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Abstract. Perturbation theory is developed for calculating the influence of slow differential rotation on the 
adiabatic nonradial modes of stellar oscillations. The effects of Coriolis forces and ellipticity are analysed 
simultaneously using the perturbation technique for Hermitian operators which is developed up to second 
order in eigenvalues and to first order in eigenvectors. 

1. Introduction 

The effect of slow differential rotation on linear adiabatic oscillations of a star was first 
analysed by Hansen etal. (1977) using a variational-type perturbation technique. A 
general expression for first-order corrections to eigenfrequencies was obtained and 
reduced to a form convenient for computation of a particular type of differential rotation 
distributions. For a wider class of angular velocity distributions, the reduction was done 
by Cuypers (1980). 

In the present paper the perturbation theory is developed up to second order in the 
eigenfrequency and first-order corrections to the eigenfunctions are also determined. In 
addition to the Coriolis effects, the rotational distortion of the stellar configuration and 
centrifugal forces are taken into account. 

2. Perturbation Theory 

Linear adiabatic oscillations of a differentially-rotating star are analysed in an inertial 
frame. The distribution of the velocity of rotation is assumed to be stationary and 
^-independent in a spherical coordinate system (r, 6, q>). General vector equations - the 
moment equation, the Poisson equation for gravitational perturbations and the continuity 
equation - may be written as 

p0 [ - co2u + Q{2ia>z x u - Imcou) + Q2(2imz x u - m2u)] = 

= V(*V • u) - V [u • A, W o - tcrcQ
2)] - p' (V*0 - fcrcQ

2) -

- p o V f - A / c r c ( u - V G 2 ) , (1) 
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V 2 f = AnGp' , (2) 

p' = -V-(ft,u). (3) 

Here a> is the angular frequency of oscillations, u is the vector displacement field, K 
is the adiabatic compressibility (K = r,/>0, where p0 is the unperturbed pressure), pQ and 
\j/0 are the unperturbed density and gravitational potential, p' and ij/' are their Eulerian 
perturbations, rc is the distance from the axis of rotation (z), fc and z are the unit vectors 
in rc, z-directions. The solutions of Equations (1)—(3) must satisfy the usual free-
boundary conditions. 

Equation (1) may be written in operator form 

-CD2U + Q(2icoz x u - Imcou) + Q2(2imz x u - w2u) = 

= -H0u-Q2CP+E)u. (4) 

Here H0 is an integro-differential Hermitian operator corresponding to the zero-order 
boundary-value problem (a nonrotating, spherically symmetric star): 

#oUo = <̂ o«o • (5) 

Operators f and E correspond to the influence of centrifugal forces and ellipticity. They 
are determined by equivalency of Equations (1), (4); an explicit form of these operators 
is not necessary because only their matrix elements, calculated by a variational technique, 
will be needed. 

In Equation (4), Q0 denotes the average angular velocity of rotation, so that 

Q(r, B) = n0Qd(r, 6). (6) 

A small parameter X = Q0/(o0 is then introduced and the solutions of Equation (4) 
are found in the form 

co = co0(l + <T,A + <r2/l
2 + . . . ) , (7) 

u = u0 + u ^ + u2^2 + . . . . (8) 

Substitution of expansions (7), (8) into Equation (4) leads to the system of equations 
of perturbation theory 

[ / -« o - 2 / / o ]u o = 0 , (9) 

[I - a>Q2H0]ul = -2(7^0 - Qd[2m - liz x ]u0 , (10) 

[ / - C0Q2H0]U2 = -2cr1u1 - (a2 + 2<T2)U0 - Qd[2m - 2/2 x ]u, -

- CT, Qj[2m - 2iz x ] u0 -

-Qd[m2-2imzx]u0 + ['F+E]u0, (11) 

where / is the identity operator. Equation (9) represents the zero-order problem; its 
solutions are orthogonal and assumed to be normalized in the sense of a scalar product 
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defined by 

(u, u') = p0u*-u' dv, (12) 

V 

where V is the volume occupied by the star. Scalar multiplication of Equation (10) onto 
u0 gives the first-order correction to eigenfrequency 

<r, = - (u 0 , Qd[m - iz X ]u0) , (13) 

which is the result obtained by Hansen et al. (1977). The first-order correction to the 
eigenfunctions is also found from Equation (10): 

^ < O o + {-Qd[2m-2izx]u0}T, (14) 

/ ' , « • ^ i , n 

^ " ^ V ^ - X i = (-uo, nd[2m - 2iz x K ) , (15) 

where index T denotes orthogonal projection onto the field of toroidal vector spherical 
harmonics and the corresponding term in Equation (14) represents a torsional-type 
correction to the eigenfunctions. The second-order correction to the eigenfrequency is 
found from Equation (11): 

2a2 - c\ = - (Qd[2m - 2iz x ] u0, u,) - m (u0, Qd[m - 2iz x ] u0) + 

+ (u0,[V+E]uo). (16) 

The reduction of the scalar products in (13)—(16) to a form convenient for computation 
(unidimensional integrals containing radial eigenfunctions) is given by Vorontsov 
(1981). The angular velocity distribution is represented by a finite set Q = 
= Q0 Y,/Q<ii(r)Yio(8> 9) a n d t n e angular dependences are reduced to a computation 
of angular integrals containing three vector spherical harmonics, which is simply 
performed in terms of Wigner's 3-j symbols. 

Computationally-convenient formulae (Vorontsov, 1981) are given for the case 
dQ/dz = 0. The simplifying assumption was used that the effect of differentiality of 
rotation on the stellar configuration is relatively small, i.e., the theory of rotational 
distortion of a star for the case of rigid rotation is appropriate. A corresponding 
expression for the matrix elements of the operator "P + E is given by Vorontsov and 
Zharkov (1981), taking into account possible discontinuities in density distribution in 
a star. 
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