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Abstract-A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; 
Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and 
strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD 
thickness distributions for calculated and experimental XRD patterns of illites and iJlite-smectites (I-S). 
The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Nat­
ural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to 
XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot 
be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to 
X-ray analysis in order to form IO-A periodic structures. BWA analysis yields the thickness distribution 
of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S sam­
ples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean 
thickness and expandability then can be used to calculate fundamental illite particle mean thickness. 
Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by 
symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, 
and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 
reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. 
Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close 
to those measured by an integral peak width method. 

Key Words-Crystallite, Fundamental Illite Particles, Illite, Illite-Smectite, MacEwan Crystallites, 
Mixed-Layer Clay, Thickness Distributions, Warren-Averbach Method. 

INTRODUCTION 

The BWA technique (Bertaut 1949, 19S0; Warren 
and A verbach 19S0) analyzes profiles of XRD reflec­
tions and permits determination of the area-weighted 
mean size of CSDs (also referred to as "crystallites"), 
the distribution of these sizes and fluctuations in the 
d-spacings (micro strains) of the CSDs. This method, 
based on Fourier analysis, has been applied widely to 
metals and alloys, but until recently (Eberl and Srodon 
1988; Arkai et al. 1996) has not been applied to min­
erals, except for the work of Kodama (196S) and Ko­
dama et al. (1971), devoted mainly to the analysis of 
microstrain in fine-grained dioctahedral micas. The 
CSD size and size distribution are essential character­
istics of the real crystal structure of a mineral. For 
example, the mean thickness and thickness distribution 
of illite and I-S CSDs could serve as indicators of the 
degree of diagenesis and of low-grade metamorphism. 

Eberl and Srodon (1988) were the first to apply the 
BWA approach to the study of mixed-layer I-S sam­
ples, utilizing the Siemens Corporation DSOOO soft­
ware (Siemens 1990). This application was not com­
pletely appropriate for I-S studies, because the BWA 
method was developed for periodic crystals. Eberl and 
Blum (1993) tried to solve this problem by saturating 
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the smectite interlayers with either Ca or Sr cations to 
obtain IS-A. water-clay complexes. Alternation of IS­
A. smectite and lO-A. illite layers preserves the coher­
ency of the waves scattered in the direction of the 
diffraction maximum, with d = S.O A. Therefore, Fou­
rier analysis of this reflection should yield the param­
eters of interest. However, subsequent results (unpub­
lished data) have indicated that the IS-A. complex was 
not completely developed for many of their samples. 

Recently, Lanson and Kubler (1994) used the same 
technique and the same software to analyze profiles of 
basal reflections for a large collection of illites and I-S. 
For some samples they found a strong disagreement 
among mean thicknesses of CSDs obtained by Fourier 
analysis and by other techniques. These authors conclud­
ed that, in its standard form, the method cannot be ap­
plied to the study of illite and I-S. 

In the course of further experiments with the com­
mercial BWA software, we realized that some of the 
information contained in the peak profile was lost when 
mathematical functions were fitted to the experimental 
data prior to Fourier analysis. We then decided to de­
velop our own program (Eberl et al. 1996) to avoid this 
and other simplifications. In the present paper, we de­
scribe the theory on which the program is based, and 
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Figure 1. A schematic illustrating the difference in paths 
traveled by diffracted waves scattered by m' and m layers 
separated by n interlayer spacings (11 = m' - m), so that the 
distance between the layers Zn = m'd(OOI) - md(OOI) = 
IId(OOI). 

application of this program to the study of clay min­
erals, with particular reference to illite and I-S. 

THEORY OF THE BWA TECHNIQUE 

The treatment presented below follows the original 
works of Bertaut (1949, 1950) and Warren and Aver­
bach (1950), but it is simplified for the analysis of 
basal reflection profiles. We have simplified the equa­
tions by eliminating constants which do not affect the 
shape of 001 reflections. We use the term "CSD" for 
a stack of layers parallel to each other. 

Experimental Determination of the Interference 
Function 

The intensity distribution /(29) for a 001 reflection 
of a layered mineral, consisting of CSDs with a strict 
periodicity along the c* axis, can be written as: 

/(29) = Lp(29)G2(29)<1>(29) [1] 

Lp(29) is a combination of the Lorentz and polariza­
tion factors which accounts for intensity contributions 
due to X-ray beam polarization, and for geometrical 
factors related to the volume and orientation of crys­
tals in the X-ray beam (Reynolds 1986; Moore and 
Reynolds 1989). G2(29) is the structure factor that rep­
resents diffraction from the arrangement of atoms 
within the unit cell. The symbol <1>(29) is the interfer­
ence function, which depends on the thickness of 
CSDs, the thickness distribution and the micro strains 
or layer spacing fluctuations. 

The values of Lp(29) and G2(29) can be calculated 
a priori if experimental conditions for diffraction and 
chemical and structural data for the mineral under 
study are well known. These functions are not sensi-
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Figure 2. Relation between total number of layers in a crys­
tal (M) and amount of pairs of layers (M - n) separated by 
11 spacings of d(OOI). An increase in n from 1 to 5 decreases 
the number of nth neighbors from 5 to 1. 

tive to CSD sizes and microstrains. Therefore, we can 
limit consideration to the interference function: 

29 _ /(29) 
<1>( ) - Lp(29)G2(29) [2] 

It is convenient to replace the 29 variable of XRD 
patterns with a new continuous variable, Z*, along the 
c* axis in reciprocal space. The values of Z* are re­
lated to the corresponding 29 values by the equation: 

Z* = 2 sin fJ/'A. [3] 

where 'A. is the wavelength of the radiation and 9 is a 
continuous variable. 

Physical Meaning of the Interference Function 

The interference function represents effects of the 
phase differences that appear during wave scattering by 
all the nth nearest layer pairs that exist in CSDs. To make 
this clear, let us consider first a sample where CSDs have 
the same thickness and consist of M identical layers (Fig­
ure 1). Let us consider 2 layers, rn' and rn, separated by 
n = rn' - rn interlayer spacings d(ool). The paths trav­
eled by waves scattered by these 2 layers differ by the 
length <1 = (AB + BC) = 2Z. sin 9, where Z. = nd(ool) 
and 9 is the angle between the initial X-ray beam and 
(001) planes (Figure 1). The phase difference (p) be­
tween the waves is related to <1: 

211' 2 sin 9 
P = -<1 = 211'Z -- = 211'Z Z* [4] 'A. • 'A. • 

This phase difference contribution to diffraction is ex­
pressed by a cos 211'Z.Z* term (James 1965). 

The value of (M - n) gives the number of layer 
pairs separated by n interlayer spacings that exist in 
the CSD. This relationship is illustrated in Figure 2. 
The product: 

(M - n)cos 211'Z.z* [5] 
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Figure 3. 001 peaks of the interferenc·e function located 
along the Z*/c* axis. For the 002 peak, the origin is chosen 
at its maximum so that a new variable s* may vary from - ¥.! 
to +¥.! z*/c* = I + s*. 

represents the effect of the difference in phase of 
waves scattered by all the nth nearest layer pairs in a 
CSD of a given M. The summation of these products 
for all 1nl = Im' - ml (that is, for n = m' - m and -n 
= m - m'), nonnalized for the unit cell (that is, di­
vided by M), gives the interference function, <I>(Z*), 
which describes the total effect of the phase difference 
on the intensity distribution along the Z* axis: 

<I>(Z*) = f (M - 1nl) cos 21TZ
n
Z* [6] 

n~-M M 

It is physically umealistic to assume that samples 
consist of CSDs having the same number of layers. 
Therefore, let us consider a sample that consists of 
CSDs with a distribution of thicknesses defined by 
fiM), so that: 

M , M 'J. _ 

2: f(M) = and 2: Mf(M) = M [7] 
M, M, 

where MI and M 2 correspond to CSDs having the 
smallest and the largest number of layers respectively 
and M is the mean number of layers per CSD. 

The number of nth nearest layer pairs in all CSDs 
consisting of M layers is equal to fiM)(M - n). Since 
CSDs have different thicknesses, the mean number of 
layer pairs separated by n interlayer spacings is: 

M , 

N(n) = 2: (M - n)f(M) [8] 
M, 

If we replace (M - 1nl) and M in Equation [6] by N(n) 
and M, respectively, we will obtain the interference 

function for samples having a distribution of CSD 
thicknesses: 

M, N(n) M, 

<I>(Z*) = 2: -=--cos 21TZnZ* = 2: H(n)cos 2'TTZnZ* 
n=-M2 M n = -M2 

[9] 

where: 

1 M, 
H(n) = = 2: (M - n)f(M) 

M M , 
[10] 

The interference function represents a series of bell­
like peaks of identical shape, located along the Z* axis 
at positions corresponding to 001 reflections (Figure 3). 

The Interference Function as a Fourier Series 

Let us replace the absolute Z* coordinate by the 
fractional coordinate Z*lc*, that is, express it in tenns 
of a fraction of the reciprocal unit cell parameter c* 
= l/d(OOl) . Then positions of intensities along the Z* 
axis for each 001 reflection (defined as each 001 inter­
ference function peak) may be expressed as: 

Z*lc* = Z/Ic* + s* = 1 + s* 
where 1 ~ s* ~ 0 [11] 

where Z; = 2 sin S/A = l/d(OOI) is the coordinate 
corresponding to the Bragg law position for a 001 re­
flection and s* is a new variable parameter. 

Let us now treat each peak separately and choose 
the Origin of the coordinate for each individual 001 
reflection at the position of its maximum, that is, set­
ting 1 = O. In this case, s* values within a 001 reflec­
tion are limited by an interval from -~ to ~ (Figure 
3) and: 

ZnZ* = nd(OOI)c*s* = ns* [12] 

Thus: 

M, 

<I>(Z*) = <I>(s*) = 2: H(n)cos 21Tns* [13] 
n =-M 2 

Because n is an integer, the interference function rep­
resents a Fourier series. The Fourier coefficients H(n) 
are obtained by the back Fourier transfonnation of 
<I>(s*), that is : 

In 
H(n) = 2: <I>(s*)cos 21Tns* [14] 

s* = -112 

Determination of f(M) and M 

H (n) is a function dependent on the mean thickness 
and the thickness distribution of CSDs. It follows from 
Equation [10] that: 

o~~t-oo = M' 
and _o2_H_(n_)I = f(M) 

on 2 n-oO M 
[15] 

The thickness T of a CSD is T = Md(OOl) . In the case 
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of mite, d(OOl) = 1 nm, so T = M run. Thus, the first 
derivative of HV!) at n = 0 detennines the mean thick­
ness of CSDs (T) and the second derivative gives the 
CSD thickness distribution. 

Fluctuations in the Position of Layers 

A periodic structure of CSDs may be disturbed due 
to slight fluctuations in the layer thicknesses. To any 
pair of the nearest layers (n = 1) separated by the 
distance Z., one can associate a variation E. with re­
spect to the ideal value d(ool). This El variable may 
vary from one pair of layers to another and the vari­
ation of Z. may be described by a statistical distribu­
tion function, ')I.(Z). In the general case of nth nearest 
neighbors, we have the general relation: 

Zn = nd(OOI) + En = (n + Bn)d(OOI) [16] 

where E" is the difference between the ideal distance 
and the true distance and Bn is the same parameter 
expressed as a fraction of d(OOI). The variable E" may 
vary for each pair of the nth nearest neighbors and the 
variation of Z" may be described by a statistical dis­
tribution function ')In(Zn) (Guinier 1964; Drits and 
Tchoubar 1990). Because of the spacing fluctuations, 
the cosine terms in Equation [9] must be averaged 
over all possible Z" values for each given n. Thus, the 
mean phase difference of waves diffracted by all layer 
pairs separated by different interlayer spacings may be 
written as: 

M2 

<I>(Z*) = 2: H(n)cos 21TZn Z* [17] 
n =-M 2 

Using Equations [11] and [16], the product Z.z* may 
be modified as: 

Z.2* = (n + B")d(OOl)(l + s*)c* = nl + ns* + l&" [18] 

because c* = IId(OOl) and we have neglected the B"s* 
term, since B" <:: 1 and s* < L Then: 

cos 21TZ"Z* = cos 21T(ns* + IB") 

= cos 21Tns*cos 21T1B" 

- sin 21Tns*sin 21TlBn [19] 

because the mean applies only to terms containing Bn 

and cos(nl + ns*) = cos(ns*), nl being an integer. 
Equation [17] then can be presented as: 

~ = 

<I>(s*) = 2: A(n)cos 21Tns* - 2: B(n)sin 21Tns* [20] 

where: 

A(n) = H(n)cos 21TlB" and B(n) = H(n)sin 21TIB" 
[21] 

As was mentioned, every pair of layers, rn' and rn, 
enters into summation twice as n = rn' - rn and -n 
= rn - rn'. Since Bn = Bm· - B", and -B_n = Bm - Bm·, 

it follows that Bn = B_"; hence, after summation, the 
sine terms in Equation [20] vanish: 

<I>(s*) = 2: A(n)cos 21Tns* (22) 

Again <I>(s*) has a form of the Fourier series and 
the A(n) coefficients may be detennined from the ex­
perimental profile of a ool reflection by the equation: 

.12 
A(n) = 2: <I>(s*)cos 21Tns* [23] 

$·"",, -112 

As can be seen from Equation [to], the size term, 
H(n), is independent of I, whereas the cos 21TIB" term 
depends upon the reflection order. Therefore, using 
A(n) one may detennine H(n) and fluctuations in layer 
positions if at least two 001 reflections are analyzed. 

In order to obtain the precise mean values of the 
cosine terms in Equation [21] we must know the dis­
tribution law for the deviation, En or B". The simplest 
assumption is that this distribution follows the Gauss­
ian function: 

1 ( E 2 ) 1 {B2d2(001)} ')I(E) = --exp - - = --exp -
-v'2;(T 2(T2 -v'2;(T 2(T2 

[24] 

in which (T = «T2).12 (E2).'2 (82)·,2 d(OOI) is the 
standard (or root mean square) deviation equal to the 
half-width at half-maximum of the strain distribution, 
')I(E), divided by (2 In 2)·12. First one must take into 
account the fluctuations in layer positions of all nearest 
layer pairs. In order to do this, one has to sum ')I(B.) 
cos 21TIB. for any possible values of B., where ')I(B.) is 
the probability to find B • . Thus: 

cos 21TlB. 

1 J oc = • ~ cos 21TIB.exp( -Brd2(001)/2(Tf) dB. 
v 21T(T. _= 

= exp - [~:(:~;] [25] 

where (Tt = (8?)d2(OOI) is a variance of E. or B. or a 
mean square deviation of these values. As follows 
from Equation [21], we are interested in calculating 
cos 21TIBn for any n. The standard deviation of the dis­
tribution of En is related to the standard deviation of 
nearest layer pairs as follows: (T~ = n(Tt (Maire and 
Mering 1960; Reynolds 1989; Drits and Tchoubar 
1990). Hence: 

A(n) = H(n)cos 21TIB" = H(n)exp [ - 2d~~~~f] 
and 

[26] 

[27] 
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If only _~basal reflections, 0011 and 0012 , are avail­
able, the ay value can be found analytically: 

[28] 

If El follows the Gaussian function, then aT does not 
depend on n. 

Using Equation [23], the A(n) values are found for 
each 001 reflection. Then, for a fixed value of n, a plot 
of the values for In A(n) versus ZZ is constructed. The 
extrapolation to I = 0 gives H(n) and the slope of the 
plot gives -27r2nar/tf2(001). The value of (aD1/2 is the 
root mean square fluctuation of adjacent layer thick­
nesses in, for example, A units. 

In the general case, when the distribution law of En 

is unknown, one may use an approach which is valid 
for small I and n values: 

= 1 - 271'2[25; = exp -27r[25~ [29] 

The plot In A(n) versus ZZ will be represented by 
straight lines only in the small n region, but this is just 
a region most suitable for a linear extrapolation to I = 
O. This method does not require any assumpt~n about 
the nature of layer thickness fluctuations. If 5~ values 
determined by Equation [29] and divided by n lead to 
a constant value, it means that the distribution law cor­
responds to a Gaussian function (compare Equations 
[26] and [29]). 

EXTRACTION OF THE INTERFERENCE 
FUNCTION FROM AN XRD PATTERN 

The theoretical treatment presented above ignores 
experimental conditions that may affect the shapes of 
XRD peaks. These effects include background, over­
lapping of KU I and KU2 peaks and instrumental broad­
ening (KJug and Alexander 1974). We attempted to 
recover the interference function (which contains the 
particle size and strain information) from XRD peaks 
first by smoothing the XRD peak and removing the 
background, then by extracting the KU I peak and de­
convolving instrumental broadening and finally by ex­
tracting the interference function according to Equa­
tion [2]. 

This order of calculation proved unsuccessful: smooth­
ing noise from the intensity data by using a moving av­
erage broadened the XRD peaks; the background inten­
sity function could not be removed because its shape was 
unknown; instrumental broadening cannot be evaluated 
theoretically; and finding an appropriate instrumental 
standard for illite (a powdered mineral completely free 
from crystal size and strain broadening with a d close to 
the XRD peak to be analyzed) proved difficult. Finally, 
removing Lp(2e)G2(2e) (hereafter referred to as Lp(2) 
by division according to Equation [2] often distorted the 

interference function so badly that it could not be used 
for crystallite size and strain analysis. 

To circumvent these problems, a computer program 
(MudMaster; Eberl et al. 1996) was written using a 
calculation sequence that was optimized by trial and 
error to circumvent these problems. XRD patterns 
were recorded from 4.5-cm-Iong oriented clay prepa­
rations using a diffracted beam monochromator and 
relatively long count times (at least 5 s/0.02 °2e step, 
with a tube current of 40 kV and 30 mA) to minimize 
background and noise, so that the intensity data did 
not require smoothing. An analytical range was chosen 
that was broad enough to encompass the complete 
range of the interference function peak (that is, half­
way between the peaks of subsequent orders), so that 
little intensity was lost during background removal. A 
Siemens D500 diffractometer using incident and dif­
fracted beam Soller slits, a 1° divergence slit and a 
relatively narrow receiving slit (0.15°) was employed 
to minimize instrumental broadening. An attempt was 
made to use the >20 /Lm size fraction of NITS SRM 
675 synthetic fluorophlogopite as an instrumental stan­
dard. Deconvolution of instrumental broadening by the 
Stokes (1948) technique (KJug and Alexander 1974) 
yielded acceptable mean thicknesses for natural iIlites 
and I-S, but distorted crystallite thickness distributions 
for samples having mean thicknesses greater than 
about 15 nm. By comparison between samples run 
with and without the instrumental standard, instrumen­
tal broadening was found to be insignificant under our 
instrumental conditions for crystallite thicknesses <20 
nm. 

The values of G2 for the illite unit cell were calcu­
lated using a program written by the authors 
(CALCLPG2) and atomic coordinates given by Moore 
and Reynolds (1989). To analyze NEWMOD"-calcu­
lated illite XRD patterns, potassium content (K) was 
determined as follows: 

equivalents K per half-unit cell = 0.89[(T - 1)/T] [30] 

where T is the mean illite crystaIlite thickness in nm 
and 0.89 the charge of an illite interlayer per half-unit 
cell. This equation corrects K-content for the presence 
of crystal edges which, for NEWMOD"-calculated 
patterns, contain no K. For natural I-S, K-content was 
determined from the percentage of smectite interlayers 
(expandability, that is, %S) measured from glycolated 
samples (Srodoii 1980; Srodoii and Elsass 1994) prior 
to K-saturation and heating, assuming that the typical 
smectite layer charge is -0.4 equivalents/O!O(OH)2' 
The relation is: 

equivalents K 

= O.OI(T- 1) [0.40(%S) + 0.89(100 - %S)] 
T 

0.4 
+ -=-

T 
[31] 
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Figure 4. A NEWMOD"-calculated illite XRD pattern (thin 
line) and its LpG2 (thicker line). 

An Lp factor was used that combines the random and 
single-crystal Lp factors (Equation 3.13 in Moore and 
Reynolds 1989). However, use of the random Lp fac­
tor, of the single-crystal Lp factor or of Lp factors that 
were calculated for a different sample orientation and 
instrumental slit system did not significantly change 
the results. 

LpG2 of layer silicates is modulated and has ap­
proximately zero values at several 2e angles (Figure 
4). The interference function produced by division of 
the experimental XRD intensities (Figure 5A) by LpG2 
may be deformed near such angles (Figures 4 and 5B), 
because small inaccuracies in the estimation of LpG2 
or in the determination of background have a strong 
effect on the shape of the recovered interference func­
tion in these regions. For example values of LpG2 are 
calculated for periodic crystals and therefore cannot 
take into account crystal end-effects which cause 
NEWMOD©-calculated and natural illite crystals to be 
slightly aperiodic. Therefore a technique was devel­
oped that relies on the fact that the interference func­
tion peaks are strictly symmetric (Figure 3). The un­
distorted half of the interference function peak is 
"flipped" over a vertical plane passing through the 
peak maximum (Figure 5C). For illites, 001, 002 and 
004 reflections are flipped from 10w-2e to high-2e. The 
003 and the 005 can be flipped in either direction if 
one side of a peak is deformed by mineral admixtures. 
After flipping, or if flipping is not applied, the residual 
background is removed by setting to zero the minima 
on either side of the interference function peak. Prior 
to flipping, the Ka2 component to the interference 
function can be removed by a Fourier method (Gan­
gulee 1970; Eberl et al. 1996). 

The interference function peak (Figure 5C), so ex­
tracted from the XRD intensity data (Figure 5A), then 
was analyzed by the BWA technique as was described 

A 

B 

c 

4 6 8 

XRD peak 

Deformed interference 
function 

Flipped Interference 
function 

10 12 14 

Two theta 

Figure 5. Patterns for K-saturated and dehydrated Zempleni 
sample, a 15% expandable R > 1 ordered I-S prior to de­
hydration. A = 001 XRD peak; B = interference function 
calculated by dividing the XRD intensities in A by LpG' for 
an illite with the appropriate chemical composition; C = final 
interference function to be analyzed by MudMaster, fonned 
by flipping the left half of the peak in B from left to right. 
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Table I. Parameters of crystal thickness distributions measured by the BW A and by the integral peak width (Drits et al. 
1997) methods from XRD patterns of illites that were calculated using NEWMOD, with lognormal distributions of crystallite 
thickness having means of 5 and 20 layers. 

T, Td T, Id(f)OfJ 
Pattern & reflection (om) (om) (om) a f3' (A) 

Lognor 5 input = 1.51 input = 0.20 input = 9.98 A 
001 5.2 5.3 5.0 1.55 0.22 10.00 
002 5.4 5.4 5.2 1.61 0.17 9.98 
003 5.3 5.3 4.9 1.57 0.18 9.98 
004 4.6 4.6 4.7 1.42 0.21 9.99 
005 4.9 4.9 4.7 1.48 0.20 9.98 

Lognor 20 input = 2.83 input = 0.34 input = 9.98 A 
001 19.7 20.2 20.2 2.84 0.33 9.98 
002 20.4 20.5 18.6 2.87 0.30 9.98 
003 20.1 20.0 18.5 2.83 0.35 9.98 
004 19.9 19.9 17.9 2.83 0.32 9.98 
005 19.7 19.7 18.4 2.81 0.34 9.98 

Key: Te , Td , and T;, are mean thicknesses calculated from the first derivative of the Fourier coefficients plot, from the crystal 
thickness distribution (without smoothing, except for the Lognor 20, 001 reflection for which a smoothing power of 1 was 
used) and from the integral peak width method of Drits et al. 1997, respectively. The symbols Cl and [32 are the lognormal 
parameters for the input distribution and for distributions calculated from the BWA method. The representation d(OO!) is the 
position of the maximum of the interference function. 

in the "Theory" section. Fourier coefficients A(n) 
were calculated for each reflection from n = 0 to a 
maximum n equal to 5T where T the mean number of 
illite layers in the crystallites. At this maximum n the 
frequency generally is less than 0.001 of the maximum 
frequency and therefore larger n's can be ignored. Fou­
rier coefficients at small n's frequently are distorted 
due to loss of intensity during background removal 
and therefore must be corrected for the hook effect 
(Klug and Alexander 1974). Analysis of NEWMOD"'­
calculated illite XRD patterns indicates that the hook 
correction for the Fourier coefficients is best per­
formed by extrapolating the steepest slope of the curve 
of H(n) versus n to H(n) = 0 to find the mean thick­
ness, and that the size distribution is best determined 
by taking the second derivative of the same curve not 
corrected for the hook effect (Equation [15]). The first 
and second derivatives of the Fourier coefficients can 
be smoothed, using a moving average of 3 or 5 
(smoothing power = I or 2 in the MudMaster pro­
gram) to decrease noise in the thickness distributions. 
The thickness distributions can be cut off at a desig­
nated thickness to eliminate ripples that may appear in 
the distribution at large thicknesses. If such ripples are 
present, the distribution is cut off at a size that makes 
the distribution mean approximately equal to the mean 
determined by extrapolation. 

VERIFICATION USING NEWMOD©­
CALCULATED XRD PATTERNS 

To test the BWA technique incorporated in the pro­
gram MudMaster, we analyzed XRD patterns that were 
calculated for a range of crystallite size distributions 
using NEWMODSKY, a version of NEWMOD© 
(Reynolds 1985) modified by R. C. Reynolds, Jr., to 

permit input of crystallite size distributions from an 
external file. Optimal input parameters for MudMaster 
for the hook correction, for the 2a interval of the anal­
ysis, for smoothing conditions and for the maximum 
n to be used in the calculation were thereby were es­
tablished, and were then used to study the more com­
plicated XRD patterns of natural illites and I-S. 

Most NEWMODSKY illite patterns were calculated 
using lognormal crystallite thickness distributions, be­
cause this distribution law is common to many min­
erals, including illite (Eberl et al. 1990; Drits et al. 
1997). Two parameters, a and ~2, which correspond, 
respectively, to the mean value and the variance of In 
T, where T is the crystallite thickness and j(T) is the 
frequency of that thickness, characterize the distribu­
tion completely, where: 

a = 2: In Tf(r), and 

~2 = 2: [In T - aFf(T) 

[32] 

[33] 

Values of a, W and T for 2 crystallite thickness dis­
tributions used to calculate NEWMOD@ XRD patterns 
are compared with values extracted from the calculat­
ed XRD patterns by MudMaster (Table 1). The agree­
ment is satisfactory. The best data are obtained if the 
interference function peaks can be recovered over the 
complete 2a range, starting midway between neigh­
boring 001 reflections. If the analytical range is nar­
rower, T tends to be overestimated and ~2 underesti­
mated. 

NEWMOD@ patterns having CSDs with a variety of 
shapes were calculated and then analyzed by Mud­
Master. Figure 6 illustrates that NEWMOD@ inputs 
having equal (Figure 6A) and lognormal (Figure 6B) 
distributions can be recovered almost perfectly. A 
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Figure 6. Crystallite size distributions used in NEWMOD<J 
calculations of 003 illite XRD peaks (solid lines) compared 
with distributions recovered by MudMaster analysis of those 
peaks (dots). A = even distribution, from 4 to 20 layers (no 
smoothing); B = log normal distribution having a mean of 10 
layers (no smoothing); C = distribution spelling the word 
"MUM" (smoothing power of 1). 

more complicated distribution that spells the word 
"MUM" was tested to see if the program can recover 
multimodal distributions. The Kcx t - Kcxz doublet was 
included in the pattern by adding NEWMODO patterns 
calculated with KU t and Kcxz radiation in the propor­
tion 2: 1. The mean and the distribution were recovered 
almost perfectly (Figure 6C) from each of first 5 basal 
reflections, provided that the Kuz correction was ap­
plied to reflection orders greater than 1. 

The effect of the KU t - Kuz doublet on the BWA 
calculation was investigated for calculated illite pat­
terns for illites having mean thicknesses ranging from 
7 to 45 nm. The results indicate that Kcxz need not be 
~moved from the "patterns, even for the 005 peak, if 
T < 20 nm; but if T = 45, distributions were distorted 
and the mean values were lowered for reflection orders 
greater than the 001 if Kuz was not removed. 

These studies of synthetic XRD patterns indicate 
that, if applied correctly, the BWA method is capable 
of reproducing almost perfectly the original crystallite 
thickness distributions used in calculated patterns. 

APPLICATION OF THE BWA TECHNIQUE TO 
EXPERIMENTAL XRD PATTERNS 

Fifteen samples representing the full range of I-S 
expandability were studied by the BW A technique . 
Expandability of the samples was determined accord­
ing to Srodon (1980, 1984). The same patterns were 
used to develop the modified integral width method 
(Drits et al. 1997). K-saturated samples were dehy­
drated by heating overnight at 300 °C and then were 
X-rayed in a dry atmosphere. This procedure, per­
formed under the low relative humidity conditions of 
Boulder, Colorado, was found sufficient to remove 
XRD peak broadening caused by swelling interlayers. 
Dehydration was confirmed by observing that the 002 
peak was narrower than the 003 (002 broadening is 
most sensitive to the presence of I-water layer smec­
tite) and that the mean d(OOI) values calculated from 
the 002, 003 and 005 were nearly identical (the mean 
deviation from the mean thickness value did not ex­
ceed ±0.008 A for 13 samples and ±0.012 A for the 
other 2). 

The progression in a BWA-MudMaster analysis for 
K-saturated, dehydrated Zempleni clay (Viczilin 
1997), which prior to dehydration was a 15% expand­
able, R > 1 ordered mixed-layer I-S, is presented in 
Figures 5, 7 and 9 for the 001 reflection. The flipped, 
undistorted interference function (Figure 5C) was sub­
jected to Fourier analysis (Equation [14]), and the Fou­
rier coefficients, H(n), were plotted against CSD thick­
ness (Figure 7 A). Extrapolation of the stee'pest slope 
of this curve yields and extrapolated mean (Te) of 10.5 
nm. The second derivative of this curve (Equation 
[15]) yields the thickness distri~tion (Figure 7B) from 
which the distribution mean (Td ) was calculated and 
found also to equal 10.5 nm. If there is no experimen-
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Figure 8. Mean thicknesses for the samples listed in Table 
3 determined by extrapolation of Fourier coefficients (Te; see 
Figure 7A) compared with those determined from the distri­
butions (Td ; see Figure 7B) for the 001 reflection. 

tal error, the means calculated by both approaches 
should be equal to each other, as is generally the case 
for the 001 reflection (Figure 8). However, the extrap­
olated mean is the more accurate and stable mean, 
because the distribution mean is sensitive to the max­
imum n used in the calculation, t~ the smoothing po~­
er (smoothing tends to increase Td with respect to Te) 

and to the cutoff value used for the distribution, 
whereas the extrapolated mean is insensitive to 
changes in these parameters. 

By analyzing more than 1 reflection order, the mean 
and the distribution can be corrected for strain broad­
ening, which does not significantly affect the 001 and 
002 reflections, but which may affect higher orders. 
Logarithms of Fourier coefficients for the 001, 002, 
003 and 005 reflections (Equation [27]) are plotted 
against the square of the reflection order ([2) for a 
range of n's (Figure 9A). The intercepts of these lines 
on the Y-axis yield the strain-corrected Fourier coef­
ficients, H(n), which then can be used to determine the 
mean thickness and thickness distribution, as in Fig­
ures 7 A and 7B. The slopes of these lines yield the 
mean square of the strain (u~ = nuT) for each n. If the 
ratios u;,tn are constant, then strain (El' in A units) has 
a Gaussian_distribution (Figure 9C) with a standard 
deviation (uDI12. Correction of the Fourier coefficients 
for strain broadening yields good mean thickness val­
ues (as will be discussed), but may distort thickness 
distributions. However, if smoothing is applied to the 
strain-corrected Fourier coefficients (smoothing power 
= 3 in the MudMaster program), then a distribution is 
recovered that is similar to that found from the 00 1 
reflection (Figure 7C). 
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Figure 9. Strain determinations for the Zempleni sample made 
according to BWA theory. See Figures 5 and 7 for more infor­
mation concerning this sar.!!Ple. A = plot used to determine the 
mean square of the strain (01) as a function of n; B = the plateau 
in the root mean square strain data indicates that the strain (El) 
has a Gaussian distribution; C = Gaussian strain (El> in A) dis­
tribution (-Y(El); see Equation [24]) for this sample. 

Table 2. Parameters of crystallite thickness distributions 
measured by the BW A method and by the integral peak width 
method (Drits et al. 1997) from an XRD pattern of a K­
exchanged and dehydrated sample of almost nonswelling il­
lite (SG1). A smoothing power of 1 was used for the BWA 
distributions. 

Reflec- T, Td T; Id(Q00 
tion (nm) (nm) (nm) /3' (A) 

001 21.9 22.1 18.7 3.006 0.181 10.026 
002 24.3 24.4 19.2 3.082 0.229 10.022 
003 18.4 21.6 19.0 2.945 0.284 10.008 
004 21.7 22.7 17.4 3.037 0.179 10.004 
005 19.0 19.9 15.6 2.861 0.278 10.010 

Key: See Table 1 for explanation of symbols. 

The BWA technique was further tested using sample 
SO 1, an illite that in its natural state contains almost 
no swelling interlayers. Results (Table 2) indicate that 
all of the first 5 reflections can be used to determine 
- -
Te (mean determined by extrapolation), Td (mean de-
termined from the distribution), ex and ~2. The means 
indicate that strain broadening is minimal, becaus~ 
such broadening would tend to regularly decrease T 
with increasing reflection order. Nearly identical re­
sults were found when intensity data were corrected 
for the presence of Kex 2 radiation. Another pure illite 
(Kaube) gave similar results for strain analysis, sug­
gesting that strain is minimal within fundamental illite 
particles (Nadeau et al. 1984), although it is present in 
dehydrated K-smectite interlayers, as will be discussed 
below. 

Results obtained for 001 reflections from all of the 
dehydrated samples are presented in Table 3. Area­
weighted mean thi~knesses obtained from an integral 
peak width study (Tj ) of the same XRO patterns (Orits 
et al. 1997) are close to those obtained by the BWA 
method (Tables 2 and 3 and Figure 10). Our data set 
does not allow us to evaluate the accuracy of BWA 
measurements of W for natural samples. 

Mean thicknesses for fundamental illite particles (N) 
can be calculated from mean thicknesses for the de­
hydrated mixed-layer crystallites (T) and expandability 
(%S) (after Orits et al. 1997): 

lOOT 
N = -=-------

(T - 1)(%S) + 100 
[34] 

Values of N calculated using mean thicknesses ob­
tained for 001 reflections from the BWA compare well 
with those determined from thicknesses obtained by 
the integral peak width method (Figure 11). 

All K-dehydrated samples were analyzed for strain 
(layer thickness fluctuations) using various combina­
tions of the 001, 002, 003 and 005 reflections. Cal­
culations that used all 4 peaks produced t~e most re­
liable results. Strain corrected values for Te obtained 
by correcting Te of the 005 reflection for strain (Te), 
calculated using the 001, 002, 003 and 005 reflections, 
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Table 3. Parameters of crystallite thickness distributions measured by the BWA (using a smoothing power of 1) and by the 
integral peak width methods from OO[ reflections of XRD patterns of K-exchanged and dehydrated samples. Units are in nm 
unless otherwise indicated. 

7: T, T, T, T, T, 
(a¥)1f2 Sample Nfix N %S 001 001 002 003 005 005 

Kaube 45.0 22.0 0 18.1 22.0 20.3 16.4 16.0 21.6 0.061 
SOl 11.1 15.4 2 18.7 21.9 24.3 18.4 19.0 23.3 0.049 
RM30 10.0 11.8 2 13.4 15.1 14.5 13.2 10.7 15.3 0.099 
Ml1 5.3 7.6 5 9.5 11.6 10.5 8.3 7.9 10.6 0.114 
LFIO 6.8 8.3 6 13.3 15.7 14.6 12.2 9.9 15.7 0.113 
M8 4.1 5.5 7 7.2 8.4 7.8 5.9 5.6 8.2 0.138 
RM8 6.3 5.2 10 8.3 9.7 8.0 6.9 6.5 8.6 0.124 
RM35A 5.6 4.8 12 8.2 10.0 7.6 6.2 6.1 8.7 0.104 
Zempleni 4.5 4.3 15 8.9 10.5 10.1 7.3 6.0 9.9 0.145 
T9 2.72 3.1 20 5.6 6.6 5.6 4.3 3.8 6.0 0.177 
MIO 2.23 2.4 31 5.4 6.1 5.6 4.3 3.7 5.7 0.204 
Ch5 1.96 2.2 37 6.2 7.5 6.7 5.0 4.3 7.1 0.178 
MB 1.82 2.2 38 7.1 7.3 6.2 4.6 3.7 6.7 0.228 
MD 1.15 1.1 88 5.9 5.7 4.9 3.7 3.1 5.5 0.268 
2M9 1.09 1.1 88 6.0 7.0 5.6 3.4 3.4 6.7 

Key: Nfix = thickness of fundamental illite particles calculated by the Q.xed cation method (Srodon et al. 1992); N = 
thickness of fundameQ!al illite particles calculated by Equation [34], using Te for the 001 reflection and %S (perce~ge of 
smectite interlayers); T, = strain corrected thickness extrapolated from the 001, 002, 003 and 005 refections; and (O-y)1I2 = 
root mean square of the strain calculated from a combination of the 001, 002, 003 and 005 XRD reflections. Remaining 
symbols are explained in Table 1. The samples have been described in Srodon et al. 1986, Eberl et al. 1987, Srodon et al. 
1992 and Srodon and Elsass 1994. 

compare closely with those not corrected for strain de­
termined from the 001 and 002 reflec.!i0ns (Table 3), 
indicating that the effect of strain on Te was removed 
completely for the 005 reflection and that the 001 and 
002 reflections can be used to determine T without 
correctioE for strain. However, without the strain cor­
rection, T measured from 005 peak can be underesti­
mated by up to 50% for the most smectitic samples. 
As was mentioned previously, removal of strain may 
distort CSD distributions. Therefore, whereas strain-

~~====~~----~--~------~ 
• 001 Ta 
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o 003 Ta 

o 005Ta .. 
20 A 
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TI thickness (nm) 

Figure 10. Relation between mean thicknesses measured by 
the BWA extrapolation method (Te) and the integral peak 
breadth method (7;; Drits et al. 1997) for 5 reflection orders. 
Data from Table 3. 

corrected measurements can be used to determine T 
and (O'D 1/2 (the root mean square of the strain), reliable 
CSD thickness distributions can only be obtained from 
001 or 002 reflections that have not been corrected for 
strain. 

Plots of (0'1)1/2 versus thickness (for example, Figure 
9B) indicate that (O'DJl2 is independent of thickness, 
thereby confirming the Gaussian distribution of strain 
(Equation [27]) for K-dehydrated I-S. Values of (O'D I12 
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Figure 11. Relation between fundamental illite parti£!e 
thicknesses calculated integral peak width thic!Ql.esses (T,) 
and expandability, and from BWA thickness (T,) and ex­
pandability using Equation [34]. 
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range from 0.049 to 0.268 A (Table 3) and correlate 
positively with the percentage of smectite layers (Fig­
ure 12). 

SUMMARY AND CONCLUSIONS 

The MudMaster program (Eberl et a1. 1996) was 
developed to study crystallite thickness distributions 
and strain in minerals, particularly in clay minerals, by 
the BW A method. Therefore the program contains sev­
eral features that differ from commercially available 
programs designed to study metals. These features in­
clude: the analysis of raw data, rather than mode1ed 
XRD peaks, so that actual CSD distributions can be 
extracted from peak shape; the removal of the LpG2 
contribution to the XRD intensities, a contribution that 
can distort peak shapes for clays; and the flipping of 
interference function peaks that are situated too close­
ly to zero values for the LpG2 function. 

The BWA method has been applied successfully to 
study crystallite thickness distributions for illites and 
I-S up to a mean thickness of about 20 nm, using both 
calculated and natural samples. Crystallite size distri­
butions for I-S, which can be studied by X-raying K­
saturated, dehydrated samples, generally can be ap­
proximated by lognormal functions. Independent ver­
ification of the accuracy of the XRD measurements 
was obtained by comparing the mean thickness of the 
fundamental particles calculated from Te and expand­
ability (Equati,on [34]), with the mean thickness cal­
culated from Ti and expandability (Equation [34], Ta­
ble 3 and Figure 11). 

K-saturation and dehydration of I-S leads to strain 
broadening for higher-Ol'der rc:!lections. The effects of 
this broadening on measured T can be avoided by an­
alyzing the 001 or 002 reflections, or by correcting the 
Fourier coefficients of the higher-order reflections for 

strain. Values for the root mean square of the strain 
increase with increasing expandability and follow a 
symmetric (Gaussian) distribution. We speculate that 
strain is induced by 2 phenomena: 1) K ions located 
in dehydrated smectite interlayer space in positions 
outside of the ditrigonal holes in the tetrahedral sheets, 
thereby making the d-spacing larger than that of illite; 
and 2) a deficiency of K ions in other areas of the 
same interlayer, which makes the spacing smaller than 
that of illite. 
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