(s−)=z(z′ − z)1[

0,λc

j,z,z
′
(
υ

c,N
n,j (s)

)](y)N c
n,j(ds, dy)

−
∫

[0,t]×R+

∑
(z,z′)∈E

1Yc
n,j(s−)=z(z′ − z)1[

0,λc

j,z,z
′
(
υc

j (s)
)](y)N c

n,j(ds, dy)

∣∣∣∣∣
]

≤E

[ ∫
[0,t]×R+

∣∣∣∣ ∑
(z,z′)∈E

(z′ − z)

{
1Xc

n,j(s−)=z1
[

0,λc

j,z,z
′
(
υ

c,N
n,j (s)

)](y)

− 1Yc
n,j(s−)=z1

[
0,λc

j,z,z
′
(
υc

j (s)
)](y)

}
N c

n,j(ds, dy)

∣∣∣∣
]

. (62)

Denote by Ft the filtration generated by the Poisson random measures and defined by

Ft := σ
〈
N c

n,j(A × B) : n ∈ Cc
j ∪N p

m,j(A × B) : m ∈ Cp
j , A ∈B(R+), B ∈B([0, T]))

〉
.

Then Xc
n,j(t) and Yc

n,j(t) are adapted to the filtration Ft. Therefore, the two processes∫
[0,t]×R+

∑
(z,z′)∈E

1Xc
n,j(s−)=z(z′ − z)1[

0,λc

j,z,z
′
(
υ

c,N
n,j (s)

)](y)
[
N c

n,j(ds, dy) − dsdy
]
,

∫
[0,t]×R+

∑
(z,z′)∈E

1Yc
n,j(s−)=z(z′ − z)1[

0,λc

j,z,z
′
(
υc

j (s)
)](y)

[
N c

n,j(ds, dy) − dsdy
] (63)

are Ft-martingales. Furthermore, (62) reduces to

E

[∥∥Xc
n,j − Yc

n,j

∥∥
t

]
≤E

[ ∫
[0,t]

∣∣∣∣ ∑
(z,z′)∈E

(z′ − z)

{
1Xc

n,j(s)=zλ
c
j,z,z′

(
υ

c,N
n,j (s)

)

− 1Yc
n,j(s)=zλ

c
j,z,z′

(
υc

j (s)
)}∣∣∣∣ds

]
. (64)

Recall that K = |Z| is the cardinality of the set Z . By adding and subtracting terms we obtain

E

[∥∥Xc
n,j − Yc

n,j

∥∥
t

]

≤ KE

[ ∫
[0,t]

∣∣∣∣ ∑
(z,z′)∈E

{
1Xc

n,j(s)=zλ
c
j,z,z′

(
υ

c,N
n,j (s)

)
− 1Yc

n,j(s)=zλ
c
j,z,z′

(
υ

c,N
n,j (s)

)

+ 1Yc
n,j(s)=zλ

c
j,z,z′

(
υ

c,N
n,j (s)

)
− 1Yc

n,j(s)=zλ
c
j,z,z′

(
υc

j (s)
)}∣∣∣∣ds

]
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≤ K
∫

[0,t]

∑
(z,z′)∈E

E

[∣∣∣∣(1Xc
n,j(s)=z − 1Yc

n,j(s)=z

)
λc

j,z,z′
(
υ

c,N
n,j (s)

)

+ 1Yc
n,j(s)=z

(
λc

j,z,z′
(
υ

c,N
n,j (s)

)
− λc

j,z,z′
(
υc

j (s)
))∣∣∣∣

]
ds. (65)

The goal now is to bound the right-hand side of (65). Let us start with the second term. Again,
by adding and subtracting terms we get

E

[∣∣∣∣1Yc
n,j(s)=z

(
λc

j,z,z′
(
υ

c,N
n,j (s)

)
− λc

j,z,z′
(
υc

j (s)
))∣∣∣∣

]

≤E

[∣∣∣∣λc
j,z,z′

(
υ

c,N
n,j (s)

)
− λc

j,z,z′
(
υc

j (s)
)∣∣∣∣
]

=E

[∣∣∣∣∣
(

o(n)
∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Xc

m,j(s)
)+ o(n)

∑
m∈Np

j (n)

γ
j,p

z,z′
(

Xp
m,j(s)

))

−
(

o(n)
∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)+ o(n)

∑
m∈Np

j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

))

+
(

o(n)
∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)+ o(n)

∑
m∈Np

j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

))

−
(

pc
j

∫
Z
γ

j,c

z,z′ (x)μc
j (s)ds + pp

j

∫
Z
γ

j,p

z,z′ (x)μp
j (s)ds

)∣∣∣∣∣
]

≤E

[∣∣∣∣∣
(

o(n)
∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Xc

m,j(s)
)+ o(n)

∑
m∈Np

j (n)

γ
j,p

z,z′
(

Xp
m,j(s)

))

−
(

o(n)
∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)+ o(n)

∑
m∈Np

j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

))∣∣∣∣∣
]

+E

[∣∣∣∣∣
(

o(n)
∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)+ o(n)

∑
m∈Np

j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

))

−
(

pc
j

∫
Z
γ

j,c

z,z′ (x)μc
j (s)ds + pp

j

∫
Z
γ

j,p

z,z′ (x)μp
j (s)ds

)∣∣∣∣∣
]

. (66)

Denote by J1 and J2 respectively the first and the second expectation in the right-hand side
of (66). Then, from the Lipschitz property of the functions γ j,c

z,z′ and γ j,p

z,z′ , J1 is bounded as

follows:

J1 ≤ o(n)
∑

m∈{n}∪Nc
j (n)

LγE
[∣∣∣Xc

m,j(s)) − Yc
m,j(s))

∣∣∣]+ o(n)
∑

m∈Np
j (n)

LγE
[∣∣∣Xp

m,j(s)) − Yp
m,j(s))

∣∣∣]

≤ �c
n,jLγ max

m∈Cc
j

E
∥∥Xc

m,j − Yc
m,j

∥∥
s + �

p
n,jLγ max

m∈Cp
j

E
∥∥Xp

m,j − Yp
m,j

∥∥
s, (67)
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where Lγ is the maximum Lipschitz constant of the functions γ j,c

z,z′ and γ j,p

z,z′ for all (z, z′) ∈Z2.

Moreover, by adding and subtracting terms and using the fact that both
{
Yc

n,j(s)
}

and
{
Yp

n,j(s)
}

are sequences of i.i.d. random variables, J2 can be bounded as follows:

J2 ≤E

[∣∣∣∣∣o(n)
∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)− pc

j

∫
Z
γ

j,c

z,z′ (x)μc
j (s)ds

∣∣∣∣∣
]

+E

[∣∣∣∣∣o(n)
∑

m∈Np
j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

)
− pp

j

∫
Z
γ

j,p

z,z′ (x)μp
j (s)ds

∣∣∣∣∣
]

≤E

[∣∣∣∣∣pc
j

1

Mc
j (n) + 1

∑
m∈{n}∪Nc

j (n)

(
γ

j,c

z,z′
(
Yc

m,j(s)
)−E

[
γ

j,c

z,z′
(
Yc

m,j(s)
)])∣∣∣∣∣

]

+
∣∣∣∣o(n) − pc

j

Mc
j (n) + 1

∣∣∣∣E
[∣∣∣∣∣

∑
m∈{n}∪Nc

j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)∣∣∣∣∣
]

+E

[∣∣∣∣∣pp
j

1

Mp
j (n)

∑
m∈Np

j (n)

(
γ

j,p

z,z′
(

Yp
m,j(s)

)
−E

[
γ

j,p

z,z′
(
Yc

m,j(s)
)])∣∣∣∣∣

]

+
∣∣∣∣∣o(n) − pp

j

Mp
j (n)

∣∣∣∣∣E
[∣∣∣∣∣

∑
m∈Np

j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

)∣∣∣∣∣
]

.

(68)

Note that, by the exchangeability of
{
Yc

n,j(s), n ∈ Cc
j

}
and the boundedness of the functions

γ
j,c

z,z′ , one obtains∣∣∣∣∣o(n) − pc
j

Mc
j (n) + 1

∣∣∣∣∣E
[ ∑

m∈{n}∪Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)]= ∣∣�c

n,j − pc
j

∣∣E[γ j,c

z,z′
(
Yc

1,j(s)
)]≤ γ̄

∣∣∣�c
n,j − pc

j

∣∣∣.
(69)

In the same manner, the fourth term in the right member of (68) is also bounded as follows:∣∣∣∣∣o(n) − pp
j

Mp
j (n)

∣∣∣∣∣E
[ ∑

m∈Np
j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

)]
≤ γ̄

∣∣∣�c
n,j − pp

j

∣∣∣. (70)

Furthermore, using (60), the first and third expectations in (68) are bounded by
κ1pc

j√
Mc

j (n)+1
and

κ2pp
j√

Mp
j (n)

, respectively, where κ1 and κ2 are positive constants.

Now let us take a look at the first term of the right-hand side of (65). Since Xc
n,j and Yc

n,j are
Z-valued, and Z is a subset of N, one easily sees that

E

[
λc

j,z,z′
(
υ

c,N
n,j (s)

)∣∣∣∣(1Xc
n,j(s)=z − 1Yc

n,j(s)=z

)∣∣∣∣
]

≤E

[
λc

j,z,z′
(
υ

c,N
n,j (s)

)∣∣∣Xc
n,j(s) − Yc

n,j(s)
∣∣∣]

≤ γ̄E
∣∣∣Xc

n,j(s) − Yc
n,j(s)

∣∣∣
≤ γ̄E

∥∥∥Xc
n,j − Yc

n,j

∥∥∥
s
,

(71)
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where γ̄ is the upper bound of the functions γ j,c

z,z′ and γ j,p

z,z′ for all (z, z′) ∈Z2. Finally, by

combining (65), (66), (67), (68), (69), (70), and (71), one obtains

E

[∥∥Xc
n,j − Yc

n,j

∥∥
t

]
≤ K|E |

∫ t

0

[
γ̄E

∥∥Xc
n,j − Yc

n,j

∥∥
s + �c

n,jLγ max
m∈Cc

j

E
∥∥Xc

m,j − Yc
m,j

∥∥
s

+ �c
n,jLγ max

m∈Cp
j

E

∥∥∥Xp
m,j − Yp

m,j

∥∥∥
s
+ γ̄

∣∣∣�c
n,j − pc

j

∣∣∣
+ γ̄

∣∣∣�c
n,j − pp

j

∣∣∣+ κ1pc
j√

Mc
j (n) + 1

+ κ2pp
j√

Mp
j (n)

]
ds,

(72)

where |E | stands for the cardinality of the set of edges E of the graph (Z, E). Recall that
deg(n) = Mc

j (n) + Mp
j (n) for any n ∈ Cc

j . Using this and then taking the maximum over n ∈ Cc
j

in (72) and over 1 ≤ j ≤ r, one finally obtains

max
1≤j≤r

max
n∈Cc

j

E

[∥∥Xc
n,j − Yc

n,j

∥∥
t

]

≤ K|E |
∫ t

0

[
(γ̄ + Lγ ) max

1≤j≤r
max
n∈Cc

j

E
∥∥Xc

n,j − Yc
n,j

∥∥
s + Lγ max

1≤j≤r
max
n∈Cp

j

E

∥∥∥Xp
n,j − Yp

n,j

∥∥∥
s

+
∑

1≤j≤r

(
γ̄ max

n∈Cc
j

∣∣∣�c
n,j − pc

j

∣∣∣+ γ̄ max
n∈Cc

j

∣∣∣�c
n,j − pp

j

∣∣∣+ max
n∈Cc

j

κ1pc
j√

Mc
j (n) + 1

+ max
n∈Cc

j

κ2pp
j√

Mp
j (n)

)]
ds.

(73)

Step 2. Fix a block 1 ≤ j ≤ r and a peripheral node n ∈ Cp
j . For any t ∈ [0, T], one has

E

[∥∥∥Xp
n,j − Yp

n,j

∥∥∥
t

]
=E

[
sup

0≤s≤t

∣∣∣Xp
n,j(s) − Yp

n,j(s)
∣∣∣
]

≤E

[∣∣∣∣∣
∫

[0,t]×R+

∑
(z,z′)∈E

1Xp
n,j(s)=z(z

′ − z)1[
0,λp

j,z,z
′ (υp,N

n,j (s))

](y)N p
n,j(ds, dy)

−
∫

[0,t]×R+

∑
(z,z′)∈E

1Yp
n,j(s)=z(z

′ − z)1[
0,λp

j,z,z
′
(
υ

p
j (s)

)](y)N p
n,j(ds, dy)

∣∣∣∣∣
]

≤ K
∫

[0,t]

∑
(z,z′)∈E

E

[∣∣∣∣ (1Xp
n,j(s)=z − 1Yp

n,j(s)=z

)
λ

p

j,z,z′
(
υ

p,N
n,j (s)

)

+ 1Yp
n,j(s)=z

(
λ

p

j,z,z′
(
υ

p,N
n,j (s)

)
− λ

p

j,z,z′
(
υ

p
j (s)

) )∣∣∣∣
]

ds,

(74)

where the last inequality is obtained by following the same steps as in (63) and (65). Again,
given that Xp

n,j and Yp
n,j are Z-valued and that Z ⊂N, the first expectation in the right-hand

side of (74) can be bounded as follows:

E

[∣∣∣∣ (1Xp
n,j(s)=z − 1Yp

n,j(s)=z

)
λ

p

j,z,z′
(
υ

p,N
n,j (s)

) ∣∣∣∣
]

≤ γ̄E
[∥∥∥Xp

n,j − Yp
n,j

∥∥∥
s

]
. (75)
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It remains to bound the second term in the right-hand side of (74). Using Condition 4.1 one
gets

E

[∣∣∣∣1Yp
n,j(s)=z

(
λ

p

j,z,z′
(
υ

p,N
n,j (s)

)
− λ

p

j,z,z′
(
υ

p
j (s)

)) ∣∣∣∣
]

≤E

[∣∣∣∣λp

j,z,z′
(
υ

p,N
n,j (s)

)
− λ

p

j,z,z′
(
υ

p
j (s)

) ∣∣∣∣
]

=E

[∣∣∣∣∣o(n)

( ∑
m∈Nc

j (n)

γ
j,c

z,z′
(
Xc

m,j(s)
)+

∑
m∈Np

1(n)

γ
j,p

z,z′
(
Xp

m,1(s)
)+ · · · +

∑
m∈{n}∪Np

j (n)

γ
j,p

z,z′
(

Xp
m,j(s)

)
+ · · ·

· · · +
∑

m∈Np
r (n)

γ
j,p

z,z′
(
Xp

m,r(s)
))

−
(
αc

j

∫
Z
γ

j,c

z,z′ (x)μc
j (s)ds + qj1

∫
Z
γ

j,p

z,z′ (x)μp
1(s)ds + · · · + qjr

∫
Z
γ

j,p

z,z′ (x)μp
r (s)ds

)∣∣∣∣
]

.

(76)

By rearranging the terms and using the triangle inequality one obtains

E

[∣∣∣∣∣
(
λ

p

j,z,z′
(
υ

p,N
n,j (s)

)
− λ

p

j,z,z′
(
υ

p
j (s)

) )∣∣∣∣∣
]

≤E

[∣∣∣∣∣o(n)
∑

m∈Nc
j (n)

γ
j,c

z,z′
(

Xc
m,j(s)

)

− αc
j

∫
Z
γ

j,c

z,z′ (x)μc
j (s)ds

∣∣∣∣∣
]

+E

[∣∣∣∣∣o(n)
∑

m∈Np
1(n)

γ
j,p

z,z′
(

Xp
m,1(s)

)
− qj1

∫
Z
γ

j,p

z,z′ (x)μp
1(s)ds

...

+ o(n)
∑

m∈{n}∪Np
j (n)

γ
j,p

z,z′
(

Xp
m,j(s)

)
− qjj

∫
Z
γ

j,p

z,z′ (x)μp
j (s)ds

...

+ o(n)
∑

m∈Np
r (n)

γ
j,p

z,z′
(

Xp
m,r(s)

)

− qjr

∫
Z
γ

j,p

z,z′ (x)μp
r (s)ds

∣∣∣∣∣
]

.

(77)

Note that
∫
Z γ

j,p

z,z′ (x)μp
i (s)ds =E

[
γ

j,p

z,z′ (Y
p
m,i(s))

]
for m ∈ Cp

i and
∫
Z γ

j,c

z,z′ (x)μc
j (s)ds =

E

[
γ

j,c

z,z′
(
Yc

n,j(s)
)]

for n ∈ Cc
j . Then, by using the exchangeability of Yc

n,j(t) for n ∈ Cc
j ,

one finds
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E

[∣∣∣∣
(
λ

p

j,z,z′
(
υ

p,N
n,j (s)

)
− λ

p

j,z,z′
(
υ

p
j (s)

) )∣∣∣∣
]

≤E

[∣∣∣∣∣o(n)
∑

m∈Nc
j (n)

γ
j,c

z,z′
(
Xc

m,j(s)
)− αc

j E

[
γ

j,c

z,z′
(
Yc

m,j(s)
)]∣∣∣∣∣

]

+E

[∣∣∣∣∣o(n)
∑

m∈Np
1(n)

γ
j,p

z,z′
(
Xp

m,1(s)
)− qj1E

[
γ

j,p

z,z′
(
Yp

m,1(s)
)]

...

+ o(n)
∑

m∈{n}∪Np
j (n)

γ
j,p

z,z′
(

Xp
m,j(s)

)
− qjjE

[
γ

j,p

z,z′
(

Yp
m,j(s)

)]

...

+ o(n)
∑

m∈Np
r (n)

γ
j,p

z,z′
(
Xp

m,r(s)
)− qjrE

[
γ

j,p

z,z′
(

Yp
m,r(s)

)]∣∣∣∣∣
]

.

(78)

Observe that there are r + 1 terms on the right-hand side of the last inequality. Let us start with
the first expectation. By adding and subtracting terms one gets

E

[∣∣∣∣o(n)
∑

m∈Nc
j (n)

γ
j,c

z,z′
(
Xc

m,j(s)
)− αc

j E

[
γ

j,c

z,z′
(
Yc

m,j(s)
)]∣∣∣∣

]

≤E

[∣∣∣∣o(n)
∑

m∈Nc
j (n)

(
γ

j,c

z,z′
(
Xc

m,j(s)
)− γ

j,c

z,z′
(
Yc

m,j(s)
))∣∣∣∣

]

+E

[∣∣∣∣o(n)
∑

m∈Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)− αc

j E

[
γ

j,c

z,z′
(
Yc

m,j(s)
)]∣∣∣∣

]
.

(79)

Note that, by the Lipschitz property of the functions γ j,c

z,z′ , one finds that

E

[∣∣∣∣∣o(n)
∑

m∈Nc
j (n)

(
γ

j,c

z,z′
(
Xc

m,j(s)
)− γ

j,c

z,z′
(
Yc

m,j(s)
))∣∣∣∣∣

]
≤ ςc

n,jLγ max
m∈Cc

j

E
∥∥Xc

m,j − Yc
m,j

∥∥
s. (80)

Moreover, using (60) together with the exchangeability of
{
Yc

n,j(s), n ∈ Cc
j

}
leads to

E

[∣∣∣∣o(n)
∑

m∈Nc
j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)− αc

j E

[
γ

j,c

z,z′
(
Yc

m,j(s)
)]∣∣∣∣

]

≤E

[∣∣∣∣ αc
j

Mc
j (n)

∑
m∈Nc

j (n)

(
γ

j,c

z,z′
(
Yc

m,j(s)
)−E

[
γ

j,c

z,z′
(
Yc

m,j(s)
)])∣∣∣∣

]

+E

[∣∣∣∣
(

o(n) − αc
j

Mc
j (n)

) ∑
m∈Nc

j (n)

γ
j,c

z,z′
(
Yc

m,j(s)
)∣∣∣∣
]

≤ αc
j κ3√

Mc
j (n)

+ ∣∣ςc
n,j − αc

j

∣∣γ̄ . (81)
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Now let us examine the remaining r terms on the right-hand side of (78). For simplicity of
notation, denote by I the left-hand side of (78). Then, by adding and subtracting terms, one
gets

I ≤E

[∣∣∣∣o(n)
∑

m∈Np
1(n)

(
γ

j,p

z,z′
(
Xp

m,1(s)
)− γ

j,p

z,z′
(
Yp

m,1(s)
))+ · · ·

· · · + o(n)
∑

m∈{n}∪Np
j (n)

(
γ

j,p

z,z′
(

Xp
m,j(s)

)
− γ

j,p

z,z′
(

Yp
m,j(s)

))
+ · · ·

· · · + o(n)
∑

m∈Np
r (n)

(
γ

j,p

z,z′
(
Xp

m,r(s)
)− γ

j,p

z,z′
(

Yp
m,r(s)

))∣∣∣∣
]

+E

[∣∣∣∣o(n)
∑

m∈Np
1(n)

γ
j,p

z,z′
(
Yp

m,1(s)
)− qj1E

[
γ

j,p

z,z′
(
Yp

m,1(s)
)]+ · · ·

· · · + o(n)
∑

m∈{n}∪Np
j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

)
− qjjE

[
γ

j,p

z,z′
(

Yp
m,j(s)

)]
+ · · ·

· · · + o(n)
∑

m∈Np
r (n)

γ
j,p

z,z′
(

Yp
m,r(s)

)
− qjrE

[
γ

j,p

z,z′
(

Yp
m,r(s)

)]∣∣∣∣
]

.

(82)

Let I1 and I2 denote respectively the first and the second expectation in the right-hand side of
the inequality (82). Then, by using the Lipschitz property of the functions γ j,p

z,z′ , and recalling

that, for 1 ≤ i ≤ r, Mp
i (n) represents the number of peripheral nodes of the ith block connecting

to node n, the first expectation I1 is straightforwardly bounded as follows:

I1 ≤ Lγ

(
ς

p
n,j,1 max

m∈Cp
1

E

∥∥∥Xp
m,1 − Yp

m,1

∥∥∥
s
+ · · · + ς

p
n,j,j max

m∈Cp
j

E
∥∥Xp

m,j − Yp
m,j

∥∥
s + · · ·

· · · + ς
p
n,j,r max

m∈Cp
r

E
∥∥Xp

m,r − Yp
m,r

∥∥
s

)
.

(83)

Moreover, by adding and subtracting terms in I2 one obtains

I2 ≤ I3 + I4, (84)

where

I3 := E

[∣∣∣∣ qj1

Mp
1(n)

∑
m∈Np

1(n)

(
γ

j,p

z,z′
(
Yp

m,1(s)
)−E

[
γ

j,p

z,z′
(
Yp

m,1(s)
)] )

...
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+ qjj

Mp
j (n) + 1

∑
m∈Cp

j :

(
γ

j,p

z,z′
(

Yp
m,r(s)

)
−E

[
γ

j,p

z,z′
(

Yp
m,r(s)

)] )
(85)

...

+ qjr

Mp
r (n)

∑
m∈Np

r (n)

(
γ

j,p

z,z′
(

Yp
m,r(s)

)
−E

[
γ

j,p

z,z′
(

Yp
m,r(s)

)] )∣∣∣∣
]
,

and

I4 := E

⎡
⎣
∣∣∣∣∣∣
(

o(n) − qj1

Mp
1(n)

) ∑
m∈Np

1(n)

γ
j,p

z,z′
(

Yp
m,1(s)

)
+ · · · +

(
o(n) − qjj

Mp
j (n) + 1

) ∑
m∈Nj

p(n)

γ
j,p

z,z′
(

Yp
m,j(s)

)
+

· · · +
(

o(n) − qjr

Mp
r (n)

) ∑
m∈Np

r (n)

γ
j,p

z,z′
(

Yp
m,r(s)

)∣∣∣∣∣∣
⎤
⎦.

(86)

First, from the triangle inequality one gets

I4 ≤E

[∣∣∣∣∣
(

o(n) − qj1

Mp
1(n)

) ∑
m∈Np

1(n)

γ
j,p

z,z′
(
Yp

m,1(s)
)∣∣∣∣∣
]

+ · · ·

· · · +E

[∣∣∣∣∣
(

o(n) − qjj

Mp
j (n) + 1

) ∑
m∈{n}∪Np

j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

)∣∣∣∣∣
]

+ · · ·

· · · +E

[∣∣∣∣∣
(

o(n) − qjr

Mp
r (n)

) ∑
m∈Np

r (n)

γ
j,p

z,z′
(

Yp
m,r(s)

)∣∣∣∣∣
]

.

(87)

Using (20), the exchangeability of the variables {Yp
n,j(s), n ∈ Cp

j }, and the boundedness of the

functions γ j,p

z,z′ , we easily show that the right-hand side of (87) vanishes as N → ∞. Indeed, the

jth term satisfies

∣∣∣∣o(n) − qjj

Mp
j (n) + 1

∣∣∣∣E
∣∣∣∣∣

∑
m∈{n}∪Np

j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

)∣∣∣∣∣
=

∣∣∣ςp
n,j,j − qjj

∣∣∣ 1

Mp
j (n) + 1

E

∣∣∣∣∣
∑

m∈{n}∪Np
j (n)

γ
j,p

z,z′
(

Yp
m,j(s)

)∣∣∣∣∣
≤

∣∣∣ςp
n,j,j − qjj

∣∣∣γ̄ ,

(88)

and thus goes to zero by (20). Using the same steps, one obtains for all 1 ≤ i ≤ r with i �= j that

∣∣∣∣o(n) − qji

Mp
i (n)

∣∣∣∣E
∣∣∣∣∣

∑
m∈Ni

p(n)

γ
j,p

z,z′ (Y
p
m,i(s))

∣∣∣∣∣≤
∣∣∣∣ Mp

i (n)

deg(n) + 1
− qji

∣∣∣∣γ̄ , (89)
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which also vanishes as N → ∞ by (20); thus, so does I4. In order to bound I3, we use again
the moment inequality (60), which straightforwardly gives us

I3 ≤ θ1qj1√
Mp

1(n)
+ · · · + θjqjj√

Mp
j (n) + 1

+ · · · + θrqjr√
Mp

r (n)
, (90)

where θ1, · · · , θr are positive constants. Now, by (75), (80), (81), (83), (88), (89), and (90),
one obtains

E

[∥∥∥Xp
n,j − Yp

n,j

∥∥∥
t

]
≤K|E |

∫ t

0

[
γ̄E

∥∥∥Xp
n,j − Yp

n,j

∥∥∥
s
+ ςc

n,jLγ max
m∈Cc

j

E
∥∥Xc

m,j − Yc
m,j

∥∥
s + αc

j κ3√
Mc

j (n)
+

+
∣∣∣ςc

n,j − αc
j

∣∣∣γ̄ + Lγ

(
ς

p
n,j,1 max

m∈Cp
1

E

∥∥∥Xp
m,1 − Yp

m,1

∥∥∥
s
+ · · ·

+ ς
p
n,j,j max

m∈Cp
j

E
∥∥Xp

m,j − Yp
m,j

∥∥
s + · · · + ς

p
n,j,r max

m∈Cp
r

E
∥∥Xp

m,r − Yp
m,r

∥∥
s

)

+
∣∣∣ςp

n,j,1 − qj1

∣∣∣γ̄ + · · · +
∣∣∣ςp

n,j,j − qjj

∣∣∣γ̄ + · · · +
∣∣∣ςp

n,j,r − qjr

∣∣∣γ̄
+ θ1qj1√

Mp
1(n)

+ · · · + θjqjj√
Mp

j (n) + 1
+ · · · + θrqjr√

Mp
r (n)

]
ds.

(91)

Recall that deg(n) = Mc
j (n) +∑r

k=1 Mp
k (n) for any n ∈ Cp

j . Using this and taking the maximum

over n ∈ Cp
j and over 1 ≤ j ≤ r in (91), one gets

max
1≤j≤r

max
n∈Cp

j

E

[∥∥∥Xp
n,j − Yp

n,j

∥∥∥
t

]

≤ K|E |
∫ t

0

[
Lγ max

1≤j≤r
max
n∈Cc

j

E

∥∥∥Xc
n,j − Yc

n,j

∥∥∥
s
+ (γ̄ + Lγ ) max

1≤j≤r
max
n∈Cp

j

E

∥∥∥Xp
n,j − Yp

n,j

∥∥∥
s

+
∑

1≤j≤r

max
n∈Cp

j

(
αc

j κ3√
Mc

j (n)

)
+

∑
1≤j≤r

max
n∈Cp

j

∣∣ςc
n,j − αc

j

∣∣γ̄

+
∑

1≤j≤r

(
max
n∈Cp

j

∣∣∣ςp
n,j,1 − qj1

∣∣∣γ̄ + · · · + max
n∈Cp

j

∣∣∣ςp
n,j,j − qjj

∣∣∣γ̄ + · · · + max
n∈Cp

j

∣∣∣ςp
n,j,r − qjr

∣∣∣γ̄
+ max

n∈Cp
j

θ1qj1√
Mp

1(n)
+ · · · + max

n∈Cp
j

θjqjj√
Mp

j (n) + 1
+ · · · + max

n∈Cp
j

θrqjr√
Mp

r (n)

)]
ds. (92)

Adding side by side the two inequalities in (73) and (92) leads to

max
1≤j≤r

max
n∈Cc

j

E

∥∥∥Xc
n,j − Yc

n,j(t)
∥∥∥

t
+ max

1≤j≤r
max
n∈Cp

j

E

∥∥∥Xp
n,j − Yp

n,j

∥∥∥
t

≤ K|E |
∫ t

0

(
C1 max

1≤j≤r
max
n∈Cc

j

E

∥∥∥Xc
n,j − Yc

n,j(t)
∥∥∥

s
+ C2 max

1≤j≤r
max
n∈Cp

j

E

∥∥∥Xp
n,j − Yp

n,j

∥∥∥
s
+ C3(N)

)
ds,

(93)
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where, with a slight abuse of notation, the constants C1,C2 and the function C3(N) are defined
by

C1 := γ̄ + 2Lγ ,

C2 := γ̄ + 2Lγ ,

and

C3(N) :=
∑

1≤j≤r

(
γ̄ max

n∈Cc
j

∣∣�c
n,j − pc

j

∣∣+ γ̄ max
n∈Cc

j

∣∣�c
n,j − pp

j

∣∣+ max
n∈Cc

j

κ1pc
j√

Mc
j (n) + 1

+ max
n∈Cc

j

κ2pp
j√

Mp
j (n)

)

+
∑

1≤j≤r

max
n∈Cp

j

(
αc

j κ3√
Mc

j (n)

)
+

∑
1≤j≤r

max
n∈Cp

j

∣∣∣ςc
n,j − αc

j

∣∣∣γ̄

+
∑

1≤j≤r

(
max
n∈Cp

j

∣∣ςp
n,j,1 − qj1

∣∣γ̄ + · · · + max
n∈Cp

j

∣∣ςp
n,j,j − qjj

∣∣γ̄ + · · · + max
n∈Cp

j

∣∣ςp
n,j,r − qjr

∣∣γ̄
+ max

n∈Cp
j

θ1qj1√
Mp

1(n)
+ · · · + max

n∈Cp
j

θjqjj√
Mp

j (n) + 1
+ · · · + max

n∈Cp
j

θrqjr√
Mp

r (n)

)
.

Therefore, applying Grönwall’s lemma to (93) gives

max
1≤j≤r

max
n∈Cc

j

E

[∥∥∥Xc
n,j − Yc

n,j

∥∥∥
t

]
+ max

1≤j≤r
max
n∈Cp

j

E

[∥∥∥Xp
n,j − Yp

n,j

∥∥∥
t

]
≤ K|E |C3(N)t exp

{ ∫ t

0
C4ds

}
,

(94)

with C4 = C1 + C2. Finally, Condition 4.1 ensures that C3(N) → 0 as N → ∞, which proves
(61).

We are now ready to conclude the proof. First, Theorem 4.1 ensures the uniqueness of the
solution of the limiting stochastic differential equation (14). In addition, the relation in (25)
shows that the solution is continuous with respect to the initial condition. Therefore, the pro-
cess Y(t) = ((

Yc
n(t), Yp

m(t)
)
, n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
is μc

1 ⊗μ
p
1 ⊗ · · ·μc

r ⊗μ
p
r -multi-chaotic

since the initial condition Y(0) = X(0) is multi-exchangeable and ν1,c ⊗ ν1,p ⊗ · · · νr,c ⊗ νr,p-
multi-chaotic. Then, by the relation in (61), we conclude that the convergence in (59) holds
and the sequence of processes

((
Xc,N

n (t), Xp,N
m (t), t ≥ 0

)
, n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
is also

PX̄ =μc
1 ⊗μ

p
1 ⊗ · · ·μc

r ⊗μ
p
r -multi-chaotic, which concludes the proof. �

5.2. Laws of large numbers

The following laws of large numbers are immediate consequences of Theorem 5.1.

Corollary 5.1. Suppose that the conditions of Theorem 5.1 hold. Define μc
j := L(X̄c

n,j

)
, μp

j :=
L(X̄p

m,j

)
for 1 ≤ j ≤ r, where

((
X̄c

n,j(t), X̄p
m,j(t), t ≥ 0

)
, 1 ≤ j ≤ r

)
is the solution of the McKean–

Vlasov limiting system in (14) with initial distribution ν1,c ⊗ ν1,p · · · νr,c ⊗ νr,p. Then, for each
1 ≤ j ≤ r, as N → ∞,

μ
c,N
j = 1

Nc
j

∑
n∈Cc

j

δXc
n,j

→μc
j (95)
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and

μ
p,N
j = 1

Np
j

∑
n∈Cp

j

δXp
n,j

→μ
p
j , (96)

for the weak topology on M1(D([0, T],Z)) with D([0, T],Z) endowed with the Skorokhod
topology.

Proof. We prove (96); the proof of (95) is similar. Let

μ̄
N,p
j := 1

Np
j

∑
n∈Cp

j

δX̄p
n,j
,

and recall that the bounded-Lipschitz metric dBL metrizes the weak convergence on
M1(D([0, T],Z)). Therefore, to prove the convergence in (96), it suffices to prove that

dBL

(
μ

p,N
j , μ̄

p,N
j

)
⇒ 0 and that μ̄N,p

j ⇒μ
p
j . First note that for all 1 ≤ j ≤ r,

E

[
dBL

(
μ

p,N
j , μ̄

p,N
j

)]
=E

[
sup

g∈Lip(Z)

∣∣∣〈μp,N
j , g

〉
−

〈
μ̄

p,N
j , g

〉∣∣∣]

=E

[
sup

g∈Lip(Z)

∣∣∣∣∣ 1

Np
j

∑
n∈Cp

j

(
g
(

Xp
n,j

)
− g

(
X̄p

n,j

))∣∣∣∣∣
]

≤ 1

Np
j

∑
n∈Cp

j

E

[∣∣∣Xp
n,j − X̄p

n,j

∣∣∣
T

]

≤ max
n∈Cp

j

E

∣∣∣Xp
n,j − X̄p

n,j

∣∣∣
T
,

(97)

which goes to zero according to (59). Thus, dBL

(
μ

p,N
j , μ̄

p,N
j

)
⇒ 0 as N → ∞. It remains to

show that μ̄N,p
j ⇒μ

p
j as N → ∞. Since the stochastic processes

{
X̄p

n,j, n ∈ Cp
j

}
are i.i.d., for

any continuous and bounded function g ∈ Cb(Z) one finds that

E

(〈
μ̄

p,N
j , g

〉
−

〈
μ

p
j , g

〉)2

=E

(
1

Np
j

∑
n∈Cp

j

(
g
(

X̄p
n,j

)
−

〈
μ

p
j , g

〉))2

=E

(
1(

Np
j

)2

∑
n∈Cp

j

(
g
(

X̄p
n,j

)
−

〈
μ

p
j , g

〉)2
)

≤ 1

Np
j

4‖g‖2∞,

(98)

which goes to zero given the boundedness of g. Therefore, μ̄p,N
j converges weakly to μp

j

as N → ∞. Thus, combining the two convergence results, we conclude that μp,N
j converges

weakly to μp
j as N → ∞. The corollary is proved. �
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6. Large deviations

We investigate here the large deviations principles of the interacting particle system intro-
duced in Section 2 over finite time durations. For the sake of simplicity, we restrict ourselves
to the case of block-structured graphs where the blocks are cliques, i.e., complete subgraphs,
and the peripheral subgraph is complete, that is, all peripheral nodes in the system are con-
nected; see, e.g., Figure 1. The first main result of this section is Theorem 6.1, which states
the large deviations principle of the vector of empirical measures. The second main result is
Theorem 6.2, which states the large deviations principle of the corresponding vector of empir-
ical processes. The approach we take to establish these results is based on a generalization to
the multi-class setting of the classical approach developed in [24] and adapted in [49] to the
context of jump processes. One might also consult [32, 33] for an alternative approach.

Let us first introduce the assumptions under which the results of this section hold.

Assumption 6.1.

1. The peripheral subgraph is complete; that is, for any two peripheral nodes n,m ∈⋃
1≤j≤r

Cp
j , there exists an edge (n,m) ∈� connecting n and m.

2. The r blocks of the graphs are cliques; that is, for any two nodes n,m ∈ Cp
j of the same

block 1 ≤ j ≤ r, there exists an edge (n,m) ∈� connecting n and m.

3. The mappings λc
j,z,z′ and λp

j,z,z′ introduced in (16) and (17) are uniformly bounded away

from zero; that is, there exists c> 0 such that, for all ν, μ1, . . . , μr ∈M1(Z) and all
(z, z′) ∈ E , we have λc

j,z,z′ (ν, μj) ≥ c and λp

j,z,z′ (ν, μ1, . . . , μr) ≥ c.

4. As N → ∞,

Nj

N
→ αj (99)

for some αj ∈ (0, 1), where we recall that Nj is the number of nodes in the jth block and
Nc

j

(
resp. Np

j

)
is the number of central (resp. peripheral) nodes in the jth block.

Remark 6.1.

1. From (16) and (17), together with Remark 4.1, the functions λc
j,z,z′ and λ

p

j,z,z′ are

Lipschitz.

2. Since M1(Z) is compact and the rate functions λc
j,z,z′ and λp

j,z,z′ are continuous and

Lipschitz, the rates are uniformly bounded from above; that is, there exists a con-
stant C<∞ such that for all ν, μ1, . . . , μr ∈M1(Z), and all (z, z′) ∈ E , we have
λc

j,z,z′ (ν, μj) ≤ C and λp

j,z,z′ (ν, μ1, . . . , μr) ≤ C.

3. For ease of reading, we have omitted subscripts indicating the dependence of the rate
functions λc

j,z,z′ and λp

j,z,z′ on the proportions a1, b1, a, b1, . . . , br.

4. We use again throughout this section the convention that N goes to infinity when both
min1≤j≤r Nc

j and min1≤j≤r Np
j go to infinity.
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5. We emphasize that for simplicity, the results obtained in this section hold under
Assumption 6.1, which describes a special case of the class of models given by
Condition 4.1; that is, we suppose here that each block is a clique and the peripheral
subgraph is complete.

Let MN ∈ (M1(D([0, T],Z)))2r denote the vector of empirical measures defined by

MN :=
(
M

c,N
1 ,M

p,N
1 , · · · ,Mc,N

r ,Mp,N
r

)

=
(

1

Nc
1

∑
n∈Cc

1

δXc
n,1
,

1

Np
1

∑
n∈Cp

1

δXp
n,1
, . . . ,

1

Nc
r

∑
n∈Cc

r

δXp
n,r
,

1

Np
r

∑
n∈Cp

r

δXp
n,r

)
,

(100)

where XN =
(

Xc
n,j, Xp

m,j; n ∈ Cc
j ,m ∈ Cp

j ; 1 ≤ j ≤ r
)

∈D([0, T],ZN) denotes the full descrip-

tion of the N particles and M
c,N
j

(
resp. Mp,N

j

)
is the empirical measure of the central (resp.

peripheral) nodes of the jth block, for 1 ≤ j ≤ r. With a slight abuse of notation, denote by
GN : D(

[0, T],ZN
)→ (M1(D([0, T],Z)))2r the mapping that takes the full description XN to

the empirical measures vector MN , that is,

GN :
(

Xc
n,j,X

p
m,j; n ∈ Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
→(

1

Nc
1

∑
n∈Cc

1

δXc
n,1
,

1

Np
1

∑
n∈Cp

1

δXp
n,1
, . . . ,

1

Nc
r

∑
n∈Cc

r

δXc
n,r
,

1

Np
r

∑
n∈Cp

r

δXp
n,r

)
.

Thus, MN = GN
(
XN

)
. Denote by PN

zN the law of XN with initial condition zN =
(

zc
n,j, zp

m,j; n ∈
Cc

j ,m ∈ Cp
j ; 1 ≤ j ≤ r

)
. Note that the distribution of the empirical vector MN depends on the

initial condition only through its empirical vector, defined by

νN :=
(
ν

1,c
N , ν

1,p
N , . . . , ν

r,c
N , ν

r,p
N

)
=(

1

Nc
1

∑
n∈Cc

1

δzc
n,1
,

1

Nc
1

∑
n∈Cp

1

δzp
n,1
, . . . ,

1

Nc
r

∑
n∈Cc

r

δzc
n,r
,

1

Np
r

∑
n∈Cp

r

δzp
n,r

)
. (101)

Moreover, denote by PN
νN the distribution of MN , which is the pushforward of PN

zN under the

mapping GN ; that is, PN
νN = PN

zN ◦ G−1
N .

Let us now introduce the (M1(Z))2r-valued vector of empirical processes

μN : t ∈ [0, T] −→μN(t) =
(
μ

c,N
1 (t), μp,N

1 (t), · · · , μc,N
r (t), μp,N

r (t)
)

=
(

1

Nc
1

∑
n∈Cc

1

δXc
n,1(t),

1

Np
1

∑
n∈Cp

1

δXp
n,1(t), . . . ,

1

Nc
r

∑
n∈Cc

r

δXc
n,r(t),

1

Np
r

∑
n∈Cp

r

δXp
n,r(t)

)
,

(102)

and denote by γN the corresponding mapping that takes a full description XN ∈D([0, T],ZN)
of the N particles of the system to the empirical process vector μN , that is,

γN :
(

Xc
n,j, Xp

m,j; n ∈ Cc
j ,m ∈ Cp

j ; 1 ≤ j ≤ r
)

∈D(
[0, T],ZN)→μN : [0, T] → (M1(Z)

)2r.
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Observe that μN(0) = νN and that μN(t) is the projection πt
(
MN

)
at time t, that is,

μN = π
(
MN)= π

(
GN

(
XN))= γN

(
XN),

where the notation π denotes, again with a slight abuse of notation, both the vector projection

π : (M1(D([0, T],Z)))2r → (D([0, T],M1(Z)))2r

and the component projection

π : M1(D([0, T],Z)) →D([0, T],M1(Z)).

Finally, denote by pN
νN

the distribution of μN , which is the pushforward pN
νN

= PN
zN ◦ γ−1

N . Note

that, since μN = π
(
MN

)
, we can also write pN

νN
as the pushforward pN

νN
= PN

νN
◦ π−1.

The goal of this section is to study the large deviations principles for the sequences of
probability measures

(
PN
νN ,N ≥ 1

)
and

(
pN
νN
,N ≥ 1

)
. The two main results are Theorem 6.1

and Theorem 6.2.

6.1. Large deviations principle for the empirical measure vector

We start by investigating the large deviations principle of the sequence
(
PN
νN ,N ≥ 1

)
. To this

end, we first establish the result in the non-interacting case. Then, through the Radon–Nikodym
derivative, one uses the Laplace–Varadhan principle to deduce the case with interactions.

Let us first describe the hypothetical non-interacting system. Suppose that all the nodes are
independent of each other and that the color of each node changes with a constant rate equal
to 1 for all allowed transitions (z, z′) ∈ E , while all other transition rates are zero. Denote by
Pz0 the marginal law on D([0, T],Z) of this process with initial condition z0. Thus, Pz0 is the
unique solution to the martingale problem in D([0, T],Z) associated with the generator L0

operating on bounded measurable functions φ on Z according to

L0φ(z) :=
∑

z′ : (z,z′)∈E
1.(φ(z′) − φ(z))

and the initial condition z0. Given that the transition rates are upper-bounded and that

sup
z∈Z

∑
z′ : (z,z′)∈E

|z′ − z|<�(1 + z)

for some constant �, there exists a unique solution to the martingale problem for (L0, z0) (cf.
[31, Problem 4.11.15]).

For any η, ρ1, . . . , ρr in D([0, T],M1(Z)), let Rc
z0

(η, ρj) be the unique solution to the
martingale problem in D([0, T],Z) associated with the time-varying generator

Lc
η(t),ρj(t)φ(z) :=

∑
z′ : (z,z′)∈E

λc
j,z,z′ (η(t), ρj(t))(φ(z′) − φ(z)) (103)

and the initial condition z0. Similarly, let Rp
z0 (η, ρ1, . . . , ρr) be the unique solution to the

martingale problem in D([0, T],Z) associated with the time-varying generator

Lp
η(t),ρ1(t),...,ρr(t)φ(z) :=

∑
z′ : (z,z′)∈E

λ
p

j,z,z′ (η(t), ρ1(t), . . . , ρr(t))(φ(z′) − φ(z)) (104)
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and the initial condition z0. Again by the upper-boundedness of λc
j,z,z′ and λp

j,z,z′ , the uniqueness

of Rc
z0

(η, ρj) and Rp
z0 (η, ρ1, . . . , ρr) follows (see again [31, Problem 4.11.15]). Therefore, the

density of Rc
z0

(η, ρj) and Rp
z0 (η, ρ1, . . . , ρr) with respect to Pz0 can be written as follows (see

[49, Equation (2.4)]):

dRc
z0

(η, ρj)

dPz0

(x) = exp{h1(x, η, ρj)} and
dRp

z0 (η, ρ1, . . . , ρr)

dPz0

(x) = exp{h2(x, η, ρ1, . . . , ρr)},
(105)

where

h1(x, η, ρj) :=
∑

0≤t≤T

1{xt �=xt−} log
(
λc

j,xt−,xt
(η(t−), ρj(t−))

)

−
∫ T

0

( ∑
z : (xt,z)∈E

λc
j,xt,z(η(t), ρj(t)) − 1

)
dt (106)

and

h2(x, η, ρ1, . . . , ρr) :=
∑

0≤t≤T

1{xt �=xt−} log
(
λ

p
j,xt−,xt

(η(t−), ρ1(t−), . . . , ρr(t−)
)

−
∫ T

0

( ∑
z : (xt,z)∈E

λ
p
j,xt,z

(η(t), ρ1(t), . . . , ρr(t)) − 1

)
dt. (107)

Consider now a system of N non-interacting particles where the law of the nth particle is Pzn

with initial condition zn. The law of such a system is the product distribution P
0,N
zN = ⊗N

n=1Pzn .

Moreover, the distribution of the corresponding empirical vector is given by P0,N
νN = P

0,N
zN ◦

G−1
N where νN is the initial empirical vector (101). Therefore, by applying an analogue of the

Cameron–Martin–Girsanov formula for stochastic integrals with respect to point processes (see
e.g. [27, Lemma 3.7] or [49, Equation (2.8)]), one can compute the Radon–Nikodym derivative
dPN

νN/dP0,N
νN at any Q = (Qc

1,Qp
1, · · · ,Qc

r,Qp
r ) ∈ (M1(D([0, T],Z)))2r as follows:

dPN
νN

dP0,N
νN

(Q) = exp

{
r∑

j=1

[
Nc

j

∫
D([0,T],Z)

h1
(
x, π

(
Qc

j

)
, π

(
Qp

j

))
Qc

j (dx)

+ Np
j

∫
D([0,T],Z)

h2
(
x, π

(
Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r

))
Qp

j (dx)

]}

= exp
{
NhN(Q)

}
,

(108)

with

π (Q) = (
π
(
Qc

1

)
, π

(
Qp

1

)
, · · · , π(Qc

r

)
, π

(
Qp

r

))
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being the vector containing the component projections π
(
Qιj

) ∈D([0, T],M1(Z)) for 1 ≤ j ≤
r and ι ∈ {c, p}, and where

hN(Q) :=
r∑

j=1

[Nc
j

N

∫
D([0,T],Z)

h1
(
x, π

(
Qc

j

)
, π

(
Qp

j

))
Qc

j (dx)

+ Np
j

N

∫
D([0,T],Z)

h2
(
x, π

(
Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r

))
Qp

j (dx)

]
.

(109)

Note that under Assumption 6.1, the sequence of functions {hN}N≥1 converges, as N → ∞,
towards the function h given by

h(Q) :=
r∑

j=1

[
αjp

c
j

∫
D([0,T],Z)

h1
(
x, π

(
Qc

j

)
, π

(
Qp

j

))
Qc

j (dx)

+ αjp
p
j

∫
D([0,T],Z)

h2
(
x, π

(
Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r

))
Qp

j (dx)

]
.

(110)

We now introduce the necessary spaces and topologies following the notation of [12, 49].
Consider the Polish space (X , d) where

X :=
{

x ∈D([0, T],Z)

∣∣∣∣ ∑
0≤t≤T

1xt �=xt− <+∞,

and for each t ∈ (0, T] with xt �= xt−, we have (x(t−), x(t)) ∈ E
}
,

and the metric d is defined by

d(x, y) := dSko(x, y) + |ϕ(x) − ϕ(y)|, x, y ∈X , (111)

with ϕ(x) := ∑
0≤t≤T 1xt �=xt− denoting the number of jumps and dSko standing for the

Skorokhod complete metric (see [10, Section 12]). For this topology, the function ϕ is con-
tinuous, and two paths are close to each other if they have the same number of jumps and if
they are Skorokhod-close [49, p. 299]. For any function f : X →R, define

‖f ‖ϕ := sup
x∈X

f (x)

1 + ϕ(x)
, (112)

and write

Cϕ(X ) := {
f |f : X →R is continuous and ‖f ‖ϕ <∞}

, (113)

M1,ϕ(X ) :=
{

Q ∈M1(X )
∣∣ ∫

X
ϕdQ<+∞

}
. (114)

We endow the set M1,ϕ(X ) with the weak-∗ topology σ (M1,ϕ(X ),Cϕ(X )), the weakest
topology under which QN → Q as N → +∞ if and only if∫

X
fdQN →

∫
X

fdQ for each f ∈ Cϕ(X ).
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For a measure ν = (
ν1,c, ν1,p, . . . , νr,c, νr,p

) ∈ (M1(Z)
)2r we define, for all 1 ≤ j ≤ r and ι ∈

{c, p}, the mixture

dPj,ι(x) :=
∑

z0∈Z
ν j,ι(z0)dPz0 (x).

Moreover, let Rc(η, ρj) and Rp(η, ρ1, . . . , ρr) be the mixtures given by

dRc(η, ρj)(x) :=
∑

z0∈Z
ν j,c(z0)dRc

z0
(η, ρj)(x),

dRp(η, ρ1, . . . , ρr)(x) :=
∑

z0∈Z
ν j,p(z0)dRp

z0
(η, ρ1, . . . , ρr)(x).

(115)

Finally, let us introduce the relative entropy H : M1,ϕ(X ) → [0,+∞] of Q with respect to P
as follows:

H(Q|P) :=
{∫

X log
( dQ

dP

)
dQ if Q � P,

+∞ otherwise.
(116)

We are now ready to state the large deviations principle for the sequence (PN
νN
,N ≥ 1).

Theorem 6.1. Let the space M1,ϕ(X ) be equipped with the weak-∗ topology
σ (M1,ϕ(X ),Cϕ(X )). Moreover, suppose that the initial condition νN → ν weakly as
N → ∞. Then the sequence (PN

νN
,N ≥ 1) satisfies the large deviations principle in the space

(M1,ϕ(X ))2r, endowed with the product topology, with speed N and the good rate function
I(Q) = L(Q) − h(Q), where the function h(Q) is given by (110) and L : (M1,ϕ(X ))2r → [0,∞]
is defined as

L(Q) := α1pc
1J1,c(Qc

1

)+ α1pp
1J1,p(Qp

1

)+ · · · + αrpc
rJr,c(Qc

r

)+ αrpp
r Jr,p(Qp

r

)
, (117)

with, for each 1 ≤ j ≤ r, ι ∈ {c, p}, and Q ∈M1,ϕ(X ),

Jj,ι(Q) := sup
f ∈Cϕ (X )

[ ∫
X

fdQ −
∑

z0∈Z
ν j,ι(z0) log

∫
X

ef dPz0

]
, (118)

and αj, pc
j , pp

j being given in (99) and (18). Furthermore, for each Q ∈ (M1,ϕ(X ))2r, the rate
function I(Q) admits the representation

I(Q) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑r
j=1

[
αjpc

j H

(
Qc

j

∣∣Rc
(
π
(
Qc

j

)
, π

(
Qp

j

)))

+αjp
p
j H

(
Qp

j

∣∣Rp
(
π
(
Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r
)))]

if Q ◦ π−1
0 = ν,

+∞ otherwise.

(119)
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Remark 6.2. This is a generalization of [49, Theorem 2.1] to our multi-population setting.
Also, while [49] studied the case where zn = z0 for some fixed z0, so that νN = δz0 , we consider,
as in [12, Theorem 3.1], more general initial conditions, provided that the initial empirical
vector νN converges weakly towards ν = (

ν1,c, ν1,p, · · · , νr,c, νr,p
)
. Moreover, similarly to

[12], we consider here the case where not all transitions are allowed, but only those in E , the
set of directed edges in the graph (Z, E).

Note that, from Definition 5.1, the weak convergence of the initial empirical vector νN

towards ν amounts to the assertion that the initial conditions
(

Xc
n,j(0), Xp

m,j(0), n ∈ Cc
j ,m ∈

Cp
j ; 1 ≤ j ≤ r

)
are ν1,c ⊗ ν1,p · · · νr,c ⊗ νr,p-multi-chaotic (cf. [61]).

Proof of Theorem 6.1. The proof of Theorem 6.1 is based on the generalization of Sanov’s
theorem for empirical measures on Polish spaces due to Dawson and Gärtner [24], the Girsanov
transformation, and the Laplace–Varadhan principle [64]. We proceed through several lemmas.
We follow [49, Theorem 2.1] and [12, Theorem 3.1].

Large deviations principle for the non-interacting case. We first establish a large
deviations principle in the non-interacting case. �

Lemma 6.1. Suppose that the initial condition νN converges towards ν weakly as N → ∞.
Let M1,ϕ(X ) be endowed with the weak-∗ topology σ (M1,ϕ(X ),Cϕ(X )). Then the sequence(
P0,N
νN
,N ≥ 1

)
satisfies a large deviations principle in (M1,ϕ(X ))2r, endowed with the product

topology, with speed N and the action functional L : (M1,ϕ(X ))2r → [0,∞] given by (117).

Proof. Fix a given block 1 ≤ j ≤ r. Denote by

(
P

0,Nc
j

ν
j,c
N

,Nc
j ≥ 1

)
and

(
P

0,Np
j

ν
j,p
N

,Np
j ≥ 1

)

the sequences of probability distributions of the local empirical measures MN,c
j and M

N,p
j of the

central and peripheral nodes, respectively, of the jth block. Note that in the non-interacting case,
the transition rate from any state to any other state is bounded by 1. Therefore, the family of
probability measures {Pz : z ∈Z} is a subset of M1,ϕ(X ). Moreover, for any continuous func-
tion F ∈ Cϕ(X ), the integral

∫
F(y)Pz0 (dy) depends continuously upon z0, and then {Pz0 : z0 ∈

Z} is a Feller continuous family of probability measures on X . Now, since ν j,c
N → ν j,c and

ν
j,p

N → ν j,p as N → ∞, by applying the generalization of Sanov’s theorem [24, Theorem 3.5],

we find that both the sequences

(
P

0,Nc
j

ν
j,c
N

,Nc
j ≥ 1

)
and

(
P

0,Np
j

ν
j,p
N

,Np
j ≥ 1

)
satisfy the large devi-

ations principle in M1,ϕ(X ) endowed with the weak-∗ topology σ (M1,ϕ(X ),Cϕ(X )), with
speeds Nc

j and Np
j , respectively, and good rate functions Jj,c(Q) and Jj,p(Q) defined by (118).

Let Kc
1,Kp

1, . . . ,Kc
r ,Kp

r ∈B(M1,ϕ(X )) be closed Borelian sets. By independence, one has

P0,N
νN

{
MN ∈

r∏
j=1

(Kc
j ×Kp

j

)}=
r∏

j=1

(
P

0,Np
j

νN
p
j

{
MN,c

j ∈Kc
j

}
× P

0,Np
j

ν
j,p
N

{
MN,p

j ∈Kp
j

})
. (120)
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Therefore, by Assumption 6.1 we get

lim sup
N→∞

1

N
log P0,N

νN

(
r∏

j=1

Kc
j ×Kp

j

)
= lim sup

N→∞
1

N
log

(
r∏

j=1

P
0,Nc

j

ν
j,c
N

(Kc
j

)
P

0,Np
j

ν
j,p
N

(Kp
j

))

= lim sup
N→∞

r∑
j=1

(
Nj

N

Nc
j

Nj

1

Nc
j

log P
0,Nc

j

ν
j,c
N

(Kc
j

)

+ Nj

N

Np
j

Nj

1

Np
j

log P
0,Np

j

ν
j,p
N

(Kp
j

))

≤
r∑

j=1

(
αjp

c
j lim sup

Nc
j →∞

1

Nc
j

log P
0,Nc

j

ν
j,c
N

(Kc
j

)

+ αjp
p
j lim sup

Np
j →∞

1

Np
j

log P
0,Np

j

ν
j,p
N

(Kp
j

))

≤
r∑

j=1

(
−αjp

c
j inf

Qc
j ∈Kc

j

Jj,c(Qc
j

)− αjp
p
j inf

Qp
j ∈Kp

j

Jj,p(Qp
j

))

= − inf
Qc

j ∈Kc
1

Qp
j ∈Kp

1
...

Qc
r∈Kc

r
Qp

r ∈Kp
r

r∑
j=1

(
αjp

c
j Jj,c(Qc

j

)+ αjp
p
j Jj,p(Qp

j

))
. (121)

Similar arguments allow us to prove the lower bound for the large deviations principle, which
concludes the proof. �

The next result gives a characterization of the space containing the probability measures
satisfying L(Q)<∞.

Lemma 6.2. If, for a given Q = (
Qc

1,Qp
1, . . . ,Qc

r,Qp
r
) ∈ (M1(D([0, T],Z))2r, the action

functional L(Q)<∞, then the following hold:

1. Q ∈ (M1,ϕ(X ))2r.

2. Q ◦ π−1
0 = ν. Thus,

(
π−1

0

(
Qc

1

)
, π−1

0

(
Qp

1

)
, . . . , π−1

0

(
Qc

r

)
, π−1

0

(
Qp

r

))=
(
ν1,c, ν1,p, · · · , νr,c, νr,p

)
.

Proof. This is a generalization of [12, Lemma 5.2]. Recall that the function ϕ(x) =∑
0≤t≤T 1x(t−)�=x(t) denotes the number of jumps of x in the interval [0,T]. From (112) we

have that ‖ϕ‖ϕ ≤ 1. Moreover, ϕ is continuous in the topology induced by the metric d defined
in (111). Hence ϕ ∈ Cϕ(X ). Furthermore, L(Q)<∞ implies that, for all 1 ≤ j ≤ r,∫

X
ϕdQc

j −
∑

z0∈Z
ν j,c(z) log

∫
X

eϕdPz0 <∞ (122)
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and ∫
X
ϕdQp

j −
∑

z0∈Z
ν j,p(z) log

∫
X

eϕdPz0 <∞. (123)

Now, note that under the non-interacting distribution Pz0 , the transition rates are bounded by
1. Since the number of allowed transitions from any state is at most equal to K − 1, ϕ is
thus stochastically dominated by a Poisson random variable of rate (K − 1)T . Therefore, for
any initial condition z0 ∈Z , we have 1 ≤ ∫

X eϕdPz0 <∞. It follows from (122) and (123)
that

∫
X ϕdQc

j <∞ and
∫
X ϕdQp

j <∞ for each 1 ≤ j ≤ r, and so Q = (Qc
1,Qp

1, · · · ,Qc
r,Qp

r ) ∈
(M1,ϕ(X ))2r, which proves the first claim. In order to prove the second point, we pro-
ceed by contraposition. Suppose that for a given measure Q, L(Q)<∞ and Q ◦ π−1

0 =
νQ �= ν. Consider the bounded continuous functions f c

1 (x), f p
1 (x), . . . , f c

r (x), f p
r (x) defined on

X and depending on x only through the initial condition; that is, there exist functions
gc

1, gp
1, . . . , gc

r, gp
r such that, for all 1 ≤ j ≤ r,

f c
j (x) = gc

j (π0(x)) and f p
j (x) = gp

j (π0(x)).

Since νQ �= ν, the above functions satisfy the following claim: either∑
z

gc
j (z)νj,c

Q (z) −
∑

z

gc
j (z)ν j,c(z) �= 0 (124)

or ∑
z

gp
j (z)νj,p

Q (z) −
∑

z

gp
j (z)ν j,p(z) �= 0 (125)

for at least one 1 ≤ j ≤ r. Therefore, one can always find, for at least one j, an arbitrarily
large ac

j > 0 (or ap
j > 0) such that

∑
z gc

j (z)νj,c
Q (z) −∑

z gc
j (z)ν j,c(z) = ac

j

(
or

∑
z gp

j (z)νj,p
Q (z) −∑

z gp
j (z)ν j,p(z) = ap

j

)
. Indeed, this can be done by flipping the sign of f c

j (or f p
j ) if necessary

and scaling the functions. Note that, by the assumption, f c
j , f p

j ∈ Cϕ(X ) since they are bounded
and continuous. Suppose without loss of generality that, for a given j, (124) is satisfied; then
by direct calculation we obtain∫

X
f c
j dQc

j −
∑

z0∈Z
ν j,c(z) log

∫
X

ef c
j dPz0 =

∫
X

gc
j (π0(x))Qc

j (dx)

−
∑

z0∈Z
ν j,c(z) log

∫
X

exp
{
gc

j (π0(x))
}
dPz0

=
∑

z0

gc
j (z0)νj,c

Q (z0) −
∑

z0

gc
j (z)ν j,c(z0) = a.

Hence, since a> 0 may be arbitrarily large, one gets that J
(
Qc

j

)= ∞ and then L(Q) = ∞,
which contradicts the assumption of the lemma and thus proves the second claim. �

Conditions for application of the Laplace–Varadhan lemma. Lemma 6.1 establishes
the large deviations principle for the sequence

(
P0,N
νN
,N ≥ 1

)
in the topological space

(M1,ϕ(X ))2r. Moreover, recall that the Radon–Nikodym derivative is given by

dPN
νN

dP0,N
νN

(Q) = exp
{
NhN(Q)

}
, (126)
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where the function hN(Q) is given by (109). Therefore, to find the large deviations princi-
ple for

(
PN
νN
,N ≥ 1

)
, one can apply the Laplace–Varadhan principle (cf. [64, Theorem 3.4])

to the sequence
(
P0,N
νN
,N ≥ 1

)
. The Laplace–Varadhan principle holds under the following

conditions:

1. The sequence of functions
{
hN(Q)

}
satisfies

lim
A→∞ lim sup

N→∞
1

N
log

∫
hN (Q)≥A

exp
{
NhN(Q)

}
dP0,N

νN
= −∞. (127)

2. For every Q in (M1,ϕ(X ))2r such that L(Q)<∞ and QN → Q,

lim sup
N

hN(QN)≤ h(Q). (128)

3. For every Q in (M1,ϕ(X ))2r
0 and QN → Q,

lim inf
N

hN(QN)≥ h(Q), (129)

where (M1,ϕ(X ))2r
0 is the set of points Q∗ in (M1,ϕ(X ))2r for which, given any ε > 0,

there exists a neighborhood V of Q∗ such that, for any Q ∈ V and N large enough,

hN(Q) ≥ h(Q∗) − ε. (130)

4. We have

sup

Q∈
(
M1,ϕ (X )

)2r
[h(Q) − L(Q)] = sup

Q∈
(
M1,ϕ (X )

)2r

0

[h(Q) − L(Q)]. (131)

Note that, on the one hand, the condition in (127) is satisfied if, for any α > 0,

lim sup
N→∞

1

N
log

∫(
M1,ϕ (X )

)2r exp
{
Nα

∣∣hN
∣∣}dP0,N

νN
<∞. (132)

Indeed, take α > 1; then

1

N
log

∫
hN (Q)≥A

exp
{
NhN(Q)

}
dP0,N

νN
= A + 1

N
log

∫
hN (Q)≥A

exp
{
N
(
hN(Q) − A

)}
dP0,N

νN

≤ A + 1

N
log

∫
hN (Q)≥A

exp
{
αN

(
hN(Q) − A

)}
dP0,N

νN

= (1 − α)A + 1

N
log

∫
hN (Q)≥A

exp
{
αNhN(Q)

}
dP0,N

νN

≤ (1 − α)A + 1

N
log

∫(
M1,ϕ (X )

)2r exp
{
αN

∣∣hN(Q)
∣∣}dP0,N

νN
.
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Therefore,

lim sup
N→∞

1

N
log

∫
hN (Q)≥A

exp
{
NhN(Q)

}
dP0,N

νN
≤ lim sup

N→∞

(
(1 − α)A

+ 1

N
log

∫(
M1,ϕ (X )

)2r exp
{
αN

∣∣hN(Q)
∣∣}dP0,N

νN

)
,

where the right-hand side of the last inequality goes to −∞ as A → ∞ if (132) is true. On the
other hand, it is easy to see that the conditions (128), (129), and (131) hold if the functions hN

defined in (109) are continuous and the sequence
{
hN

}
converges uniformly on (M1,ϕ(X ))2r

towards the function h given in (110). The next lemmas are thus dedicated to the verification
of these conditions. First, we establish a regularity property for all the probability measures Q
satisfying L(Q)<∞.

Lemma 6.3. Let Q = (
Qc

1,Qp
1, · · · ,Qc

r,Qp
r
) ∈ (M1,ϕ(X ))2r be such that L(Q)<∞.

Moreover, suppose that the random vector X = (
Xc

1, Xp
1, · · · , Xc

r , Xp
r
)

is distributed according
to Q. Then

sup
t∈[0,T]

E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1X(u)�=X(u−)

}]→ 0 as α ↓ 0. (133)

Proof. This is a generalization of [12, Lemma 5.7]. Note that X(u) �= X(u−) if Xc
j (u) �=

Xc
j (u−) or Xp

j (u) �= Xp
j (u−) for at least one 1 ≤ j ≤ r. Therefore, for each t ∈ [0, T] one obtains

E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1X(u)�=X(u−)

}]≤E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1Xc

1(u)�=Xc
1(u−)

}]

+E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1Xp

1 (u)�=Xp
1 (u−)

}]

+ · · · +E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1Xc

r (u)�=Xc
r (u−)

}]+E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1Xp

r (u)�=Xp
r (u−)

}]
.

(134)

Moreover, since L(Q)<∞, one gets that J
(
Qc

j

)
<∞ and J

(
Qp

j

)
<∞ for all 1 ≤ j ≤ r. Hence,

applying [12, Lemma 5.7] to each of the Xc
j and Xp

j with respective marginal distributions Qc
j

and Qp
j gives us that, for each 1 ≤ j ≤ r,

sup
t∈[0,T]

E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1Xc

j (u)�=Xc
j (u−)

}]
→ 0 as α ↓ 0 (135)

and

sup
t∈[0,T]

E

[
sup

u∈[t−α,t+α]∩[0,T]

{
1Xp

j (u)�=Xp
j (u−)

}]
→ 0 as α ↓ 0. (136)

Combining (134), (135), and (136) leads to (133). �
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The next lemma establishes the continuity of the projection π , which is needed for the
continuity of the function h(Q).

Lemma 6.4. Let M1(D([0, T],Z)) be equipped with its usual weak topology and let
D([0, T],M1(Z)) be equipped with the metric

ρT (μ, ν) = sup
0≤t≤T

ρ0(μt, νt), μ, ν ∈D([0, T],M1(Z)), (137)

where ρ0(·, ·) is a metric on M1(Z) which generates the weak topology σ (M1(Z),Cb(Z)).
Moreover, let (M1(D([0, T],Z)))2r be endowed with the product topology induced by the
product metric. Equivalently, let (D([0, T],M1(Z)))2r be equipped with the product topology
obtained from the product metric ρ2r

T = max{ρT , . . . , ρT}. Then the projection

π : Q ∈ (M1(D([0, T],Z)))2r → π (Q) = (Qt)0≤t≤T ∈ (D([0, T],M1(Z)))2r

is continuous at each Q ∈ (M1(D([0, T],Z)))2r where L(Q)<∞.

Proof. The statement of our lemma resembles the statement of [49, Lemma 2.8]. The dif-
ference here is that our spaces of interest are the product spaces (M1(D([0, T],Z)))2r and
(D([0, T],M1(Z)))2r endowed with the product metrics. Moreover, the rate J(Q) in [49,
Lemma 2.8] is here replaced by L(Q). Therefore, if we replace the norm | · | by the product
norm ‖ · ‖ adapted to the context of our product spaces, then the proof of our lemma follows
verbatim the proof of [49, Lemma 2.8], provided that we can prove [49, Equation (2.14)]. This
is done in Lemma 6.3. Thus, the proof is complete. �

We next prove the continuity of the functions hN .

Lemma 6.5. The functions hN : (M1,ϕ(X ))2r →R defined at (109) are continuous at any Q
such that L(Q)<∞.

Proof. This is a generalization of [49, Lemma 2.9]. For any Q ∈ (M1,ϕ(X ))2r, define

θ
j,c
Q (x) :=

∑
0≤t≤T

1xt �=xt− log

( ∑
(xt−,x(t))∈E

λc
j,xt−,xt

(
Qc

j (t−),Qp
j (t−)

) )
, (138)

θ
j,p
Q (x) :=

∑
0≤t≤T

1xt �=xt− log

( ∑
(xt−,xt)∈E

λ
p
j,xt−,xt

(Qc
j (t−),Qp

1(t−), . . . ,Qp
r (t−))

)
, (139)

γ
j,c
Q (x) :=

∫ T

0

( ∑
z : (xt,z)∈E

λc
j,xt,z(Q

c
j (t),Qp

j (t)) − 1

)
dt, (140)

γ
j,p
Q (x) :=

∫ T

0

( ∑
z : (xt,z)∈E

λ
p
j,xt,z

(Qc
j (t),Qp

1(t), . . . ,Qp
r (t)) − 1

)
dt. (141)

Note that the function hN given by (109) can be rewritten using the functions θ j,c
Q (x), θ j,p

Q (x),

γ
j,c
Q (x), and γ j,p

Q (x) as follows:

hN(Q) =
r∑

j=1

[
Nc

j

N

∫
X

(
θ

j,c
Q (x) − γ

j,c
Q (x)

)
Qc

j (dx) + Np
j

N

∫
X

(
θ

j,p
Q (x) − γ

j,p
Q (x)

)
Qp

j (dx)

]
.

(142)
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Therefore, to show the continuity of hN(Q), we show that for any 1 ≤ j ≤ r, the functions

Q →
∫
X
θ

j,c
Q (x)Qc

j (dx), Q →
∫
X
θ

j,p
Q (x)Qp

j (dx),

Q →
∫
X
γ

j,c
Q (x)Qc

j (dx), Q →
∫
X
γ

j,p
Q (x)Qp

j (dx)

are continuous at any Q where L(Q)<∞. First, from Assumption 6.1, there exists a positive
constant C> 0 such that, for each 1 ≤ j ≤ r,

∣∣∣θ j,c
Q (x)

∣∣∣≤ sup
ξ,ζ

(∣∣∣∣∣ log

( ∑
(xt−,xt)∈E

λc
j,xt−,xt

(ξ, ζ )

)∣∣∣∣∣
)
ϕ(x)

≤ C(1 + ϕ(x)) ∀x ∈X
(143)

and

∣∣∣θ j,p
Q (x)

∣∣∣≤ sup
ξ,ζ1,...,ζr

(∣∣∣∣∣ log

( ∑
(xt−,xt)∈E

λ
p
j,xt−,xt

(ξ, ζ1, . . . , ζr)

)∣∣∣∣∣
)
ϕ(x)

≤ C(1 + ϕ(x)) ∀x ∈X .

(144)

Similarly, by Assumption 6.1 we have that, for each 1 ≤ j ≤ r,

∣∣∣γ j,c
Q (x)

∣∣∣≤ sup
ξ,ζ

∣∣∣∣∣
∫ T

0

( ∑
z : (xt,z)∈E

λc
j,xt,z(ξ, ζ ) − 1

)
dt

∣∣∣∣∣<∞ ∀x ∈X (145)

and

∣∣∣γ j,p
Q (x)

∣∣∣≤ sup
ξ,ζ1,...,ζr

∣∣∣∣∣
∫ T

0

( ∑
z : (xt,z)∈E

λc
j,xt,z(ξ, ζ1, . . . , ζr) − 1

)
dt

∣∣∣∣∣<∞ ∀x ∈X . (146)

Take Q′ ∈ (M1,ϕ(X ))2r in the neighborhood of Q. Note that

∣∣hN(Q) − hN(Q′)
∣∣≤ r∑

j=1

[
Nc

j

N

(∣∣∣〈θ j,c
Q ,Qc

j 〉 − 〈θ j,c

Q′ ,Qj
′c〉

∣∣∣+ ∣∣∣〈γ j,c
Q ,Qc

j 〉 − 〈γ j,c

Q′ ,Qj
′c〉

∣∣∣)

+ Np
j

N

(∣∣∣〈θ j,p
Q ,Qp

j 〉 − 〈θ j,p

Q′ ,Qj
′p〉

∣∣∣+ ∣∣∣〈γ j,p
Q ,Qp

j 〉 − 〈γ j,c

Q′ ,Qj
′p〉

∣∣∣)
]

.

(147)

In addition, for each 1 ≤ j ≤ r, the following inequalities hold:∣∣∣〈θ j,c
Q ,Qc

j 〉 − 〈θ j,c

Q′ ,Qj
′c〉

∣∣∣≤ ∣∣∣〈θ j,c
Q ,Qc

j − Qj
′c〉

∣∣∣+ ∣∣∣〈θ j,c
Q − θ

j,c

Q′ ,Qj
′c〉

∣∣∣, (148)

∣∣∣〈θ j,p
Q ,Qp

j 〉 − 〈θ j,p

Q′ ,Qj
′p〉

∣∣∣≤ ∣∣∣〈θ j,p
Q ,Qp

j − Qj
′p〉

∣∣∣+ ∣∣∣〈θ j,p
Q − θ

j,p

Q′ ,Qj
′p〉

∣∣∣, (149)
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∣∣∣〈γ j,c
Q ,Qc

j 〉 − 〈γ j,c

Q′ ,Qj
′c〉

∣∣∣≤ ∣∣∣〈γ j,c
Q ,Qc

j − Qj
′c〉

∣∣∣+ ∣∣∣〈γ j,c
Q − γ

j,c

Q′ ,Qj
′c〉

∣∣∣, (150)

∣∣∣〈γ j,p
Q ,Qp

j 〉 − 〈γ j,p

Q′ ,Qj
′p〉

∣∣∣≤ ∣∣∣〈γ j,p
Q ,Qp

j − Qj
′p〉

∣∣∣+ ∣∣∣〈γ j,p
Q − γ

j,p

Q′ ,Qj
′p〉

∣∣∣. (151)

The idea now is to control the right-hand sides of the last four inequalities. We show this for
the inequality in (148). Similar arguments can be used to treat the other three inequalities.
First, notice that the function θ j,c

Q is continuous. Indeed, the topology of X is built so that the
function x →∑

0≤t≤T 1xt �=xt− is continuous. Moreover, from Assumption 6.1, the functions
λc

j,z,z′ are continuous. Furthermore, from Lemma 6.4, the component projection Qc
j → π (Qc

j ) =
(Qc

j (t))0≤t≤T is continuous since π (Q) = (Q(t))0≤t≤T is continuous. Finally, the log function

being continuous gives that θ j,c
Q is continuous provided that L(Q)<∞. In addition, from (143)

we have that θ j,c
Q ≤ C(1 + ϕ); thus θ j,c

Q ∈ Cϕ(X ) provided that L(Q)<∞. Therefore, the term∣∣∣〈θ j,c
Q ,Qc

j − Qj
′c〉

∣∣∣ can be made as small as desired by taking Q′ close enough to Q (and thus

Qj
′c close enough to Qc

j ). The second term in the right-hand side of (148) is bounded as follows:

∣∣∣〈θ j,c
Q − θ

j,c

Q′ ,Qj
′c〉

∣∣∣≤ sup
t

∣∣∣∣∣ log

( ∑
(xt−,xt)∈E

λc
j,xt−,xt

(
Qc

j (t−),Qp
j (t−)

) )

− log

( ∑
(xt−,xt)∈E

λc
j,xt−,xt

(
Q′c

j (t−),Q′p
j (t−)

) )∣∣∣∣∣
∫
X
ϕdQ′c

j .

(152)

Therefore, using again Assumption 6.1, Lemma 6.4, and the continuity of the log function,
the right-hand side of (152) is controlled for any Q′ in the neighborhood of Q in (M1,ϕ(X ))2r

provided that L(Q)<∞. Thus, the integral Q → ∫
θ

j,c
Q dQc

j is continuous. The same steps allow
us to show that

Q →
∫
X
θ

j,p
Q (x)Qp

j (dx), Q →
∫
X
γ

j,c
Q (x)Qc

j (dx), and Q →
∫
X
γ

j,p
Q (x)Qp

j (dx)

are also continuous at any Q where L(Q)<∞. Hence, the function hN is a linear combination
of continuous functions and thus is continuous, which concludes the proof. �

The following lemma states the uniform convergence of
{
hN,N ≥ 1

}
towards h.

Lemma 6.6. Suppose Assumption 6.1 holds. Then the sequence of functions
{
hN,N ≥ 1

}
introduced in (109) converges uniformly towards the function h given by (110).

Proof. From (110) and (142) one has

sup

Q∈
(
M1,ϕ (X )

)2r

∣∣hN(Q) − h(Q)
∣∣= sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣∣
r∑

j=1

[(Nc
j

N
− αjp

c
j

)∫
X

(
θ

j,c
Q (x) − γ

j,c
Q (x)

)
Qc

j (dx)

+
(Np

j

N
− αjp

p
j

) ∫
X

(
θ

j,p
Q (x) − γ

j,p
Q (x)

)
Qp

j (dx)

]∣∣∣∣∣
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≤
r∑

j=1

(∣∣∣∣Nc
j

N
− αjp

c
j

∣∣∣∣ sup
Q∈(M1,ϕ (X ))2r

∣∣∣∣
∫
X

(
θ

j,c
Q (x) − γ

j,c
Q (x)

)
Qc

j (dx)

∣∣∣∣
+

∣∣∣∣Np
j

N
− αjp

p
j

∣∣∣∣ sup
Q∈(M1,ϕ (X ))2r

∣∣∣∣
∫
X

(
θ

j,p
Q (x) − γ

j,p
Q (x)

)
Qp

j (dx)

∣∣∣∣
)

.

(153)

First, observe that

sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣
∫
X

(
θ

j,c
Q (x) − γ

j,c
Q (x)

)
Qc

j (dx)

∣∣∣∣≤ sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣
∫
X
θ

j,c
Q (x)Qc

j (dx)

∣∣∣∣
+ sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣
∫
X
γ

j,c
Q (x)Qc

j (dx)

∣∣∣∣.
Using (143) one obtains

sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣
∫
X
θ

j,c
Q (x)Qc

j (dx)

∣∣∣∣≤ sup

Q∈
(
M1,ϕ (X )

)2r

∫
X

C(1 + ϕ(x))Qc
j (dx)

≤ sup

Q∈
(
M1,ϕ (X )

)2r
C

( ∫
X

Qc
j (dx) +

∫
X
ϕ(x)Qc

j (dx)

)
,

which is <∞ since Qc
j is a probability measure and the second integral is finite for Qc

j ∈
M1,ϕ(X ). Moreover, by (145) one has

sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣
∫
X
γ

j,c
Q (x)Qc

j (dx)

∣∣∣∣<∞,

again since Qc
j is a probability measure. Therefore, by Assumption 6.1, one deduces that(
Nc

j

N
− αjp

c
j

)
sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣
∫
X

(
θ

j,c
Q (x) − γ

j,c
Q (x)

)
Qc

j (dx)

∣∣∣∣ N→∞−→ 0.

Similarly, one obtains(
Np

j

N
− αjp

p
j

)
sup

Q∈
(
M1,ϕ (X )

)2r

∣∣∣∣
∫
X

(
θ

j,p
Q (x) − γ

j,p
Q (x)

)
Qp

j (dx)

∣∣∣∣ N→∞−→ 0.

Thus hN converges uniformly towards h. �
The final step before applying the Laplace–Varadhan principle is to verify that (132) is

satisfied.

Lemma 6.7. For any α > 0,

lim sup
N→∞

1

N
log

∫(
M1,ϕ (X )

)2r exp
{
Nα

∣∣hN
∣∣}dP0,N

νN
<∞.
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Proof. First note that, using the bounds (143), (144), (145), and (146), we find that for all
Q ∈ (M1,ϕ(X ))2r,

∣∣hN(Q)
∣∣≤ r∑

j=1

[
Nc

j

N
C

(
1 +

∫
X
ϕ(x)Qc

j (dx)

)
+ Np

j

N
C

(
1 +

∫
X
ϕ(x)Qp

j (dx)

)]
. (154)

Therefore, to show (132), it is enough to show that, for any α > 0,

lim sup
N→∞

1

N
log

∫(
M1,ϕ (X )

)2r exp

{
Nα

r∑
j=1

[Nc
j

N

∫
X
ϕ(x)Qc

j (dx)

+ Np
j

N

∫
X
ϕ(x)Qp

j (dx)

]}
dP0,N

νN
(Q)<∞. (155)

Recall that P0,N
νN = P

0,N
zN ◦ G−1

N , where P
0,N
zN = ⊗N

n=1Pzn and Pzn is the law of the nth particle in
the case of non-interaction, with the initial condition being zn. Hence, by independence, the
integral term in the left-hand side of (155) is equivalent to

r∏
j=1

( ∫
M1,ϕ(X )

exp

{
Nc

j α

∫
X
ϕ(x)Qc

j (dx)

}
dP

0,Nc
j

ν
j,p
N

(
Qc

j

) ∫
M1,ϕ(X )

exp

{
Np

j α

∫
X
ϕ(x)Qp

j (dx)

}
dP

0,Np
j

ν
j,p
N

(
Qp

j

))
. (156)

Now, using [49, Lemma 2.10], we find that for all 1 ≤ j ≤ r,

lim sup
Nc

j →∞
1

Nc
j

log
∫
M1,ϕ(X )

exp

{
Nc

j α

∫
X
ϕ(x)Qc

j (dx)

}
dP

0,Nc
j

ν
j,c
N

(
Qc

j

)
<∞ (157)

and

lim sup
Np

j →∞
1

Np
j

log
∫
M1,ϕ(X )

exp

{
Np

j α

∫
X
ϕ(x)Qp

j (dx)

}
dP

0,Np
j

ν
j,p
N

(
Qp

j

)
<∞. (158)

Since Nc
j <N and Np

j <N for all 1 ≤ j ≤ r, (157), (158), and (156) lead to (155), which
concludes the proof. �

The interacting case. We are now ready to apply the Laplace–Varadhan principle to the
sequence of probability measures

{
P0,N
νN
,N ≥ 1

}
. By Lemma 6.1, the sequence

{
P0,N
νN
,N ≥ 1

}
obeys a large deviations principle in the topological space (M1,ϕ(X ))2r with rate function L(Q)
defined by (117), and with speed N. Moreover, by Lemma 6.5, the functions hN defined in (109)
are continuous at any Q such that L(Q)<∞. Furthermore, by Lemma 6.2, the functions hN

are continuous on the set
{
Q ∈ (M1(D([0, T],Z))2r|L(Q)<∞}

. Therefore, the conditions in
(128), (129), and (131) hold true. Finally, we have seen in Lemma 6.7 that (132) is satisfied.
Hence, a straightforward application of [64, Theorem 3.4] gives

1

N
log

∫(
M1,ϕ(X )

)2r exp
{
NhN}dP0,N

νN
−→ sup

Q∈
(
M1,ϕ(X )

)2r

[
h(Q) − L(Q)

]
(159)
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as N → ∞, and the sequence{
exp

(
NhN

)
∫(

M1,ϕ(X )

)2r exp
(
NhN

)
dP0,N

νN

· P0,N
νN
,N ≥ 1

}
(160)

obeys a large deviations principle with speed N and rate function

Q → L(Q) − h(Q) − inf
Q′∈

(
M1,ϕ(X )

)2r
[L(Q′) − h(Q′)]. (161)

Now, from (108) we have

dPN
νN

dP0,N
νN

(Q) = exp
{
NhN(Q)

}
. (162)

Since PN
νN is a probability measure we obtain∫(

M1,ϕ(X )

)2r exp
(
NhN)dP0,N

νN
=

∫(
M1,ϕ(X )

)2r dPN
νN = 1. (163)

Thus, the left-hand side of (159) is always zero and so

sup(
M1,ϕ(X )

)2r

[
h(Q) − L(Q)

]= 0, (164)

which gives that

inf
Q′∈

(
M1,ϕ(X )

)2r
[L(Q′) − h(Q′)] = 0. (165)

We then conclude that the sequence
{
PN
νN ,N ≥ 1

}
obeys a large deviations principle in the

topological space (M1,ϕ(X ))2r, with speed N and rate function

I(Q) = L(Q) − h(Q). (166)

In order to obtain the representation in (119), we proceed as follows. First, from (154) we have
that, for Q ∈ (M1,ϕ(X ))2r, h(Q)<∞. Moreover, from [12, Lemma 5.6], the functions Jj,ι(Q)
defined by (118) have the following representation:

Jj,ι(Q) =
{

H
(
Q
∣∣Pj,ι

)
if Q ◦ π−1

0 = ν j,ι,

+∞ otherwise,
(167)

where H
(
Q
∣∣Pj,ι

)
is the relative entropy defined by (116). Therefore, if either Q ◦ π−1

0 �= ν j,ι

or Q is not absolutely continuous with respect to Pj,ι, then one can immediately observe that
Jj,ι(Q) = ∞; thus L(Q) = ∞, and finally I(Q) = ∞. Now, assume that for all 1 ≤ j ≤ r we have
Qc

j ◦ π−1
0 = ν j,c, Qc

j � P, and Qp
j ◦ π−1

0 = ν j,p, Qp
j � P; then

L(Q) = α1pc
1H

(
Qc

1

∣∣P1,c
)+ α1pp

1H
(
Qp

1

∣∣P1,p
)+ · · · + αrpc

rH
(
Qc

r

∣∣Pr,c
)+ αrpp

r H
(
Qp

r

∣∣Pr,p
)
.
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Furthermore, one can observe from (105) that the densities exp
{
h1(x, η, ρj)

}
and

exp
{
h2(x, η, ρ1, . . . , ρr)

}
do not depend on the initial condition z0. Therefore, for each 1 ≤

j ≤ r, the densities of Rc
(
π
(
Qc

j

)
, π

(
Qp

j

))
and Rp

(
π
(
Qc

j

))
, π

(
Qp

1

)
, . . . , π

(
Qp

r
)))

with respect
to the mixtures Pj,c and Pj,p are given by, respectively,

dRc
(
π
(
Qc

j

)
, π

(
Qp

j

))
dPj,c

(x) = exp
{

h1
(
x, π

(
Qc

j

)
, π

(
Qp

j

))}

and

dRp
(
π
(
Qc

j

))
, π

(
Qp

1

)
, . . . , π

(
Qp

r
)))

dPj,p
(x) = exp

{
h2
(
x, π

(
Qc

j

))
, π

(
Qp

1

)
, . . . , π

(
Qp

r

)))}
.

Replacing h1( · ) and h2( · ) in (109) by the two representations above, we find

h(Q) =
r∑

j=1

[
Nc

j

N

∫
D([0,T],Z)

dQc
j log

dRc
(
π
(
Qc

j

)
, π

(
Qp

j

))
dPj,c

+ Np
j

N

∫
D([0,T],Z)

dQp
j log

dRp
(
π (Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r
)))

dPj,p

]
.

(168)

Finally, using (99) we find that, as N → ∞,

L(Q) − h(Q) =
r∑

j=1

[
αjp

c
j

( ∫
D([0,T],Z)

dQc
j log

dQc
j

dPj,c
−

∫
D([0,T],Z)

dQc
j log

dRc
(
π
(
Qc

j

)
, π

(
Qp

j

))
dPj,c

)

+ αjp
p
j

( ∫
D([0,T],Z)

dQp
j log

dQp
j

dP

−
∫

D([0,T],Z)
dQp

j log
dRp

(
π
(
Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r
)))

dP

)]

=
r∑

j=1

[
αjp

c
j

∫
D([0,T],Z)

dQc
j log

dQc
j

dRc
(
π
(
Qc

j

)
, π

(
Qp

j

))
+ αjp

p
j

∫
D([0,T],Z)

dQp
j log

dQp
j

dRp
(
π
(
Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r
))]

=
r∑

j=1

[
αjp

c
j H

(
Qc

j

∣∣∣Rc(π(Qc
j

)
, π

(
Qp

j

)))

+ αjp
p
j H

(
Qp

j

∣∣∣Rp(π(Qc
j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r

))]
.

(169)

This concludes the proof. �

6.2. Large deviations principle for the empirical process

We now investigate the large deviations of the sequence
(
pN
νN
,N ≥ 1

)
where, for any N ≥

1, pN
νN

= PN
zN ◦ γ−1

N = π (MN) is the distribution of the (M1(Z))2r-valued empirical process
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defined by

μN : t ∈ [0, T] −→μN(t) =
(
μ

c,N
1 (t), μp,N

1 (t), · · · , μc,N
r (t), μp,N

r (t)
)

=
(

1

Nc
1

∑
n∈Cc

1

δXc
n,1(t),

1

Np
1

∑
n∈Cp

1

δXp
n,1(t), . . . ,

1

Nc
r

∑
n∈Cc

r

δXc
n,r(t),

1

Np
r

∑
n∈Cp

r

δXp
n,r(t)

)
.

The flow μN takes values in the product space
(D([0, T],M1(Z))

)2r. Again let
D([0, T],M1(Z)) be equipped with the metric

ρT (μ, ν) := sup
0≤t≤T

ρ0(μt, νt), μ, ν ∈D([0, T],M1(Z)), (170)

where ρ0(α, β), α, β ∈M1(Z), is a metric on M1(Z) that generates the weak topology on
M1(Z). Moreover, let the product space

(D([0, T],M1(Z))
)2r be equipped with the product

topology induced by the product metric ρ2r
T = max{ρT , . . . , ρT}.

For any ξ = (
ξ c

1 , ξ
p
1 , . . . , ξ

c
r , ξ

p
r
) ∈ (M1(Z)

)2r, define the rate matrices

Aj,c
ξ :=

(
λc

j,z,z′
(
ξ c

j , ξ
p
j

))
(z,z′)∈Z×Z

and Aj,p
ξ :=

(
λ

p

j,z,z′
(
ξ c

j , ξ
p
1 . . . , ξ

p
r

))
(z,z′)∈Z×Z

,

(171)

where
λc

j,z,z

(
ξ c

j , ξ
p
j

)
= −

∑
z′ �=z

λc
j,z,z′

(
ξ c

j , ξ
p
j

)

and
λ

p
j,z,z

(
ξ c

j , ξ
p
1 , . . . , ξ

p
r

)
= −

∑
z′ �=z

λ
p

j,z,z′
(
ξ c

j , ξ
p
1 , . . . , ξ

p
r

)
.

From the laws of large numbers given in Corollary 5.1, one can deduce that, as N → ∞, the
sequence

(
μN,N ≥ 1

)
converges weakly, for converging initial conditions, towards the solution

μ of the following McKean–Vlasov system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ̇c
j (t) = Aj,c∗

μ(t)μ
c
j (t),

μ̇
p
j (t) = Aj,p∗

μ(t)μ
p
j (t),

μc
j (0) = νc

j , μ
p
j (0) = ν

p
j ,

1 ≤ j ≤ r,

(172)

where A∗ is the adjunct/transpose of the matrix A and μ̇(t) = ∂
∂tμ(t). Note that the Lipschitz

property of the functions λc
j,z,z′ and λp

j,z,z′ ensures that (172) is well-posed. Also, one can notice

that the representation (172) is consistent with the infinitesimal generators Lc
ξ,ηj

and Lp
ξ,η1,...,ηr

introduced in (103) and (104). Indeed, if we consider φ, Lc
ξ,ηj
φ, and Lp

ξ,η1,...,ηr
φ as column

vectors, then the right-hand sides of (103) and (104) are the results of right-multiplying the
rates matrices Aj,c and Aj,p, respectively, by the vector φ.
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Denote by τ the log-Laplace transform of the centered Poisson distribution with parameter
1 given by τ (u) = eu − u − 1, and let τ ∗ be its Legendre transform, defined by

τ ∗(u) :=
⎧⎨
⎩

(u + 1) log (u + 1) − u if u>−1,
1 if u = −1,
+∞ if u<−1.

Let us recall now the notion of absolute continuity introduced in [24, Definition 4.1]. Denote
by S the Schwartz space of test functions Rd →R having compact support and possessing
continuous derivatives of all orders. We endow S with the usual inductive topology. Let S ′ be
the corresponding space of real distributions. For each compact set K ⊂Rd, SK will denote
the subspace of S consisting of all test functions whose support is contained in K. Finally, let
〈ν, f 〉 denote the application of the test function f to the distribution ν.

Definition 6.1. Let I be an interval of the real line. A map ν( · ) : I → S ′ is called absolutely
continuous if, for each compact set K ⊂Rd, there exists a neighborhood UK of 0 in SK and an
absolutely continuous function HK : I → R such that

|〈ν(u), f 〉| − |〈ν(v), f 〉| ≤ HK(u) − HK(v)

for all u, v ∈ I and f ∈ UK .
Finally, for any θ ∈M(Z), define

|||θ |||j,cμ(t) := sup
� : Z→R

{∑
z∈Z

θ (z) ·�(z) −
∑

(z,z′)∈E
τ
(
�(z′) −�(z)

) ·μc
j (t)(z) · λc

j,z,z′
(
μc

j (t), μp
j (t)

)}
,

|||θ |||j,pμ(t) := sup
� :Z→R

{∑
z∈Z

θ (z) ·�(z)

−
∑

(z,z′)∈E
τ
(
�(z′) −�(z)

) ·μp
j (t)(z) · λp

j,z,z′
(
μc

j (t), μp
1(t), . . . , μp

r (t)
)}

.

Also let us introduce, for each ν ∈ (M1(Z))2r, and according to [24, Equation (4.9)], the
functional S(μ|ν) defined from (D([0, T],M1(Z)))2r to [0,∞] by setting

S[0,T](μ|ν) :=
r∑

j=1

[
αjp

c
j

∫ T

0

∣∣∣∣∣∣μ̇c
j (t) − Aj,c∗

μ(t)μ
c
j (t)

∣∣∣∣∣∣
μ(t)dt + αjp

p
j

∫ T

0

∣∣∣∣∣∣μ̇p
j (t)

− Aj,p∗
μ(t)μ

p
j (t)

∣∣∣∣∣∣
μ(t)dt

] (173)

if μ(0) = ν and μc
j , μ

p
j are absolutely continuous in the sense of Definition 6.1 for all 1 ≤ j ≤ r,

and S[0,T](μ|ν) = +∞ otherwise.
We are now ready to state our large deviations principle for the sequence

(
pN
νN
,N ≥ 1

)
.

Theorem 6.2. Suppose that νN → ν weakly. The sequence of probability measures
(
pN
νN
,N ≥

1
)

obeys a large deviations principle in the space
(D([0, T],M1(Z))

)2r
, with speed N, and

rate function S[0,T](μ|ν) given by (173).
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Moreover, if a path μ ∈ (D([0, T],M1(Z))
)2r

satisfies S[0,T](μ|ν)<∞, then μc
j and μp

j

are absolutely continuous and there exist families of rate matrices Lj,c(t) =
(

lj,c
z,z′ (t), (z, z′) ∈ E

)
and Lj,p(t) =

(
lj,p
z,z′ (t), (z, z′) ∈ E

)
such that, for all 1 ≤ j ≤ r and t ∈ [0, T],

μ̇c
j (t) = Lj,c(t)∗μc

j (t),

μ̇
p
j (t) = Lj,p(t)∗μp

j (t).

Furthermore, in this case, the good rate function S[0,T](μ|ν) is given by

r∑
j=1

[
αjp

c
j

∫ T

0

( ∑
(z,z′)∈E

(
μc

j (t)(z)
)
λc

j,z,z′
(
μc

j (t), μp
j (t)

)
τ ∗

(
lj,c
z,z′ (t)

λc
j,z,z′

(
μc

j (t), μp
j (t)

) − 1

))
dt

+ αjp
p
j

∫ T

0

( ∑
(z,z′)∈E

(
μ

p
j (t)(z)

)
λ

p

j,z,z′
(
μc

j (t), μp
1(t), . . . , μp

r (t)
)

τ ∗
(

lj,p
z,z′ (t)

λ
p

j,z,z′
(
μc

j (t), μp
1(t), . . . , μp

r (t)
) − 1

))
dt

]
.

(174)

Proof. We first use a contraction argument to derive a large deviations principle for the
sequence

(
pN
νN
,N ≥ 1

)
. From Theorem 6.1, the sequence

(
PN
νN
,N ≥ 1

)
obeys a large deviations

principle with speed N and rate function I(Q) given by

I(Q) =

⎧⎪⎪⎨
⎪⎪⎩
∑r

j=1

[
αjpc

j H
(

Qc
j

∣∣Rc
(
π
(
Qc

j

)
, π

(
Qp

j

)))
if Q ◦ π−1

0 = ν,

+αjp
p
j H

(
Qp

j

∣∣Rp
(
π
(
Qc

j

)
, π

(
Qp

1

)
, . . . , π

(
Qp

r
))]

+∞ otherwise.

Moreover, from Lemma 6.4, the projection

π :
(M1(D([0, T],Z))

)2r → (D([0, T],M1(Z))
)2r

is continuous at each Q ∈ (M1(D([0, T],Z))
)2r where L(Q)<∞, and thus at any Q such

that I(Q)<∞. The latter corresponds to the effective domain DI = {Q : I(Q)<∞} of the rate
function I (see [29, p. 4]). Therefore, by applying the contraction principle to the large devia-
tions principle of

(
PN
νN
,N ≥ 1

)
(see [29, Theorem 4.2.1, Remark (c)]) with rate I, we deduce

that the family of probability measures
(
PN
νN

◦ π−1,N ≥ 1
)

obeys a large deviations principle

in
(D([0, T],M1(Z))

)2r with the rate function defined, for any μ ∈ (D([0, T],M1(Z))
)2r, by

V(μ) := inf
{

I(Q),Q ∈ (M1(D([0, T],Z))
)2r
, π (Q) =μ

}
. (175)

We now derive another representation for the rate function V following [24, 49]. Fix
μ= (

μc
j , μ

p
j , 1 ≤ j ≤ r

) ∈ (D([0, T],M1(Z))
)2r. Note that writing π (Q) =μ, with Q ∈
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(M1(D([0, T],Z))
)2r, is equivalent to π

(
Qc

j

)=μc
j and π

(
Qp

j

)=μ
p
j for all 1 ≤ j ≤ r.

Therefore V can be rewritten as

V(μ) = inf

{
r∑

j=1

[
αjp

c
j H

(
Qc

j

∣∣Rc(μc
j , μ

p
j

))+ αjp
p
j H

(
Qp

j

∣∣Rp(μc
j , μ

p
1, . . . , μ

p
r

))]
,

Q ∈ (M1(D([0, T],Z))
)2r
, π (Q) =μ

}
.

Fix 1 ≤ j ≤ r. Let
(

X(i)
j,c

)
i≥1

and
(

X(i)
j,p

)
i≥1

be sequences of i.i.d. processes with common

laws Rc
(
μc

j , μ
p
j

)
and Rp

(
μc

j , μ
p
1, . . . , μ

p
r
)
, respectively. By Sanov’s theorem, the empirical

measures

1

Nc
j

Nc
j∑

i=1

X(i)
j,c and

1

Np
j

Np
j∑

i=1

X(i)
j,p

obey large deviations principles as Nc
j → ∞ and Np

j → ∞, with speeds Nc
j and Np

j , respec-
tively, and rate functions given by

Q ∈M1(D([0, T],Z)) → H
(
Q
∣∣Rc(μc

j , μ
p
j

))
and

Q ∈M1(D([0, T],Z)) → H
(
Q
∣∣Rp(μc

j , μ
p
1, . . . , μ

p
r

))
,

respectively. Using the same arguments as in the proof of Lemma 6.4, one can show that the
projection π is continuous at any Q ∈ (M1(D([0, T],Z))

)2r such that

r∑
j=1

[
αjp

c
j H

(
Qc

j

∣∣Rc(μc
j , μ

p
j

))+ αjp
p
j H

(
Qp

j

∣∣Rp(μc
j , μ

p
1, . . . , μ

p
r

)]
<∞.

Thus, the component projections π
(
Qc

j

)
and π

(
Qp

j

)
are also continuous. Hence, using the

contraction principle ([29, Theorem 4.2.1]), the sequences

{
t ∈ [0, T] → 1

Nc
j

Nc
j∑

i=1

X(i)
j,c(t); Nc

j ≥ 1

}

and {
t ∈ [0, T] → 1

Np
j

Np
j∑

i=1

X(i)
j,p(t); Np

j ≥ 1

}

obey large deviations principles with speeds Nc
j and Np

j , respectively, and rate functions

η ∈D([0, T],M1(Z)) → Sj,c
μ (η) := inf

{
H
(

Q
∣∣Rc(μc

j , μ
p
j

))
,

Q ∈M1(D([0, T],Z)), π (Q) = η
}
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and

η ∈D([0, T],M1(Z)) → Sj,p
μ (η) := inf

{
H
(

Q
∣∣Rp(μc

j , μ
p
1, . . . , μ

p
r

))
,

Q ∈M1(D([0, T],Z)), π (Q) = η
}
,

respectively. Note that, by using an independence argument and following the same steps as in
the proof of Lemma 6.1, one can show that the sequence

(
t ∈ [0, T] →

(
1

Nc
1

Nc
1∑

i=1

X(i)
1,c(t),

1

Np
1

Np
1∑

i=1

X(i)
1,p(t), . . . ,

1

Nc
r

Nc
r∑

i=1

X(i)
r,c(t),

1

Np
r

Np
r∑

i=1

X(i)
r,p(t)

))
N≥1

obeys a large deviations principle with speed N and rate function

η= (
ηc

1, η
p
1, . . . , η

c
r , η

p
r

) ∈ (D([0, T],M1(Z))
)2r → Sμ(η) =

r∑
j=1

[
αjp

c
j Sj,c
μ

(
ηc

j

)+ αjp
p
j Sj,p
μ

(
η

p
j

))]
.

In addition, the vector

(
1

Nc
1

Nc
1∑

i=1

X(i)
1,c,

1

Np
1

Np
1∑

i=1

X(i)
1,p, . . . ,

1

Nc
r

Nc
r∑

i=1

X(i)
r,c,

1

Np
r

Np
r∑

i=1

X(i)
r,p

)
N≥1

obeys a large deviations principle with rate I(Q). Therefore, by a contraction argument and
using again the continuity of the projection, we find that

(
t ∈ [0, T] →

(
1

Nc
1

Nc
1∑

i=1

X(i)
1,c(t),

1

Np
1

Np
1∑

i=1

X(i)
1,p(t), . . . ,

1

Nc
r

Nc
r∑

i=1

X(i)
r,c(t),

1

Np
r

Np
r∑

i=1

X(i)
r,p(t)

))
N≥1

obeys a large deviations principle with rate V(μ). Hence, by the uniqueness of the rate function
(cf. [30, Lemma 2.1.1]), we find

V(μ) = Sμ(μ). (176)

We next derive another representation for Sμ(ν). For any 1 ≤ j ≤ r and ν ∈D([0, T],M1(Z)),
we have from [49, p. 319] that

Sj,c
μ (ν) = Uj,c

μ (νt(dz)dt),

Sj,p
μ (ν) = Uj,p

μ (νt(dz)dt),
(177)

where, for all ν̃ ∈M1([0, T[ ×Z), Uj,c
μ (ν̃) and Uj,p

μ (ν̃) are given by the following (see [49,
Equation (3.14)]):

Uj,c
μ (ν̃) = sup

f ∈Cc
1

{ ∫ T

0

〈
−
(
∂

∂t
+ Aj,c

μ(t)

)
f (t, z)

−
∑

z′ : (z,z′)∈E
τ
(
f (t, z′) − f (t, z)

)
λc

j,z,z′
(
μc

j (t), μp
j (t)

)
, νt(dz)

〉}
,

(178)
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Uj,p
μ (ν̃) = sup

f ∈Cc
1

{ ∫ T

0

〈
−

(
∂

∂t
+ Aj,p

μ(t)

)
f (t, z)

−
∑

z′ : (z,z′)∈E
τ
(
(f (t, z′) − f (t, z)

)
λ

p

j,z,z′
(
μc

j (t), μp
1(t), . . . , μp

r (t)
)
, νt(dz)

〉}
,

(179)

where Cc
1 stands for the set of all continuous functions with compact support on [0, T[ ×Z

which are t-differentiable. Using (177), (178), and (179) together with [49, Lemma 3.2], we
obtain

Sj,c
μ (μ) =

∫ T

0

∣∣∣∣∣∣∣∣∣μ̇c
j (t) − Aj,c∗

μ(t)μ
c
j (t)

∣∣∣∣∣∣∣∣∣
μ(t)

dt,

Sj,p
μ (μ) =

∫ T

0

∣∣∣∣∣∣∣∣∣μ̇p
j (t) − Aj,p∗

μ(t)μ
p
j (t)

∣∣∣∣∣∣∣∣∣
μ(t)

dt.

(180)

Finally, using (176), we deduce that
(
pN
νN
,N ≥ 1

)
obeys a large deviations principle with rate N

and good rate function (173). The representation (174) follows immediately from [49, Lemma
3.2], and the statement about absolute continuity follows from [49, Theorem 3.1]. The theorem
is proved. �

The following result shows that the large deviations principle for
(
pN
ν ,N ≥ 1

)
holds

uniformly in the initial condition.

Corollary 6.1. For any compact set K ⊂ (M1(Z))
)2r

, any closed set F ⊂(D([0, T],M1(Z))
)2r

, and any open set G ⊂ (D([0, T],M1(Z))
)2r

, we have

lim sup
N→∞

1

N
log sup

ν∈K
pN
ν

(
μN ∈ F

)≤ − inf
ν∈K

inf
μ∈F

S[0,T](μ|ν), (181)

lim inf
N→∞

1

N
log inf

ν∈K
pN
ν

(
μN ∈ G

)≥ − sup
ν∈K

inf
μ∈G

S[0,T](μ|ν). (182)

Proof. This follows immediately from [29, Corollary 5.6.15] and Theorem 6.2. �

Acknowledgements

We would like to thank the anonymous referees and the associate editor for having read the
paper with great care and made several very important comments that improved the exposition.

Funding information

This research was supported by the Natural Sciences and Engineering Research Council of
Canada Discovery Grants and by Carleton University.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

https://doi.org/10.1017/apr.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.7


Asymptotics of mean-field models with jumps on block-structured networks 1359

References

[1] AGLIARI, E., MIGLIOZZI, D. AND TANTARI, D. (2018). Non-convex multi-species Hopfield models. J. Statist.
Phys. 172, 1247–1269.

[2] AKHIL, P. T., ALTMAN, E. AND SUNDARESAN, R. (2019). A mean-field approach for controlling singularly
perturbed multi-population SIS epidemics. Preprint. Available at https://arxiv.org/abs/1902.05713.

[3] ALBERICI, D., CAMILLI, F., CONTUCCI, P. AND MINGIONE, E. (2021). The multi-species mean-field spin-
glass on the Nishimori line. J. Statist. Phys. 182, article no. 2.

[4] ALEANDRI, M. AND MINELLI, I. G. (2019). Opinion dynamics with Lotka–Volterra type interactions.
Electron. J. Prob. 24, 31 pp.

[5] BARRA, A., CONTUCCI, P., MINGIONE, E. AND TANTARI, D. (2015). Multi-species mean field spin glasses.
Rigorous results. Ann. Inst. H. Poincaré Prob. Statist. 16, 691–708.

[6] BAYRAKTAR, E., CHAKRABORTY, S. AND WU, R. (2020). Graphon mean field systems. Preprint. Available
at https://arxiv.org/abs/2003.13180.

[7] BAYRAKTAR, E. AND WU, R. (2021). Mean field interaction on random graphs with dynamically changing
multi-color edges. Stoch. Process. Appl. 141, 197–244.

[8] BENAÏM, M. AND LE BOUDEC, J.-Y. (2008). A class of mean field interaction models for computer and
communication systems. Performance Evaluation 65, 823–838.

[9] BHAMIDI, S., BUDHIRAJA, A. AND WU, R. (2019). Weakly interacting particle systems on inhomogeneous
random graphs. Stoch. Process. Appl. 129, 2174–2206.

[10] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.
[11] BOLLEY, F. (2008). Separability and completeness for the Wasserstein distance. In Séminaire de Probabilités

XLI, eds C. Donati-Martin, M. Émery, A. Rouault and C. Stricker, Springer, Berlin, Heidelberg, pp. 371–377.
[12] BORKAR, V. S. AND SUNDARESAN, R. (2012). Asymptotics of the invariant measure in mean field models

with jumps. Stoch. Systems 2, 322–380.
[13] BOSSY, M., FAUGERAS, O. AND TALAY, D. (2015). Clarification and complement to ‘Mean-field description

and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons’. J. Math. Neurosci.
5, article no. 31, 23 pp.

[14] BUCKDAHN, R., LI, J. AND PENG, S. (2014). Nonlinear stochastic differential games involving a major player
and a large number of collectively acting minor agents. SIAM J. Control Optimization 52, 451–492.

[15] BUDHIRAJA, A., MUKHERJEE, D. AND WU, R. (2019). Supermarket model on graphs. Ann. Appl. Prob. 29,
1740–1777.

[16] BUDHIRAJA, A. AND WU, R. (2016). Some fluctuation results for weakly interacting multi-type particle
systems. Stoch. Process. Appl. 126, 2253–2296.

[17] CARMONA, R. AND ZHU, X. (2016). A probabilistic approach to mean field games with major and minor
players. Ann. Appl. Prob. 26, 1535–1580.

[18] CHONG, C. AND KLÜPPELBERG, C. (2019). Partial mean field limits in heterogeneous networks. Stoch.
Process. Appl. 129, 4998–5036.

[19] COLLET, F. (2014). Macroscopic limit of a bipartite Curie–Weiss model: a dynamical approach. J. Statist.
Phys. 157, 1309–1319.

[20] COLLET, F., FORMENTIN, M. AND TOVAZZI, D. (2016). Rhythmic behavior in a two-population mean-field
Ising model. Phys. Rev. E 94, article no. 042139.

[21] DAWSON, D. A. (1983). Critical dynamics and fluctuations for a mean field model of cooperative behaviour.
J. Statist. Phys. 41, 29–85.

[22] DAWSON, D. A. (1991). Measure-valued Markov processes. In École d’Été de Probabilités de Saint-Flour
XXI—1991, Springer, Berlin, Heidelberg, pp. 1–260.

[23] DAWSON, D. A. (2017). Introductory lectures on stochastic population systems. Preprint. Available at
https://arxiv.org/abs/1705.03781.

[24] DAWSON, D. A. AND GÄRTNER, J. (1987). Large deviations from the McKean–Vlasov limit for weakly
interacting diffusions. Stochastics 20, 247–308.

[25] DAWSON, D. A., SID-ALI, A. AND ZHAO, Y. Q. (2022). Large-time behavior of finite-state mean-field
systems with multi-classes. Stoch. Systems 13, 93–127.

[26] DAWSON, D. A., TANG, J. AND ZHAO, Y. Q. (2005). Balancing queues by mean field interaction. Queueing
Systems 49, 335–361.

[27] DAWSON, D. A. AND ZHENG, X. (1991). Law of large numbers and central limit theorem for unbounded jump
mean-field models. Adv. Appl. Math. 12, 293–326.

[28] DELATTRE, S., GIACOMIN, G. AND LUÇON, E. (2016). A note on dynamical models on random graphs and
Fokker–Planck equations. J. Statist. Phys. 165, 785–798.

[29] DEMBO, A. AND ZEITOUNI, O. (2010). Large Deviations Techniques and Applications, 2nd edn. Springer,
Berlin, Heidelberg.

https://doi.org/10.1017/apr.2023.7 Published online by Cambridge University Press

https://arxiv.org/abs/1902.05713
https://arxiv.org/abs/2003.13180
https://arxiv.org/abs/1705.03781
https://doi.org/10.1017/apr.2023.7


1360 D. A. DAWSON ET AL.

[30] (1989). Deuschel, J.-D. and Stroock, D. W. Large Deviations. Academic Press, New York.
[31] ETHIER, S. N. AND KURTZ, T. G. (1986). Markov Processes: Characterization and Convergence. John Wiley,

New York.
[32] FENG, S. (1994). Large deviations for empirical process of mean-field interacting particle system with

unbounded jumps. Ann. Prob. 22, 2122–2151.
[33] FENG, S. (1994). Large deviations for Markov processes with mean field interaction and unbounded jumps.

Prob. Theory Relat. Fields 100, 227–252.
[34] FINNOFF, W. (1993). Law of large numbers for a general system of stochastic differential equations with global

interaction. Stoch. Process. Appl. 46, 153–182.
[35] FINNOFF, W. (1994). Law of large numbers for a heterogeneous system of stochastic differential equations

with strong local interaction and economic applications. Ann. Appl. Prob. 4, 494–528.
[36] FREIDLIN, M. I. AND WENTZELL, A. D. (2012). Random Perturbations of Dynamical Systems, 3rd edn.

Springer, Berlin, Heidelberg.
[37] GÄRTNER, J. (1988). On the McKean–Vlasov limit for interacting diffusions. Math. Nachr. 137, 197–248.
[38] GIESECKE, K., SPILIOPOULOS, K., SOWERS, R. B. AND SIRIGNANO, J. A. (2015). Large portfolio

asymptotics for loss from default. Math. Finance 25, 77–114.
[39] GRAHAM, C. (2000). Chaoticity on path space for a queueing network with selection of the shortest queue

amongst several. J. Appl. Prob. 37, 198–211.
[40] GRAHAM, C. (2008). Chaoticity for multiclass systems and exchangeability within classes. J. Appl. Prob. 45,

1196–1203.
[41] GRAHAM, C. AND MÉLÉARD, S. (1993). Propagation of chaos for a fully connected loss network with

alternate routing. Stoch. Process. Appl. 44, 159–180.
[42] GRAHAM, C. AND MÉLÉARD, S. (1995). Dynamic asymptotic results for a generalized star-shaped loss

network. Ann. Appl. Prob. 5, 666–680.
[43] GRAHAM, C. AND ROBERT, P. (2009). Interacting multi-class transmissions in large stochastic networks. Ann.

Appl. Prob. 19, 2334–2361.
[44] HWANG, C.-R. AND SHEU, S.-J. (1990). Large-time behavior of perturbed diffusion Markov processes with

applications to the second eigenvalue problem for Fokker–Planck operators and simulated annealing. Acta Appl.
Math. 19, 253–295.

[45] KAC, M. (1956). Foundations of kinetic theory. In Proc. 3rd Berkeley Symposium on Mathematical Statistics
and Probability, Vol. III: Contributions to Astronomy and Physics, University of California Press, Berkeley, pp.
171–197.

[46] KIRSCH, W. AND TOTH, G. (2020). Two groups in a Curie–Weiss model with heterogeneous coupling.
J. Theoret. Prob. 33, 2001–2026.

[47] KLEY, O., KLÜPPELBERG, C. AND REICHEL, L. (2015). Systemic risk through contagion in a core-periphery
structured banking network. Banach Center Publ. 104, 133–149.

[48] KNÖPFEL, H., LÖWE, M., SCHUBERT, K. AND SINULIS, A. (2020). Fluctuation results for general block spin
Ising models. J. Statist. Phys. 178, 1175–1200.

[49] LÉONARD, C. (1995). Large deviations for long range interacting particle systems with jumps. Ann. Inst. H.
Poincaré Prob. Statist. 31, 289–323.

[50] LÖWE, M. AND SCHUBERT, K. (2018). Fluctuations for block spin Ising models. Electron. Commun. Prob.
23, 12 pp.

[51] MCKEAN, H. P. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat.
Acad. Sci. USA 56, 1907–1911.

[52] MCKEAN, H. P. (1966). Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch.
Rational Mech. Anal. 21, 343–367.

[53] MÉLÉARD, S. AND BANSAYE, V. (2015). Stochastic Models for Structured Populations: Scaling Limits and
Long Time Behavior. Springer, Cham.

[54] MEYLAHN, J. M. (2020). Two-community noisy Kuramoto model. Nonlinearity 33, 1847–1880.
[55] MITZENMATHER, M. (1996). The power of two choices in randomized load balancing. Doctoral Thesis,

University of California, Berkeley.
[56] NAGASAWAT, M. AND TANAKA, H. (1987). Diffusion with interactions and collisions between coloured

particles and the propagation of chaos. Prob. Theory Relat. Fields 74, 161–198.
[57] NAGASAWAT, M. AND TANAKA, H. (1987). On the propagation of chaos for diffusion processes with drift

coefficients not of average form. Tokyo J. Math. 10, 403–418.
[58] NGUYEN, D. T., NGUYEN, S. L. AND DU, N. H. (2020). On mean field systems with multiclasses. Discrete

Continuous Dynam. Systems 40, 683–707.
[59] PORTER, M. A., ONNELA, J. P. AND MUCHA, P. J. (2009). Communities in networks. Notices Amer. Math.

Soc. 56, 1082–1097.

https://doi.org/10.1017/apr.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.7


Asymptotics of mean-field models with jumps on block-structured networks 1361

[60] SKOROKHOD, A. V. (1989). Asymptotic Methods in the Theory of Stochastic Differential Equations. American
Mathematical Society, Providence, RI.

[61] SZNITMAN, A. S. (1991). Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—
1989, ed. P. L. Hennequin, Springer, Berlin, Heidelberg, pp. 165–251.

[62] TOUBOUL, J. (2014). Propagation of chaos in neural fields. Ann. Appl. Prob. 24, 1298–1328.
[63] TOUBOUL, J. (2018). Erratum: ‘Propagation of chaos in neural fields’. Ann. Appl. Prob. 28, 3287–3289.
[64] VARADHAN, S. R. S. (1996). Asymptotic probabilities and differential equations. Commun. Pure Appl. Math.

19, 261–286.
[65] VVEDENSKAYA, N. D., DOBRUSHIN, R. L. AND KARPELEVICH, F. I. (1996). Queueing system with selection

of the shortest of two queues: an asymptotic approach. Problems Inf. Transmission 32, 15–27.
[66] VVEDENSKAYA, N. D. AND SUHOV, Y. M. (1997). Dobrushin’s mean-field approximation for a queue with

dynamic routing. Markov Process. Relat. Fields 3, 493–526.
[67] YASODHARAN, S. AND SUNDARESAN, R. (2022). Large-time behaviour and the second eigenvalue problem

for finite-state mean-field interacting particle systems. Adv. Appl. Prob. 55, 85–125.

https://doi.org/10.1017/apr.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.7

	Introduction
	Formulation of the model
	The setting
	The infinitesimal generator
	Stochastic differential equation representation

	Examples
	Load-balancing networks
	Multi-population SIS epidemics

	Existence and uniqueness of the limiting system
	Notation and conventions
	The limiting system
	Regularity assumptions
	Existence and uniqueness

	Laws of large numbers and propagation of chaos
	Propagation of chaos
	Laws of large numbers

	Large deviations
	Large deviations principle for the empirical measure vector
	Large deviations principle for the empirical process

	Acknowledgements
	Funding information
	Competing interests
	References

