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As is well known, in the case of an axially symmetric and time-invariant gravita-
tional potential, if the potential satisfies one particular additional constraint, there 
exist three isolating integrals of motion: the energy integral, the area integral, and 
the third integral which is quadratic in the velocities. This work discusses the case 
in which there exist quadratic integrals in the absence of axial symmetry of the 
potential. Such a case has already been examined by Eddington [ l ] , but in their 
explicit form, the integrals were introduced by Clark [2]. 

Let us use, following Eddington and Clark, an ellipsoidal coordinate system 
Qi,q2,Q3- The coordinate surfaces (which are orthogonal) represent a family of 
second-order confocal surfaces. Let this coordinate system be co-axial with Carte-
sian coordinates x, y, z. Moreover, let ζ be the axis with which all the coordinate 
surfaces (hyperboloids as well as ellipsoids) have a real intersection. Then, on the 
z-axis, either ζ — q\ (hyperboloids of two sheets), or \z\ — q2 (hyperboloids of one 
sheet), or \z\ = qs (ellipsoids). The domains of the qt are - a < q\ < a, a < q<i < β, 
β < qs, where a and β are parameters of the coordinate system (determined by the 
intersection of the focal curves with the z-axis). 

Let V{ be the velocities and p¿ the generalized (specific) momenta along the 
coordinate line qi. In the ellipsoidal coordinate system: 

ĵjr = \fÖivi = 9iPt, (t = 1,2,3) (1) 

(t is the time), while 

(q2 - α2)(α? - β2) 

{vi - vim - tí) 
Obviously, 0 < gt < 1, and as can easily be shown, Y^g% — 1. On the 2-axis, Ci = 1 
in its "own" domain, i.e. where ζ (or \z\) equals qi, and Qi — 0 outside this domain. 

From: The Dynamics of Galaxies and Star Clusters, Proceedings of a National 
Conference in Alma-Ata, October 23-26, 1972, p. 71-75, ed. Omarov, T.B. ('Nauka" 
of the Kazakh S.S.R., Alma-Ata, 1973). Translated from the Russian by Alex 
Shprintsen at CITA, Toronto. 
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Clark [2], using Eddington's work, presented differential equations which the 
potential Φ must satisfy if the three isolating quadratic integrals are to exist. How-
ever, he did not find solutions to these equations. The solution has the following 
simple form: 

Φ = X^t^t, Φι = Φ{ςι)- (3) 
i 

Formally, the solution contains three arbitrary functions φι. But they should be 
viewed as parts of one single function φ(α) where q > — a. On the 2-axis, it is 
obvious that Φ = φ(ζ), or <£(|z|) when \z\ > a. 

The three independent quadratic isolating integrals of motion have the follow-
ing form: 

h = Σ ha ( \ p i - φί) ' (i =
 1

5 2, s), (4) 

^here 

1, 

hij — Q>ij9i<) 

a 2 + β 2 ' di3 = 
α2β2 

(5) 

The properties of the coefficients hij are analogous to the properties of the coeffi-
cients gi as presented above. Obviously, I\ is the energy integral. 

Using Poisson's equation for the density p, we derive the expression: 

y^^QiQkPik, 
i,k 

(6) 

where 

iirGpii = Φ,· = Φ (ft), AnGpik 
2ff*{q)qdq 

(7) 

Here G is the gravitational constant, and is an arbitrary function linked to 
the arbitrary function φ(ς) by the equation: 

Φ" + 
q2 — a2 

+ ...)ςφ'-
2a2 

(q2 - αψ 
[φ-φα) + ... + Φ = 0, (8) 

where the ellipses stand for a similar term for /?, and φα — φ(α). Obviously, on the 
2-axis, 4nGp = Φ(^) (or Φ(|^|) when \z\ > a). 

The expression for the density (6) (as well as the expression for the potential 
(3)) is a generalization of the expression derived for axial symmetry [3]. Theorems 
for the non-negativity of the density and the finiteness of the mass remain valid: 
the density is everywhere non-negative if it is non-negative on the 2-axis; the mass 
is finite if Φ(?3 -H> 0 when q —•> oo (both conditions are necessary and sufficient). 
The theorem concerning the equatorial plane of symmetry also remains valid [4j. 
The potential and the density are obviously symmetric relative to the planes χ — 0 
and y — 0. But if the stellar system is self-gravitating (so that Φ = Φ[(/>(^), ç 2j), 
then it is also symmetric to the plane ζ - 0 [φ{-α) = φ{α) when —a < q < a). 

Having set up the function Φ(^) (or φ(α)), we derive a model for the mass 
distribution, allowing for the integral of motion (4). If Φ(<?) decreases rapidly 
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Then 

M 1 + β £ Ψ + ¿T^2 + $ ) (10) 

[po is the central density, 7 is a parameter). This is the generalization of the 
axisymmetric ellipsoidal models examined earlier [3]. 

Let us now turn to the problem of stellar orbits. From expression (4) for the 
integrals of motion Ij, we find: 

where 
Q(q) = hq4 - (a2 + ß2)I2q

2 + a2ß2I3. (12) 

Using pi, it is possible to express the remaining three independent integrals of 
motion: 

r ^ « r ¿ j _ i 

(13) '··· ± I > • { > • ' • Ά 

The first of these integrals is non-conservative, the other two are conservative but 
non-isolating. With fixed Ji, J 2 , J 3 , the expressions for the integrals (13) become 
the equations of the orbit. 

The orbits are bounded by the surfaces q = const. We derive the values of q 
by solving the equation 

Q(q) + (q2-a2)(q2-ß2)4>(q) = 0. (14) 

Three solutions for q2 correspond to a finite orbit (assuming there is equatorial 
symmetry). The negativity of the third derivative of the second term with respect 
to q2 is the condition for there to be no more than 3 solutions. There exist four 
classes of orbits: 1) box orbits, 2) horizontal annular, 3) external vertical annular, 
and 4) internal vertical annular orbits. The three solutions for q2 are to be found 
respectively in the domains: tfi,ç2,43; çi,tf3(2); q2, 93(2); #2 (2), q3. 

Box orbits are reversible: after entering the corner of the box, the direction of 
stellar motion is reversed. Annular orbits are irreversible: motion is possible in two 
opposite directions, but a reversal of direction is not possible. The phase density 
of stars, which in a stationary state is a function of the isolating integrals Jy, may 
depend on them in the domain of irreversible orbits in a double-valued fashion. 
This makes possible centroid motion, despite the quadratic nature of the integrals. 

On the boundaries between the four indicated classes, orbits are unstable, and 
there exist asymptotic orbits. 

with \q\, then the models are greatly flattened along z. Such models are treated 
similarly to the greatly flattened, axisymmetric models [3j. Ellipsoidal models are 
also possible. They may be derived by taking: 

Φ(ς) = 4πΟΡο + . (9) 
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