
1	 Dislocation Theory and Metallurgy

After a brief discussion of “plasticity” and “elasticity,” the chapter presents a minimal 
set of basic concepts about “dislocations.” Following an overview of dislocation the-
ory, specific notions such as the “Lomer–Cottrell (LC) sessile junction” and “stacking 
fault energy” (SFE) are detailed. These are exceptionally important to gain a com-
prehensive understanding of many of the characteristics of dislocation–dislocation 
interactions and their strengths in particular. The next part of the chapter provides a 
simple introduction to metallurgy, especially to crystallographic structures, placing 
special emphasis on the substantial distinction between face-centered cubic (FCC) 
and body-centered cubic (BCC) structures, which is expected to further understanding 
of the associated contrasting features between the two.

1.1	 Elasticity versus Plasticity

Let us take steel as an example to clarify the distinction between “plasticity” and 
“elasticity,” although their names are similar. Figure 1.1.1 presents a relatively 
diverse range of plasticity-related mechanical properties, such as yield stress, maxi-
mum tensile stress, hardening characteristics, and ductility measured by uniform elon-
gation. Two to three orders of difference can be found, for example, in the yield stress, 
that is, from tens of MPa up to a few GPa. The elastic properties such as Young’s 
modulus, however, are not basically altered; they usually have values of around 200 
GPa, even for alloys containing a number of alloying elements, those associated with 
metallurgical microstructures produced via heat treatments, and those with different 
crystal structures, that is, FCC austenite (SUS304 [or type 304] stainless steel, for 
instance). Such insensitivity is attributed to the origin of the elastic deformation in 
metals. The elastic modulus is a manifestation of the resistance against the interatomic 
bonding force that displaces the composing atoms, which is substantially determined 
by electronic interactions (hence, based on quantum mechanics). Thus, it cannot be 
controlled (altered) in principle. Plasticity, however, can be artificially controlled rel-
atively easily, because it is carried by the motion of dislocations.

Further contrasting features are also indicated in Figure 1.1.1, and are summarized 
in Figure 1.1.2, including (a) “controllable versus uncontrollable,” (b) compressive 
versus incompressive, and (c) conservative versus dissipative. The former is man-
ifested as Poisson’s ratio in elasticity, which is around � � 0 3.  for metals, allowing 
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4 Dislocation Theory and Metallurgy

volumetric change (e.g., tension by 1 in one direction results in −0.3 in the other 
two directions, respectively, resulting in a volumetric strain of �v � 0 4. , that is, an 
increase in volume). Plasticity, on the other hand, exhibits volume constancy in gen-
eral, simply because it is brought about by shear deformation, or, more precisely, slip 
deformation of the crystal lattice. For the latter, (b), more than 90% of the work done 
by plastic deformation, measured by the area swept by a stress–strain curve, is known 
to be dissipated into heat, meaning that plasticity is a kind of nonequilibrium (far-
from-​equilibrium) process, whereas elastic strain energy is fully recoverable. Note 
that these twofold aspects of the elastoplasticity in metals play crucial roles when 
we think about evolutionary aspects of inhomogeneities in the present field theory of 
multiscale plasticity (FTMP) (cf. Chapter 15).

1.2	 Fundamentals of Dislocations

1.2.1	 Overview

Figure 1.2.1 presents the reason why the notion of dislocation arose. The concept itself 
had been introduced many years before it was micrographically confirmed (observed), 

Figure 1.1.1  Schematic comparison of stress–strain curves for various steels of mild to high-
strength types in terms of elastic and plastic properties. Typical contrasting features between 
elasticity and plasticity, (a) and (b), are also indicated.

Figure 1.1.2  Comparison between “elasticity” and “plasticity,” consolidated into three typical 
categories, where category (a) leads to the “dislocation” concept that follows.
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51.2  Fundamentals of Dislocations

in order to explain why the empirically observed yield stress is much smaller than the 
estimate based on the ideal strength under shear (Orowan, 1934a, 1934b; Polanyi, 
1934; Taylor, 1934a, 1934b; Yamaguchi, 1928). The ideal strength needed for shear 
deformation to occur predicts one-fifth of the shear modulus, whereas experiments 
show 0.5–10 MPa for pure metals, resulting in a three- to four-order difference in 
magnitude. In the 1930s, Taylor, Orowan, and Polanyi independently advocated the 
concept of dislocation to explain this gap. Also, we must remember that V. Volterra, 
an Italian mathematician, introduced essentially the same notion purely within the 
framework of the mechanics of continua (Love, 1944; Volterra, 1907). This can be 
acknowledged as the origin of the notion of continuously distributed (CD) disloca-
tions (cf. Figure 6.2.22). This story is quite similar to the case of the birth of “fracture 
mechanics”; A. A. Griffith, an English aeronautical engineer, proposed the basis for 
this in 1921 (Griffith, 1921).

Figure 1.2.2 indicates the motion of a dislocation, which is often compared to a 
crawling inchworm. Another intuitive metaphor is a row of wrinkles in a carpet. In 
order to shift the carpet position, what we need to do is to transfer the “wrinkle row” 
to the edge of the carpet, resulting in a shift of the carpet position by the amount of 
the wrinkle-row width. Moving the entire carpet, even a millimeter, requires extraor-
dinary strength, as you can imagine.

The most important thing here is that plastic deformation is carried by the motion 
of dislocations. Accordingly, the stress needed for plastic deformation to occur can be 
completely replaced by that needed for moving the dislocations, which are generally 
preexisting within crystalline samples.

Another significant factor to bear in mind is that the plasticity (i.e., the resistance 
against plastic deformation) can easily be altered by introducing various “obstacles” 

Figure 1.2.1  The extremely large gap between ideal strength for shear deformation and 
experimental observation for yield stress triggered the birth of dislocation theory (Taylor, 
1934a). This story resembles that for fracture mechanics (Griffith, 1921).
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6 Dislocation Theory and Metallurgy

to obstruct dislocation movements. This means that the plasticity can be artificially 
controlled (or we should say, freely controllable), which is substantially different 
from “elasticity” that is uncontrollable in principle, as stated in Section 1.1 (see 
Figure 1.1.2(a)). Figure 1.2.3 illustrates representative obstacles against the motion of 
dislocations in a cartoonish manner (adapted from Tanino, 1996). They are (b) impu-
rities or solute atoms for solution hardening, (c) small precipitates for precipitation 
hardening, (d) dislocations for dislocation hardening (resembling traffic congestion), 
and (e) grain boundary (GB) for GB hardening.

Figure 1.2.2  Schematics of a dislocation as a carrier of plastic deformation, often compared to 
a crawling inchworm or wrinkles in a carpet.

Figure 1.2.3  Schematic drawing of strengthening mechanisms showing various kinds of 
resistance against dislocation motion using motor vehicles as examples (inspired by an 
illustration by Tanino, 1966).
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Practically, especially in high-strength steels and metals, these strengthening mech-
anisms are combined to achieve the desired strength properties. More detail on (b) and 
(c) can be found in Figure 1.2.4(a) and (b), respectively; in Figure 1.2.4(a) two types 
of solution, interstitial and substitutional types, are schematically depicted, while two 
types of precipitate are indicated in Figure 1.2.4(b), coherent and incoherent.

Figure 1.2.5 shows a schematic indicating the Cottrell atmosphere typical in com-
mercially pure Fe or low-carbon steels, where carbon and nitrogen atoms tend to 
gather around (below) an edge dislocation – below because of the larger space due 
to the extra half plane of an atomic layer intruding from above. Under stress, trapped 
dislocations must break away to start moving, causing nonsmooth yielding in mild 
steels (Figure 1.2.4(c)), which can also trigger inhomogeneous postyield plasticity, 
for example, Lüders elongation, which is normally undesired in practical situations.

Note that, for steels, even a ppm order of C and/or N can cause such “yielding” 
phenomena in Fe and steels. Since the complete removal of them is quite difficult 
practically, they are inactivated by adding Ti and/or Nb to form TiC/NbC, which 
anchors these interstitials. Such steel is known as IF steel (Figure 1.2.4(c)) and is 
further detailed in Section 1.4.2.

Looking again at Figure 1.2.4(a)–(d), we can review the previous discussion, 
together with schematic stress–strain curves (d) indicating nonsmooth and smooth 
yielding, corresponding to that associated with the Cottrell atmosphere (Figure 1.2.5) 

Figure 1.2.4  Schematic illustration of strengthening mechanisms via (a) solid solutions 
(interstitial and substitutional types) and (b) precipitations (coherent and incoherent types), 
together with (c) schematics about interstitial-free (IF) steel, and (d) the attendant improved 
stress–strain relationship with respect to “nonsmooth” yielding.
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and IF steels, respectively, from which we also recognize the importance of impurities 
in metals and alloys in terms of their roles and thus their pertinent controls.

By appropriately combining the strengthening methods (b) through (e) in Figure 1.2.3, 
along with well-controlled heat treatment processes, we can design “microstructures” 
to achieve desired strength-related mechanical properties. A wide variety of such met-
allurgical microstructures for Fe and steels, together with typical stress–strain curves, 
are presented in Figure 1.2.6(a) and (b), while representative structural factors such as 
characteristic sizes are also indicated in Figure 1.2.6(a) (Tomota, 2001).

A noteworthy example in the present context is the lath martensite structures in 
high Cr heat-resistant ferritic steels, for example, Mod. 9Cr-1Mo steel, where the 
alloys are strengthened not only by lath martensite structures with high dense dis-
locations (Figure 1.2.6(a), (e), and (d)) and the associated block/packet structures 
(Figure 1.2.6(a) and (e)), but also by precipitations via V/Nb additions, that is, MX/
M23C6 (Figure 1.2.6(a) and (c)), together with W/Mo solid solutions (Figure 1.2.6(a) 
and (b)). As noted, all the strengthening methods are combined to achieve an excel-
lent high-temperature creep strength. One more thing worth mentioning concerns 
the hierarchically emerging nature of the strengths as summarized in Figure 1.2.7, 
revealed via the multisized indentation technique (NIMS, 2003). As can be seen, the 
macro-strength indicated by the broken line cannot be achieved until the indentor 
size becomes large enough, whereas, for example, the scale corresponding to the 
minute lath with high dense dislocations does not support the strength alone. This 
implies there exists an intimate interplay among the composing hierarchical scales 
for achieving the macroscopically observed strength, meaning “the partial sum is not 
necessarily the whole.” A schematic stress–strain relationship is also shown on the 
right, whose stress levels are built up from the base strength. Therefore, modeling 
such complex material systems requires a “genuine” multiscale perspective, which is 
tackled in Chapter 9 and based on the FTMP discussed in the present book.

Figure 1.2.5  Schematic of Cottrell atmosphere for iron around an edge dislocation, where the 
insertion of an extra half plane from the top is illustrated for the purpose of emphasizing the 
induced compressive/tensile stress field above/below.
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Let us return to “dislocations.” Figure 1.2.8 is a micrograph showing an atomistic 
image of a dislocation (dislocated region). A Burgers circuit encircling the disturbed 
region is drawn, showing that the Burgers vector b surely exists. This proves or cor-
roborates the single-edge dislocation existing within the circuit.

It should be noted that the notion of a dislocation “line” is conceptual in the sense 
that it is not a substantial object, but a “state” of being disturbed in a background 
(crystalline) field existing a priori. This implies that the notion of “field” is suitable 
for describing dislocations, as will be frequently mentioned throughout the book. A 
multilevel image of a dislocation field is presented in Chapter 5 (Figure 5.1.1) in terms 
of three representative field theories.

Figure 1.2.6  Typical metallurgical microstructures for Fe and steels (a) as a variety of 
combinations of strengthening mechanisms in Figure 1.2.3, together with typical stress–strain 
curves (b) for representative microstructures.
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10 Dislocation Theory and Metallurgy

Figure 1.2.7  Example of appropriate combinations of all the strengthening methods in 
Figures 1.2.3 and 1.2.4, that is, high Cr ferritic steel composed of martensite lath/block/packet 
structures embedded within prior austenitic grains, whose hierarchically emerging strengths 
are revealed via multiscale indentation tests (NIMS, 2003).

Figure 1.2.8  Atomistic image demonstrating the existence of dislocation, where the Burgers 
circuit encircling a dislocated region is shown to produce closure failure measured by the 
Burgers vector (courtesy of Prof. Julia R. Greer).
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1.2.2	 Types of Dislocation

There are three types of dislocation – edge, screw, and mixed. The former two are more 
important than the third, since the last is expressed by combinations of the other two.

Various ways to draw or schematize an edge dislocation exist, as shown in Figure 
1.2.9. Here we provide several typical examples found in conventional textbooks. 
Some emphasize an extra half plane (b) and some highlight the Burgers circuit or 
closure failure (c). Some are suitable for stress-field calculation (a). It is important 
to observe that the direction of the dislocation line l  is always perpendicular to the 
Burgers vector, b, that is, l b⊥ , which is the mathematical definition of the edge dis-
location component.

One can note that the intuitive image of the edge dislocation is quite tangible com-
pared with the screw counterpart. However, as will be discussed later, the stress field 
produced around an edge dislocation is much more complex than that for the screw 
dislocation, and, furthermore, is difficult to calculate.

The former has both the normal and shear components of stress, whereas the latter 
has shear components only.

Screw dislocation is often exemplified by “stair-case steps.” Figure 1.2.10 shows 
various schematics depicting a screw dislocation. The important thing again is the 
relationship between the directions of dislocation line and the Burgers vector, that is, 
they must be mutually in parallel, l b// . This allows screw dislocations to cross slip 
onto other intersecting planes sharing the same Burgers vector. Also the screw dislo-
cation is a good example for understanding the topological nature of dislocations in 
terms of multivaluedness. (This is also true for the edge dislocation, but the present 

Figure 1.2.9  Various representations of an edge dislocation.

https://doi.org/10.1017/9781108874069.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874069.003


12 Dislocation Theory and Metallurgy

case is more intuitive.) The starting point, after encircling the Burgers circuit, does 
not coincide with the ending point, as can easily be confirmed with any one of the 
examples shown in the figure. This emphasizes that dislocation is a topological object 
or imperfection. It is also important for understanding the differential geometrical 
aspects of dislocation theory (to be detailed in Chapter 6). This closure failure means 
torsion of the space in the context of differential geometry.

Another type of dislocation is termed a “mixed” component. Figure 1.2.11 displays 
various schematics. It is usually very difficult to gain a clear image of the mixed por-
tion of a dislocation. Fortunately, the mixed components can always be resolved into 
edge and screw components and expressed by combinations of the two.

As is understood from the so-called Volterra operation, explained in Figure 1.2.12, 
dislocation can be viewed as a region in a medium (crystalline body) where there is 
a boundary between “slipped” and “nonslipped” regions. Since the “slipped” region 
has experienced shear deformation, the distribution of shear strain for a dislocation 
loop becomes similar to that represented in Figure 1.2.11(b). You can notice the 
“strain gradients” where dislocation lines exist; this will be revisited in Section 6.5.1 
(Figure 6.5.1) in Chapter 6.

One should notice the difference between real objects and dislocation as an excitation 
of a medium. As schematically shown in Figure 1.2.13, the screw dislocation line, for 
example, moves perpendicularly to the direction of the force (shear stress), which seems 
to be against the rule of common-sense mechanics. The edge component, on the other 
hand, moves in the same direction as the applied (shear) force in accordance with our 
intuition. The former resembles the act of peeling a poster off a wall from one corner, 
where the boundary between the already-peeled off and unpeeled regions corresponds 
to the screw dislocation. Figure 1.2.14 provides more tangible images for both cases.

Figure 1.2.10  Various representations of a screw dislocation.
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Figure 1.2.11  Schematics of a mixed dislocation (a), together with a dislocation loop and 
corresponding strain distribution (b), where regions with finite strain gradient detect a 
dislocation line.

Figure 1.2.12  Schematic illustration explaining the “Volterra operation,” providing another 
representation of the dislocation loop that can be well described mathematically based on 
micromechanics.
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14 Dislocation Theory and Metallurgy

Figure 1.2.13  Comparison of moving directions between edge and screw components against 
external shear stress.

Figure 1.2.14  Atomic lattice-based representation of moving dislocations against external 
shear stress comparing the directions between them for edge and screw components 
(Smallman, 1970).
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1.2.3	 Stress Field around Dislocations

One important feature of dislocations is their long-range nature, that is, inversely 
proportional to the distance from them r, ∝1 / r . Not only does this make numerical 
treatments difficult, for example, the “cutting-off” treatments in discrete dynamics 
simulations, but it also provides the origin of the long-range stress field evolved 
within dislocation s, differentiating them from other substructures, to be discussed 
in Chapter 3. Here, we deal with the most fundamental case of single straight dis-
location lines.

For straight dislocations, it is relatively easy to find the stress fields around them in 
the sense just discussed, although the edge dislocation requires some elaborate tech-
niques. This is largely due to the absence of the self-stress in the straight segments, 
whereas, for curved dislocation lines, the treatments become extremely complicated, 
as briefly mentioned in Section 6.4.

1.2.3.1	 Screw Dislocation
To obtain the stress field around a straight screw dislocation, a typical setup, together 
with a cylindrical polar coordinate system ( , , )r xθ 3 , is depicted in Figure 1.2.15, 
where the displaced cylinder along the axial direction coincides with x3 is prepared, 
containing a coaxially extending screw-dislocation line. The displacement field in the 
x3 direction is easily expressed as

	 u
b b x

x
3

1 2

12 2
screw � �

�

�
�

�

�
�

�

�
�

�
tan 	 (1.2.1)

Otherwise, u u1 2 0screw screw= = . From Eq. (1.2.1), the strain field and, thus, stress field, 
can be obtained. They are given, respectively, as

Figure 1.2.15  Cylindrical polar coordinates introduced around a straight screw dislocation, used 
for finding the stress field therein.
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where µ  is the shear modulus and b the magnitude of the Burgers vector, b ≡ b .

1.2.3.2	 Edge Dislocation
The inset in Figure 1.2.16 shows the setup for obtaining the stress field for a straight-
edge dislocation, which is basically the same as that for the screw dislocation. Since 
no displacement in the x3 direction exists, we can assume the plane strain condition. 
In this case, even if it is straight, one needs a special sort of technique, because the 
treatment of the displacement field is not straightforward as in the screw counter-
part: There is a jump at � ��  which prevents us from expressing u1 by a simple 
function (unlike in the screw case), because doing so violates the stress-equilibrium 
condition.

To cope with this, it is necessary to use an elaborated stress-function method, in 
which we need to seek a suitable form of the stress function that satisfies the bihar-
monic equation, that is, � �4 0�  with the Laplacian

Figure 1.2.16  Cylindrical polar coordinates introduced around a straight-edge dislocation, to be 
used for finding the stress field therein.
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for the cylindrical coordinates. For the edge dislocation problem, the following form 
of the stress function can be used:
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from which we readily obtain
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In Eq. (1.2.6), R r( ) ( )� �  is intended to emphasize the separable nature of the stress 
function, in this case via respective functions of r  and θ . Since the present case sat-
isfies the plane-strain condition, another component is given by � � � ���zz rr� �( ).

Note that a more sophisticated method based on micromechanics is also available 
(Mura, 1963). For the anisotropic case, refer, for example, to Asaro et al. (1973) and 
Willis (1970).

The stress field around a straight-edge dislocation is rewritten in matrix form as
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where not only the shear component (off-diagonal) but also the normal components 
(diagonal) exist. Detailed derivation processes can be found in Hirth and Lothe (1982), 
Kato (1999) and Suzuki (1967).

The corresponding expressions to Eqs. (1.2.3) and (1.2.8) with respect to the 
Cartesian coordinates are given by

	 �
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and
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respectively. These results are summarized in Figures 1.2.17 and 1.2.18.
One of the most important aspects for us to recognize about the stress fields pro-

duced by a dislocation is its long-range nature, for example, decaying in proportion to 
1 / r (see Eqs. (1.2.3) and (1.2.8)). This actually introduces many computational com-
plexities in dealing with dislocation-dislocation interactions (see also Section 1.4.4).

The corresponding strain fields are
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and

Figure 1.2.17  Stress field around straight screw and edge dislocations with respect to the 
Cartesian coordinate system.
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The displacement field is obtained when the strain field in Eq. (1.2.12) is integrated as
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For Cartesian coordinates, the corresponding expression is
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Figure 1.2.18  Stress field around straight screw and edge dislocations with respect to the 
cylindrical polar coordinate system.
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1.2.3.3	 Stress Contours
Let us consider the hydrostatic stress � � � �m � � �( ) /11 22 33 3 for both the components 
as a representative. Figure 1.2.19 shows the hydrostatic stress fields for both the dislo-
cations. Screw dislocation always yields zero hydrostatic stress, that is,

	 �m
screw � 0, 	 (1.2.15)

simply because of the absence of the normal component of stress, as in Eqs. (1.2.3) 
or (1.2.9).

For edge dislocation, on the other hand, the hydrostatic stress is calculated as
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	 (1.2.16)

One can immediately notice that this is in proportional to the σ33 component. 
Therefore, the hydrostatic stress field around a straight-edge dislocation, displayed in 
the inset of Figure 1.2.19, is identical to that for σ33, as far as the profile is concerned. 
As can be imagined from the atomic configuration, we have a compressive stress field 
in the upper region, due to the insertion of an extra atomic layer, and a tensile stress 
field in the lower region. The latter tends to attract interstitials, as discussed in Figure 
1.2.5 in the context of the Cottrell atmosphere.

1.2.4	 Elastic Strain Energy of Dislocations

Based on the stress field we have just obtained, we can evaluate the strain energy for 
the dislocations (Figure 1.2.20). For a straight screw dislocation extending infinitely 
along the x3 direction, we have
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Figure 1.2.19  Hydrostatic stress distribution around screw and edge dislocations. Nonzero 
hydrostatic stress for edge components brings about interactions with point obstacles.
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Since dx3��

�

�  is proportional to the length, we can find an explicit expression per unit 
length as

	 E
b R

r
0

2

04
screw �

�

�
�

�

�
�

�
�

ln , 	 (1.2.18)

where R and r0 are the upper and lower bounds in the radial integral with r b0 5∼  
corresponding to the core radius. Note that since, with R ��, E 0

screw logarithmically 
diverges, we need to set a cut-off radius, normally taken as being a mean free path of 
the order of 10 µm. Here the subscript “0” shows that the quantity is represented per 
unit length, that is, E E L0

screw screw≡ / .
Note that the same logarithmic-type strain energy representation can be obtained 

for a disclination dipole, as concisely summarized in Figure 1.2.21, although a single 
disclination line produces the strain energy in proportion to the square of the sample 

Figure 1.2.20  Strain energy evaluation for a straight screw dislocation.

Figure 1.2.21  Strain energy for a disclination dipole, demonstrating its mathematical 
equivalence to that for an edge dislocation line, together with that for a single disclination line 
as well as its stress field.
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size, that is, R2, which strongly inhibits its existence within metallic crystals in gen-
eral. Here, Ω  represents the Frank vector that specifies disclinations, corresponding 
to the Burgers vector against dislocations. More details are mentioned in Chapter 6, in 
the context of differential geometry.

Similarly, for a straight-edge dislocation we have

	 E
b R

r0

2

04 1
edge �

�
�

�
�

�

�
�

�
� �( )

ln ; 	 (1.2.19)

this also relates to per unit length. Since both cases yield the same form, we may 
roughly express them together (as in Figure 1.2.22):

	 E b0
2 0 5 1disloc � � �� ��� � . 	 (1.2.20)

The energy of the core region can normally be regarded as about 10% of E0
disloc. 

Hence, it can be taken into account altogether in Edisloc by replacing r b0 5~  with 1b. 
It is important to remember that the energy of dislocations, whatever the types, are 
given in proportion to b2.

Figure 1.2.23 provides an example of the energy of a screw dislocation for Cu. 
We have E0

92 5 10screw J� � �.  per unit length, and 6 4 10 19. � � J per atom. This roughly 
corresponds to 4 eV, which is much larger than that for a vacancy (∼1 eV), meaning 
the dislocations are thermodynamically unstable within a crystal (Kato, 1999). Note 
that 1 1 602 176 10 19eV  . � � J.

For a mixed component, a simple superposition can be utilized, since there are 
no overlapping components of stress fields between the two, as can be confirmed by 

Figure 1.2.22  Rough estimation of strain energy of dislocations, together with that for core 
regions.
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Eqs. (1.2.2) and (1.2.3). Figure 1.2.24 shows the process to obtain the corresponding 
energy per unit length, that is,
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where θ  is the angle between the two components.

1.2.5	 Dislocation Processes (Important Features)

This subsection presents and details several important dislocation processes. One 
immediate feature that must be pointed out is that the dislocations are created and anni-
hilated. We will discuss the multiplication (i.e., creation) due to the Frank–Read mech-
anism, and the annihilation due to cross slip (Figure 1.2.25), which is followed by the 
LC junction formation. In particular, for understanding the latter two, the SFE associ-
ated with dislocation dissociation is defined and its significances are emphasized. The 

Figure 1.2.23  Example of strain energy for Cu.

Figure 1.2.24  Strain energy for straight mixed dislocation per unit length, given as a simple 
superposition of those for edge and screw components, rationalized due to the nonoverlapping 
of stress-field components between the two.
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cross slip is considered to be responsible for efficiently reducing dislocation density 
during the course of deformation, called “dynamic recovery.” This is further responsi-
ble for the dislocation cell formation, extensively discussed in Chapter 2.

1.2.5.1	 Frank–Read Source and Multiplication
Schematics of the Frank–Read source (Frank and Read, 1950) and associated multi-
plication mechanisms are presented in Figure 1.2.26. The multiplication process from 
the Frank–Read source is one of the most important mechanisms, among other possi-
bilities. Consider a pinned segment (see Figure 1.2.16(a)) with a length L  that, under 
the force f b��  (step 1), starts bowing out (step 2) until the critical configuration (a 
half-circular arc [step 3]) is reached, after which the segment becomes unstable and 
continues to expand spontaneously. The critical shear stress τcr corresponding to the 
critical configuration is given by

	 �
��

cr
T

bL

b

L
� �

2 2
, 	 (1.2.22)

where T  is the line tension of the dislocation segment evaluated as T b��� 2 with α  a 
proportional factor. The critical stress is also called Orowan stress. If expansion con-
tinues, the curved segments tend to go around the pinning points from both sides (step 
4) until they meet and react on the reverse side to leave an expanding loop (step 5). 
By repeating this process, dislocations can multiply. This can occur wherever similar 
pinned segments exist. This series of processes is schematized in Figure 1.2.26(b). 
Figure 1.2.26(c) provides an example of a double cross-slip event, which is consid-
ered one of the possible mechanisms for enhancing the Frank–Read multiplication 
process (sites for the Frank–Read source to occur).

Examples of the experimentally observed Frank–Read source, in Si (via chemical 
etching) (Dash, 1957) and in age-hardened Ni-Fe alloy (via transmission electron 
microscopy [TEM]) (Murr, 2015, 2016) are presented in Figures 1.2.27 and 1.2.28, 
respectively. Here, the F–R source in Si yields an anisotropic shape, reflecting its 
anisotropy in the slip systems, whereas, for the Ni-Fe FCC alloy, almost isotropically 

Figure 1.2.25  Schematic drawing of pair annihilation of two dislocations of opposite sign, 
together with a possible process yielding the reaction via two screw dislocations cross slipped 
onto a common slip plane sharing the same Burgers vector.
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Figure 1.2.26  Multiplication mechanism via the activation of a Frank–Read source based on the 
bowing-out behavior of a dislocation segment (a) and (b), together with a possible process by 
which this can occur (c), that is, a double cross slip, which can generate a pinned segment of a 
screw dislocation.

Figure 1.2.27  Example of experimentally observed Frank–Read source in silicon, showing 
successive generations of anisotropically expanding dislocation loops, which are delineated 
by chemical etching (Dash, 1957).
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expanding dislocation loops are observed. Figure 1.2.29 displays a series of simulated 
snapshots of proliferating dislocation loops based on the discrete dislocation dynam-
ics method.

A closely related important interaction of a dislocation against second-phase par-
ticles (e.g., relatively large precipitates) to the bowing-out mechanism is the Orowan 
process (Orowan, 1984). A schematic is given in Figure 1.2.30, where bow-out 
dislocation segments around spherical particles ultimately leave loops of disloca-
tion behind. These dislocation loops can further act as obstacles against subsequent 

Figure 1.2.28  Example of experimentally observed Frank–Read source in age-hardened Ni-Fe 
alloy, yielding circular multiplication of dislocation loops (Murr, 2015, 2016).

Figure 1.2.29  Example of a simulated series of snapshots for proliferating dislocation loops 
under shear stress on the [111] slip plane in FCC metal, based on the discrete dislocation 
dynamics method.
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dislocation motions that pass through, increasingly enhancing the effective diameter 
of the particles, thus, with decreasing interparticle spacing, this efficiently contributes 
to strengthening; this is regarded as one of the important strengthening mechanisms 
in alloyed metals and is known as the Orowan mechanism. Figure 1.2.31 shows a 
series of snapshots for the Orowan process, simulated by utilizing the discrete dis-
location dynamics method together with a precipitate model introduced in Yamada 
et al. (2008), demonstrating the formation of double Orowan loops. Notice that, in 
the double Orowan loops, the inner loops have slightly shrunk in diameter due to the 
stress field of the loop-forming dislocations, and, at the same time, the second loops 
are elongated in the stressing direction. The former can ultimately lead to the collapse 
of the particles as the Orowan process continues.

More specifically, this process can take place rather exclusively against incoherent 
or partially coherent precipitates with relatively large interspacing (or the order of 100 
nanometers). On the other hand, dislocations can cut through smaller and coherent 
precipitates by shearing. A comprehensive summary of this distinction is shown in 
Figure 1.2.32 (Sugimoto et al., 1991). Note that distinctions between the coherent 
and incoherent precipitates are shown in Figure 1.2.4(b) and revisited in Section 1.4.4 
(Figure 1.4.16).

For further details about strengthening by alloying in general, including more 
sophisticated and advanced treatments as well as their experimental verifications, 
refer to a comprehensive monograph by Argon (2012).

Figure 1.2.30  Schematic illustration of the Orowan mechanism, depicting the dislocation 
interaction, with second-phase particles leaving behind Orowan loops. When a dislocation 
line tries to pass through the array of particles, it bows out around them to form loops, which 
will act as further obstacles against subsequent dislocations.
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Figure 1.2.31  Simulated series of snapshots of the Orowan mechanism up to the second 
Orowan loop formations, based on discrete dislocation dynamics, utilizing a precipitate model 
proposed in Yamada et al. (2008).

Figure 1.2.32  Comparison of mechanism for dislocation-precipitate interactions (Sugimoto 
et al., 1991). Adapted with permission of the publisher (Asakura Publishing Co.).
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1.2.5.2	 Partial Dislocations and Stacking Fault
SFE is one of the most important notions in understanding the diversity of mechanical 
behaviors of metals, especially those with an FCC structure, because it substantially 
controls the dislocation motions in terms of their interactions, such as junction for-
mations and associated strain hardening, cross slip and resultant dynamic recovery, 
and further, attendant substructure evolutions. Also a sharp distinction can be found 
between FCC and BCC metals in the light of SFE.

A dislocation can be split into two partial dislocations. Figure 1.2.33 shows an 
example for FCC metals, where the reaction is expressed as

	
a a a

2
101

6
112

6
211� �� � �� � �, 	 (1.2.23)

where a is the lattice constant. This cases shows Shockley’s partial dislocations. This 
dissociation is energetically favorable when the SFE is absent, that is, b b b

2
1

2
2

2� � , 
as confirmed by simple arithmetic. We must not, however, ignore the SFE to be added 
to the right-hand side of the inequality, as shown in Figure 1.2.34. This ultimately 
decides whether the dissociation takes place or not. The SFE is the interfacial 
energy for the imperfect stacking sequence of atomic layers situated between the 
extended dislocations (termed leading and trailing partials, respectively). The table 
in Figure 1.2.33 lists the values of SFE for typical metals. Roughly speaking, FCC 

Figure 1.2.33  Dissociated dislocations (called partial dislocations) with a stacking fault located 
between them, which demands additional energy for creating a planer defect due to the 
imperfection of a stacking sequence of atomic layers called SFE. The table lists examples of 
SFE for typical metals.
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metals have relatively small SFE, while BCC metals yield extremely large values. 
Aluminum is known to have the largest values, of about 100–200 mJ m−2, among FCC 
metals, while Cu is recognized as having relatively small SFE, that is, 40 mJ m−2: 
They are frequently referred to as typical FCC metals with large and small SFE in the 
literature. The smallest SFE for FCC metals goes to Cu-Si alloys (e.g., Cu-8.8at% Si) 
with 3–5 mJ m−2 or less (e.g., Murr, 1975), followed by aluminum-bronze (Cu-about 
10% Al alloys) and α-brass (Cu-less than 35% Zn alloys) with less than 10 mJ m−2, 
and austenitic stainless steels (e.g., 18–8 or type 304) with around 10–13 mJ m−2.

It is commonly recognized that BCC metals basically do not have a stacking fault 
because it is not energetically favorable. The values of the SFE are extremely large in 
comparison even with that for Al. This means that dislocations in BCC metals sub-
stantially do not (or never) extend.

Figures 1.2.35 and 1.2.36 show a stacking fault viewed from the top, each indicat-
ing shifts in the stacking sequence of atoms above and below, and raised electron den-
sity distribution in the SF (Suzuki, 1967), respectively. The inset in Figure 1.2.35 is a 
table listing the extended widths w for Cu and Al, comparing the values for edge and 
screw components (Karashima, 1972). Screw component tend to have larger SFE than 
the edge for both the metals, since the SFE is inversely proportional to the extended 
width, that is,

	 w
a

�
�
�

�
�
�

�
�
�

�
��

�
�

2

16

2 3

3 1SFE ( )
, 	 (1.2.24)

where γSFE stands for the SFE of the material concerned.

1.2.5.3	 SFE and Cross Slip
The SFE is closely related to the cross-slip process by the screw dislocations (compo-
nent). Figure 1.2.37 shows a schematic of the cross-slip process for an extended screw 

Figure 1.2.34  Schematic drawing of dissociation of perfect dislocation into a pair of Shockley 
partial dislocations for FCC metals, which is energetically favorable in the absence of 
stacking fault.
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Figure 1.2.35  Schematic drawing of stacking fault illustrated as an imperfect stacking sequence 
of atomic layers (Suzuki, 1984). Adapted with permission of the publisher.

Figure 1.2.36  Representation of a stacking fault as a region with high electron density in Cu 
(Suzuki, 1967). Adapted with permission of the publisher (Agne Publishing Co.).
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dislocation. When a cross slip occurs from one slip plane to another (referred to as the 
cross-slip plane), the extended partial dislocations, each having the Burgers vectors 
slightly deviating from the line direction, must constrict once in order to change the 
glide plane, because the Burgers vectors must be parallel to the dislocation line to 
share the slip planes. Energetically, this cannot take place all at once but can occur 
partially (Figure 1.2.37(a)), and the constricted part will proceed to the cross-slip 
plane (Figure 1.2.37(b)). Once this happens, the kinking mechanism can help advance 
the cross-slipped segment further along the cross-slip plane where the pair of kinks 
of the cross-slipped segment spread laterally, as depicted by open arrows (Figure 
1.2.37(c)). Figure 1.2.38 displays an example of simulated results by discrete disloca-
tion dynamics, providing a series of snapshots for a cross-slip process. This process 
is assisted by the resolved shear stresses (RSSes) both on the primary and cross-
slip planes and particularly the help of thermal vibrations, which will be detailed in 
Chapter 2 in the context of the thermal activation mechanism.

Since this mechanism requires shrinkage of the extended dislocations into a perfect 
one, the frequency is substantially controlled by the SFE. As is shown in the table in 
Figure 1.2.39, the ease or difficulty of the cross slip is measured by the SFE. Metals 
with smaller SFE yield lower cross-slip frequency, whereas those with higher SFE 
exhibit higher frequency. Among FCC metals, Al yields the largest frequency of the 
cross-slip events, while Ag and Cu show greatly restricted cross slip due to their rel-
atively small values of SFE. BCC metals, on the other hand, coupled with relatively 
larger number of slip systems than FCC metals, have a propensity to yield extremely 
frequent cross slips during plastic deformation.

Figure 1.2.37  Schematic drawing of the cross-slip process. Dissociated dislocation must be 
constricted once in order to realize the cross slip onto another plane, after which double 
kinking can promote the further motion of the cross-slipped segment.
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Figure 1.2.40 shows an atomistic simulation result for cross slip from the primary 
plane (first line) to the cross-slip plane (second line), demonstrating that it takes place 
quite spontaneously given the initial and final states (Rasmussen et al., 1997). The 
bottom image in the figure displays an experimentally observed image of the cross-
slip process (Robertson and Fivel, 1999).

Figure 1.2.38  Simulated cross-slip process by discrete dislocation dynamics.

Figure 1.2.39  Relationships between the SFE and dislocation processes, that is, cross-slip 
and dislocation–dislocation interaction strength. Small SFE yields less frequency of cross 
slip and large interaction strength, whereas large SEF results in higher frequency of cross-
slip phenomena and weaker interaction strength. The table lists typical values of SEF for 
representative metals including not only FCC but also BCC.
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One of the manifestations of such trends is the slip-line geometries that emerge on 
the sample surfaces, as schematically shown in Figure 1.2.41(a)–(c) (Takamura, 1999), 
where comparison is made among α-brass, Al, and α-Fe. They show sharp contrast: 
α-brass exhibits straight slip lines due to highly restricted cross slip, while Al shows 
occasional direction changes in the slip lines as the sign of cross slips. Further, α-Fe 
exhibits wavy slip lines due to restlessly occurring cross slips together with indefinite 
slip planes. Figure 1.2.41(d) illustrates such equivocally wandering slip behavior, called 
“pencil glide” because the slip trace looks like a hexagonal cylinder wall of a pencil.

1.2.5.4	 Dislocation–Dislocation Interactions
Dislocation interactions are important ingredients in understanding the hardening 
phenomena in terms of the metals’ responses. Even in 100% pure metals, many com-
plications exist because of the complexities associated with the variation of the inter-
actions and the resultant reaction products. This chapter does not intend to address the 
state-of-the-art of dislocation interactions, which have seen large advances in their 
reporting recently, coupled with massive and direct atomistic or dislocation dynam-
ics’ simulations (e.g., Bulatov et al., 2006), but rather to concentrate on fundamental 
but often overlooked issues of importance.

Figure 1.2.40  Live images of cross-slip processes obtained in atomistic simulation (top) 
(Rasmussen et al., 1997). and that observed experimentally via TEM (bottom) (Phillips, 
2001). Adapted with permission of the publishers (APS Publishing Co. for the simulation 
results, while Cambridge Univ. Press for the TEM micrograph).
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One may gain the impression that even a single interaction process of dislocations 
involves many details. Although the elucidation of such details is certainly relatively 
important, what is paramount is why such microscopic details do not have much effect 
on the macroscopic response, showing, in a sense, a sort of “universality,” rather than 
“specificity.” A candidate mechanism for this “specificity–universality” transition 
problem will be given in Chapter 5.

1.2.5.5	 LC Sessile Junction
For understanding hardening mechanisms, junction formations are the most important 
reaction between dislocations. The LC reaction and the resultant LC junction (or lock) 
formation are of particular importance for FCC metals, among others, simply because 
it is the strongest, that is, it is a sessile lock yielding maximum strength. Since the 
reaction takes place between two leading partial dislocations belonging to different 
planes, as depicted in Figure 1.2.42, the SFE also plays a decisive role in terms of both 
the frequency and the strength. As indicated in the figure, the smaller the SFE is, the 
higher the strength, but with lower frequency.

This reaction is expressed as

	
a a a

6
121

6
211

6
110� �� � �� � �. 	 (1.2.25)

Figure 1.2.41  Schematic illustration of slip lines typically observed on aluminum, alpha-brass, 
and iron sample surfaces, together with pencil glide for iron (Takamura, 1999). Adapted with 
permission of the publisher (Kyoto University Press).
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As a result of the reaction, a junction segment having a different Burgers vector 
a / [ ]6 110  from the parent dislocations is produced, which makes the lock sessile 
(Figure 1.2.43). Figures 1.2.44 and 1.2.45 provide two more schematics representing 
the LC junction. An intersection of dislocations on the primary and the conjugate 
systems is illustrated in the figures.

Figure 1.2.46 presents simulation results for the LC junction formations produced 
by Shenoy et al. (2000) based both on molecular dynamics (atomistic; not shown here) 
and dislocation dynamics (linear elasticity), comparing the configurations between Al 
and Ag. In Al, the slightly extended dislocations due to high SFE react to form an LC 

Figure 1.2.42  Formation mechanism of an LC junction as a result of the reaction between two 
leading partial dislocations. Since the reaction product has a resultant Burgers vector with the 
“third” direction, it becomes sessile.

Figure 1.2.43  Geometrically tractable representation of the formation of an LC junction.
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sessile junction along the intersection line of the two slip planes, while Ag exhibits a 
similar LC junction but with largely extended dislocations because of low SFE. The 
excellent agreement between the atomistics and continuum elasticity implies that the 
configuration is determined so as to lower the strain energy, excluding the core region 
where the linear elasticity is considered to become inaccurate. This implies that the 
configuration of the LC junction is basically dominated by the linear elasticity.

Figure 1.2.47 shows a TEM micrograph of an LC junction observed in stage II for 
Cu-15at%Al (Karnthaler and Winter, 1975). The configuration of the simulated result 
for Al in Figure 1.2.46 agrees well with the experimentally observed one for Cu alloy, 
even for the stair-rod shape at the edge of the junction.

To summarize this discussion, we now understand many of the mechanical proper-
ties of FCC metals, which can be relatively easily captured if we focus on the “SFE,” 
as overviewed in Figure 1.2.48. Here, Cu and Al are taken as representatives of low 
and high SFE, respectively (Figure 1.2.48(d)), as they normally exhibit mutually con-
trasting mechanical properties, manifested as the hardening characteristics appearing 

Figure 1.2.44  Schematics of the LC junction formed between two intersecting dislocations 
on the primary and conjugate slip systems, where the close-up view indicates the reaction 
product having the “third” Burgers vector a/6[.11̄0]

Figure 1.2.45  Simulated LC junction formation process by discrete dislocation dynamics.
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Figure 1.2.46  Simulated LC junctions based on linear elasticity-based dislocation dynamics 
for two typical FCC metals with high and low SFE, that is, Al and Ag. The configurations 
are demonstrated to agree nicely with those via atomistic simulations (Shenoy et al., 2000, 
p. 1491). Adapted with permission of the publisher (APS Publishing Co.).

Figure 1.2.47  Experimentally observed LC junction for Cu-15at%Al during stage II hardening 
(Karnthaler and Winter, 1975). Adapted with permission of the publisher (Elsevier Science & 
Technology Journals).
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in the stress–strain responses, yet both, nevertheless, belong to the same FCC family. 
A schematic comparison of their stress–strain relations under monotonic tension is 
presented in Figure 1.2.48(e), emphasizing the difference in the hardening moduli. 
With large enough SFE, as in Al, one may safely ignore the extension of disloca-
tions into partials (Figure 1.2.48(a)), resulting in frequent cross slip and subsequent 
pair annihilations (dynamic recovery) (Figure 1.2.48(b)), while easily dissociable LC 
junctions scarcely contribute to strain hardening (Figure 1.2.48(c)). The reverse is true 
for Cu with small enough SFE, that is, less frequent cross slip tends to hinder dynamic 
recovery on one hand, while fully extended dislocations are apt to form strong LC 
sessile locks that ultimately enhance strain hardening on the other.

Some practical examples of such SFE-based views are presented in both Appendix 
A2 and Chapter 3 (Figure 3.3.13), which may provide strong leverage for justifying 
the above views. In the former, a systematic series of experiments on the coupling 
effects between the nonproportional (NP) strain history and the strain rate, including 
the impact loading regime, are extensively discussed, while, in the latter, a systematic 
set of variations observed in the evolved dislocation cell structures strongly depend-
ing on the SFE are discussed based on experimental results under NP cyclic straining.

It should be noted that understanding BCC metals is not that simple, unlike the 
FCC case described previously, but a good start for tackling the issue is provided in 
the “FCC versus BCC” perspective.

Figure 1.2.48  Overview of the dislocation-based unified perspective for macroscopic 
mechanical properties in FCC metals as a summary from the viewpoint of SFE.
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1.2.5.6	 Jog Formation
Let us mention “jog,” which may become important, particularly in understanding 
hardening in BCC metals, as summarized in Figure 1.2.49. Jog is a product of the 
orthogonal intersecting of two dislocation lines (one of the forest intersection), char-
acterized as a step formed on a dislocation line in the out-of-slip plane (those formed 
on the same slip plane are called “kinks” [see Figure 2.2.7]). There are four kinds 
of such orthogonal intersection depending on the combinations of edge and screw 
components, that is, “edge against edge or screw” and “screw against edge or screw.”

The intersection expected to be exceptionally important in BCC metals (in terms 
of hardening) is that formed between two screws (i.e., on a screw dislocation against 
a screw segment), as schematically shown in Figure 1.2.50. The intersecting screw 
dislocation line leaves “jog” on it. Since the “jog” portion of the dislocation segment 

Figure 1.2.49  Formations of jog and kink as a result of intersecting edge dislocation (a) and 
screw dislocation (b) against edge and screw forests, respectively.

Figure 1.2.50  The jog-drag mechanism as a result of the intersection of two mutually 
perpendicular screw dislocations. One of the dislocations yields a “jog” with the nature of an 
edge component, which cannot continue to glide except a climb motion, where vacancies are 
provided from the surroundings, which induces resistance against the dislocation motion.
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is perpendicular to the Burgers vector b1 (which is conserved), it acts as an “edge” 
component that cannot be slipped along the same slip plane any further. For it to glide 
further, vacancies must be brought from somewhere to replace the “excessive” atoms 
(this process is thus “nonconservative,” in contrast to other dislocation motions, and 
is called a “climb” motion). Therefore, the glide motion of a screw jog must leave an 
array of vacancies along the trace, as depicted on the right-hand side of Figure 1.2.50 
(this is called “jog drag”). The “jog-dragging” process will also produce an edge 
dipole, as illustrated in Figure 1.2.51, since dislocations tend to bow out due to the 
line tension, while the jog is highly resistant compared with the other portions of the 
screw dislocation line. Note that the reverse motion of the screw jog produces an array 
of “interstitial” atoms instead of vacancies.

Examples of discrete dislocation-based simulation results for the “jog-related” pro-
cesses, including “jog drag,” are displayed in Figure 1.2.52, that is, (a) formation of a 
jog dipole, (b) the jog-dragging process, and (c) bypassing after jog dipole formation. 
Continuous stressing against (a) results in (c), further acting as a Frank–Read source 
that leads to multiplication. These overall observations remind us of a versatile aspect 
of the “jog-related” processes critical to many aspects of plasticity.

Note that the process just described is of further importance when we look into a 
fatigue-crack initiation mechanism from persistent shear band (PSB) ladder struc-
tures (under high-cycle fatigue, see Section 3.7.1), because the “jog-dragging” 
accompanying-edge dipoles produced within the interladder wall regions can produce 
a number of vacancies, as will be briefly discussed in Appendix A9.

1.2.5.7	 About Dislocation Density
Let us consider afresh an intuitive image of “dislocation density” for metals, by 
focusing on two typical extreme cases (Kato, 1999), as displayed in Figure 1.2.53: 
For well-annealed pure metals, we normally have � � � �10 109 10 2m , whereas for 
deformed states the values reach 10 1014 15 2− −m .

Figure 1.2.51  Schematics of “jog drag” showing the sequence of motion of a jogged screw 
dislocation line (a), followed by (b) bowing out, (c) formation of edge dipoles, and (d) 
resultant jog dragging leaving vacancy rows behind.
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Figure 1.2.52  Simulated “jog-related” processes by discrete dislocation dynamics: (a) jog 
dipole formation, (b) jog-dragging process, and (c) bypassing a formed jog dipole.

Figure 1.2.53  Examples of typical dislocation density for fully annealed and work-hardened 
samples, together with the commensurate total length of the dislocation line assumed to be 
contained in a unit cube. See also Figure 1.4.2.
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For an intuitive image of “dislocation density,” let us use two quantities – “mean 
spacing” and “total length” per unit volume (m3). The former is directly related to the 
two-dimensional (2D) definition of ρ , while the latter to the 3D definition. Figure 
1.2.54 schematically illustrates how we define “dislocation density” in the context of 
2D and 3D images, respectively.

As can be readily understood from the schematics illustrated in Figure 1.2.54, 
the mean spacing of dislocations can be roughly estimated from the density via 
��1 2/ , assuming uniform distribution. The dislocation density of 1010 2m−  corresponds 
to lspacing � 10�m (Figure 1.2.53). This is of the order of the grain size in conventional 
polycrystalline metals, meaning few dislocations included within a crystal grain. In 
sharp contrast, the density of 1015 2m−  is commensurate with lspacing ≈ 30 nm, roughly 
corresponding to 100 atoms. From this fact one can discover the maximum density 
that crystals can contain to be around 1016 2m− .

For the total length, the former yields Ltotal = 10 km, while the latter Ltotal =106 km 
(Figure 1.2.53). This is equivalent to several times the distance to the moon from the 
Earth (which is about 3 8 104. × km).

A typical example of the highest dislocation density is that in martensite or 
bainite structures. Figure 1.2.55 shows a TEM picture of lath martensite observed in 
Fe-0.6%C (Maki et al., 1979), where the black contrasted regions depict high-density 

Figure 1.2.54  Intuitive images of 2D and 3D dislocation density, that is, mean spacing for 2D 
and total length per unit volume for 3D definitions, based on which we evaluate typical values 
of the smallest and largest dislocation density, as listed in Figure 1.2.53.
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dislocations. They are basically introduced for accommodation reasons when mar-
tensitic phases with body-centered tetragonal (BCT) structures abruptly emerge dur-
ing quenching and intrude into the FCC-structured matrix phase (austenite). A close 
up of such an “intruded” front can be found in Figure 1.2.56 (not for a “marten-
sitic” transformation, but for a “bainitic” one) (Bhadeshia, 2001), where extremely 
high-density debris of dislocations have been introduced at the austenite (γ )-bainitic 
ferrite (αub) interface for the purpose of accommodating the attendant incompatibility. 
The corresponding situations for the lath martensite formation process are schemati-
cally illustrated in Figure 1.2.57, where lath-shaped martensitic phases are nucleated 
and subsequently grown from the prior austenite (γ ) boundaries, ultimately evolving 
into lath block/packet structures. Note that thus-introduced high-density dislocations 
are pinned by minute precipitates and/or solute atoms introduced separately, without 
which most of them do not remain anchored. Figure 1.2.58 shows a set of measured 
plots of dislocation density ρ  as a function of the transformation temperature, includ-
ing those not only for the martensite and bainite, but also for some ferritic phases 
(Bhadeshia, 2001).

Figure 1.2.55  TEM micrograph of a martensite lath structure as an example of one of the 
highest dislocation densities.

Figure 1.2.56  TEM micrograph presenting an example of intense dislocation debris with 
the highest density observed in the proximity of the bainite/austenite transformation 
front (Bhadeshia, 2001). Reprinted with permission of the publisher (Cambridge 
University Press).
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1.3	 Crystallography

1.3.1	 Crystal Systems (Structures)

Crystal structure is typically classified into three systems as schematically depicted 
in Figure 1.3.1, that is, FCC, BCC, and hexagonal close-packed (HCP) structures. As 

Figure 1.2.57  Schematic illustration of the lath martensite formation process under austenite/
martensite transformation.

Figure 1.2.58  Variation of dislocation densities in martensite, bainite, acicular ferrite, and 
ferrite, with transformation temperature (Bhadeshia, 1997, 2001). Adapted with permission of 
the publishers (Routledge and Cambridge University Press).
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atomically represented in Figure 1.3.2, the FCC and HCP are the closest-packed sys-
tems with the maximum density of atoms. The isotropic bonding state of the outer-shell 
electrons of the metals results in these structures, while a slight distortion of the bonding 
structure due to additional anisotropy tends to lead HCP. The two structures differ in the 
order of stacking of the atomic layers. ABAB … stacking produces the HCP, while the 

Figure 1.3.1  Typical crystal lattice structures for FCC, BCC, and HCP metals, together with 
representative slip systems in the Miller index notation.

Figure 1.3.2  Various atomistic representations of typical crystal lattice structures of FCC, BCC, 
and HCP, together with respective coordination numbers and packing factors. This schematic 
is adapted by permission (© Iowa State University Center for Nondestructive Evaluation).
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ABCABC … stacking corresponds to the FCC, as depicted in Figure 1.3.3. As one can 
readily understand, these are the ways to stack bolls (atomic layers) in the densest manner.

The BCC, on the other hand, is a loosely packed system, as a result of the direc-
tionality in the electronic boding states, normally reflecting, for example, the d-bands 
for transition metals. Typical metals yielding this system are Mo, W, Ta, Nb, and Co. 
They have partially “covalent-type” bonds, making them relatively high-temperature 
resistant. The difference in the atomic stacking sequence between FCC and BCC is 
presented in Figure 1.3.4.

Figure 1.3.3  Distinction between FCC and HCP structures in terms of packing sequences 
of atomic layers (both are the closest-packing structures) (Shimura, 2000). Adapted with 
permission of the publisher (Asakura Publishing Co.).

Figure 1.3.4  Comparison of stacking sequence of atoms between FCC and BCC structures.
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1.3.2	 FCC versus BCC

In this section, distinctions between FCC and BCC metals in terms of plasticity are 
discussed. In my experience, many researchers will tend to answer such a question as 
“what is the substantial difference between FCC and BCC?” in an obvious context. 
One of the most frequent answers is likely to be about “the number of slip systems.” 
Some might mention “interactions among dislocations,” especially in recent years. 
While these answers are true, they are rather insubstantial and rather secondary at 
most, in the sense that they are derivable. A more fundamental difference would be 
FCC and BCC’s mutually “dual” construction of atomic structures, on which almost 
all the specifics are derived, from dislocation core structures to contrasting rate and 
temperature dependencies. Needless to say, this originates from the electronic struc-
tures, governed ultimately by quantum mechanics, however it is not always necessary 
to proceed down this path, unless chemistry is explicitly involved, as in Fe, which is 
revisited in Section 4.2.2 (citing a work reported in Chen et al., 2008).

The dual-atomic constitutions manifest themselves as the dual constructions of the 
slip systems, that is, {110}<111> for FCC and {111}<110> for BCC, as depicted in 
Figure 1.3.5. Note that, as is widely known, for BCC other planes containing <111> 
orientations may also be slip planes, for example, {112}, {123}, and so on, but they 
are excluded here for simplicity. As can be seen, BCC and FCC combinations are 
totally opposite; the slip planes in the FCC are the slip directions in the BCC and vice 
versa. The same is true for “twin” deformations (see Section 1.4.1).

The dual construction in the slip system is primarily due to the dual-atomistic con-
figurations between the FCC and BCC, whose dual interrelationship is defined in 
the context of the reciprocal lattice (Kittel, 1953). Figure 1.3.6 provides such com-
parisons, summarizing the interrelationship between the FCC and BCC lattices. The 
reciprocal lattice to the FCC lattice agrees with the BCC lattice, and vice versa. (Note 
that the reciprocal of a simple cubic lattice is also a simple lattice.) In other words, the 

Figure 1.3.5  Dual constitution of FCC and BCC crystal structures; the nature of crystalline 
plasticity substantially differs between the two.
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Fourier transform of the FCC lattice generates the BCC lattice, and the reverse is true. 
In the field of solid state physics, we often use the “Wigner–Seitz cell” representation 
in the Bravais lattice for determining the first Brillouin zone based on the recipro-
cal space representation, since they coincide with the Bragg-reflected wave vectors. 
A similar procedure with attendant “duality” is found in Section 6.6.1, where we dis-
cuss graph theory-based representation of granular assemblies It should be noted that 
the “Wigner–Seitz cell” is equivalent to the “Voronoi cell,” constructed (drawn) via 
the Voronoi tessellation procedure.

Since the FCC lattice is close packed, accordingly the dual-BCC lattice is not; 
indeed, it may safely be stated to be “loose.” From an atomistic point of view, such 
looseness in the packing structure of BCC metals can cause a situation whereby the 
closest-packed plane is not clearly identified, unlike in the FCC, and hence several 
“nearly” closest-packed planes can coexist. This “looseness” in packing structure is 
the very reason for the resulting multiple slip systems (unidentifiable slip planes) in 
BCC metal. Furthermore, it is the source of the often observed complexity and vari-
ety in the mechanical responses peculiar to BCC metals as well as their much higher 
Peierls–Nabarro (PN) stress than FCC. Immediate examples are BCC metal’s strong 
strain rate and temperature dependencies on the stress response and the complexities 
in the core structure of the screw dislocation for BCC metals in general. (These will 
be discussed in later chapters, especially Chapter 4.)

In the case of α-Fe, this is, as a matter of fact, not a natural-born BCC metal, as is 
pointed out and discussed in some detail in Section 4.2.2. The specific origin of the 
BCC structure, coupled with the complexity in the screw core structure (see Section 
4.2.1), is considered to be a crucial source of the extreme varieties in the mechanical 
properties of this metal. Furthermore, combined with the fact that the high temperature 
austenitic phase (γ -Fe) with FCC structure is within easy reach on the phase diagram 

Figure 1.3.6  Dual constitution of FCC and BCC metals in terms of the atomic structure, known 
as Wigner–Seitz primitive cells in real space, and their reciprocal relationship, termed as the 
first Brillouin zone, which are mutually transferable via Fourier transform.
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via appropriate heat treatments, the complexity regarding α-Fe also provides us with 
such a fertile spectrum of metallurgical microstructures (such as pearlite, martensite, 
and bainite structures). Appreciating α-Fe this way is quite important for recognizing 
the phenomenology and fully understanding the necessity of multiscale approaches in 
the present context.

One prominent consequence of the already mentioned duality in slip-system con-
structions is the difference in the textures to be evolved, for example, under cold roll-
ing (details about “texture” and “pole figure” are given in Section 1.4.2). Figure 1.3.7 
compares <111> and <100> pole figures between FCC metal (Cu) and BCC alloy 
(Fe-3%Si) cold-rolled up to 80% reduction in thickness, where those with RD (roll-
ing direction) for the former and ND (normal direction) for the latter are indicated 
(Kocks et al., 2000; Rollett and Wright, 1998). Note that the transposition of the 
RD and ND ensures the two sets of pole figures for FCC and BCC correspond well. 
This dual-texture evolution is regarded as an eloquent manifestation of the previously 
discussed dual construction in the atomic structures between FCC and BCC. Note 
that slight differences may be largely due to the geometrical effects of the elongated 
crystal grains along the RD, which differentiate the transposed case from the refer-
ence. As conjectured from this duality in the rolling textures, we suppose some type 

Figure 1.3.7  Intriguing correspondence in {111} and {100} pole figures representing rolling 
textures between FCC copper in RD and BCC Fe-3Si in ND, as a manifestation of the “dual 
constitution” of slip systems (Rollett and Wright, 1998). Adapted with permission of the 
publisher (Cambridge University Press).
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of indigenous preferred orientation should exist in relation to the crystal structure, for 
example, FCC has its own inherently preferred orientations that will evolve, although 
the texture in FCC metals depends quite strongly on the SFE (see Figure 1.4.10). This 
is also true for BCC metals. Iron (Fe) or high purity steels such as IF steel, among 
others, are well documented to yield {111}<110>–<112> γ -fibered textures, where 
the {111} plane tends to be directed in parallel to the sheet sample surface, together 
with the preferred orientations in between <110> and <112> in RD (also expressed 
as that with strong <111> || ND fiber). The typical γ-fibered texture for IF steels, for 
example, is manifested as the pole figures displayed in Figure 1.3.8, where (b) rep-
resentative and (c) schematic (or ideal) {100} pole figures are compared. Since the 
representative γ-orientations of {111}<110> and {111}<112> are located periodically 
along a concentric circle on the pole figure, as shown in (c), we can understand why 
the experimentally observed pole figures become like the one demonstrated in (b), 
that is, with an isotropically converging concentration of the preferred orientation. 
The γ -fibered texture is revisited in Section 1.4.2, with another representation (via 
orientation distribution function [ODF]).

As easily imagined based on the above argument, FCC metals, having the dual-crystal 
structure relative to BCC metals, should give rise to totally different textures from the 
above, for example, β-fibered texture; it will be extremely difficult for them to yield 
the γ -fiber. (Typical rolling textures for FCC metals are shown in Section 1.4.2.)

1.3.3	 Slip Systems in FCC and BCC

FCC metals have 12 independent slip systems, as represented in Figure 1.3.9, that 
is, four independent slip planes with each containing three slip directions, making 
the total number of the slip systems 12, where the combination of slip plane and 

Figure 1.3.8  Typical {100} pole figure representing γ-fibered texture, specific to rolled BCC 
iron and IF steels, comparing experiments and a corresponding schematic.

https://doi.org/10.1017/9781108874069.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874069.003


52 Dislocation Theory and Metallurgy

direction is called “slip system.” The four slip planes are often referred to as primary 
(B), conjugate (D), cross-slip (C), and critical (A), respectively, according to their 
configurations and roles viewed from the primary system (B), while the slip direc-
tions are labeled by numbers corresponding to the six independent directions, that 
is, from 1 through 6. The combination of them (A–D and 1–6) is referred to as the 
Schmid–Boas notation (Schmid and Boas, 1950 [1968]), which is widely used in the 
literature for identifying each slip system. For example, “B2” denotes the slip system 
on the primary plane (B) with direction 2. Figure 1.3.10 displays the corresponding 
vector representations, where m( )α  and s( )α  indicate the unit vectors for the slip plane 
normal and the slip direction (i.e., that of the Burgers vector), respectively, with the 
superscript (α) denoting the slip system, that is, α = 1, 2, …, 12 for FCC metals. These 
notations are further used in the mathematical treatment of crystal plasticity, partially 
mentioned in conjunction with the Schmid factor (SF) (e.g., Figure 1.3.17).

As is inferred from the “FCC versus BCC” arguments in Section 1.3.2, BCC has a 
dual construction of slip systems in contrast to that of FCC crystals. The closest-packed 
plane for BCC crystals is {110} and we normally regard the associated slip systems 
of the {110}<111> type as the representative system. Figure 1.3.11 displays the 12 
independent slip systems of the {110} type for BCC metals, that is, six equivalent 
slip planes with two slip directions each, summarized in Figure 1.3.11 in terms of 
the Schmid–Boas notation. The corresponding vectorial representations are given in 

Figure 1.3.9  Slip systems for FCC metals, consisting of four crystallographically equivalent 
slip planes, each having three independent slip directions, based on Schmid–Boas notations.

https://doi.org/10.1017/9781108874069.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874069.003


531.3  Crystallography

Figure 1.3.12. From the figure, one can confirm the “duality” relative to FCC, espe-
cially by looking at the Schmid–Boas notation, that is, “A–D” denotes the slip direc-
tions, while “1–6” expresses the slip plane, based on which we readily obtain a set of 
expressions for BCC from that of FCC via simple transpositions of s mfcc bcc

( ) ( )� ��  and 
m sfcc bcc

( ) ( )� �� . Here, to avoid confusion, the subscript “fcc/bcc” is attached to the plane 
normal and direction vectors.

As pointed out in Section 1.2, BCC-constituting atomic structures are rela-
tively loosely packed compared to FCC’s (compare the packing factors listed in 
Figure 1.3.2), which gives rise to difficulty in distinguishing the most densely stacked 
planes from others, that is, there exist plural dense planes very close to the densest 

Figure 1.3.10  Explicit expressions of slip systems for FCC in Figure 1.3.9 via unit vectors for 
slip planes and slip directions (i.e., the Burgers vector) of FCC metals.

Figure 1.3.11  Slip systems for BCC metals ({110}<111> type only), consisting of six 
crystallographically equivalent slip planes, each having two independent slip directions, 
based on Schmid–Boas notations, yielding dual construction, in contrast to those of FCC 
counterparts shown in Figure 1.3.9.
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one. This serves as the major reason for the indefinite slip planes often observed in 
BCC metals, combined with the extremely large SFEs, manifested typically for α-Fe 
as “wavy” slip-traces (c) and “pencil glide” (d) in Figure 1.2.41.

Figure 1.3.13 summarizes a set of generally postulated variations of the slip planes 
for BCC structures, that is, {110}, {112}, and {123}, where the most densely packed 

Figure 1.3.12  Explicit expressions of slip systems for BCC in Figure 1.3.11 via unit vectors for 
slip planes and directions (i.e., the Burgers vector), yielding dual construction in contrast to 
those for FCC metals in Figure 1.3.10.

Figure 1.3.13  Three typically recognized slip planes for BCC metals containing the common 
slip direction in the <111> orientation.
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direction is uniquely identified to be <111>, providing the definite slip direction of 
BCC metals. This can be visually confirmed also in Figure 1.3.13, where these three 
planes intersect on the common <111> line, and hence they are called to form the 
<111> zone. The independent slip planes for {112} and {123} types are partially 
shown in the figure, having 12 and 24 slip systems, respectively. Therefore, BCC met-
als have 48 slip systems altogether if we assume all the contributions from the above 
three kinds including the {123}<111> types.

Since the SF is measured by ( )( ) ( )s m� �� sym, as detailed in Section 1.3.4, we 
notice from the earlier discussion about duality in slip systems between FCC and 
BCC, namely ( ) ( )( ) ( ) ( ) ( )s m s mfcc fcc sym bcc bcc sym

� � � �� � � , that two crystal systems’ SFs coin-

cide, as far as the {110} types for BCC are concerned. Figure 1.3.14 shows the con-
tour map of the SF, commonly applicable to both the crystal structures. The map is 
drawn on the standard triangle of the stereographic projection (see Figure 1.4.13 for 
details), together with the number of active slip systems under tension in the pre-
scribed orientations. The orientations [001], [111], and [011], located at the apices 
of the triangle, are highly symmetric, which are followed by orientations along the 
edges (with two equivalent slip systems), as explicitly specified in (a). The orienta-
tions inside the triangle, on the other hand, yield low symmetry, manifesting a limited 
number of slip-system activities, for example, single slip. Some immediate examples 
of the corresponding stress–strain curves are schematically shown in (b), showing a 
highly symmetric multiple slip orientation [111] (six equivalent slip systems) and a 

Figure 1.3.14  SF map applicable both to FCC and BCC crystals, together with schematically 
drawn typical stress–strain curves in the case of FCC metals.
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single-slip orientation [123], together with a moderately symmetric orientation along 
the triangle edge [-112] (two slip systems), for FCC metals, as examples. Single-slip 
orientations tend to yield two- to three-stage hardening, as also detailed in Figure 3.1.6 
in conjunction with evolving dislocation structures, and revisited in Figure 4.1.3 in the 
context of “single crystal versus polycrystal” plasticity.

Regarding the SF, such low-symmetric orientations are apt to take relatively larger 
values, stemming from the biased activities of their slip systems, with a maximum 
of 0.5 realized at [149], followed by, for example, 0.497 at [136], and so on, located 
inside the triangle, as a natural consequence.

For easy understanding of the slip-system configurations for FCC and BCC crys-
tals, Figure 1.3.15 provides a do-it-yourself kit for representing all the typical planes 
including <111> and <110>, in addition to the <100> cube planes for cubic structures 
(Shimura, 2000). The completed drawing is shown in the upper left.

1.3.4	 RSS and the SF

For discussing slip-system activities and/or slip-system-wise shear deformations, we 
use the RSS. Figure. 1.3.16 illustrates how we define the RSS together with the asso-
ciated SF. The force F  acting on the cylindrical sample, as in the figure, is projected 
onto the slip plane in the slip direction, inclined by φ  from the loading axis, that is, 

Figure 1.3.15  A do-it-yourself kit of cubic structure model containing all the fundamental 
planes of {100}, {110}, and {111} (Shimura, 2000). Adapted with permission of the 
publisher (Asakura Publishing Co.).
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F fcos . By dividing it by the area of the slip plane A Aslip � / cos�, we obtain the RSS, 
that is,

	 �
�

� �� �
F

A

F

A

cos
cos cos

slip

	 (1.3.1)

Since F A/ � � , we finally have
	 � � � �� cos cos .	 (1.3.2)

Here, the prefactor cos cos� � ��  is called the SF, which measures the RSS. By using 
this factor, we can distinguish the activity of the slip systems, for example, “primary” 
or “secondary,” and “active” or “inactive.”

The equation for finding the RSS can be generalized into the one for the tenso-
rial definition, which serves as the foundation of the kinematics of crystal plasticity 
(e.g., Asaro et al., 2003; Khan and Huang, 1995; Nemat-Nasser, 2004). Figure 1.3.17 
displays the process and the definition. The SF is generalized as the Schmid tensor, 
indicating 3D slip-system constitutions, defined as

	 P s m s mij i j j i
( ) ( ) ( ) ( ) ( ) ,� � � � �� �� �1

2
	 (1.3.3)

	 P s m s m m s( ) ( ) ( ) ( ) ( ) ( ) ( ) ,� � � � � � �� �� � � � � �� �sym

1

2
	 (1.3.4)

where s mi j
( ) ( )α αand  are unit vectors representing the slip direction and slip plane 

normal belonging to the slip system specified by the superscript (α), respectively. The 
subscript “sym” in Eq. (1.3.4) denotes “symmetrization.” By using the Schmid tensor, 
we can calculate the RSS via

	 � ���Pij ij
( ) , 	 (1.3.5)

	 � � �� �P P( ) ( ): ( . ),�� ��tr 	 (1.3.6)

Figure 1.3.16  Schematics showing how to obtain the RSS, where the SF is defined as the 
measure for evaluating slip activities.
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where “:” denotes the scalar product for tensors. The rewriting of the second expres-
sion in Eq. (1.3.6) is simply due to a computational reason, because algorisms for 
calculating the multiplication P( ).� ��  are simpler than directly computing P( ):� �� .

It is also known that BCC metals do not always obey the Schmid law, often referred 
to as the “non-Schmid effect,” requiring additional calculations (Ito and Vitek, 2001). 
Some related topics are discussed in Section 4.2 in relation to the complexity of screw 
core structures peculiar to BCC metals.

When the SF is summed up over multi-orientations for the purpose of representing 
polycrystal versions of the relationship between σ  and τ , this is called Taylor factor, 
that is, M  for � �� M . Roughly, it has been reported that M = 3 06.  for FCC metals 
and M = 2 83.  for BCC metals (Figure 1.3.17).

The skew-symmetric part of s m( ) ( )� �� , defines the spin tensor, to be used in the 
kinematics of finite crystal plasticity formulation for expressing deformation-induced 
lattice rotations, that is,

	 W s m s mij i j j i
( ) ( ) ( ) ( ) ( ) ,� � � � �� �� �1

2
	 (1.3.7)

	 W s m s m m s( ) ( ) ( ) ( ) ( ) ( ) ( ) ,� � � � � � �� �� � � � � �� �skew

1

2
	 (1.3.8)

where “skew” indicates “skew (anti)-symmetrization.”

1.3.5	 Dislocation–Dislocation Interactions Revisited: Interaction Matrix

Figure 1.3.18 displays an example of the interaction matrix for FCC metals, classify-
ing the kinds of pairwise interaction for the arbitrary combinations of the slip systems. 
In the case of FCC metals, such interactions are expressed by a 12 12×  matrix. Here, 

Figure 1.3.17  Three-dimensional generalization of the SF, referred to as the Schmid tensor or 
direction tensor, which is constructed by the tensor product of two unit vectors representing 
slip direction and slip plane normal, together with the corresponding relationship for 
calculating the RSS. Two expressions, via direct and index notations, indicated for both SF 
and RSS, are presented.
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the Schmid–Boas notation (see Figure 1.3.9) is used to symbolize the slip systems. 
The inset shows a 2D representation of Thompson’s tetrahedron, expressing the con-
stitution of the FCC slip systems, together with the interactions specified with respect 
to the primary slip system, indicated by a broad doubled-pointed arrow.

The interactions among dislocations in FCC metals have empirically been classi-
fied into five kinds, that is, (O) self-hardening, (H) Hirth lock or reaction-producing 
jogs, (C) coplanar junction among those on the same slip plane, (G) glissile junction, 
and (S) LC sessile junction. The last one is described in detail in Section 1.2.5.5. The 
interaction associated with the LC sessile junction formation exhibits the maximum 
strength, which is followed by the glissile lock. There have been arguments about the 
others (Bassani and Wu, 1991; Francoisi et al., 1980).

Also explained in Figure 1.3.18 is how to read the interaction matrix. If the primary 
system denoted by O be the reference, which corresponds to B5 according to the 
Schmid–Boas notation (corresponding to the slip system along the lower edge of the 
primary plane in Figure 1.3.9), we need first to find it in the row. As can be confirmed 
in the figure, “B5” is located on the eighth row from the top. Then we can identify all 
the interactions with arbitrary others by looking at this row. For example, the inter-
action with D1 is found to be “S,” meaning LC sessile junction formation, and so on.

The values of the components in the above interaction matrix, that is, the strengths 
of the interactions, can be identified (or at least evaluated) by a series of experiments 
which make up the latent hardening test.

Figure 1.3.18  Example of an interaction matrix for FCC metals expressing kinds and strengths 
of dislocation–dislocation interactions, also explaining how to view the interaction matrix, for 
example, from the primary slip system denoted by thick double-pointed arrow in Thompson’s 
tetrahedron on the right.

https://doi.org/10.1017/9781108874069.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874069.003


60 Dislocation Theory and Metallurgy

Schematics of the latent hardening test are shown in Figure 1.3.19, where a two-
step test on a single crystal specimen is performed. The details of the test are as fol-
lows. The first test is conducted on a parent specimen normally directed in single slip, 
and the second test follows it on a child sample machined from the parent with a spec-
ified direction from its stress axis, such that the interaction between the primary slip 
system activated in the first test and the latent systems start operation in the second 
test can be measured. The graph in the figure shows an example of the output results, 
where shear stress–strain curves for the primary and the secondary tests are indicated, 
from which the latent hardening ratio (LHR) is obtained as

	 LHR �
�
�

s

p

. 	 (1.3.9)

Here, τ p and τ s are the values of flow stress in the primary and secondary tests, 
respectively, where A2 or D6 orientation is assumed in the secondary tension against 
a B2 primary orientation, corresponding to LC junction and no junction formations, 
respectively, as extrema. There are some arguments about how to determine τ s since 
the secondary curve contains a number of subtleties. Usually the backward extrapola-
tion is employed, as in the figure.

Examples of experimentally observed responses for Cu are displayed in Figures 
1.3.20 (Wu et al., 1991) and 1.3.21 (Jackson and Basinski, 1967), respectively. In 
the former (Figure 1.3.20), the backward extrapolation procedure is indicated for 
evaluating the secondary flow stress. In Figure 1.3.21, on the other hand, three sec-
ondary orientations of B2, A2, and D1 are chosen against the B4 primary counter-
part, corresponding to G (glissile junction) in common in the interaction matrix 
f�� listed in Figure 1.3.18. As observed, D1 and A2 exhibit marked stress increase 
around the reyielding, whereas B2 shows no additional hardening but is demonstrated 
to smoothly continue the primary stress curve. Since B B4 2→  is classified as C 

Figure 1.3.19  Schematics of the latent hardening test consisting of two-step loading (tensile) 
tests, by which the components in the interaction matrix can be evaluated (Wu et al., 1991). 
Adapted with permission of the publisher (Royal Society Publishing).
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(coplanar junction) in f��, the present result implies no distinction among the three 
coplanar slip systems in their contributions to the strain hardening at least for Cu, 
meaning that the C component in f�� is supposed to take the value of 1.0, that is, no 
extra/additional contribution to the self-hardening.

Figure 1.3.20  Example of the latent hardening test for a Cu single crystal (Nemat-Nasser, 2004; 
Wu et al., 1991). Adapted with permission of the publishers (Cambridge University Press and 
Royal Society Publishing).

Figure 1.3.21  Examples of latent hardening test results with various orientations in the 
secondary experiments for a single crystal Cu (Jackson and Basinski, 1967). Adapted with 
permission of the publisher (Canadian Science Publishing).
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It is noteworthy that the components of the interaction matrix f��  are not constant in 
general, but roughly yield a decreasing function of the primary shear strain, as shown in 
Figure 1.3.22(a). From the comparison of LHR among the secondary orientations, A6, 
A2, and B2, not only can we confirm the strength order of the dislocation interactions 
as S (sessile) > G (glissile) > C (coplanar), but we also learn that all these interactions 
follow the same decreasing trend for both Al and Cu. It is further worth noting that a 
rough negative correlation of the LHRs for S, G, and C with increasing SFE exists, as 
observed in Figure 1.3.22(b). This corroborates the summarized overview concerning 
SFE-hardening behavior relationship for FCC metals given in Figure 1.2.48.

We next consider the case of BCC metals, although they have been quite limited, 
in contrast to FCC metals, primarily due to complexity relating to BCC indefinite 
slip-system activities (cf. Figures 1.2.41 and 1.2.13). Among others, Nakada and Keh 
(1966) systematically investigated – for single crystal Fe, choosing [ ]111  as the pri-
mary system direction – the effects of a Burgers vector combination, the amounts 
of prestrain, and temperature, concluding the LHR tends to vary between 1.2 and 
1.4, roughly independent of those factors. Figures 1.3.23 and 1.3.24 show examples 
of their results. In Figure 1.3.23, what we can readily confirm is the markedly pro-
nounced additional hardening at yielding compared to the FCC cases shown earlier, 
followed by similar flow responses regardless of the secondary slip systems (oriented 
in #1[ ]111 , #2 [ ]111 , #3 [ ]111 , and #4 [ ]111 ). In Figure 1.3.24, on the other hand, an 
exceptionally high rate of additional hardening is found for the reloaded curve #4′, 
in which two secondary slip systems, where double slip with [ ]111  and [ ]1 1 1  direc-
tions are activated simultaneously, distinctly differ from FCC. Figure 1.3.24 provides 
a comparison of results for the case of “coplaner” latent hardening, where the RSS 
was designated to be zero on the latent system during the first test, and, similarly, the 

Figure 1.3.22  Variations of LHR with (a) shear stress in the primary test (Francoisi et al., 1980) 
and (b) normalized SFE (Francoisi, 1985), respectively, where the maximum values of LHR 
are used for each material for the latter (b). The primary system for all the tests is B4, yielding 
formations of sessile (A6), glissile (A2), and coplanar junctions (B2), respectively. Adapted 
with permission from the publisher (Elsevier Science & Technology Journals).
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Journals).
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RSS on the primary system was zero during the second test, meaning latent hardening 
in the absence of secondary activation of the slip systems. Relatively large coplaner 
interaction is observed, which is another feature of BCC metals.

Figure 1.3.25 provides an example of the interaction matrix for BCC Fe which 
will be used in the simulations that follow in the present book. The values of the 
components are determined in an integrated manner and refer to several data sources, 
that is, the classification of the interactions is based on a series of dislocation dynam-
ics simulations (Madec and Kubin, 2004; Tang et al., 1999), and the values them-
selves specified in the list in the right are from those evaluated by Francoisi (1983) in 
the latent hardening tests, where the slip systems are limited to the {110}<111> and 
{112}<111> families, that is, B5 through A2 and B5′ through A2′, respectively. Since 
there is no distinction in the reaction of the two dislocations, the interaction matrix in 
this case is symmetric. Note that in the following series of simulations we used “1.0” 
for components not available in the literature.

Figure 1.3.26 displays another source of the interaction matrix for BCC metal 
(Cuitinõ et al., 2001) where a specific interaction, that is, between a moving edge 
dislocation and a stationary screw dislocation, forming jogs as a result of the reac-
tion, is considered (see also Figure 1.2.49(a)). Cuitinõ et al. evaluated all the 24 24×  
interactions in terms of the formation of energy based on energy and mobility consid-
erations for Ta. Since the reactions of an edge dislocation against a screw counterpart 

Figure 1.3.25  Interaction matrix for BCC Fe integrated from literatures, that is, with reactions 
classified by Madec and Kubin (2004), and values evaluated by Francoisi (1983).
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are assumed, the matrix becomes asymmetric, in contrast to that in Figure 1.3.25. 
Sorting the original matrix by the number, from 1 through 24, used in Figure 1.3.25, 
we notice some noteworthy features that are roughly classified into four submatrices 
corresponding to the reactions for

	(1)	 {110} edge against {110} screw (upper left),
	(2)	 {110} edge against {112} screw (upper right),
	(3)	 {112} edge against {110} screw (lower left), and
	(4)	 {112} edge against {112} screw (lower right),

exhibiting mutually common trends in the component structure, with some minor 
exceptions, for example, periodically crossing cater-corner bands of “1.0” or “-” 
(shaded in the figure), and intercorrespondence of the values between “1.5 and 3.2” 
and “2.4 and 1.8” (these can be mutually converted by swapping). These common fea-
tures imply qualitatively similar contributions of the {110}<111> and {112}<111> 
family dislocations to the jog formations.

1.4	 Miscellaneous

1.4.1	 Twin

Another mode of plastic deformation is “twinning.” There are two types of twin 
in terms of their forming mechanisms, that is, annealing twin and deformation (or 
mechanical) twin. The former is introduced to reduce the energy of the system as a 

Figure 1.3.26  Interaction matrix for BCC Ta representing normalized jog formation energy 
numerically evaluated (Cuitinõ et al., 2001).
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part of “static recovery” in the absence of stress or deformation, while the latter takes 
place in order to accommodate the imposed deformation under stress. This subsection 
basically deals with the latter – deformation twin.

The deformation twin is considered to be a major deformation mode for HCP met-
als, and also for some FCC metals with low SFE less than 25 mJ m−2 and BCC metals 
under high strain rates and low temperatures. Even in FCC metals with intermediate 
SFE around 50–70 mJ m−2 (such as Cu and Ni), where most of the plastic deformation 
can be carried out by the dislocation motion, mechanical twinning can take place, for 
example, under impact or hypervelocity impact loading, as partially shown in Figure 
3.5.2. It is known that the critical stress for the onset of mechanical twinning for FCC 
metals is in proportion to the SFE. This means that small SFE metals and alloys (such 
as α-brass and SUS304 [austenitic stainless steels]) tend to exhibit mechanical twin-
ning quite easily.

Figures 1.4.1 and 1.4.2 detail the crystallography of the twinning for FCC and BCC 
metals, respectively. As can be confirmed by comparing the two, putting them side by 
side, as in Figure 1.4.3, there also exists a “dual” constitution, that is, {112}<111> for 
FCC and {111}<112> for BCC. It is worth comparing this with the case of “slip” in 
Section 1.3.2 or Figure 1.3.5.

For BCC metals, another distinction should be kept in mind, which is that between 
twin and antitwin directions, depending on the directionality of deformation due to 
its geometrical constitution, causing, for example, tension–compression asymmetry. 
Note that the emission of a partial dislocation from a GB in nanocrystalline aggre-
gates, leading to the formation of twins across the grain, has been considered to be 
responsible for the outset of plastic deformation in such nanocrystal samples (e.g., 
Asaro et al., 2003; Van Swygenhoven et al., 2002).

Figure 1.4.1  Schematics of twinning in FCC metals.
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Figure 1.4.4 presents a schematic comparison of dislocation-based representations 
of “twin” and “microband (MB)” between FCC and BCC (Murr et al., 1996), where 
we can find some similarity between the twin and MB, except for the case of twin for 
FCC. Comparisons between deformation twins and MBs formed under oblique shock/
hypervelocity impact loading for Cu can be found in Figure 1.4.5, which demonstrates 
the micrographically resembling morphologies between them. It is worth noting that 

Figure 1.4.3  Duality in twin deformation modes between FCC and BCC metals as a 
consequence of their dual constitution of crystallographic structures.

Figure 1.4.2  Schematics of twinning in BCC metals.
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Figure 1.4.5  Comparison of deformation twin and MB formed on a polycrystalline Cu surface: 
(a)(d) twins in oblique shocked copper targets with dG = 375 µm and 141 μm, respectively, 
and (b)(c) MBs below hypervelocity impact crater in copper targets with dG = 763 µm and 
35 µm, respectively (Murr et al., 1996, p. 124, figure 2). Adapted with permission of the 
publisher (ASM International).

Figure 1.4.4  Schematics of deformation twins and MBs, comparing FCC and BCC metals and 
demonstrating the similarity of the two deformation modes (Murr et al., 1996, p. 131, figure 
8). Adapted with permission of the publisher (ASM International).
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the arrays of dislocations illustrated there will not always be “lattice” dislocations, 
but more likely CD ones (namely, “virtual” – see Section 1.4.4 for details). This tends 
to mean researchers experienced in TEM observations may not always accept (or be 
rather skeptical about) such dislocation-based representations.

The twinning in FCC can be interpreted quite distinctly from that in BCC, as a 
serial stacking of plural “stacking faults” sandwiched between pairs of partial dis-
locations. Therefore, the formation mechanism is greatly attributed to the motion of 
leading and trailing partial dislocations.

Since, basically, both the twins and MBs are well described as CD dislocations to 
be introduced via accommodation of a sort of “excessive” local deformation, extended 
use of the “incompatibility tensor”-based model will be effective for descriptions of 
them, as discussed in Chapter 11 in the context of application to single crystal pure Mg.

1.4.2	 Texture and Pole Figure

Another important item to be added to Part I, “Fundamentals,” is “texture,” especially 
rolling texture, that is, recrystallization texture and deformation texture. Figure 1.4.6 
provides a schematic drawing of the rolling process of sheet metal, together with the 
attendant deformation of crystal grains rotated toward and elongated into the RD. 
This is accompanied by the developments of “preferred orientations” of grains in 
addition to their significant shape changes. The term “texture” refers formally to the 
former, the preferred orientation, not the latter. However, the actual texture, presented 
via the pole figure or ODF, inevitably includes the effect of such morphological 
aspects of the composing grains, together with likely occurring intragranular inho-
mogeneous deformations manifested as various forms of deformation structure (cf. 
Chapter 3). Representative rolling textures are schematically summarized in Figure 
1.4.7, that is, cube, copper, brass, γ, and gross orientations, expressed via hkl uvw� �  
as rolling direction rolling plane� � , together with their relationships with the 
Bunge-type Euler angles ( , , )� �1 2� . Euler angles are described in some detail in 
Appendix A1.7.

Figure 1.4.6  Schematic illustration of rolling process and attendant “texture” development with 
preferred orientation.
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For scrutinizing the texture, we generally need the pole figure, or more precisely, 
the ODF for their 3D totality. Figure 1.4.8 concisely explains how we obtain a pole 
figure, while Figure 1.4.9 provides an overview of the ODF, both assuming texture 
presentations. The pole figure is a 2D stereographic representation of the orientation 
of a “selected” plane normal (pole) with respect to the sample reference frame, often 
utilized to describe texture, for example, for a rolled sheet metal, on which a set or 
group of all the equivalent specific crystallographic orientations of the crystal phases 
involved in the targeted sample are stereographically projected. In Figure 1.4.8, a 
<100> pole is taken as an example with respect to a sample reference frame, specified 
as RD, ND, and transverse direction (TD). Here, a single crystal cube located at the 
center of a projection sphere is depicted, from which three cube directions of [100], 
[010], and [001] are ultimately projected onto the projection plane, resulting in the 
pole figure (a). By repeating the process, we obtain the corresponding plot (b) and the 
contour plot (c), indicating the intensity of such distributions of projected points. For 
the ODF, on the other hand, Figure 1.4.9 displays presentations in (a) full 3D, (b) 2D, 
and (c) a selected 2D Euler angle space ( , , )� �1 2� , together with typical examples of 
the rolling textures (c) and (d), respectively, specifying typical � �, , and γ  fibered tex-
tures. Special emphasis is placed on the γ  fibered texture, to be discussed as follows.

As shown already in the context of “FCC versus BCC” (in Section 1.4.1), the dual 
constitution of the atomic structures is also manifested as distinct textures of high 
contrast between them (see Figure 1.3.7). Typical textures for FCC metals observed 

Figure 1.4.7  Schematics showing representative rolling textures, that is, cube, gross, 
and γ orientations, together with copper and brass orientations, represented as {rolling 
plane}<rolling direction>.
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Figure 1.4.8  Schematic drawing showing how to obtain and view the pole figures for a 
textured sheet via cold rolling, taking an example of {100} poles of a cubic single crystal. A 
stereographic projection of <100> directions onto a projection plane is illustrated, together 
with rolling, transverse, and normal directions of the rolled sheet sample, indicated as RD, 
TD, and ND, respectively (Hatherly and Hutchinson, 1979).

Figure 1.4.9  An overview of the ODF presented in Euler angle space, ( , , )� �1 2� , with an 
emphasis on the γ  fibered texture, typical to Fe and low-carbon steels such as IF steel. (a) 
2D presentation on the ( , )�1 �  plane at �2 45� � (Urabe and Jonas, 1994, p. 437, figure 4), (b) 
3D view of (b) (Hirsch and Lücke, 1988a, p. 142, figure 5(b)), and (c) that for FCC metals, 
schematizing typical rolling textures (Hirsch and Lücke, 1988b, p. 2869, figure 3). Adapted 
with permission of each publisher (Iron and Steel Institute of Japan, Hindawi, and Elsevier).
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in cold rolling are depicted in Figure 1.4.10, that is, (a) pure Cu type and (b) α-
brass type compared on {111} pole figures (Hu et al., 1952), where the former is 
for 95%-rolled Al, while the latter is 95%-rolled for 70–30 brass. The BCC metals, 
on the other hand, have their own counterpart, widely known as γ -fibered texture 
(see Figure 1.3.8). It is worth noting that the difference observed between (a) and 
(b) in Figure 1.4.10 is largely attributed to the difference in the SFE, where type 
(b) is considered to be greatly affected by the alternative deformation mode, that is, 
twinning (Section 1.4.1). The former type of pole figure (described as ( )[ ]123 412  
and ( )[ ]146 211 ) has been widely observed for FCC metals with relatively high SFE, 
whereas the latter type (described as ( )[ ]110 112 ) for those with low SFE such as 
brass and silver (Ag). Transition reported from the former toward the latter seems to 
be very informative, realized by decreasing the rolling temperature down to −196°C 
(e.g., Hu and Goodman, 1963), demonstrating that the high-intensity areas near the 
center of the former tend to split, eventually becoming closer to the former as a func-
tion of temperature. These authors discussed the close relationship with SFE change.

For the case of the γ -fibered texture for BCC metals mentioned in Section 1.3.2 
in the context of high r-value, the <100> pole is often used where the intensity tends 
to be concentrated in the circular region, as schematically illustrated in the top right 
of Figure 1.4.11 for the case of IF steels. With this type of texture, the r-value can 
reach 2.5 or more.

Figure 1.4.10  Typical pole figures in FCC metals, referred to as “pure copper” type and 
“α-brass” type (Hu et al., 1952). Used with permission of The Minerals, Metals & Materials 
Society.
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Incidentally, the γ -fibered texture has been known to be suitable for press forming, 
especially in deep drawing, because of its superior thinning resistance manifested as 
high r-value (Lankford value or plastic anisotropy parameter [Wagoner and Chenot, 
2001]). The r-value, as schematically explained in Figure 1.4.12, is defined by the 
ratio of width strain εw  to the thickness strain ε t , that is,

	 r
w w

t t
w

t

w

t

�
�
�

�
�
�

�
�

�
�

with
ln( / )

ln( / )
0

0

	 (1.4.1)

As understood from Eq. (1.4.1), the large r-value means to yield, for example, a 
large transverse deformation with a relatively small thickness reduction. In the 
metal-forming technology, this provides an index of deep drawability, since the large 

Figure 1.4.11  Schematics showing a typical texture called γ-fiber found in mild steels such as 
IF steels, where the C-impurity level is significantly reduced down to a few ppm or less, with 
the residuals being anchored by adding Ti or Nb as a form of TiC/NbN, and so on.

Figure 1.4.12  Definition of r-value (also referred to as the Lankford value) as a measure of deep 
drawability.
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r-value yields easier shrink-type flanging deformation, allowing larger amount of 
materials to be drawn into a die cavity (the ability to allow circumferential shrinkage 
at the flange part against the reducing thickness).

The high r-value in the γ -fibered texture (∼2 5.  or larger) basically stems from 
the intrinsic slip-system constitutions to BCC metals as described earlier. As can 
be imagined, with the {111} plane in parallel to the sheet surface, the deformation 
through thickness direction is restricted because the slip direction <111> is normal 
to the surface of the sheet, as schematically illustrated in Figure 1.4.11. It is inter-
esting to note that some researchers, assuming the same mechanism will work, have 
tried to realize the γ -fibered texture in certain kinds of aluminum alloy (FCC) for 
the purpose of enhancing the press formability. As readers may readily notice, this 
will probably not be possible due to the following three reasons: (1) the γ -fibered 
texture is indigenous to BCC structures, (2) the relationship between the γ -fibered 
texture and high r-value is peculiar to BCC metals, and (3) the slip plane to be 
aligned in parallel to the blank sheets ought to be {110} for FCC metals according 
to the above logic.

1.4.3	 Stereographic Projection and Standard Triangle

One of the standard ways of describing crystallographic orientations explicitly is 
via stereographic projection. This is also called the “inverse” pole figure, since in 
this case the crystallographic axes are taken as the reference, instead of the targeted 
sample, as in the pole figure (see Figure 1.4.8 in Section 1.4.2). A way to obtain the 
stereographic projection is schematically given in Figure 1.4.13, where a two-step 
projection is indicated, that is, (a) from a cube (of atomic structure) to an enveloping 
sphere, and (b) from the sphere to a tangent circle. The resultant projection is shown 
in (c), where a standard triangle out of the 24 geometrical equivalents is highlighted. 
The standard triangle is composed of the three representative orientations of <100>, 
<110>, and <111>. Note that the term “stereographic projection” itself stands for the 
projection of a sphere onto a plane, corresponding to the above process (b), which 
preserves local angles (referred to as the conformal transformation [or map]) but not 
length or area.

Arbitrary crystallographic orientation is represented as a dot in the standard trian-
gle, as exemplified in Figure 1.3.14(a). It should be noted that the dot in the standard 
triangle, however, does not contain all the crystallographic information because it 
represents just a single direction with respect to the cube axes. Based on Euler angles, 
it is represented by two angles, for example ( , )� �2 . Therefore, we need one more 
piece of information about the direction to fully identify the 3D configuration of the 
crystallographic orientation, for example, ( , , )� �1 2� , as in the ODF described earlier 
(Figure 1.4.9).

Figure 1.4.14 summarizes the stereographic projections described in Sections 1.4.2 
and 1.4.3, by compactly combining Figures 1.4.8 and 1.4.13, emphasizing the obtain-
ing processes up to the resultant pole figure and the standard triangle, respectively. 
Here, the cubic structure model provided as the do-it-yourself kit in Figure 1.3.15 is 
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used as the cube to be projected in the place of the one situated in Figure 1.4.13(a), for 
the sake of easier comparisons.

1.4.4	 Crystal Dislocations versus CD Dislocations

There is often confusion among researchers about the distinction between “CD dislo-
cations” and “lattice or crystal dislocations.” They are, as a matter of fact, essentially 
distinct concepts (Shiotani, 1989; Yokobori, 1968; Yokobori and Ichikawa, 1967). As 
pointed out in Section 1.2.1, the notion of “dislocations” (of the CD kind) were ini-
tially introduced within the continuum mechanics framework (Love, 1944; Volterra, 
1907) with no explicit correspondence to the “crystal” dislocations. Furthermore, the 
concept had been used in solving mechanics problems of continuum solids (not based 
on crystalline plasticity). While the crystal dislocations have a finite Burgers vector 
roughly commensurate with the lattice constant of the crystal considered, the CD 
dislocations have an infinitesimal Burgers vector. Unless at least the slip systems are 
specified and projected onto it, we cannot interpret the CD dislocations as the crystal 
counterparts. The CD dislocations can be imaginary, and do not always need to corre-
spond to (or be attributed to) the “crystal” ones.

Figure 1.4.13  Schematic illustration of the process for obtaining stereographic projection 
of directions in a cubic crystal, where a standard triangle is highlighted in (c) ((a) and (b) 
are reconstructed from Marder, 2000, p. 33, figure 2.17). Adapted with permission of the 
publisher (John Wiley & Sons).
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Figure 1.4.15 provides an example eloquently comparing the two cases, which con-
siders the interfaces of two atomic structures with slightly different lattice constants, 
like those with coherent precipitates (comparison of precipitates between coherent 

Figure 1.4.15  Comparison between interfacial dislocations and misfit dislocations, where 
the former can be mimicked by CD dislocations with an infinitesimal Burgers vector, thus 
normally yielding a long-range stress field, whereas the latter is represented by an array of 
isolated crystal dislocations with a finite Burgers vector introduced so as to relax the misfit 
situation.

Figure 1.4.14  Summary overview of two stereographic projections in Figures 1.4.8 and 1.4.13, 
that is, pole and inverse pole figures, comparing how to obtain and how to view the pole 
figures, taking an example of {100} poles of a cubic single crystal.
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and incoherent types is given in Figure 1.4.16). The left denotes CD dislocations 
accommodating the misfit caused by the difference in the lattice spacing between the 
two phases, whereas the right is for the same interface but has been relaxed via an 
array of “crystal” dislocations. The former is called “interfacial” dislocations, while 
the latter “misfit” dislocations. As can be readily understood, the former case does not 
actually include “crystal” dislocation at all, meaning the illustrated dislocation array 
is imaginary. Instead, such a situation is well described via a stress field based on the 
dislocation theory.

Another example where such “imaginary” arrays of dislocations can work nicely 
as a model is “crack” (known as the BCS [Bilby-Cotterell-Swinden] model [Bilby 
et al., 1963]). Figure 1.4.17 displays a crack model via CD dislocations under mode I 
loading. The long-range nature of the stress field (as mentioned in Section 1.2.3.2) as 
well as the singularity of dislocations (in the present example, edge dislocations) are 

Figure 1.4.17  Application of the notion of CD dislocations to the crack problem (mode I type) 
(Bilby et al., 1963).

Figure 1.4.16  Comparison of precipitate-matrix interfaces between coherent and incoherent types.
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the reasons this model works well. As you can see, the assumed dislocation array is 
nothing more than the imaginary one, situated so as to satisfy both the crack-tip stress 
field and the boundary conditions. The corresponding distribution of dislocations to 
the crack is obtained by solving a kind of integral equation (1st Fredholm type) with 
respect to the distribution function f x( )  (inset of Figure 1.4.17), and is explicitly 
shown in Figure 1.4.18. Application examples of this technique to the fatigue-crack 
propagation problem can be found in Homma (1989) and Homma et al. (1984). Figure 
1.4.19 displays an example of such applications to crack-tip problems, for the purpose 
of evaluating the crack-opening displacement (COD), where interactions with a dis-
crete array of dislocations are considered (Vitek, 1976b). Elaborate achievements in 
dislocation theory-based fracture mechanics have been published as a monograph by 
Johannes Weertman (1996).

Figure 1.4.19  A crack expressed by CD dislocations interacting with emitted discrete 
dislocations for evaluating COD (Vitek, 1976b).

Figure 1.4.18  Analytical solution of the crack problem given in Figure 1.4.17 in the form of the 
distribution function of CD dislocations.
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Appendix A1  Energy Landscape for Dislocation Pairs

A1.1	 Derivation of Peach–Koehler Equation (Formula)

Forces acting on dislocations are called the “Peach–Koehler (P–K) force” and the for-
mula for calculating them is generally referred to as the “Peach–Koehler (P–K) equa-
tion.” We show in the following a standard derivation process for the P–K equation. 
Note that the expression for the P–K force is a specific version of the energy-momentum 
tensor that applied to a dislocation line, just like the J-integral against a crack tip. We 
derive the P–K equation along this line in Chapter 7, in the context of the gauge field-
based formalism of dislocations and defects; reference is also make to the J-integral.

Consider a straight dislocation line (the unit vector along with it is represented as 
ξξ) with the Burgers vector b (inclined to it at an angle θ). Displacing the dislocation 
line by δ r , we measure the area swept by the operation as

	 d ds r� ��� . 	 (A1.1.1)
Under the application of stress σσ , the corresponding force acting on the dislocation 
line is calculated as

	 f s r� � � � � �� ��� �� ��d d . 	 (A1.1.2)

Since the resultant shear displacement should be b, the work done by the above oper-
ation is given by

	
� �W

d

� �

� � �� ��� �� �

f b

r b       �� �� ,
	 (A1.1.3)
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	 (A1.1.4)

To obtain the last line, we used the invariance of the operation under cyclic permuta-
tions, that is, a b c a b c abc bca cab� �� � � �� � � � � � � � � � � � .

Therefore, the force per unit length of dislocation line is obtained as

	 f b� �� ���� �� . 	 (A1.1.5)

This is called P–K equation, defining the P–K force (cf. Eq. (7.3.65) in Section 7.3.7). 
The corresponding index notation is expressed as

	 f b bk kji jl l i ijk jl l i�� � ��� � � � . 	 (A1.1.6)

From this result, we immediately learn that the force on dislocation lines f  always 
acts perpendicularly to them ξξ, that is, f � �� .

From projections of the P–K force, f , on the appropriate directions, we readily 
obtain the corresponding components (Hirth and Lothe, 1982). For the climb com-
ponent, for example, it should be the direction both normal to b and ξξ , which can be 
calculated by taking the inner product with the unitary vector of ( )b��� , that is,

https://doi.org/10.1017/9781108874069.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874069.003


80 Dislocation Theory and Metallurgy

	 fclimb � �
�
�

�
�� ���� �� � �

�
f

b

b

b b

b

( ) ( )�
��

�� �� ��

��
	 (A1.1.7)

Similarly, for the glide component we obtain

	 fglide � �
� �
�
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��
( ) ( )

, 	 (A1.1.8)

because this should be normal to both ξξ  and ( )b��� .
If the Burgers vector b is inclined to the dislocation line (ξξ) at an angle θ , it is made 

up of two components, that is, the edge component, b bedge � sin� , normal to ξξ , and 
the screw component, b bscrew � cos� , parallel to ξξ. The glide plane is defined as that 
which contains both the dislocation line and the Burgers vector.

Another important thing we should know is that applied stress σ  can be replaced 
by more generalized stress, or the linear superposition of various contributions or 
origins. Such stress typically includes those produced by or associated with: (1) 
self-interaction of a curved dislocation, (2) image force in the presence of the free 
surface, and (3) interactions with other dislocations and defects.

	 �� �� �� �� ��� � � �ext self image int 	 (A1.1.9)

Correspondingly, we can deal with the P–K forces independently as

	 f f f f f� � � �ext self image int 	 (A1.1.10)

A1.1.1	 Examples of P–K Force

Consider a dislocation line � � [ , , ]0 0 1 T . Assuming edge and screw dislocation lines 
b = [ , , ]b T0 0  and b = [ , , ]0 0 b T, respectively, we have, explicitly,
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for the edge dislocation.
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b b� � for the screw dislocation.

	

A1.2	 Force Acting on a Parallel Dislocation Pair

Consider two straight-edge dislocation lines �� � [ , , ]0 0 1 T  aligned in parallel. Assume 
they have bA A

Tb= [ , , ]0 0  and bB B
Tb= [ , , ]0 0 , respectively, and are situated d  apart. 

The interaction energy between the two edge dislocations A and B is given by

	 E dA BVint :0
edge edge edge� � � �� x 	 (A1.2.1)
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Rewritten in terms of the eigenstrain, this becomes

	
E dA BV

A B A

int
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*
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edge edge edge
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d12
*edge� �� x

	 (A1.2.2)

Here, the eigenstrain components for the edge dislocation B is given by (see Eq. (A1.5))

	 � � �B B
Bb

x d H x x21 12 2 1
2

* * ,edge edge� � �� � � �� �� � 	 (A1.2.3)

while the stress component is
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Substituting them into Eq. (A1.2.2), we have
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The above integration can be analytically performed, provided the lower bound �� is 
replaced by a reasonable value −R, as,
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A1.3	 Elastic Strain Energy for Dislocations

Elastic strain energy for dislocations is given in two ways as

	 E d de

V V

disloc � � �� �
1

2

1

2
�� �� ��: : ,*x x� 	 (A1.3.1)

where ε * represents the eigenstrain introduced by the dislocations. Correspondingly, 
σσ  in the second expression indicates the induced internal stress field.

By rewriting the elastic strain εε e using εε * in the first expression, that is, �� �� ��e� � *, 
we have
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	 (A1.3.2)

Here, �� ��:  in the first line can be replaced by �� : ( / )� �u x  (� � �u x/ �� is the distortion 
tensor that is generally asymmetric) because of the symmetry of σσ . The first term is 
further rewritten as follows by performing integration by parts:
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Since we are looking at the internal stress that yields zero at the surface, the first term 
in the second line vanishes. The second term, on the other hand, also becomes zero 
because div�� � 0  in the absence of body force. Therefore, we ultimately obtain the 
expression Eq. (A1.3.1) from Eq. (A1.3.2).

A1.4	 Elastic Interaction Energy for a Dislocation Pair

For elasticity, the interaction between two dislocation fields can be evaluated by the 
linear superposition (the superposition principle if linear elasticity) as
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Here, the interaction energy is defined as
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where �� �� �� ��A B
e

B A
e: :�  is used. Using the eigenstrain formalism, we alternatively have

	 E d dA BV B AV

int * *: : .� � � �� �� ��� �� �� ��x x 	 (A1.4.3)

A1.5	 Examples of Dislocations in Eigenstrain Representation

Let us consider a straight-edge dislocation on the x x1 2−  plane. We can introduce it by 
the following operation.

A cut is made in the x1 0<  region (Figure 1.2.16) first, and then the opposite sur-
faces of the cut are welded to restore the continuity after displacing them relative 
to each other by b. This results in an edge dislocation situated at the origin with the 
Burgers vector b = ( , , )b 0 0 . This procedure is the so-called Volterra operation. Since 
the displacement caused by this operation is u = ( , , )b 0 0 , the strain components are 
given as

	 � � �21 12 2 1
2

* * ( ) ,edge edge� � �� �b
x H x 	 (A1.5.1)
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otherwise zero.
Here, δ ( )x  is the Dirac delta function and H x( )  represents the Heaviside step 

function. They are defined respectively as
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There is a following relationship between the two functions, that is,
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A1.6	 Energy Landscape of Edge Dislocation Pairs

Consider a pair of straight-edge dislocations on the x x1 2−  plane, as depicted in 
the inset in Figure A1.6.1, where relative angles θ1  and θ2  are ranged from 0 to 
180°, as well as the mutual distance between them. Here, � � �180  corresponds to 

Figure A1.6.1  Energy landscape for pairwise configurations of edge dislocations.
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vacancy-type dipole configuration, while � � �0  represents the monopole alignment. 
The former, with the 45° alignment, yields the minimum energy, as shown in the 
bottom-left region in Figure A1.6.1, whereas the latter takes the maximum, as dis-
played in the middle-upper region. With the mutual distance tending to 0 for the 
dipole configuration, the energy decreases down to 0, as shown in the bottom-right 
region, demonstrating roughly a double-well-type energy landscape responsible for 
the pairwise interaction. This is assumed in Chapter 10 for the derived effective theory 
with respect to the annihilated field.

A1.7	 Euler Angles

Euler angles can uniquely specify 3D rotations of the targeted coordinates with respect 
to a reference coordinate system by using three angles. In metallurgy, there are two 
conventions for defining the Euler angles, that is, Bunge and Roe (Nagashima, 1984). 
Throughout the book, we use the Bunge-type definition, represented conventionally 
by ( , , )� �1 2� . Note, the Roe convention uses ( , , )� � �  instead.

An easy way to understand Euler angles is to break down the associated coordinate 
transformation process into three steps, as illustrated in Figure A1.7.1, that is, from 
( , , )X Y ZA A A  to ( , , )X Y ZB B B . Since each step is simply a rotation about an axis, all 
we have to consider is the order of the axes. For the Bunge convention, we choose 
Z X Z→ → . This is the very reason for this style to use � �1 2� ��  as the notation. 
Note that, in the Roe style, the choice is Z → “Y ” → Z, thus a simple set of conver-
sions holds between the two conventions, as � � � � � � �1 22 2� � � � �/ , , /� .

The three steps are as broken down sequentially as follows, as displayed in Figure 
A1.7.1(a) and (b). The first step is the rotation about ZA-axis, specified by the angle 
ϕ1, given by
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which transforms from ( , , )X Y ZA A A  to ( , , )′ ′ ′x y z . Likewise, since the second step 
refers to the rotation about the “ XA-axis,” specified by Φ, we have

	

��
��
��

�

�
�

�
�

�

�
�

�
�
�

�

�

�

�
�
�

�

�

�
�
�

�
�
�

x

y

z

x

y

z

1 0 0

0

0

cos sin

sin cos

� �
� �

��

�
�

�
�

�

�
�

�
�
� 
 �

�
�
�

�

�
�

�
�

�

�
�

�
�

�
x

y

z

, 	 (A1.7.2)

expressing the transformation from ( , , )′ ′ ′x y z  to ( , , )′′ ′′ ′′x y z . Lastly, the third step is 
again the rotation about the ′z -axis with angle ϕ2, which is given by the same form as 
that for the first step, that is,
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85A1.7  Euler Angles

By combining the above three processes, Eqs. (A1.7.1) to (A1.7.3), we define the 
Euler angles of Bunge type as

	 X XB A� � � � �� �� �� �� �2 1� , 	 (A1.7.4)
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Notice that the first two steps determine the [001] direction away from the referential 
Z XA A−  (ND-TD) plane, as conformed in Figure A1.7.1(c). Therefore, if we assume 
we skip the first step, the [001] direction stays on the Z XA A−  (ND-TD) plane, while 
the [100] direction coincides with the XA (RD) axis. Based on this consideration, we 
obtain a simple schematic, as inserted in Figure 1.3.14(d) and Figure 1.4.14(d), indi-
cating a crystal orientation with respect to the cube axes by using the remaining two 
angles ( , )� �2 . This is convenient for quick and intuitive recognitions of crystal ori-
entations, for example, on standard triangles (Figure 1.3.14(c) and Figure 1.4.14(c)). 
In this case, of course, the other two crystal orientations are indefinite, and should be 
specified by ϕ1.

Figure A1.7.1  A series of processes obtaining Euler angles (Bunge style).
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