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Toroidal bubbles (TBs) represent cases of vortex rings with a gas–liquid interface where a
gas vortex ring is encased within a liquid vortex ring, and can serve as effective media
for mass conveyance, process mixing, noise reduction and reaction regulation. In this
study, we carry out a systematic study on the interaction between a TB and a free surface.
According to the high-speed photographic images from the experiments, we identify strong
and weak interactions in terms of the normalized maximum free surface deformation h∗

max.
Then, we perform numerical simulations based on the volume of fluid (VOF) method
in the OpenFOAM platform. Based on both the experimental and the numerical results,
we conclude that the Froude number, Fr, determines the main characteristics during the
interaction process. The TB–free surface interaction is essentially the interaction between
the liquid vortex ring enveloping the TB and the free surface, supplemented by the TB’s
complex behaviour. Next, we establish the scaling law of h∗

max based on the energy balance
condition. Based on this, we provide the critical Fr and the slenderness of the TB, η, for
identifying the strong and weak interactions, and a parametric plot of the interactions in
terms of Fr and η.

Key words: bubble dynamics

1. Introduction

A vortex ring is a toroidal-shaped region within a fluid where the majority of the fluid is
spinning around an invisible, looped axis. A typical vortex ring can be characterized by
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its propagation velocity, ring radius, and vortex core radius. As the fluid revolves intensely
around the circular vortex centreline, generating significant circulation, the vortex ring can
remain stable over a long distance in its propagation direction without being dissipated.
The existence of vortex rings can be observed in both nature and engineering fields.
Cigarette smoke rings may be the most common examples that people are familiar with
(Lim & Nickels 1995). They are formed when smoke is quickly exhaled through the lips
of a smoker, forming a circular shape. Volcanic vortex rings can be observed at places
like Etna in Italy (Pulvirenti et al. 2023). They are rings of ash and gas that are created by
the eruptions of a volcano. The propulsive action of some aquatic creatures, like jellyfish,
and the blood discharged from the atrium to the ventricular cavity can generate a vortex
ring (Gharib, Rambod & Shariff 1998). Recently, dandelions have been discovered to use
a separated vortex ring created by their pappus’ structure to effectively disperse seeds
over great distances (Cummins et al. 2018). In practice, vortex rings can be generated
through injecting fluid at a high velocity from a circular opening (Walters & Davidson
1963; Gharib et al. 1998; Gao et al. 2008; Limbourg & Nedić 2021). Potential applications
have been developed based on the characteristics of vortex rings. By ‘freezing’ vortex rings
at controlled stages, uniquely shaped particles can be created for use in applications such
as cell encapsulation and three-dimensional (3-D) cell culture (An et al. 2016). Meanwhile,
vortex rings can promote the non-contact transportation of colloidal microparticles due to
their prolonged existence (Gulinyan et al. 2023).

While vortex rings typically refer to single-phase phenomena, toroidal bubbles (TBs),
or ring bubbles, represent cases with a gas–liquid interface where a gas vortex ring is
encased within a liquid vortex ring. Arguably, the most frequently observed TBs occur
when dolphins expel air from their blowholes. A lab apparatus constructed to generate
TBs emulates this specific process, as detailed by Lesage et al. (2016). TBs can serve
as effective media for mass conveyance, process mixing, noise reduction and reaction
regulation, as suggested in previous research studies (Mazumdar & Guthrie 1995; Domon,
Ishihara & Watanabe 2000; Spratt et al. 2013; Moon, Song & Kim 2023).

A number of research studies have been carried out on the characteristics of the TBs.
The upward movement of a TB is mainly driven by buoyancy. It has been revealed that,
under the influence of buoyancy, the circulation of a TB remains essentially constant
as it travels within a singular liquid medium (Turner 1957). Over time, the ring radius
of the TB increases and, as a result of volume conservation, its core radius gradually
decreases. In their research, Walters & Davidson (1963) investigated the transformation of
a distorted spherical gas bubble into a TB. Lundgren & Mansour (1991) used numerical
and model analysis to investigate the formation, motion and behaviour of TBs under the
influence of gravitational forces and surface tension. Cheng, Lou & Lim (2013) used the
lattice Boltzmann method to find that the TB growth and deceleration in the viscous fluid
are interrupted by instability, leading to breakup into smaller bubbles. Vasel-Be-Hagh,
Carriveau & Ting (2015a) experimentally investigated the impact of dimensionless surface
tension on various characteristics of a TB produced by an underwater bursting balloon.
A perturbation analysis was then carried out by Vasel-Be-Hagh et al. (2015b) to involve
buoyancy and viscosity effects, providing a method to calculate drag coefficients in TBs
at different Bond numbers. Yan, Carriveau & Ting (2018) established parameters for
classifying TBs as laminar, transitional or turbulent based on experiments and analysis.
Chang & Smith (2018) provided a model to factor buoyancy in thin TB’s motion,
attributing local acceleration of axial flow to gravity-induced external pressure gradients.
Then, Chang & Smith (2020) used a reduced-order model to study the motion of a TB
with a non-negligible core size.
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Generally, the impacts of diverse interfaces, including solid walls, interfaces and free
surfaces, on fluid flows constitute some of the key issues in the domain of fluid mechanics.
For example, Madnia & Bernal (1994) examines the interaction of a turbulent jet with
a free surface, finding that it generates surface waves and reduces the decay rate of
the maximum mean velocity due to confinement. Previously, researchers have explored
phenomena concerning vortex ring collisions with solid walls (Dommermuth & Yue
1991; Orlandi & Verzicco 1993; Cheng, Lou & Luo 2010), interfaces (Linden 1973;
Dahm, Scheil & Tryggvason 1989; Stock, Dahm & Tryggvason 2008; Advaith et al. 2017;
Olsthoorn & Dalziel 2017; Song, Choi & Kim 2021; Wang & Feng 2022) and free surfaces
(Dommermuth & Yue 1991; Song, Bernal & Tryggvason 1992; Ruban 2000; Wang, Duan
& Wang 2015). Meanwhile, investigations have also been made concerning interactions
between spherical bubbles and free surfaces (Boulton-Stone & Blake 1993; Duchemin
et al. 2002). Recently, Moon et al. (2023) examined the dynamics of TBs crossing the
interface between two immiscible liquids using experimental methods. However, to the
knowledge of the authors, no systematic studies have been reported on the interaction
between a TB and a free surface.

This work focuses on the interactions between a TB of air and a free surface. We identify
through high-speed photography strong and weak interactions in terms of the maximum
deformation of the free surface during the interactions. Then, we develop a numerical
simulation technique based on the volume of fluid (VOF) method on the OpenFOAM
platform for the TB–free surface interactions. Combining the experimental and numerical
results, we verify that the Froude number, Fr, determines the main characteristics during
the interaction process. By adopting the energy balance conditions, we derive a scaling of
the maximum deformation of the free surface against Fr and the slenderness of the TB at
a reference position.

2. Experimental set-up

In the current research, we employ an experimental set-up based on previous works by
Vasel-Be-Hagh et al. (2015b), Lesage et al. (2016) and Yan et al. (2018); Moon et al. (2023)
(see also figure 1) to generate TBs and study their interactions with a free liquid/air surface.
The experimental tank is constructed from acrylic glass and has a square cross-section
measuring 800 mm × 800 mm, with a height of 1200 mm. This choice of tank size ensures
that the effects of sidewalls on the behaviour of TBs are minimized. The tank is filled with
liquid to heights H = 500–1000 mm. At the bottom of the tank, a TB generator, consisting
of a cylinder with a small opening at its top, is installed (figure 1c). The properties of the
three liquids used in the experiments, water and two different aqueous glycerol solutions
(AGS 1 and AGS 2), are at 22 ◦C, as shown in table 1. The principle of the TB generator is
briefly described here. Compressed air of desired pressure is supplied from a high-pressure
gas cylinder into the generator via a computer-controlled solenoid valve. A TB is then
generated from the air release at the opening at the top of the bubble generator once
the solenoid valve is opened for a short period of time. By regulating the air pressure
(68 950–206 850 Pa gauge pressure) and the opening time period of the solenoid valve
(5–30 ms), TBs of various sizes and propagation speeds are created.

The evolution of the TB and the interaction between the TB and the free surface are
recorded by a high-speed camera (Phantom V711, Vision Research, USA or I-Speed
726R, iX Cameras, UK) at a frame rate of 5000 frames per second (f.p.s) with a spatial
resolution of 151–217 μm pixel−1. A light-emitting diode (LED) plate light source (200 W)
is employed as a backlight, positioned opposite to the high-speed camera to enhance the
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Figure 1. Experimental set-up. (a) Schematic of the experimental apparatus (dimensions not to scale).
(b) Section view of the TB at the reference position, where t = tref , R = Rref , a = aref , U = Uref . At this
instant, the uppermost point of the TB is positioned at 2Rref below the horizontal free surface. (c) Geometries
of the TB generator.

Liquid ρ (kg m−3) μ (mPa s) σ (N m−1) R (mm) a (mm) Fr

Water 1000 1.01 7.275 × 10−2 12.0–69.7 3.4–13.7 0.80–13.44
AGSa 1 1137 9.85 6.644 × 10−2 23.5–69.7 5.8–17.5 2.08–10.17
AGSa 2 1217 67.8 6.751 × 10−2 25.6–45.4 7.8–16.6 2.68–13.64

Table 1. Physical properties of liquids and value ranges of parameters of TBs in experiments.
aAGS: aqueous glycerol solution.

contrast of images. Additionally, a spotlight is positioned above the tank and directed
downwards to illuminate the bubble–liquid interface.

Given the assumption that the bubble takes on a circular toroidal form, its shape is
defined by the ring radius R and the vortex core radius a. The volume of the TB, Vb, is
then estimated as Vb = 2π2Ra2. The propagation speed of the bubble is represented as
U. It should be noted that the values of R, a and U vary as the bubble rises in the liquid.
In the experiments, we define the ring radius, core radius, volume and propagation speed
of the bubble at t = tref as reference values R = Rref , a = aref , Vb = Vb,ref and U = Uref ,
respectively (figure 1b). At this instant, the uppermost point of the TB is positioned at 2Rref
below the horizontal free surface, where the deformation of the free surface caused by the
bubble is negligible. We then measure R = Rref and a = aref directly from the calibrated
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high-speed images, with the uncertainty of 1 pixel. The reference propagation speed of the
bubble Uref is calculated by the central difference scheme using the vertical positions of
the ring’s centre from high-speed images at t = tref .

As proposed by Lamb (1932) and experimentally proven by Moon et al. (2023),
the circulation of the vortical flow around the TB in a single liquid can be estimated
analytically as

Γ = 4πRU
[

ln
8R
a

− 1
4

]−1

, (2.1)

which strongly influences the dynamics of the TB. The reference circulation at t = tref is
denoted as Γref .

It has been shown that Fr, which measures the ratio between the inertial and
gravitational forces for a single-phase vortex ring, is crucial in characterizing the
interaction between the vortex ring and a density-stratified interface (Linden 1973; Dahm
et al. 1989; Stock et al. 2008; Advaith et al. 2017; Olsthoorn & Dalziel 2017; Song et al.
2021; Wang & Feng 2022). Hence, following the study by Moon et al. (2023), we define
the Froude number for a TB as

Fr = Γref

(gR3
ref )

1/2
, (2.2)

where g is the gravitational acceleration. To identify the different interaction types between
the TB and the free surface, a wider range of Fr values, Fr = 0.80–13.64, is selected
compared with the range used by Moon et al. (2023). We acknowledge in the following
sections that in the present experiments, the major dynamics of the interactions are
determined by the value of Fr.

Additionally, since different liquids are used in the experiments, we also define the
Bond number, Bo = ρgD2

eq/σ , and Archimedes number, Ar = ρg1/2D3/2
eq /μ, of the TB

to measure the ratios between the gravitational force and the surface tension, and the
gravitational force to viscous force, respectively. Here, ρ and μ are the density and the
viscosity of the liquid, respectively, and σ is the surface tension coefficient for the free
surface between the air and the liquid. The equivalent diameter of the bubble Deq is
calculated by Deq = 6V1/3

b,ref /π (Moon et al. 2023). In the present study, by varying the
bubble sizes and the liquid types, the ranges of Bo and Ar for water are 4.96 × 101–1.61 ×
103 and 1.50 × 104–9.35 × 104, respectively; for AGS 1 are 3.25 × 102–7.63 × 102

and 4.33 × 103–7.96 × 103, respectively; and for AGS 2 are 3.79 × 102–1.20 × 103

and 7.57 × 102–1.39 × 103, respectively. In § 4.1, we present the comparison of the
interactions with three liquids considering the values of Bo and Ar.

To compare the dynamics of interactions for different cases, we introduce a
dimensionless time t∗ as

t∗ = Γref (t − t0)

R2
ref

, (2.3)

where t0 represents a certain moment in the interaction process. We hereby define t0 = tref
for convenience of discussions in the following sections. The acquired high-speed image
sequences, as well as the subsequent data analysis related to the dynamics of interactions,
are then organized in terms of t∗.

The measurement error of bubble dimensions obtained from the image, such as R and a,
is less than 0.5 pixels (corresponding to ∼0.1 mm in physical dimension). The propagation
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speed of the TB, U, is obtained by differentiating after fitting its position in multiple frames
of high-speed images, with an uncertainty of less than 5 mm s−1 (1.7 %).

3. Numerical method

We perform numerical studies for TBs in water for analysis. The OpenFOAM platform
is used for conducting numerical simulations. The fluids of the two phases, including air
and water, are considered to be incompressible and immiscible. Heat and mass transfers
between the phases are disregarded (McQuaid et al. 2020; Hu & Peterson 2021; Terrington,
Hourigan & Thompson 2022). The governing equations of both phases are given by the
mass and momentum conservation laws as

∇ · u = 0, (3.1)

∂(ρu)
∂t

+ ∇ · (ρuu) = −∇p + ∇ · [μ∇u + μ(∇u)T − 2
3
μ(∇ · u)I] + ρg + f δ, (3.2)

where u = ulα + ug(1 − α) and p are the velocity and pressure, respectively, where
the subscript l refers to liquid and g to gas, and α is the volume fraction of the
liquid phase; I is the unit tensor; density ρ = ρlα + ρg(1 − α), where ρl = 1000 kg m−3

and ρg = 1.0 kg m−3; viscosity μ = μlα + μg(1 − α), where μl = 1.0 × 10−3 Pa s and
μg = 1.48 × 10−5 Pa s; and g = 9.81 m s−2 is the gravitational acceleration. The last
term on the right-hand side of (3.2), f δ , denotes the surface tension term calculated
based on the continuous surface force (CSF) method, with a surface tension coefficient
σ = 0.072 N m−1 (Brackbill, Kothe & Zemach 1992).

To capture the interface of TB, the VOF method is used. In this study, we adopt
the OpenFOAM-based solver InterFOAM, which implements a modified two-phase
formulation

∂α

∂t
+ ∇ · (uα)+ ∇ · (urα(1 − α)) = 0, (3.3)

where ur = ul − ug is the relative velocity between the two phases (Russo et al. 2020).
This new formulation gives rise to an additional convective term, which is due to the
representation of the velocity terms as weighted averages.

The finite volume method is employed to solve the equations. Time and space
discretizations are realized with the Euler scheme. The gradient and Laplacian terms are
discretized by the Gauss method. The coupling between pressure and velocity is dealt with
by the transient PIMPLE algorithm, which is a merged PISO-SIMPLE (pressure implicit
split operator-semi-implicit method for pressure-linked equations) algorithm.

To reduce the calculation load, considering the axisymmetric characteristics of the TB,
we define a wedge-shaped computational domain with 1◦ in the circumferential direction
(Ren et al. 2022; Wang et al. 2022), as is shown in figure 2. The domain is 200 mm in the
radial direction and 1200 mm in the axial direction, and it contains a 1000 mm deep water
column and a TB generator consistent with the experimental geometry. The fluid domain is
discretized into a grid system, where the grid in the central portion has been further refined.
After the grid independence test, the minimum grid spacing selected for the calculations
is	x = 0.25 mm, resulting in a total of 879 660 grids. To maintain numerical stability, the
adjustable time step 	t is chosen to satisfy the Courant number |u|	t/	x ≤ 0.1, where
|u| is the magnitude of the fluid velocity.

All the solid boundaries are defined as no-slip boundaries, and the top of the domain
is set as a pressure opening with p0 = 101 325 Pa. A cylindrical air pocket with a
hemispherical cap is initially situated at the TB generator. To simulate the generation of
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Air
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TB Generator
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(b)

(a)

Figure 2. Computational set-up. (a) Computational domain and mesh. (b) Pressure variation at the inlet.

the TB, we pressurize the generator with compressed air and specify varying combinations
of pressure and time periods for the ventilation condition at the bottom of the generator
(p1 and t1 in figure 2b). The calculation results are verified against particular experimental
cases. Then additional cases are investigated with a wider parameter range for analysis.

4. Results and discussion

The discussion in this section is organized as follows. First, we provide high-speed
photographic image results of the TB–free surface interactions at different Fr value
conditions from the experiments and analyse the characteristics of the interactions and
the free surface deformation. Then, based on the numerical calculation results, we explore
the flow field details in cases of different interactions and summarize the characteristics of
the variation of ring radius R of TBs. On this basis, we analyse the flow field characteristics
caused by the TB, and establish the flow field model of TB movement in a single liquid,
as well as the TB–free surface interaction model. With the help of the energy balance
consideration, we finally derive the scaling law of the maximum deformation of the free
surface against the Fr, and summarize the parametric plot of the interactions.

4.1. Overview of interactions between TBs and free surfaces
We first identify two different types of interactions – namely strong and weak interactions –
between the TBs in water and the free surface, depending on the normalized magnitude of
the free surface deformation. For each interaction type, we examine both the deformation
of the free surface and the behaviours of the TBs as below.

Figure 3 shows an example of high-speed images of strong interactions, with
non-dimensional parameter Fr = 7.15, Bo = 1.18 × 102 and Ar = 2.21 × 103. It is seen
that when the TB resides below the reference position, the free surface has no significant
deformation. The bubble appears to be relatively unstable, noticeable through the presence
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t∗ = 6.84

t∗ = 63.48t∗ = 49.54t∗ = 41.86t∗ = 34.17t∗ = 32.37

t∗ = 26.89t∗ = 17.07t∗ = 9.93t∗ = 0

hmax

Deformed

bubble

Pinch-off

Jet

(a)

(b)

10 mm

Figure 3. High-speed image sequences of strong interaction between a TB and a free surface where Fr = 7.15,
Bo = 1.18 × 102 and Ar = 2.21 × 103. The corresponding movies are available as supplementary movie 1
available at https://doi.org/10.1017/jfm.2024.892.

of undulating wrinkles on its surface (t∗ = 0). As the bubble approaches the free surface,
the free surface gradually deforms into an ellipsoidal cap (0 < t∗ < 6.84). The distance
between the uppermost point of the ellipsoid and the position of the initial free surface
is denoted as h. Subsequently, the bubble continues its ascent and surpasses the initial
position of the free surface, carrying the ellipsoidal cap-shaped volume of water around the
bubble upwards (6.84 < t∗ < 17.07). The TB then narrows under horizontal compression
while elongating in the vertical direction while reaching its highest position (hmax =
48.6 mm), characterized by a nearly half-circle-shaped toroidal core. This causes the
water volume surrounding the bubble to form a spherical droplet. A water column with
a narrowing ‘neck’ is created beneath the bubble, connecting the water sphere to the
water bath (17.07 < t∗ < 26.89). We classify cases with h∗

max = hmax/Rref > 1 as strong
interactions between the TBs and the free surface. It is also observed that during this
stage, a ring of the free surface around the droplet sinks, forming a vertical, annular, thin
gas layer, as indicated in figure 3. At 26.89 < t∗ < 41.86, the sphere enclosing the bubble
descends and impacts the water surface. As a result of this impact, the free surface starts
oscillating. Eventually, the bubble bursts at the free surface and creates an oblique upward
water jet due to flow focusing at the bottom of the bubble (41.86 < t∗ < 63.48).

Another case of strong interactions is exemplified in figure 4, where Fr = 4.02, Bo =
2.18 × 102 and Ar = 2.69 × 104. Compared with the case in figure 3, at a smaller Fr value,
the TB appears more slender with a larger R/a ratio and possesses a smoother surface at the
reference position (t∗ = 0). Furthermore, the TB experiences milder deformations in both
horizontal and vertical directions as the liquid surface deforms and rises to the highest level
(h∗

max = 1.54), leading to an ellipsoidal shape of the liquid droplet that encapsulates the
bubble (0 < t∗ < 13.44). As the majority of the ellipsoid rises above the initial position of
the free surface, it remains connected to the water bath through a narrow neck. Meanwhile,
portions of the free surface around the ellipsoid are drawn into the liquid pool and fragment
into small bubbles. By observing the motion of these small bubbles, it becomes apparent
that there exists a liquid vortex ring beneath the liquid surface, rotating in the opposite
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t∗ = 31.90t∗ = 28.69t∗ = 21.12t∗ = 15.58t∗ = 14.82

Pinch-off

Splash

hmax

t∗ = 3.87 t∗ = 13.44t∗ = 10.90t∗ = 6.56t∗ = 0

10 mm

(a)

(b)

Figure 4. High-speed image sequences of strong interaction between a TB and a free surface, where
Fr = 4.02, Bo = 2.18 × 102 and Ar = 2.69 × 104. The corresponding movies are available as supplementary
movie 2.

direction to the TB. The ellipsoid encapsulating the TB then falls and impacts the liquid
pool, resulting in oscillations of the liquid surface and the rupture of the bubble at the
liquid surface. Subsequently, in comparison to the liquid jet in the case in figure 3, a
conical surface protrusion is generated, suggesting a less intense interaction between the
bubble and the free surface as well (13.44 < t∗ < 31.90).

At even smaller Fr values, weak interactions between the TB and the free surface
occur. As shown in figure 5, with non-dimensional number Fr = 2.94, Bo = 8.21 × 102

and Ar = 6.19 × 104, the TB possesses an even larger R/a ratio and smoother surface
at the reference position (t∗ = 0). The TB does not ascend to a sufficient height when
the deformed free surface reaches its apex. As a result, the ellipsoid enveloping the bubble
remains incomplete, with only half of it extending above the free surface, and the ‘necking’
phenomenon does not occur (t∗ = 11.81). In this case, we also observe the entrainment and
breakups of the surrounding free surface, or the formation and breakups of a secondary
TB, during the oscillations of the ellipsoid, owing to the existence of the counter-rotating
liquid vortex ring, as indicated in the figure (11.81 < t∗ < 18.89). After the falling of the
ellipsoid, the TB ruptures as it ‘bounces off’ the free surface, resulting in a small bulge at
the centre of the TB on the free surface (18.89 < t∗ < 27.07).

Figures 6 and 7 show two more weak interaction cases where the bubbles do not rise
across the initial free surface position, with non-dimensional numbers Fr = 0.96, Bo =
1.21 × 103 and Ar = 5.59 × 104, and Fr = 0.86, Bo = 9.99 × 102 and Ar = 5.10 × 104,
respectively. When the TB approaches the free surface, the surface experiences a mild
deformation, for the case in figure 6. The upper part of the free surface elevates slightly,
while the surrounding area sinks, forms secondary TBs and then fragments into multiple
bubbles. Eventually, the TB breaks up near the free surface due to instabilities. In contrast,
for the case shown in figure 7, there is no noticeable deformation observed in the free
surface during the interaction.

Figure 8 shows the evolution of the deformation of the free surface with time during
the TB–free surface interactions. From figure 8(a), it can be seen that the maximum
non-dimensional height h∗ of the free liquid surface decreases with the decrease of Fr.
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t∗ = 0 t∗ = 7.67

t∗ = 24.77t∗ = 18.89t∗ = 15.52t∗ = 13.60

t∗ = 11.81t∗ = 10.01

t∗ = 27.07

t∗ = 12.77

hmax

Secondary TB

20 mm

(a)

(b)

Figure 5. High-speed image sequences of weak interaction between a TB and a free surface, where Fr =
2.94, Bo = 8.21 × 102 and Ar = 6.19 × 104. The corresponding movies are available as supplementary
movie 3.

t∗ = 0 t∗ = 4.41

t∗ = 9.73t∗ = 7.65t∗ = 6.31t∗ = 5.88

t∗ = 5.45t∗ = 4.96

t∗ = 12.29

t∗ = 5.64

hmax

Secondary TB

20 mm

(a)

(b)

Figure 6. High-speed image sequences of weak interaction between a TB and a free surface, where Fr =
0.96, Bo = 1.21 × 103 and Ar = 5.59 × 104. The corresponding movies are available as supplementary
movie 4.

t∗ = 0 t∗ = 5.12

t∗ = 13.13t∗ = 9.76t∗ = 7.94t∗ = 6.88

t∗ = 6.00t∗ = 5.70

t∗ = 15.66

t∗ = 6.41

(b)

(a)

Figure 7. High-speed image sequences of weak interaction between a TB and a free surface, where Fr =
0.86, Bo = 9.99 × 102 and Ar = 5.10 × 104. The corresponding movies are available as supplementary
movie 5.
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Figure 8. Evolution of the height of the free surface for four TB–free surface interaction cases (Fr = 8.57,
Bo = 1.59 × 102 and Ar = 3.18 × 104; Fr = 7.15, Bo = 1.18 × 102 and Ar = 2.21 × 103; Fr = 4.02, Bo =
2.18 × 102 and Ar = 2.69 × 104; and Fr = 2.94, Bo = 8.21 × 102 and Ar = 6.19 × 104 (the latter three cases
correspond to figures 3–5)): (a) h∗–t∗, (b) h∗/h∗

max–t′.

In the case of large Fr, the time t∗ when the liquid surface reaches the maximum height
is later. Meanwhile, in the four cases, the rising and falling of the free surface are not
symmetrical in time, with the falling being slightly faster than the rising. Additionally,
we plot normalized h∗, i.e. h∗/h∗

max, against t′ = (t − th=hmax)/
√

hmax/g in figure 8(b)
to better compare the deformation of the free surface during the interactions, where√

hmax/g represents a characteristic time scale of the vertical projectile motion. Hence,
t′ = 0 corresponds to the time when the free surface reaches the maximum height. It can
be seen that the curves in the four cases share similar shapes, but they do not completely
collapse. The curves all slightly deviate from the shape of a parabola of a vertical projectile
motion (h∗/h∗

max = 1 − t′2/2), which implies that we can make simplifications accordingly
in our subsequent discussion of scaling laws. The curves with smaller Fr have less steep
slopes. The two curves with closer values of Fr are more similar, indicating that Fr partly
determines the normalized behaviour of the free surface during the interaction process.

In addition, we compare the high-speed photographic results of TB–free surface
interactions in the three experimental liquids, as shown in figure 9. Panels (a), (b) and
(c) present the results in water, AGS 1 and AGS 2, respectively. The Fr values of the three
cases are similar, the values of Bo are of the same order of magnitude, while the values
of Ar are one order of magnitude smaller in sequence. Overall, the size of the TB and the
displacement of the free surface in the three cases are similar. In fact, as summarized
in table 2 for five cases of similar sizes in the three liquids, the variation of μ does
not have a great influence on the normalized maximum deformation of the free surface
h∗

max = hmax/Rref during the TB–free surface interactions. The corresponding evolution
of the free surfaces for the cases are shown in figure 10. It should be noted that due to
the inherent randomness in the experiment, the five curves do not completely collapse.
Moreover, under comparable Fr and Bo, the amplitude of the curves does not exhibit a
monotonic change with Ar. However, as the viscosity of the liquid increases, that is, the
Ar value decreases, the surface of the TB appears smoother. At the same time, due to the
effect of viscous dissipation, the secondary TB generated after the free surface is pinched
off is smaller in size and smoother in surface.
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t∗ = 0 t∗ = 9.31

20 mm

20 mm

20 mm

t∗ = 18.38 t∗ = 22.65 t∗ = 27.92

(a)

(b)

(c)

Figure 9. Comparison of high-speed images across experiments with three different liquids: (a) water (Fr =
4.54, Bo = 5.18 × 102, Ar = 4.80 × 104), (b) AGS 1 (Fr = 4.26, Bo = 9.32 × 102, Ar = 7.12 × 103) and
(c) AGS 2 (Fr = 4.27, Bo = 6.09 × 102, Ar = 7.61 × 102).

No. μ (mPa s) Liquid h∗
max Fr Ar Bo

A1 67.8 AGS 2 1.60 4.27 7.61 × 102 6.09 × 102

A2 9.85 AGS 1 1.71 4.26 7.12 × 103 9.32 × 102

A3 1.01 Water 1.73 4.39 4.59 × 104 4.88 × 102

A4 1.01 Water 1.73 4.54 4.80 × 104 5.18 × 102

A5 1.01 Water 1.70 4.27 7.95 × 104 1.01 × 103

Table 2. Influence of μ on h∗
max.

Now that the influences of Ar and Bo by μ on the dynamics of the interactions have been
investigated, we further select two groups of data from both experiments and numerical
simulations for comparison, to better illustrate the effect of the bubble size, as shown in
tables 3 and 4, respectively. In the first group, the Fr value is roughly 3.60, but the volume
of the bubbles Vb spans from approximately 90 ml to approximately 360 ml, resulting in
a Bo value in the range of 4.78 × 102–8.71 × 102 and Ar value in the range of 4.32 ×
103–8.74 × 104. In the second group, the Fr value is roughly 6.90. The volume of the
bubbles in the experiments are approximately 40 ml and 80 ml. Considering the limited
bubble size range in the experiments due to the restriction of the experimental set-up, we
perform additional numerical simulations of large-sized TBs by simultaneously increasing
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t∗

Figure 10. Evolution of the height of the free surface for TB–free surface interaction cases in table 2.

No. Vb (ml) Liquid h∗
max Fr Ar Bo

Exp.

B1 96.84 AGS 1 1.67 3.60 4.32 × 103 4.78 × 102

B2 143.18 Water 1.58 3.76 5.14 × 104 5.67 × 102

B3 249.16 AGS 1 1.51 3.55 6.93 × 103 8.99 × 102

B4 358.05 Water 1.70 3.61 8.13 × 104 1.05 × 103

Sim. B5 364.53 Water 1.54 3.66 8.74 × 104 8.71 × 102

Table 3. Influence of Vb on h∗
max, group 1.

the size of the TB generator and the ventilation time period. Here, we added the numerical
results of a much larger bubble (volume approximately 5000 ml), but with a similar Fr
value, to the second group for comparison. Thus, the Bo value range of the second group
is 1.29 × 102–7.25 × 103, and Ar value range is 2.60 × 104–5.38 × 105. It can be seen that
h∗

max of each group is roughly equivalent. This feature is further demonstrated in figure 11,
where the h∗–t∗ curves are mainly grouped by the value of Fr, regardless of the values
of Bo or Ar. This indicates that the influence on the TB–free surface interactions caused
by bubble size variation is limited. That is, within the ranges of Bo and Ar variation in
this study, the major characteristic of the interactions discussed in subsequent sections,
particularly h∗

max, is mainly determined by the Fr value.

4.2. Flow characteristics during TB–free surface interactions
In this section, we first validate the numerical methods through the comparison of
numerical calculations and experimental results. Then, we analyse the results of numerical
calculations and discuss the dynamics of the TBs and free surface during both types of
interactions in detail.
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No. Vb (ml) Liquid h∗
max Fr Ar Bo

Exp. C1 36.55 Water 2.89 6.88 2.60 × 104 1.29 × 102

C2 78.20 Water 3.16 7.03 3.80 × 104 3.79 × 102

Sim. C3 4807.6 Water 2.97 6.87 5.38 × 105 7.25 × 103

Table 4. Influence of Vb on h∗
max, group 2.

10 20 30 40 50 600

1

2

3

4

B1

B2

B3

B4

B5

C1

C2

C3

h∗

t∗

Figure 11. Evolution of the height of the free surface for TB–free surface interaction cases in tables 3 and 4.

Examples of the simulated results using the above numerical method, compared with
experimental images for both strong and weak TB–free surface interactions ((a) Fr = 7.37,
Bo = 2.82 × 102, Ar = 3.05 × 104; and (b) Fr = 1.77, Bo = 7.64 × 102, Ar = 6.43 ×
104), are shown in figure 12. In each panel of the figure, the left half represents numerical
results, whereas the right half shows experimental images at the corresponding time. In the
computational results, the light-coloured area indicates the gas phase, while the dark area
indicates the liquid phase. From the figure, it can be seen that the computational results
accurately replicate the primary characteristics observed during the entire experiment of
TB–free surface interaction, such as the evolution of free surface deformation over time.
In addition, the computation also predicts the emergence of secondary TB. However,
due to the adoption of an axisymmetric computational domain, the details of secondary
TB movement and rupture in the experiment cannot be accurately given in the current
computation. It should be noted that since the calculations cannot precisely set the
boundary conditions at the outlet position of the TB generator in the experiments, we need
to attempt different p1 and t1 combinations in the calculations to adjust the TB volume
and shape obtained in the calculations so that it closely matches the experiments at the
reference position.

The calculation results of the flow field in the strong interaction process for the
experimental case shown in figure 3 are demonstrated in figure 13. When the TB is at
the reference position, i.e. t∗ = 0, the free surface has already shown slight deformation.
This is due to the fact that the velocity of the liquid vortex ring around the TB has
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t∗ = 0 t∗ = 5.04 t∗ = 6.72 t∗ = 7.56 t∗ = 8.40

t∗ = 9.24 t∗ = 10.92 t∗ = 13.44 t∗ = 15.96 t∗ = 17.65

5 ms

0 ms

t∗ = 0

35 ms

t∗ = 6.04

55 ms

t∗ = 9.49

90 ms

t∗ = 15.53

135 ms

t∗ = 23.29

190 ms

t∗ = 32.78

250 ms

t∗ = 43.14

320 ms

t∗ = 55.20

370 ms

t∗ = 63.83

445 ms

t∗ = 76.76

(b)

(a)

Figure 12. Validation of numerical simulations with comparisons between calculated and experimental
behaviours of the TB and the free surface for cases with (a) Fr = 7.37, Bo = 2.82 × 102, Ar = 3.05 × 104

and (b) Fr = 1.77, Bo = 7.64 × 102, Ar = 6.43 × 104.

become large enough at the central axis. It is seen that the core of the TB is elongated
vertically. Subsequent calculated evolution of the free surface matches the experimental
observations. When the free surface rises, the TB is further stretched vertically. When
the free liquid surface reaches its maximum deformation, the TB further deforms, with
the bottom radius shrinking more than the top, and rotates along the motion of the liquid
vortex ring. Afterwards, the free surface begins to fall back, and the TB extends outward
along the free surface during this process. Furthermore, under the combined influence of
the free surface oscillation and the motion of the liquid vortex ring, the generation and
movement of secondary TB can be observed.

In contrast, figure 14 illustrates the calculated flow field characteristics during the
weak interaction process for the case in figure 12(b). Again, at t∗ = 0, even though the
deformation is not visible on the free surface, it can be seen from the flow field that the
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t∗ = 33.0117.040 43.93 59.63

Free surface

79.07

10 cm

TB

u∗
5.80

Figure 13. Flow field during the strong TB–free interaction of the calculation case with p1 = 103 746 Pa and
t1 = 5 ms (corresponding to the experimental case in figure 3 (Fr = 7.15)), where u∗ = u/U. Due to the axial
symmetry of the flow field, only the right half of the flow velocity distribution is shown in each frame. The axes
of symmetry are all along the left boundary. Note that the arrows indicate only the directions of the velocities.
The magnitudes of the velocities are indicated by the colour.

0t∗ = 8.406.72 10.92 13.44

u∗

Free surface

TB

15.96
10 cm

6.20

Figure 14. Flow field during the strong TB–free surface interaction of the calculation case with p1 = 24 000 Pa
and t1 = 10 ms (corresponding to the experimental case in figure in figure 12(b) (Fr = 1.77)), where u∗ = u/U.
Due to the axial symmetry of the flow field, only the right half of the flow velocity distribution is shown in each
frame. The axes of symmetry are all along the left boundary. Note that the arrows indicate only the directions
of the velocities. The magnitudes of the velocities are indicated by the colour.

liquid vortex ring around the TB has already made contact with the free surface. However,
the velocities at the points of contact have become insignificant. Compared with cases of
strong interactions (e.g. figure 13), the core of the TB at this instant is more spherical.
As the TB rises beneath the free surface, its radius gradually increases. At t∗ = 6.72, the
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vortex ring

Figure 15. Example of the flow field around the TB in the reference frame of the laboratory for the case in
figure 5 at one instant prior to the TB–free surface interaction. Note that the arrows indicate only the directions
of the velocities. The magnitudes of the velocities are indicated by the colour.

TB has risen to a position closer to the original liquid surface level. Its radius increases
and its core size decreases. When the free surface reaches its highest position (t∗ = 8.40),
the sinking edge around its raised part is almost level with the height of the TB. This
means that throughout the weak interaction process, the height of TB has never exceeded
the position of the initial free surface. At this instant, the flow velocities in the entire
liquid are comparatively low. When the free surface begins to recover from the maximum
height, the TB is further elongated under the joint action of the liquid vortex and the free
surface (t∗ = 10.92). The previously sunk part of the liquid surface is laterally squeezed
by the liquid under it, thus forming a secondary liquid vortex ring rotating in the opposite
direction on the outer side of the original one (t∗ = 13.44). If this portion of the free
surface is sufficiently deep, it may also involve air into the vortex core of the secondary
liquid vortex ring, or free surface ’pinch-off’, forming a secondary TB, which is less
stable due to the smaller circulation. The interaction between the two vortices induces
complex motion of the TBs if they are present. The disturbances of the free surface then
progressively diminish as the circumferential motions of the two vortices steadily weaken,
resulting in the breakdown of the TBs (t∗ = 15.96).

Next, we investigate the flow field caused by a TB in a single liquid with numerical
results. Figure 15 shows an example of the flow field in the reference frame of the
laboratory for the case in figure 5 when TB has not yet interacted with the liquid surface.
As can be seen from the figure, there exists a liquid vortex ring around the TB, constituting
the circulation around the TB, or Γ . Under the effect of Γ , the TB retains its annular shape
and rises with the liquid vortex ring. Additionally, it can be observed that the pressure
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distribution within the entire flow field is only slightly affected by the TB motion, primarily
displaying the distribution characteristics of hydrostatic pressure.

Thus, the entire flow field can be divided into two regions. The first is the liquid ellipsoid
containing the liquid vortex ring and the TB. Within this ellipsoid, the liquid is circulating
the TB while the ellipsoid has a uniform upward propagation velocity U. Beyond this
ellipsoid, the liquid remains almost stationary. This observation is further confirmed in
figure 16(a–c), where we plot the relative velocities ur of the fluid in reference to the
propagation velocity U of the TB. Furthermore, at three different times, t1 < t2 < t3, R
of the TB gradually increases, while a gradually decreases. In figure 16(d), we plot the
distribution of the normalized relative circulating fluid velocity component u∗

cr = (uc −
U)/U along the horizontal line passing through the core centre of the TB at the three
moments together, where uc is the circulating velocity component of the liquid around the
TB, and U is the propagation velocity of the TB. The x-axis in the figure is normalized
to x∗ = (x − R)/a. In this figure, the white colour marks the bubble region. Given the
propagation velocity U of the TB evolution shown in Appendix A, and that the curves
for the three moments almost collapse, it is seen that the flow at different moments is
self-similar.

With such observations, we establish the relative flow model as shown in figure 16(e),
where the geometry of the ellipsoid is approximated. We further assume that the
circulating velocity component of the liquid around the TB uc satisfies the following
equation when |x| > R:

uc = Γ

2πr

(
1 − e−(r/a)2

)
, (4.1)

where r denotes the distance between the nearest core centre and the point of interest in
the liquid. By (4.1), it is seen that

u∗
cr = uc − U

U
= Γ

2πrU

(
1 − e−(r/a)2

)
− 1, (4.2)

as indicated with a dashed curve in figure 16(d). Note that this approximation matches the
analytical conditions used by Orlandi & Verzicco (1993), and the initial flow conditions in
calculating vortex ring motions of Cheng et al. (2010, 2013). At locations with |x| < R, the
changes in the relative velocity at different phase angles θ are quite complex. Nevertheless,
it is verified in Appendix A with numerical results that kinetic energy from the circular
motion of the liquid Ec, where |x| < R is with a nearly fixed ratio (close to unity) against
|x| > R.

Now, we consider the energy ratio, the evolution of the circulation and shape of a TB in
a single liquid. Combining the expression for Γ in (2.1), the ratio of kinetic energy from
the circular motion of the liquid Ec compared with that of the propagation motion of the
ellipsoid Ek can thus be expressed as

Ec

Ek
=
∫ 2π

ψ=0

∫ 2π

θ=0

∫ R
r=a

1
2
ρu2

c dr r dθr dψ

1
2
ρVeU2

=
4
∫ η2

1
1
ζ
(1 − e−ζ )2 dζ(

ln 8η − 1
4

)2

(1 − η−2)

, (4.3)
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Figure 16. Relative velocity (ur) distribution in reference to the propagation of the TB at three different time
instants prior to the TB–free surface interaction: (a) t1; (b) t2; and (c) t3, where t1 < t2 < t3 for the calculation
case with p1 = 103 746 Pa and t1 = 3.5 ms (corresponding to the experimental case in figure 5 with Fr = 2.94),
(d) normalized relative circulating velocity component u∗

cr = (uc − U)/U in radial direction of the TB and
(e) ellipsoidal model of relative liquid flows around a TB in a single liquid. In panels (a)–(c), the axes of
symmetry are all along the left boundary. Panels (a)–(c) share the same length scale and legend. In panel (d),
white colour marks the bubble region.

where ζ = (r/a)2, η = R/a is the shape factor of the TB that defines its slenderness, and
Ve is the volume of the ellipsoid. Note that Ec of the region of |x| < R is included by
setting the upper limits of θ and φ to 2π in this integration formula. From (4.3), it is seen
that this ratio relies solely on η. For the sake of convenience, we derive an estimated fit of
Ec/Ek against η of TBs in a single liquid to the numerical solutions of (4.3) as

Ec

Ek
= 0.46 × (η + 1)−0.4, (4.4)
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Figure 17. Relations between energy ratio, shape factor η and Fri of TBs in a single liquid: (a) Ec/Ek–η;
(b) η–Fri.

as shown in figure 17(a). In comparison to the kinetic energy associated with the
propagation motion of the ellipsoid Ek, the component Ec appears to be less considerable,
particularly noticeable in the instant of large values of η.

According to Walters & Davidson (1963), the circulation Γ of an upward-moving TB in
a single quiescent liquid domain can also be estimated in terms of its volume Vb as

Γ = 3g1/2V1/2
b . (4.5)

Note that Vb = 2π2Ra2, so from (2.2), we obtain

η = 3
√

2πFr−1
i , (4.6)

where Fri indicates the instantaneous value of the Froude number. The validation of this
relation is provided against present experimental measurements in all three liquids with
different viscosities, as shown in figure 17(b), although the estimation in (4.5) is, by
definition, more applicable in low-viscosity liquids. The shape factor of TBs, η, is inversely
proportional to the Froude number Fri. As a TB rises in the liquid, it becomes more slender
in shape, while the corresponding Fri decreases gradually. Note here the Froude number
Fri is applicable to the entire process of the TB’s movement in a single liquid.

In figure 18, we present the evolution of R/Rref and h∗ with respect to t∗ of TBs during
the TB–free surface interaction with six different Fr values, where the strong and weak
interactions can be readily distinguished. Note that in figure 18(b), the dashed line indicates
the limiting condition of h∗

max = 1. At t∗ < 0, i.e. prior to the TB–free surface interaction
according to the definition in the preceding sections, the four cases with high-Fr values
(7.37–4.26) shown in the figure are markedly different from the other two cases (Fr =
2.67 and 1.63). In all cases, R/Rref increases with time, but with different slopes, among
which the curves corresponding to weak interactions have a larger slope. This indicates
that the deceleration effect of the existence of the free liquid surface on the TB at t∗ < 0
is relatively large for weak TB–free surface interactions.

When t∗ > 0, i.e. when the TB rises above the reference position, the difference between
strong and weak interactions becomes larger. In cases with larger Fr values, when the TB
is still below the free surface, R/Rref gradually increases. However, as the TB continues
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Figure 18. Evolution of (a) R/Rref of the TB and (b) h∗ during the TB–free surface interactions of cases with
different Fr values.

to rise through the original free surface position, due to the influence of the surrounding
finite liquid environment, R/Rref of the TB begins to shrink. Note that this observation
is similar to that of Moon et al. (2023). When the raised free surface along with the TB
hits back down, R/Rref has a trend of increasing again, rendering a more slender TB shape
until it ruptures. In contrast, in weak interactions, the TB never exceeds the position of
the original free surface, and the deformation of the free surface is also smaller. In these
cases, the TB rebounds at the free surface, and its R/Rref accelerates to increase. A smaller
Fr value means the more it resembles the case where the liquid vortex ring hits the solid
boundary.

The essence of the interaction between the TB and the free surface lies in the dynamic
characteristics of the system, triggered by the flowing liquid vortex ring around the TB
interacting with the liquid surface. The presence of the TB makes this process even more
complex. These include deformation and oscillation of the free surface throughout the
process, movement and deformation of the TB, as well as the subsequent generation of
secondary liquid vortex ring and TB.

4.3. Scaling of h∗
max

We have established that different interactions between the TB and the free surface are
characterized by the maximum non-dimensional elevation of the free surface h∗

max and
the deformation of the TB during the interactions. Meanwhile, from § 4.1, it is known that
h∗

max is dependent on the value of Fr. Here, we present an analytical scaling of h∗
max against

Fr by considering the energy balance of the liquid during the interactions.
Now, we can simplify the processes of typical TB–free surface interactions as shown

in figure 19, where strong and weak interactions are summarized in panels (a) and (b),
respectively. When t∗ < 0, i.e. when the TB is below the reference point, the flow field
can be approximated as an uprising liquid ellipsoid containing a liquid vortex ring and the
TB. The main differences between strong and weak TB–free surface interactions lie in the
behaviour of the TB, the maximum deformation of the free surface, as well subsequent
phenomena after the free surface falls back to the original position, as described in the
figure. For ease of discussion, we term the liquid portions above the original liquid surface
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Figure 19. Schematics of typical interaction processes. (a) Strong interaction and (b) weak interaction.

of both the strong and weak interactions as the liquid column. With the flow model shown
in figure 16(e), we assume that for both strong and weak interactions, it is the same liquid
ellipsoid that forms the deformation of the free surface, or the liquid column, as shown in
figure 19. Next, we consider the energy of the liquid column situated above the free surface
at its highest level, i.e. when the maximum deformation of the free surface hmax occurs
during the TB–free surface interaction. As per the numerical simulations highlighted in
§ 4.2, the liquid velocities within the majority of the liquid column are observed to be
at their minimum for both strong and weak TB–free surface interactions. The numerical
simulations also suggest that the kinetic energy of the liquid column is at its minimum at
maximum free surface deformation, as shown in Appendix A. Therefore, we can readily
estimate the potential energy of the liquid column Ep at this instant by roughly assuming
that the centroid of the liquid column is at half of hmax, or Ep = (ghmax/2)Ve, where Ve is
the volume of the liquid ellipsoid.

The liquid column below the ellipsoid has an additional effect on the pressure on the
lower surface of the ellipsoid (Ji, Yang & Feng 2021). The effect of the Laplace pressure
and surface tension over the boundary of the TB can be ignored, since the scales of the
former (πσR) and the latter 2πσR are lower than 1/1000 and 1/500 of the gravitational
force, respectively. The variation in surface energy due to the shape change of the TB is
less than 1/200 of that by buoyancy, which can also be ignored.

Taking into account the considerable density ratio between the liquids and air, the
fluctuation of the mechanical energy of the TB throughout the interaction can be
disregarded. Ignoring all the viscous forces, the potential energy of the liquid column when
the free liquid surface deformation is at its maximum, Ep, is approximately equivalent to
the sum of the total mechanical energy of the ellipsoid at the reference point, E∗

c + E∗
k .

Within the liquid ellipsoid, only the TB is affected by buoyancy due to the difference in
densities between air and liquid. The centre of gravity of the TB is 2Rref + aref below the
free surface at t∗ = 0. Thus, the work done by the buoyancy on the ellipsoid Wb can be
evaluated via calculating the buoyancy force acting on the TB, ρgVb, and the displacement
of the centre of the TB till it reaches the original position of the free surface. Hence, we
can write Wb = ρgVb(2Rref + aref ). Thus,

E∗
c + E∗

k + Wb = Ep (4.7)
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or (
1 + E∗

c

E∗
k

) U2
ref

2
+ gVb(2Rref + aref )

Ve
= ghmax

2
, (4.8)

where Ve is the volume of the ellipsoid. Equation (4.7) implies that the ellipsoid does
approximate vertical projectile motion after reaching the free surface.

Referring to the flow model in figure 16(e), we can roughly estimate the volume of the
ellipsoid by approximating the major axis of the ellipsoid to 4R and the minor axis to 3R,
as detailed in Appendix B. The volume of the ellipsoid is thus Ve = 8πR3

ref . Substitute
(2.2), (4.4) and (4.6) into (4.8), and we derive the scaling of h∗

max as

h∗
max = 9

8η2

[
ln(8η)− 1

4

]2

[1 + 0.46(η + 1)−0.4] + π(2 + η−1)

2η2

= Fr2

16π2

(
ln

24
√

2π

Fr
− 1

4

)2
⎡
⎣1 + 0.46

(
3
√

2π

Fr
+ 1

)−0.4
⎤
⎦+

Fr2
(

2 + Fr

3
√

2π

)
36π

.

(4.9)

The detailed derivation of (4.9) is shown in Appendix C.
This proves that the normalized maximum deformation of the free surface during the

TB–free surface interaction h∗
max is solely dependent on the Froude number of the TB at

the reference point Fr, or its slenderness η. Figure 20 shows the comparison of the results
from the above equation with the experiments and provides a concise approximate fit for
h∗

max in this range of Fr or η values,

h∗
max = 0.18Fr1.5 = 8.76η−1.5. (4.10)

Both equations provide predictions that fit with the experimental results for all three test
liquids. If we define h∗

max = 1.0 as the threshold between strong and weak interactions, we
can readily determine the critical values for Fr and η as Frc = 3.2 and ηc = 4.2.

By (4.9), we can evaluate the respective contributions of E∗
c , E∗

k and Wb to Ep. As shown
in figure 21, E∗

c/Ep remains below 20 % in the whole range of Fr considered. While the
circulation of the liquids plays a pivotal role in maintaining the shape of TB, its impact
on the TB–free surface interaction is relatively moderate, especially at small Fr values.
Meanwhile, E∗

k/Ep decreases rapidly, and the proportion of work done by buoyancy Wb/Ep
increases rapidly, as Fr increases. This indicates that in cases with strong TB–free surface
interactions, the considerable influence of buoyancy forces on the dynamics cannot be
ignored. Note that η = 1.0 corresponds to the limiting condition where R = a.

Based on the above analysis and discussion, we can finally summarize the characteristics
of the TB–free surface interactions in figure 22. The interactions can be distinguished
as strong and weak interactions based on the critical values Frc = 3.2 and ηc = 4.2. In
strong interactions, i.e. Fr > Frc or η < ηc, the TB crosses the original surface position
during the process, where its radius decreases with time. The greater the Fr number value,
the more intense the deformation of the free surface, and the stronger the subsequent
oscillation of the free surface. The processes are also characterized by the strong pinch-off
of the free surface and the generation of the secondary TB. In weak interactions, i.e.
Fr < Frc or η > ηc, the TB never exceeds the original free surface. The deformation of
the liquid surface is smaller, and the pinch-off of the free surface and the secondary TB
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Figure 20. Scaling of h∗
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Figure 21. Relative contributions to Ep of E∗
c , E∗

k and Wb, as a function of Fr or η.

are weaker. The radius of TB continuously increases over time. The smaller the Fr number,
the more its behaviour is similar to the liquid vortex ring hitting the solid wall.

Finally, to better demonstrate the characteristics of the TB–free surface interactions,
we next compare the results with the research of single-phase vortex ring cases, i.e. the
liquid vortex ring (LVR)–free surface interactions in the literature. Several studies have
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Figure 22. TB–free surface interactions as a function of Fr and η. The parametric plot includes 112
individual cases.

focused on vortex rings that approach a water surface at various oblique angles (Weigand
& Gharib 1995; Ohring & Lugt 1996). In addition, several other studies have explored
phenomena such as the self-connection of vorticity formed by vortex rings near the free
surface and the characteristics of wave components (Dommermuth & Yue 1991; Ruban
2000; Bandyopadhyay 2020). Here, we only compare with the cases with the normal
collision of the LVR with the free surface, as described by Song et al. (1992). Apart from
the rich phenomena of bubble evolution in the case of TB–free surface interactions, from
the dimensionless parameter range involved in the research, as well as the free surface
deformation, both are also significantly different.

As shown in previous sections, the circulation around the TB can be conveniently
estimated based on the shape of the TB. Correspondingly, the circulation of the LVR
can only be obtained by integrating the velocity distribution based on experimental or
numerical data. Before the onset of the interactions, it is known that the circulation of the
LVR generated by impulsively started flows decays in time (Pullin 1978). Instead, due to
the effect of buoyancy on the bubble, the circulation around the TB remains approximately
constant (Turner 1957).

Therefore, we can expect lower Fr values for the LVR. Unfortunately the reference
position used for the Fr definition by Song et al. (1992) is different from this study,
making direct comparison impossible without further information. By their definition, the
Fr values are lower and the range is narrower, i.e. 0.252–0.988, which would be even
lower if they could be converted to the definition used in this study. Correspondingly, in
the experiments of the TB–free surface interactions, it is found that when Fr < 0.8, the
TB is difficult to maintain stability and tends to fragment into multiple small bubbles.
Since the LVR–free surface interactions are also characterized by Fr, the interaction is of
a single type and is relatively weak by the current standard. The free surface deformations
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remain within a moderate range, and the LVR never exceeds the initial position of the free
surface during the interaction processes for all the cases. Moreover, if the same reference
position is used to define Fr, it can be predicted that due to the work done by buoyancy
force Wb, hmax caused by TB should be larger than that of LVR. According to figure 21,
the larger the Fr, the greater the difference.

5. Concluding remarks

We carry out a systematic study on the interaction between a toroidal bubble (TB) in
a liquid and a free surface. For this purpose, we first build a liquid tank containing
a TB generator. By controlling the air pressure and ventilation time at the inlet of
the TB generator, TBs are formed in three different liquids, water and two different
aqueous glycerol solutions. Based on this, we take high-speed photographs of the system’s
dynamic behaviour. According to the experimental results, two types of interactions
are summarized, i.e. strong and weak interactions. During strong interactions, the TB
passes the initial free surface position. The free surface deforms drastically, forming a
liquid ellipsoid enveloping the TB. During the rise of the ellipsoid, under the squeeze
of the surrounding liquid, the radius of the TB decreases and its height increases.
Subsequently, the ellipsoid smashes back to the free surface, causing the free surface to
oscillate. After that, the pinch-off of the free surface and the secondary TB are formed. In
weak interactions, TB never exceeds the initial free surface. There is less liquid surface
deformation. TB rebounds on the surface of the liquid, with its radius continuously
increasing. Free surface oscillates with weaker magnitudes. Summarizing the normalized
maximum free surface deformation h∗

max shows that the value of Fr plays a major
role.

To further study its mechanism, we develop a numerical simulation technique based on
the volume of fluid (VOF) method on the OpenFOAM platform for the TB–free surface
interactions. By establishing a geometrically consistent axisymmetric calculation field,
and giving different combinations of ventilation pressure and time at the inlet at its bottom,
we successfully simulate the motion of the TB in the liquid and the dynamic behaviour of
its interaction with the free surface. Flow field analysis shows that when the TB is at the
reference position, even though the free surface has not yet deformed significantly, the
liquid vortex ring enveloping TB has already made contact. In the subsequent stages of
strong and weak interactions, the liquid vortex ring strongly affects the dynamic behaviour
of the entire system, including the rise, fall and pinch-off of the free surface, generation of
the secondary TB, etc. The study of the change of the radius of the TB over time from the
calculation results shows a significant difference in strong and weak interactions, which is
consistent with the experimental observation. Meanwhile, we verify that the Fr determines
the main characteristics during the interaction process. The interaction between the TB and
the free surface is essentially the interaction between the liquid vortex ring enveloping
the TB and the free surface, supplemented by the TB’s complex behaviour in this
process.

Next, we establish the scaling law of h∗
max based on the energy balance conditions. First,

we observe the flow field caused by the TB when the TB is below the reference position.
The entire flow field can be split into two parts: the propagation of the ellipsoid containing
the liquid vortex ring and the TB, and the circulating motion of the liquid vortex ring
inside the ellipsoid around the TB. Based on the numerical results, we can identify the
distribution law of the relative velocity of the liquid. By analysing the kinetic energy of the
relative motion of the liquid inside the ellipsoid, we successfully derive the ratio between
the kinetic energy of the relative motion and the kinetic energy of ellipsoid propagation, at
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different Fr or shape factor of the TB, η. After considering the work done by the buoyancy
forces, we use the energy balance analysis of the ellipsoid during the interaction process
to derive the scaling law between h∗

max and Fr or η. This relationship demonstrates an
interesting fact, i.e. the shape factor (or the slenderness) of the TB, η, at the reference
position determines the entire process of the interaction. In addition, we provide the critical
Fr and η values for identifying the strong and weak interactions, and a parametric plot of
the interactions in terms of Fr and η.

This study clarifies the mechanism and characteristics of the TB’s behaviour at the free
liquid surface through systematic experimental, numerical and theoretical approaches. The
results of this study can provide guidance for the future application of TBs in various
fields.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.892.
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Appendix A. Evaluation of the kinetic energy of the liquid ellipsoid

The evolution of the propagation velocity U of the TB for the case in figure 5 with Fr =
2.94 is shown in figure 23. To derive the scaling law of h∗

max, we need to estimate the energy
of the liquid during the interaction process. One of the key steps is to decompose the
motion of the liquid at t∗ < 0 into the propagation of the liquid ellipsoid, and the rotational
motion of the liquid vortex ring inside the ellipsoid with respect to TB. Here, based on the
results of numerical simulation, we provide the kinetic energy analysis of the liquid relative
to TB at three instants t1 < t2 < t3 for the case in figure 5 with Fr = 2.94 (case 1), and
two more cases (case 2 and case 3) with Fr = 5.77 and Fr = 5.29, respectively, as shown
in table 5. It can be seen that the proportions of the kinetic energy of the relative motion
of the liquid in the |x| < R part and the |x| > R part are almost fixed, and the order of
magnitude is similar.

Estimations of the relative amplitude of the instant kinetic energy of the liquid ellipsoid,
Eki + Eci, where Eki and Eci represent the instant kinetic energy from the propagation
and the circular motions of the liquid ellipsoid, respectively, compared with that of the
potential energy at the maximum free surface deformation, Ep, for both strong and weak
TB–free surface interaction cases, are shown in figure 24. From the numerical simulation
results, it is seen that for the two cases, where Fr = 7.15 and Fr = 1.77, respectively, as the
normalized deformation of the free surface h∗ reaches maximum, the ratio (Eki + Eci)/Ep
reaches minimum (approximately 5 % and 1 %, respectively) as the TB rises. This indicates
that we can ignore the kinetic energy of the liquid column when evaluating the total energy
at the maximum free surface deformation.
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Figure 23. Propagation velocity U of the TB versus time t for the case in figure 5 with Fr = 2.94. Note that
t = 0 represents the moment when the gas exits the TB generator.

Case No. Instants Ec/mJ (|x| < R) Ec/mJ (|x| > R) Ratio

Case 1
t1 135.3 138.1 0.980
t2 154.9 155.2 0.998
t3 180.4 178.6 1.010

Case 2
t1 197.1 194.4 1.014
t2 229.8 238.6 0.963
t3 254.5 261.9 0.972

Case 3
t1 204.0 202.4 1.008
t2 212.5 212.7 0.999
t3 234.4 233.1 1.006

Table 5. Evaluation of the kinetic energy of the relative liquid motion in the ellipsoid.

Appendix B. Estimation of the major and minor axes of the liquid ellipsoid

The major and minor axes of the ellipsoid, 2a and 2b, can be first estimated through the
flow model presented in figure 16(e). The undisturbed maximum radius of the vortices that
circle around the TB, or R, meets at the centreline, which is a quarter of the major axis.
Hence, the major axis is roughly 4R. By the approximation of an ellipse with osculating
circles, the curvature radius of the ellipsoid at the end of the major axis is b2/a (Capderou
2014). To cover a circle centred at (R, 0) with a radius of R, b2/a must be larger than R.
Hence, for a = 2R, b ≥ √

2R. The minor axis 2b should be larger than 2
√

2R ≈ 2.828R.
With the above information, we examine the numerical results as in figure 14(a–c), and
find that 4R and 3R are good approximations for the major and minor axes, respectively.
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Figure 24. Estimation of the kinetic energy of the liquid ellipsoid when the TB rises during the TB–free
surface interaction process for cases of both strong and weak interactions.

Appendix C. Formula derivation from (4.8) to (4.9)

According to (4.8):

h∗
max = hmax/Rref

=
(

1 + E∗
c

E∗
k

) U2
ref

gRref
+ 2Vb(2Rref + aref )

VeRref

=
[
1 + 0.46(η + 1)−0.4

] U2
ref

gRref
+

2 × 2π2Rref a2
ref (2Rref + aref )

8πR3
ref × Rref

=
[
1 + 0.46(η + 1)−0.4

] U2
ref

gRref
+ π(2 + η−1)

2η2 . (C1)

Since Γref = 4πRref Uref

[
ln(8η)− 1

4

]−1
, we have U2

ref = (Γref /4πRref )
[
ln(8η)− 1

4

]
.

By (4.5) and (4.6), Fr = Γref /
√

gR3
ref = 3

√
2πη−1, so

U2
ref

gRref
= Fr2

16π2

[
ln(8η)− 1

4

]2

= 9
8η2

[
ln(8η)− 1

4

]2

. (C2)
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Then, the non-dimensional maximum deformation of the free surface can be expressed
as

h∗
max = 9

8η2

[
ln(8η)− 1

4

]2

[1 + 0.46(η + 1)−0.4] + π(2 + η−1)

2η2

= Fr2

16π2

(
ln

24
√

2π

Fr
− 1

4

)2
⎡
⎣1 + 0.46

(
3
√

2π

Fr
+ 1

)−0.4
⎤
⎦+

Fr2
(

2 + Fr

3
√

2π

)
36π

,

(C3)
which is (4.9) in the main text.
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