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Abstract

In the preliminary design phase of aircraft design, estimating the production cost accurately is a challenging task.
At this stage, many design parameters that affect the overall cost are still undefined. This paper establishes cost-
estimation models for civil, commercial aircraft using a parametric cost analysis (PCA) approach. Aircraft are
characterised based on their size, ranging from a wide body to executive jets, into four categories. Key design
parameters, such as maximum take-off weight, number of passengers, range, wing area, span, fuselage length, to
name a few, are likely to be available in the preliminary design stage and significantly impact the aircraft design.
These variables either directly or indirectly affect the overall production cost or performance. The PCA approach
includes both correlation and multiple linear regression techniques. The empirical models thus developed were able
to predict the aircraft cost with an error of less than +4% for all aircraft categories considered. Two aircraft in each
defined category were not part of the PCA models and were used to verify the models. The proposed models provide
the ability to estimate the aircraft cost quickly in the early stages of the preliminary design phase and provide the
possibility of performing parametric studies involving the key variables to determine the cost sensitivity to the main
design parameters.

Nomenclature

b wingspan (m)

Coi) cost estimate using linear regression (MS$)

Cost.(Com cost estimate using correlation analysis (M$)

C,, [p—vaue] cost estimate using p-value analysis (M$)

C, . [] cost estimate where suffix x denotes Aircraft Type A, B, C, or D, and suffix y denotes Linear

regression (L), correlation analysis (Corr.) or p-value analysis (p-value) (M$)

D, fuselage diameter (m)

F fuel capacity (L)

L, aircraft length (m)

M, Mach number

PAX number of passengers (single class)

R range (km)

S wing area (m?)

T engine thrust (kN)

W, maximum take-off weight (tonnes)

A term coefficient in the correlation model

© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society.

https://doi.org/10.1017/aer.2022.56 Published online by Cambridge University Press


https://doi.org/10.1017/aer.2022.56
https://orcid.org/0000-0001-5930-6176
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2022.56&domain=pdf
https://doi.org/10.1017/aer.2022.56

The Aeronautical Journal 269

1.0 Introduction

Developing a new aircraft is a complex process since different design configurations have different tech-
nological and financial implications. Estimating the overall aircraft cost at the preliminary design stage
is challenging using the standard cost forecasting techniques due to the lack of available sampled data.
However, for the potential success of any aircraft program, the cost is considered a crucial indicator.
In the early stages of the project, the program evaluation team is unlikely to know the design details
and hence manufacturing implications. Amidst such uncertainties, assessing the viability of a program
is a tricky task, which needs to be predicted accurately and timely. Consequently, a reliable estimating
technique that enables cost-forecast is of high importance for any new commercial aircraft development.
Availability of accurate costs decreases the risks associated with the program investment and enhances
knowledge and accuracy, facilitating decision-making tasks [1]. Much of the cost estimation techniques
are available for military aircraft; however, cost prediction models do not exist for commercial aircraft.
If they do, they exist in a very rudimentary form. Therefore, it is necessary to develop a cost estimating
technique for civil aircraft, which could be reliable amidst scant information and limited data, as an aid
to evaluating the viability of new programs, as a function of critical parameters likely to have the most
significant effect [2].

Methods for estimating the product cost in the fast-moving consumer goods market and general man-
ufacturing are well established, but costs are unsuitable for predicting civilian aircraft due to small-scale
production and the shortage of sample data. Insufficient information could lead to a sizable forecasting
error using the common regression technique. It should be noted that several design parameters affect
aircraft performance and costs. Moreover, predicting the production cost throughout the program devel-
opment is desirable, as the key variables often change to reflect altered performance requirements. As
the design complexity increases, the capital investment required for a successful program increases.
Accordingly, the aircraft design process must accommodate design decisions based on the cost data and
control the effective cost parameters during the design process to decrease the development cost. At the
beginning of the design process, obtaining the cost is meaningful, as more than 70% of the aircraft cost
lifecycle is assigned through the conceptual design phase [3].

Several methods for estimating aircraft cost have been put forward during the recent past. Researchers
categorised these techniques into several approaches. Tirovolis et al. [4] categorised the existing tech-
niques into two approaches: detailed cost accounting techniques [5] and parametric methods optimised
for minimal cost [6]. Castagne et al. [7] categorised them into three approaches: detailed, parametric
and analogous. In the first (detailed) approach, the material quantities and prices, the labour and rates,
are estimated to determine the estimated direct costs of the activity or the product. More specifically,
this approach requires considerable detailed information about the product, which turns out to be very
costly and time-consuming, but it is the most accurate estimate. When the required work is decomposed
into elementary activities, operations, or tasks to estimate the product cost, it is called Activity Based
Costing (ABC). For estimation purposes, this technique (ABC) is effectively employed in the design
stage as it is commonly utilised as a part of the total cost management [8]. In the second (parametric)
approach, the cost of a product is estimated using past data and trends used for forecasting purposes. The
approach comprises estimating cost relationships developed and applied to obtain the relations between
the measurable attributes/parameters, the schedule, and the cost [9]. In addition, this approach was fur-
ther applied to estimate the design process cost [10]. When using this technique, the cost estimates can
be obtained quickly if the estimating cost relations are available.

In contrast, a significant effort is required for gathering past data and generating relationships. For
products using up-to-date technologies, this approach is not well suited. The third (analogous) approach
analogises with a similar existing product to estimate the cost. It works very well with novel products,
but it requires a complete familiarity and expert judgement with the product [11].

Recently, Xie et al. [2] categorised the cost estimating techniques into six approaches: simulation,
equalisation engineering value rate, empirical estimation, analogy, engineering estimation and para-
metric estimation. The simulation approach can evaluate multiple aspects during the preliminary design
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phase. Its main shortcoming is that it requires expert experience in a variety of fields. The equalisation is
applied in the feasibility demonstration stage having a template structure, but its outcomes are not well
behaved for various reasons. The empirical estimation approach is fast and low-cost, mainly applied in
the detailed design phase. One fundamental limitation is due to subjectivity [2]. However, analogy esti-
mation is the simplest among these approaches, mainly when data are challenging to achieve or acquire.
It is easy and less time-consuming to estimate the overall project cost. However, accuracy seems deficient
due likelihood of two projects being the same [11].

Lastly, the parametric estimation approach employs a mathematical model to extract the correlation
between aircraft characteristics and development costs. It is based on statistical analysis, which requires
parameters with significant effects to be assigned. This is followed by setting up the model technical
performance factors and the historical cost data. Although the neural network approaches achieve suc-
cessful estimation, they can recognise the relationship between the parameters and the development cost,
but it has a poor estimation accuracy with limited data. In contrast, the engineering estimation approach
is suitable for the latter stages of the design process, where the data are sufficiently refined [12]. For
instance, the neural network was used to solve cost estimation challenges in the early civil building
design process [13]. The researchers noticed that the estimation accuracy improves when the number of
samples increases.

Furthermore, the neural network was combined with the regression technique to obtain a successful
model for urban railways cost estimation [14]. Unfortunately, the neural network has not successfully
estimated the developing aircraft cost due to the shortage of information, the number of samples, and
the difficulty of obtaining the relevant cost parameters. This paper presents the parametric cost analysis
(PCA) to estimate the aircraft cost for various aircraft categories to overcome such issues. It is suited
during the preliminary design phase. Both correlation and multiple linear regression techniques are
employed in the PCA method to investigate the critical design parameters for establishing the cost mod-
els. A simple regression model, which is widely used as a first, easy, is also presented in this paper for
comparison purposes and highlights the PCA model accuracy. A comparative summary of the presented
techniques is also introduced.

It should be noted that the models developed in this paper for estimating the designed aircraft cost are
based on adjusted prices for the year 2018. In general, all market measures, such as inflation/deflation,
CPI, etc., directly affect the price of the new product. These measures can be factored appropriately
after estimating the newly designed aircraft price. In a similar way, the new cost of new technologies
that either result in a price increase or decrease can be accounted for by using an appropriate weighting
factor.

2.0 Aircraft categories and design parameters

The first and foremost requirement to obtain accurate cost estimation models is to have current and
accurate data. Since it is meaningless to estimate the cost of an old or retired aircraft as it has different
characteristics (i.e. old technologies and different materials). Thus, all the aircraft used in this paper are
not just in service, but also most are still in production.

The second consideration is that the sampled data should have similar design characteristics and
features. Therefore, the sampled data, which are utilised for both developing and testing processes, are
categorised into four categories based on size, as follows:

Large-size aircraft (category A): It includes only Airbus and Boeing aircraft. Characterised by long-
range, the number of passengers is more than 250, two-aisles seat configuration, maximum take-off
weight greater than 200,000kg, and total aircraft length greater than 50m.

Mid-size aircraft (category B): It includes mainly Airbus and Boeing aircraft. Characterised by
medium-range, the number of passengers between 110 and 250, single-aisle seat configuration, max-
imum take-off weight greater than 50,000kg and less than 200,000kg, and total aircraft length in the
range of 30 to 50m.
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Table 1. List of aircraft used for establishing the cost-estimating models

Category A Category B Category C Category D
(Large-size aircraft) (Mid-size aircraft) (Small-size aircraft) (Personal aircraft)
777-200ER 737-700 CRIJ-700 Cirrus Vision SF50
777-300ER 737-800 CRIJ-900 Cessna CJ1

777-8 737-900ER CRJ-1000 Cessna CJ2+

777-9 737-MAX 8 E-170 Cessna CJ3+

787-8 737-MAX 9 E-175 HondalJet

A330-200 A319 ATR-42 Embraer Phenom 100
A330-800 A320 ATR-72 Embraer Phenom 300
A330-900 A321 An-158 Cessna CJ4
A350-900 E-190 M90 Gulfstream G100
A350-1000 E-195 M100 Cessna XLS+

Small-size aircraft (category C): It is characterised by short-range, number of passengers between 70
and 110, single-aisle seat configuration, maximum take-off weight less than 50,000kg, and total aircraft
length between 20 to 40m.

Personal aircraft (category D): It is characterised by a mainly very short-range, number of passengers
less than 15, maximum take-off weight of less than 10,000kg, and total aircraft length of less than 15m.

Table 1 lists the utilised aircraft for establishing the estimating aircraft-cost models segregated into
the four aircraft categories A, B, C, and D.

There is a dearth of information in the early stages of the preliminary aircraft design, especially per-
taining to cost estimation, which is affected by many design choices and design parameters. There are
many aspects of aircraft design in the conceptual and preliminary design stages that directly impact the
final cost. Most of the choices and design parameters are correlated to each other to different degrees.
The multi-collinearity issue occurs when two or more parameters are highly correlated. This issue
makes selecting the most important parameters difficult or causes problems ranking them based on their
importance. Thus, several regression techniques assume that the dataset is free of multi-collinearity. In
contrast, multi-collinearity does not significantly impact selecting the design parameters, as this work
does not apply the parameter-ranking issue. More specifically, these parameters are derived from either
customer requirements or competitor analysis or may even be mandated by legislation. In aircraft design,
weight, geometry and performance are the most significant issues to be considered. Maximum take-off
weight (W,,) and fuel capacity (F) are selected to account for the weight. Wing area (S), wingspan
(b), aircraft length (L), fuselage diameter (Dy), and the number of passengers (PAX) are selected to
account for geometry. Lastly, range (R), maximum cruise speed (Mach number, M), and engine thrust
(T) are selected to account for performance aspects. These selected parameters, which are described in
the following, significantly impact almost every aspect of design and cost. Besides, they are likely to
be known/evaluated during the conceptual design phase and/or available during the preliminary design
phase.

The maximum take-off weight (W, kg) is selected as the first parameter to be considered along with
all design phases. The significance of this variable affects almost every aspect of aircraft performance,
thrust loading, wing loading, take-off performance, climb and cruise performance, range, endurance,
turning performance and other performance metrics. In addition, there are many methods for estimating
the maximum take-off weight during the conceptual and preliminary design phases.

The number of passengers (PAX) is generally a variable available at the conceptual design phase as
one of the critical requirements. The number of passengers determines, along with the fuselage diameter,
determines the seating arrangement, and has a bearing on fuselage length. This variable has a pro-
nounced effect on the aircraft cost, as the cost associated with the structure goes up. The indirect effect
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is the tail arm and its impact on dynamic and static stability, requiring larger tail volume coefficients,
thereby increasing areas of the empennage and ultimately cost.

From an aircraft performance aspect, the aircraft range R (km) is also a design requirement when
examining the Breguet Range Equation:

=) (i)~ (4) o )

The range is affected by aerodynamics (flight speed (V) and gravity acceleration (g)), propulsion
(SFC = fuel mass-flow rate/thrust), lift (L) and drag (D), and structures (initial weight (W) and final
weight (W;)). This translates to efficient engines and better aerodynamics, requiring boundary layer
control, lower drag, a more robust structure with lower weights to yield a higher range and therefore
increased aircraft cost.

Maximum cruise speed (Mach number, M) is selected, affecting the mission or stage time. Increasing
this variable implies the availability of more excess power to accelerate the aircraft after overcoming the
drag. Inevitably bigger engines with increased thrust are required, which implies more weight for the
engines and the structure as the wing loading goes up. Maximum cruise speed depends not only on
the thrust, but also on the drag, which needs to be reduced.

Engine thrust 7 (N) is also one variable available at the onset of the preliminary design stage. The
thrust available limits the total drag that can be permitted, affecting the aerodynamic design, which also
affects structural design to a large extent.

Aircraft length L, (m) is one of the leading design parameters, which is dependent on the number of
passengers and aisle configuration, with standard fore and after body requirements.

Fuselage diameter D, (m), this variable is mainly dependent upon seating requirements.

The aircraft wing area S (m*) depends on wing loading that comes about from constraint analysis,
requiring many simultaneous constraints to be met.

Wingspan b (m) has roots in the choice of aspect ratio and wing loading.

Fuel capacity F (L) needs to be determined. It affects the maximum take-off weight, affecting the
range and performance of the aircraft. Due to volumetric storage requirements, the fuel capacity also
affects the geometry of the aircraft wing and/or fuselage design.

3.0 The proposed approach

As mentioned earlier, there is a lack of information on the present-day civil and military aircraft cost. The
last updated available data are that for Airbus (for the year 2018) and Boeing (for the year 2019), which
are extracted from their official websites [15, 16]. For establishing accurate cost-estimation models, the
year 2018 is set as the price basis in this paper. Note that the Airbus and Boeing aircraft prices are for
the year 2018. They are listed in categories A and B are achieved from Ref. 17. For categories C and D,
the aircraft prices are extrapolated from different websites, where the data is modified or updated to the
year 2018. As mentioned earlier, to obtain the estimated aircraft price at the year of manufacture, all mar-
ket measures and new technologies (increment/decrement) are factored appropriately after estimating
the designed aircraft price, using the models presented in various categories.

In this paper, Parametric Cost Analysis (PCA) technique establishes the cost-estimation models for
all aircraft categories [18]. PCA is a dimensionality reduction technique specifically designed to reduce
several design parameters into a smaller set with extremely high accuracy. The proposed methodology
employs grey correlation in conjunction with the p-value analysis, similar to Chen et al. [18]. More
specifically, two main improvements were made to enhance the cost-estimation accuracy effectively.
The first improvement is using extended sample data and classifying them into four categories based on
the aircraft size. The second improvement is replacing some design parameters (so-called cost-driven
factors), which are more efficient and aligned with customer requirements. As a result, the values of the
design parameters are easily determined in the early stage of the conceptual design. In addition, these
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Table 2. List of current aircraft take-off weights and their prices (2018)

Aircraft  Aircraft Price W, Aircraft  Aircraft Price W,
category  type (M$) () category  type (M$) (t)
A 777-200ER 2952 297.55 C CRJ-700 42.6 34
777-300ER  361.5 351.53 CRJ-900 47.3 38.33
777-8 3949 351.8 CRJ-1000 50.5 41.64
777-9 425.8 351.5 E-170 42 38.6
787-8 239 227.93 E-175 46.7 40.37
A330-200 238.5 242 ATR-42 23 45.9
A330-800 259.9 251 ATR-72 27.7 30.48
A330-900 296.4 251 An-158 40.4 18.6
A350-900 3174 280 M90 45.3 23
A350-1000 366.5 316 M100 473 42.5
B 737-700 85.8 70.1 D Cirrus Vision SF50 2.3 2.72
737-800 102.2 79 Cessna CJ1 5.5 4.85
737-900ER  108.4 85.1 Cessna CJ2+ 7 5.67
737 MAX 8 117.1 82.191 Cessna CJ3+ 8.45 6.3
737 MAX 9 124.1 88.314 HondaJet 5.3 4.85
A319 92.3 75.5 Embraer Phenom 100 5.6 4.8
A320 101 78 Embraer Phenom 300 945 8.15
A321 118.3 93.5 Cessna CJ4 9.4 7.76
E-190 52 51.8 Gulfstream G100 12.5 11.1
E-195 54.7 52.3 Cessna XLS+ 11.3 9.15

design parameters are strongly correlated with estimated aircraft cost, and any change in their values
will result in changes in the estimated cost produced.

Moreover, each aircraft category results in very different prediction equations due to design complex-
ities. Conventionally only maximum take-off weight was used in cost prediction; incorporating other
design variables will significantly improve prediction accuracy and its ability to perform parametric
trade-offs. The simple linear regression technique commonly used in terms of ($/kg) in many aircraft
design textbooks is also presented here as a fast cost-estimation method and for comparison purposes.

3.1 Linear regression

Table 2 lists the current aircraft prices (as in the year 2018) with their relevant maximum take-off weights.
Simple linear regression is used to determine the best empirical model. The graphical representation

of the data in Table 2 is shown in Fig. 1. The equation is determined to be:

Couyry = 1.0908 % W, +4.3515 2)

C,syz) is the cost estimate using linear regression.

This method is easy, fast, and commonly used as a primary estimating cost method in the concep-
tual design phase. Most modern aircraft design textbooks use this method to determine the aircraft
price, mainly calculating the direct operating cost (DOC) [19, 20]. The main disadvantage of this sim-
ple method is its poor accuracy. It is acceptable in the conceptual design phase; however, in the advanced
stages of design, many trade-offs are needed. Each design trade-off has a cost implication, and better
cost estimation models are necessitated to perform parametric analysis due to changes in the key vari-
ables. The ten key design variables listed in section 2 are assumed to have a considerable effect on the
overall cost. It shall be seen later that not all variables are required to predict the cost. Only the variables
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450 y = 1.0908 x +4.3515 °
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Maximum take-off weight (t)

Figure 1. Current aircraft prices versus their maximum take-off weights.

that significantly impact the cost will be retained in the final models, since these variables are identified
using correlation or p-value analysis.

3.2 Correlation analysis

Correlation analysis requires the correlation between system design parameters (independent variables)
and the cost parameter (dependent variable) to be obtained and the degree of the correlation (p) between
these design parameters. As mentioned in section 2, the ten design parameters for each aircraft category
are utilised in this correlation analysis. The correlation degree has a value that varies between (—1)
and (+1). The negative value (—1) means that the two parameters are entirely negatively correlated and
vice versa. The range |I| > p > [0.7] is indicative of a strong correlation between any two parameters,
respectively [21]. This paper only includes strongly correlated design parameters to the cost parameter.
Next, linear multivariable regression is applied using these strong parameters to obtain the coefficients
of the correlation model. It is noted that if any two design parameters have a strong correlation between
them, then these parameters have a multi-collinearity feature, which in turn, affects the accuracy of the
estimated model assumed to be of the form:

Cesticors = do + AWy, + AR + A PAX + ALy + AsT + AeM,, + A7 F + AgS + Aob + Ao Dy 3)

3.3 p-value analysis

The significance of every design parameter is determined via analysing the p-value of the regression
model coefficients. The significance of the design parameter is high if it has a low p-value and vice versa.
Note that eliminating low significant parameters will simplify the mathematical model. Analysing and
determining the model using fewer parameters is much easier than the model of many parameters, as
long as there is no appreciable decrease in the model accuracy.

However, this technique is an iterative procedure. The design parameter with the highest p-value is
removed in each iteration if its value is above 0.05. The iteration procedure is stopped when all remain-
ing design parameters in the current loop have p-values less than 0.05. These remaining parameters are
utilised to establish the final regression model. For example, the first regression model comprises all
ten design parameters. Due to the shortage of sample data in each category, the two design parame-
ters with the lowest correlation degree are eliminated. Thus, the first regression model has only eight
design parameters. Then, the second regression model includes only seven parameters after removing
the one with the highest p-value. The third iteration will contain six, and so on. The procedure goes on
until all parameters have p-values less than 0.05. The technique was applied to all aircraft categories in

sequence. Each identified equation is of the form with one or more variables eliminated with p-values
of >0.05.
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4.0 Aircraft cost-estimation models

Each category has ten aircraft (input sample data). Values of the input design parameters of each aircraft
category are listed in Table 3 [17, 22]. These parameter values are employed to develop the estimated
aircraft cost models using correlation analysis and multiple linear regression (p-value analysis). In addi-
tion, a simple regression model (Equation 2) is used to estimate the aircraft cost based on its maximum
take-off weight for comparison purposes.

4.1 Correlation models

Based on the data presented in Table 3, the correlation analysis is applied first. For category A, the corre-
lation matrix is shown in Table 4(a). The multi-collinearity feature is evident in the table, where several
correlated coefficients between design parameters themselves have strong correlations (p > 0.7). These
coefficients, presented in bold font in the table, show strong correlations, such as that noted between W ,,,
and PAX.

Interestingly, the range variable has very little correlation with aircraft price. On the other hand, the
strongly correlated design parameters to the price parameter, recognised by the bold and underlined font
in the table, are used to establish the equation of the correlation model (category A). The final correlation
model for aircraft category A is:

Cos aeorn = 2.294 % W,, + 0.1054 5 PAX + 447 % L, — 1.1 % T + 0.000075 % F — 1.448
S+0.17533 % b — 239.421 @)

A similar procedure was performed for the other aircraft categories. Tables 4(b), (c), and (d), show
the correlation matrix for categories B, C and D, respectively.
Cost estimation Equations for Aircraft Categories B, C and D were determined as follows:

Cos.Beorn =0.627 % W, +0.312 %« PAX — 0.0736 %« T + 4.404 x b — 0.263 + S — 0.00143
* F'40.0067 * R — 5.827 + D; — 100.436 5)

Cons.cteom = 1.28 % W,, — 2.946 % L, — 0.00722  F + 0.838 % PAX + 1.131 % T — 0.00646
* R — 0.6266 % S + 133.018 % M, — 4.787 (6)

Cost. picor = 0.082 % b — 0.365 %« PAX + 1.3 % L, +0.00152 % F — 0.016 * W,
+0.008 « T+ 1.324 * M, — 0.00146 « R — 9.426 )

4.2 Multivariable regression models based on p-value

The main objective of applying multiple linear regressing is to reduce the number of the design param-
eters in the corresponding correlation model with acceptable error. This reduction simplifies the final
model with fewer variables in predicting the aircraft cost, analysing the design parameters and speeding
up the decision-making task. As mentioned earlier, each category has ten aircraft (samples). Thus, the
total number of dependent and independent variables should be less than the sample number to per-
form the linear regression correctly. Because there is only one dependent variable (the cost), only eight
design parameters are included in the first cycle of the p-value analysis. Therefore, two design parame-
ters with the lowest correlation degrees should initially be eliminated for each category. For example, in
category A, the fuselage diameter D, and the Mach number M, are removed, while the aircraft length
L and the Mach number M,, are removed in category B (see Table 4). The wingspan b and the fuselage
diameter D; are removed for category C, whereas the wing area S (insufficient data available) and the
fuselage diameter D, are removed in category D.
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Table 3. The aircraft prices and the values of the input design parameters of all aircraft categories
Design parameters

Aircraft Aircraft W, R L, Dy S b T F

category type ) (km) (m) (m) (m?) (m) (KN) (L) PAX M,

A 777-200ER 297.55 13,100 63.7 6.2 427.8 60.93 417 171,171 440 0.89
777-300ER 351.5 13,600 73.9 6.2 436.8 64.8 513 181,300 550 0.89
777-8 351.8 13,650 69.8 6.2 516.7 71.75 470 198, 000 535 0.89
777-9 351.5 13,500 76.7 6.2 516.7 71.75 470 198, 000 565 0.89
787-8 227.93 13,620 56.7 6.85 377 60.12 280 126, 206 359 0.9
A330-200 242 13,430 58.8 5.64 361.6 60.3 316 139, 090 406 0.89
A330-300 242 11,750 63.69 5.64 465 64 316 139, 090 440 0.86
A330-800 251 15,000 58.82 5.64 465 64 320 139,090 406 0.86
A330-900 251 13,300 63.66 6 442 64.75 320 139,090 440 0.86
A350-1000 316 16, 100 73.88 6 464.3 64.75 432 159, 000 475 0.89

B 737-700 70.1 5,500 33.6 3.8 124.6 35.8 89 26,035 149 0.82
737-800 79 5,400 39.5 3.8 124.6 35.8 107 26,035 189 0.82
737-900ER 85.1 5,500 42.1 3.8 124.6 35.8 120 29, 600 215 0.82
737-MAXS 82.3 6,570 39.52 3.8 127 35.9 123 25,940 210 0.82
737-MAX9 88.3 6,570 42.16 3.8 127 35.9 123 25,940 220 0.82
A319 75.5 6, 800 33.84 4.05 124 35.8 120 29, 840 156 0.82
A320 78 6,100 37.57 4.05 124 35.8 120 27,200 186 0.82
A321 93.5 5,920 44.5 4.05 128 35.8 147 30, 000 236 0.82
E-190 51.8 4,500 36.24 3 92.55 28.72 89 16,420 114 0.82
E-195 52.3 4,260 38.65 3 92.55 28.72 89 16,420 124 0.82

C CRIJ-700 34 2,553 323 2.7 70.6 23.2 61.3 11,200 78 0.82
CRIJ-900 38.33 2,870 36.2 2.7 71.1 24.9 64.3 11,200 90 0.82
CRIJ-1000 41.64 3,000 39.1 2.7 77.4 26.2 64.3 11,115 104 0.82
E-170 38.6 3,980 29.9 2.74 72.72 26 63 11,760 78 0.82
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Table 3. Continued.

Design parameters

Aircraft Aircraft Wi R L, Dy S b T F

category  type (t) (km) (m) (m) (m?) (m) (KN) (B) PAX M,
E-175 40.37 4,080 31.7 274 7272 26 63 11,760 88 0.82
ATR-42 18.6 1,326 22.67 2.9 54.5 2457 40 5,670 48 0.52
ATR-72 23 1,454 27.17 2.9 61 27.05 45 6,330 72 0.49
An-158 43.7 2,500 30.8 3.1 87.3 28.56 67 16,200 99 0.82
M90 42.8 3,770 35.8 2.95 85.3 29.2 78.2 12,100 88 0.78
M100 42 3,540 34.5 2.95 85.8 27.8 78.2 12,100 84 0.78

D Cirrus Vision SF50 2.72 1,100 9.42 1.65 - 11.8 8 1,050 6 0.53
Cessna CJ1 4.85 2,800 13 1.6 22.3 14.4 8.74 1,800 7 0.68
Cessna CJ2+ 5.67 3,300 14.53 1.6 25 15.2 11.08 2,220 9 0.72
Cessna CJ3+ 6.3 3,780 15.6 2 27.32 16.26 12.5 2,670 9 0.72
Hondalet 4.85 2,600 13 1.6 - 12.12 9.1 1,400 7 0.73
Embraer Phenon 100 4.8 2,150 12.8 2 — 12.3 7.7 1,450 7 0.71
Embraer Phenom 300 8.15 3,730 15.9 2.1 - 16.2 15.47 2,800 8 0.78
Cessna CJ4 7.76 4,000 16.26 1.5 30.66 15.5 16.11 3,300 10 0.78
Gulfstream G100 11.1 5-470 16.9 1.55 294 16.64 18.9 5, 800 9 0.80
Cessna XLS+ 9.15 3-440 16 1.8 - 17.17 18.3 3,800 9 0.77
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Table 4. The correlation matrices for the four aircraft categories

(a) Category A

Design Price M, R L, T F b S D,
parameters (M$)  (t) (km) PAX (m) (kN) M, @L) (m) (m?) Dy (m)
Price (M$) 1

M, (1) 0.937 1

R (km) 0.340 0.277 1

PAX 0.940 0.939 0.153 1

L, (m) 0954 0915 0.257 0.922 1

T (kN) 0.881 0985 0.211 0916 0.898 1

M, 0.210 0.307 —0.013 0.098 0.239 0.305 1

F (L) 0.877 0949 0.147 0901 0.793 0916 0.272 1

b (m) 0.883 0.768 0.433 0.821 0.729 0.661 —0.006 0.781 1

S (m?) 0.818 0.687 0.461 0.741 0.676 0.598 —0.284 0.689 0.907 1

D; (m) 0.139 0.184 —-0.095 0.003 0.083 0.157 0.729 0.182 0.020 —-0.117 1
(b)Category B

Design Price W, T F R b S D, L,
parameters  (M$) ) PAX  (kN) @L) (km) (m) (m?) (m) (m) M,
Price (M$) 1

W, (O 0.978 1

PAX 0957 0.964 1

T (kN) 0.834 0.884 0.877 1

F (L) 0.828 0.885 0.754 0.762 1

R (km) 0.780 0.738 0.607 0.698 0.780 1

b (m) 0.888 0.886 0.765 0.657 0.939 0.812 1

S (m?) 0918 0916 0.807 0.701 0.936 0.817 0.996 1

D ¢ (m) 0.827 0.859 0.716 0.743 0.962 0.836 0.955 0.950 1

L ; (m) 0.574 0.605 0.770 0.651 0.246 0.058 0.198 0.262 0.159 1

M, 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
(c) Category C

Design Price W, L, F T R S b Dy
parameters  (M$) (1) (m) L) PAX (kN) (km) (m?) (m) (m) M,
Price (M$) 1

W, (1) 0911 1

L; (m) 0.923 0.801 1

F (L) 0.758 0.920 0.591 1

PAX 0.842 0.876 0.847 0.798 1

T (kN) 0.839 0.920 0.781 0.784 0.706 1

R (km) 0.802 0.809 0.589 0.647 0.535 0.783 1

S (m?) 0.733 0.920 0.687 0.863 0.782 0.933 0.638 1

b (m) 0.157 0459 0.223 0354 0414 0518 0.282 0.670 1

Dy (m) —0.362 0.005 —0.307 0.115 —0.059 0.112 —0.250 0.348 0.731 1

M, 0915 0904 0.743 0.895 0.755 0.788 0.779 0.726 0.052 —-0.296 1
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(d) Category D

Design Price W R L, T F b Dy
parameters  (M$) (t) (km) (m) (kN) @L) PAX M,. (m) (m)
Price (M$) 1

W, (O 0.984 1

R (km) 0918 0913 1

L; (m) 0951 0904 0.931 1

T (kN) 0950 0956 0.836 0.860 1

F (L) 0929 0959 0910 0.817 0.919 1

PAX 0815 0.737 0.806 0.889 0.778 0.712 1

M, 0865 0.838 0.844 0.931 0.733 0.701 0.744 1

b (m) 0899 0.844 0.828 0.889 0.869 0.799 0.821 0.694 1

D; (m) 0.280 0.236 0.143 0.281 0.172 0.104 0.035 0.257 0.269 1

Therefore, only eight parameters are included in the first round of p-value analysis. Next, the design
parameter that has the highest p-value is removed. Then, the next cycle is performed with one less
variable. The process continues until all remaining design parameters have a p-value less than 0.05.

Starting with aircraft category A, the first cycle showed that the PAX parameter has the highest
p-value (0.858). In the second cycle, the wingspan b parameter was removed. Then, the fuel capac-
ity F and the range R were removed in subsequent cycles. The reduced cost equation was determined
to be:

CouA[pvatie] = 1.92 % W,, +4.9357 % L, — 0.8883 T +0.15545 % § — 289.755 (8)

By similar procedure, cost equations determined for the other aircraft categories are computed to be:

Cont 5fp-vatie] = 0.536 % W,, +0.29 % PAX — 0.00145 % F +0.00615 % R + 4.058
xb—9.23 % Dy — 101.334 9)

Cosrclpratue] = 1.28 % Wy, — 2.946 % L, — 0.00722 % F + 0.879  PAX + 1.131 % T — 0.00646x
R —0.6266 % S + 133.018 % M, — 4.787 (10)

Conr plpsatne] = 142 % Ly — 0.00153 % R + 0.00156 + F — 0.37 + PAX — 8.833 (11)

5.0 Results and discussion

Equations (4)—(11) are used to estimate aircraft costs which are compared with the actual aircraft costs
to determine the difference (error) between them, and the error percentage of each aircraft is additionally
calculated, as listed in Table 5.

Several measures and indexes are available in statistical analysis to evaluate the cost-estimation per-
formance of such models. The first measure is the mean error (ME), which denotes the average of all
differences between the estimated values and the actual values. The second measure is the mean absolute
error (MAE), which uses the absolute difference values between actual and estimated costs. Mean per-
centage error (MPE) is another measure that refers to the average of the percentage differences between
the estimated and the actual values. The actual differences contain positive and negative values, which
can cancel each other out; as a result, they can be used as a biased measure in cost estimations. The fourth
measure is the mean absolute percentage error (MAPE), commonly utilised in the model evaluation due
to its simplicity and convenience. Finally, the R-squared is an additional index utilised to obtain how the
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Table 5. The results of the three models for each aircraft category (Cost in M$)

Ces. [corr] CeJt. [p—val] s.[L]

Aircraft Actual Estimated Error Error Estimated Error Error Estimated Error Error
type aircraft cost cost (Dift.) (%) cost (Dift.) (%) cost (Dift.) (%)
777-200ER 295.2 289.65 —5.55 —1.88 292.17 —3.03 —1.03 328.39 33.19 11.24
777-300ER 361.5 359.97 —1.53 —0.42 361.94 0.44 0.12 387.04 25.54 7.07
777-8 394.9 390.85 —4.05 —1.03 393.03 —1.87 —0.47 387.33 -7.57 —-1.92
777-9 425.8 424.17 —1.63 —0.38 426.51 0.71 0.17 387.01 —38.79 —9.11
787-8 239 236.32 —2.68 —1.12 237.61 —1.39 —0.58 252.74 13.74 5.75
A330-200 238.5 239.50 1.00 0.42 240.71 2.21 0.93 268.03 29.53 12.38
A330-800 259.9 264.12 4.22 1.62 266.96 7.06 2.72 277.81 17.91 6.89
A330-900 296.4 291.44 —4.96 —1.67 290.85 —5.55 —1.87 277.81 —18.59 —6.27
A350-900 3174 309.65 =1.75 —2.44 314.03 —-3.37 —1.06 309.32 —8.08 —2.55
A350-1000 366.5 367.58 1.08 0.30 370.54 4.04 1.10 348.43 —18.07 —4.93
737-700 85.8 85.83 0.03 0.03 86.04 0.24 0.28 81.24 —4.56 —-5.32
737-800 102.2 101.89 —0.31 —0.30 101.88 —-0.32 —0.31 90.91 —11.29 —11.05
737-900ER 108.4 108.44 0.04 0.04 108.20 —0.20 —0.19 97.54 —10.86 —10.02
737 MAX 8 117.1 117.05 —0.05 —0.04 117.46 0.36 0.31 94.38 —22.72 —19.40
737 MAX 9 124.1 124.01 —0.09 —0.07 123.67 —0.43 —0.35 101.03 —23.07 —18.59
A319 92.3 92.05 —0.25 —0.27 92.04 —0.26 —0.29 87.11 -5.19 —5.63
A320 101 101.10 0.10 0.09 100.78 —-0.22 —-0.22 89.82 —11.18 —11.07
A321 118.3 118.21 —0.09 —0.08 118.57 0.27 0.22 106.67 —11.63 —9.83
E-190 52 52.39 0.39 0.75 52.45 0.45 0.87 61.35 9.35 17.99
E-195 54.7 54.22 —0.48 —0.88 54.17 —0.53 —0.98 61.90 7.20 13.16
CRIJ-700 42.6 42.61 0.01 0.03 42.61 0.01 0.03 42.01 —0.59 —1.38
CRJ-900 47.3 47.31 0.01 0.03 47.31 0.01 0.03 46.72 —0.58 —1.23
CRJ-1000 50.5 50.51 0.01 0.03 50.51 0.01 0.03 50.31 -0.19 —0.37
E-170 42 42.02 0.02 0.05 42.02 0.02 0.05 47.01 5.01 11.93
E-175 46.7 46.72 0.02 0.04 46.72 0.02 0.04 48.93 2.23 4.79
ATR-42 23 23.01 0.01 0.03 23.01 0.01 0.03 54.94 31.94 138.89
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Table 5. Continued.

Ces. [corr] Cm. [p—val] s.[L]

Aircraft Actual Estimated Error Error Estimated Error Error Estimated Error Error
type aircraft cost cost (Dift.) (%) cost (Dift.) (%) cost (Diff.) (%)
ATR-72 27.7 27.71 0.01 0.03 27.71 0.01 0.03 38.19 10.49 37.86
An-158 40.4 40.41 0.01 0.03 40.41 0.01 0.03 25.28 —15.12 —37.43
M90 45.3 45.32 0.02 0.04 45.32 0.02 0.04 30.06 —15.24 —33.64
M100 46.3 46.32 0.02 0.04 46.32 0.02 0.04 51.25 3.95 8.35
Cirrus Vision SF50 2.3 2.31 0.01 0.43 2.28 —-0.02 —-0.94 8.02 5.72 248.89
Cessna CJ1 5.5 5.64 0.14 2.55 5.56 0.06 1.11 10.34 4.84 87.98
Cessena CI2+ 7 6.93 —-0.07 —-0.97 6.88 —-0.12 —1.66 11.23 4.23 60.43
Cessna CJ3+ 8.45 8.39 —0.06 —0.66 8.37 —0.08 —0.94 11.91 3.46 41.00
Hondalet 5.3 5.21 —-0.09 —1.76 5.24 —-0.06 —1.08 10.34 5.04 95.07
Phenom 100 5.6 5.66 0.06 1.03 5.73 0.13 2.24 10.28 4.68 83.65
Phenom 300 9.45 9.49 0.04 0.41 9.45 0.00 —-0.04 13.92 4.47 47.35
cessna CJ4 9.4 9.55 0.15 1.56 9.58 0.18 1.96 13.50 4.10 43.63
Gulfstream G100 12.5 12.49 —0.01 —0.11 12.51 0.01 0.11 17.13 4.63 37.04
Cessna XLS+ 11.3 11.27 —-0.03 —-0.30 11.22 —-0.08 —0.69 15.01 3.71 32.84
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Table 6. The measures’ results of the three models

Aircraft category

Model Metric A B C D
Correlation ME -2.19 —0.0723 0.01 0.01
MAE 2.8125 0.1728 0.0033 0.0664
MPE —0.66 —0.073 0.03 0.22
MAPE 0.9672 0.2478 0.0051 0.9777
R? 0.997 0.9999 1 0.9993
p-value regression ME —0.08 —0.066 0.01 0.00
MAE 2.9663 0.3163 0.0033 0.0746
MPE 0.00 —0.065 0.03 0.01
MAPE 1.0048 0.3881 0.0051 1.0781
R 0.9967 0.9998 1 0.9990
Simple regression ME 2.88 -84 2.19 4.49
MAE 21.1 8.076 8.5341 0.4936
MPE 1,85 —-5.98 12.78 77.79
MAPE 6.81 8.8217 30.24 40.888
R? 0.9859 0.9859 0.9859 0.9859

linear model fits the values of the parameters (or set of observations). The metrics of the models under
consideration for all categories are listed in Table 6.

Examining Table 6 shows that the correlation model produces the best prediction, which achieves
lower MAE and MAPE in the four categories. In contrast, the p-value model shows slightly better
results in both ME and MPE for categories A and D. In addition, the correlation model achieved
the highest R? in all categories. Conversely, the linear regression model is the worst in all measures.
Understandably, the correlation model has the highest number of design parameters in establishing its
model equations. In contrast, the p-value regression findings show minimal differences compared to the
correlation findings. It produced sufficiently acceptable results for use in preliminary design. Thus, either
the correlation or the p-value regression model can be used, depending on the availability of required
parameters.

The percentage error values in Table 5 are considered to highlight the model’s accuracy in detail for
all categories. For obtaining the overall error accuracies of the three models, the maximum and minimum
percentage error values are extracted for all categories. The error accuracy is determined as the highest
value between the Max and Min values. The variation range between the Max and Min values are listed,
as well. Table 7 summarises these key statistical findings.

From Table 7, it is evident that the correlation regression models have the best error accuracies,
typically less than £3% for all aircraft categories. In contrast, the p-value regression models are also
suitable for less than 3% error. The difference between the two models is minimal, and it seems to be
very close to each other. Therefore, both methods can be considered for early aircraft cost estimation.
The p-value model is recommended since it has a lower number of design parameters. This finding
certifies our earlier decision.

Figures 2 and 3 present the actual cost of the aircraft and the predicted cost using the models presented
for aircraft categories A and B, respectively. Examination of these figures reveals that our cost-estimation
models (correlation and p-value) are helpful during the preliminary design phase with minimal errors.
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Table 7. Error accuracies of the PCA model for all categories
Correlation model p-value regression model Simple regression model
Min Max Var. Error Min Max Var. range Error Min Max Var. Error

Air. error error  range  accuracy  error error range accuracy error error range accuracy
Cate (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

A —244 4162  4.06 +2.5 —-1.87 4272 4.59 +2.8 —9.11 +12.38 21.49 +124
B —-0.88 40.75 1.63 +0.9 —-098 40.87 1.85 +1 —19.4 +17.99 37.39 +19.5
C 0.03 +0.05 0.02 +0.1 0.03  40.05 0.02 £0.1 —33.64 +138.9 172.5 +139
D —-1.76 4255 431 +2.6 —-1.66 +2.24 39 +2.3 +32.84 42489 215.9 +249
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Figure 2. Actual and Estimated (Correlation/p-value/Linear regression) Aircraft Cost — Category A.
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Figure 3. Actual and Estimated (Correlation/p-value/Linear regression) Aircraft Cost — Category B.

The models presented constitute a significant advancement over the existing models used in cost esti-
mation. As mentioned earlier, the linear regression model used in the past is presented here just for
comparison purposes, mainly highlighting its inherent inaccuracies.

6.0 Case Studies

Confirming the suitability of the developed models, some sample data (aircraft data) other than that
used in developing the estimated aircraft cost model are considered for testing. These sample data,
which include two aircraft for each category with their design parameter values, are listed in Table 8.
Using the data in Table 8, equation (2), and (4)—(11), estimated aircraft costs are calculated (as shown
on the right-side of Figs 2 and 3 for categories A and B, respectively), subtracted from the actual aircraft

costs to determine the difference (error), and the error accuracy percentage of each aircraft for the three
models are calculated, as presented in Table 9.
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Table 8. The test aircraft (prices and design parameters)

Design parameters

Aircraft  Aircraft Actual aircraft W, R L, T F b S Dy
category type price (M$) (1) (km) (m) (kN) L) PAX M, (m) (m?) (m)
A 787-9 281.6 254 14,140 62.8 320 126,372 406 09 60.12 377 5.85
A330-300 264.2 242 11,750 63.67 316 139,090 440 0.86 60.3 361.6 5.64
B 737-MAX10 129.9 89.77 6,100 43.8 130 25,800 230 0.82 359 127 3.8
A320NEO 110.6 79 6,500 37.57 1206 26,730 195 0.82 35.8 124 4.05
C E175-E2 48.2 44.8 3,700 324 67 11,100 88 0.82 31 103 3.2
SSJ 100-95 52 49.45 3,540 299 71.6 15,800 108 0.81 27.8 83.8 3.46
D Cessna Latitude 16.75 13.97 5,000 19 26.3 6,435 9 078 22 50.4 2.2
Embraer Praetor 600 20.4 19.44 7,440 20.74 31.3 9,700 12 083 21.5 44.85 2.3
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Table 9. The error accuracies of the aircraft test cases

Correlation model

p-value regression model

Simple regression

Actual Estimated  Error  Error Estimated Error  Error  Estimated Error Error
Cat.  Aircraft type aircraft cost cost (Dift.) (%) cost (Diff.) (%) cost (Dift.) (%)
A 787-9 281.6 284.33 2.73 0.97 282.24 0.64 0.23 281.08 —0.52 —0.19
A330-300 264.2 264.76 0.56 0.21 264.65 0.45 0.17 268.03 3.83 1.45
B 737-MAX 10 129.9 124.58 —432 =335 124.69 —421 =3.27 102.61 -27.29 =21
A320 NEO 110.6 107.88 =272 =246 107.13 —-347 -3.14 90.91 —19.69 —17.8
C E 175-E2 48.2 47.12 —1.08 —2.23 47.12 —1.08 —2.23 53.75 5.55 11.51
SSJ 100-95 52 53.49 1.49 2.87 53.49 1.49 2.87 58.8 6.8 13.08
D Cessna Latitude 16.75 17.29 0.54 3.25 17.21 0.46 2.72 20.25 3.5 20.89
Embraer Praetor 600 20.4 19.84 —-0.56 =2.75 19.94 —046 —-2.25 26.19 5.79 28.39
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The findings from the aircraft used for model validation indicate that p-value regression is better
than the correlation model for categories A, C and D, with an error of less than £3%. For category B,
the correlation model is slightly better, but both models give an error of less than 4%. In general, most
textbooks state that an error of less than 10% is acceptable and a cost prediction error of less than 5%
is significantly good, considering that not much detail is available at the early design stages.

6.1 Model sensitivity

Investigating the sensitivity of the established models requires examining each mathematical model.
The linear feature of the models simplifies the computation of the estimating cost and allows performing
parametric studies of the design parameter changes on the estimated cost. The degree of each parameter
impact is based on its coefficient. The highest coefficient value has the highest impact on the estimated
cost, and vice versa. In addition, the positive coefficient sign means that the parameter is directly pro-
portional to the estimated cost, while the negative coeflicient sign means inversely proportional to the
estimated cost. However, starting with category A, the correlation and the p-value models share the same
four design parameters. The W,,, L;, and § are directly proportional to the estimated cost, while the T
parameter is inversely proportional to the estimating cost.

Moreover, the L, parameter has the highest coefficient value; therefore, it holds the highest impact.
Increasing/decreasing the length by one meter means that the estimated cost will increase/decrease by
4.9M8$, while a weight increment/decrement of one ton will cause a 1.9M$ increment/decrement in the
estimated cost. The wing area has the lowest impact on the estimated cost.

In contrast, the W to has the highest coefficient (0.61) when considering category B. Notice that the
PAX parameter has a coefficient value of around 0.3, but it holds the highest impact. Each additional
passenger will increase the aircraft cost by one-third million dollars. In other words, the seat configura-
tion of this category has six seats in each row (i.e. the cabin length and, in turn, the aircraft length will
increase by around one meter); thus, the estimated cost will increase by around 2M$.

Category C shows that L, has the highest coeflicient but with a negative sign. Therefore, a one-meter
increase/decrease in aircraft length will decrease/increase the estimated cost by around three million
dollars. In contrast, the PAX variable has a positive sign with a value of around 0.88. More specifically,
increasing one meter in length will increase the number of passengers by four (one row). Hence, an
increase in cost by around 0.5M$ is the net impact, while the W, will have the highest impact. Lastly,
category D shows the same scenario as category C concerning L, and PAX variables. Besides, improving
the engine consumption will increase the range with no additional fuel and reduce the estimated cost.
For more accurate cost estimation, the parameters W,,, T, S and M, are additionally included in the
correlation model. Thus, we can conclude that the maximum take-off weight has a pronounced parameter
impact on the estimated aircraft cost, and it should always be closely monitored during the whole design
process.

7.0 Conclusions

This paper presented the empirical models for estimating the cost of civil aircraft using the parametric
cost analysis, where both correlation and p-value regression techniques were performed. The sample data
were categorised into four categories for obtaining accurate models based on aircraft size. In addition, ten
design parameters were considered that have a significant impact on the aircraft design and, therefore, the
eventual cost. Finally, the correlation and the p-value analyses were applied to determine the significant
design parameters that affect the cost. Among the ten identified design parameters, the maximum take-
off weight has the highest impact on most cost-estimation models. As a result, the developed models
can predict cost-estimation at a preliminary design phase with an overall error better than £4%, which
is significantly better than the available methods and provides an ability to perform parametric studies
involving key design variables at the preliminary aircraft design stage.
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