1 Dislocation Theory and Metallurgy

After a brief discussion of “plasticity” and “elasticity,” the chapter presents a minimal
set of basic concepts about “dislocations.” Following an overview of dislocation the-
ory, specific notions such as the “Lomer—Cottrell (LC) sessile junction” and “stacking
fault energy” (SFE) are detailed. These are exceptionally important to gain a com-
prehensive understanding of many of the characteristics of dislocation—dislocation
interactions and their strengths in particular. The next part of the chapter provides a
simple introduction to metallurgy, especially to crystallographic structures, placing
special emphasis on the substantial distinction between face-centered cubic (FCC)
and body-centered cubic (BCC) structures, which is expected to further understanding
of the associated contrasting features between the two.

1.1 Elasticity versus Plasticity

Let us take steel as an example to clarify the distinction between “plasticity” and
“elasticity,” although their names are similar. Figure 1.1.1 presents a relatively
diverse range of plasticity-related mechanical properties, such as yield stress, maxi-
mum tensile stress, hardening characteristics, and ductility measured by uniform elon-
gation. Two to three orders of difference can be found, for example, in the yield stress,
that is, from tens of MPa up to a few GPa. The elastic properties such as Young’s
modulus, however, are not basically altered; they usually have values of around 200
GPa, even for alloys containing a number of alloying elements, those associated with
metallurgical microstructures produced via heat treatments, and those with different
crystal structures, that is, FCC austenite (SUS304 [or type 304] stainless steel, for
instance). Such insensitivity is attributed to the origin of the elastic deformation in
metals. The elastic modulus is a manifestation of the resistance against the interatomic
bonding force that displaces the composing atoms, which is substantially determined
by electronic interactions (hence, based on quantum mechanics). Thus, it cannot be
controlled (altered) in principle. Plasticity, however, can be artificially controlled rel-
atively easily, because it is carried by the motion of dislocations.

Further contrasting features are also indicated in Figure 1.1.1, and are summarized
in Figure 1.1.2, including (a) “controllable versus uncontrollable,” (b) compressive
versus incompressive, and (c) conservative versus dissipative. The former is man-
ifested as Poisson’s ratio in elasticity, which is around v =0.3 for metals, allowing
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Figure 1.1.1 Schematic comparison of stress—strain curves for various steels of mild to high-
strength types in terms of elastic and plastic properties. Typical contrasting features between
elasticity and plasticity, (a) and (b), are also indicated.
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Figure 1.1.2 Comparison between “elasticity”” and “plasticity,” consolidated into three typical
categories, where category (a) leads to the “dislocation” concept that follows.

volumetric change (e.g., tension by 1 in one direction results in —0.3 in the other
two directions, respectively, resulting in a volumetric strain of ¢,= 0.4, that is, an
increase in volume). Plasticity, on the other hand, exhibits volume constancy in gen-
eral, simply because it is brought about by shear deformation, or, more precisely, slip
deformation of the crystal lattice. For the latter, (b), more than 90% of the work done
by plastic deformation, measured by the area swept by a stress—strain curve, is known
to be dissipated into heat, meaning that plasticity is a kind of nonequilibrium (far-
from-equilibrium) process, whereas elastic strain energy is fully recoverable. Note
that these twofold aspects of the elastoplasticity in metals play crucial roles when
we think about evolutionary aspects of inhomogeneities in the present field theory of
multiscale plasticity (FTMP) (cf. Chapter 15).

1.2 Fundamentals of Dislocations

1.2.1 Overview

Figure 1.2.1 presents the reason why the notion of dislocation arose. The concept itself
had been introduced many years before it was micrographically confirmed (observed),
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Figure 1.2.1 The extremely large gap between ideal strength for shear deformation and
experimental observation for yield stress triggered the birth of dislocation theory (Taylor,
1934a). This story resembles that for fracture mechanics (Griffith, 1921).

in order to explain why the empirically observed yield stress is much smaller than the
estimate based on the ideal strength under shear (Orowan, 1934a, 1934b; Polanyi,
1934; Taylor, 1934a, 1934b; Yamaguchi, 1928). The ideal strength needed for shear
deformation to occur predicts one-fifth of the shear modulus, whereas experiments
show 0.5-10 MPa for pure metals, resulting in a three- to four-order difference in
magnitude. In the 1930s, Taylor, Orowan, and Polanyi independently advocated the
concept of dislocation to explain this gap. Also, we must remember that V. Volterra,
an Italian mathematician, introduced essentially the same notion purely within the
framework of the mechanics of continua (Love, 1944; Volterra, 1907). This can be
acknowledged as the origin of the notion of continuously distributed (CD) disloca-
tions (cf. Figure 6.2.22). This story is quite similar to the case of the birth of “fracture
mechanics”; A. A. Griffith, an English aeronautical engineer, proposed the basis for
this in 1921 (Griffith, 1921).

Figure 1.2.2 indicates the motion of a dislocation, which is often compared to a
crawling inchworm. Another intuitive metaphor is a row of wrinkles in a carpet. In
order to shift the carpet position, what we need to do is to transfer the “wrinkle row”
to the edge of the carpet, resulting in a shift of the carpet position by the amount of
the wrinkle-row width. Moving the entire carpet, even a millimeter, requires extraor-
dinary strength, as you can imagine.

The most important thing here is that plastic deformation is carried by the motion
of dislocations. Accordingly, the stress needed for plastic deformation to occur can be
completely replaced by that needed for moving the dislocations, which are generally
preexisting within crystalline samples.

Another significant factor to bear in mind is that the plasticity (i.e., the resistance
against plastic deformation) can easily be altered by introducing various “obstacles”
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Figure 1.2.2 Schematics of a dislocation as a carrier of plastic deformation, often compared to

a crawling inchworm or wrinkles in a carpet.
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Figure 1.2.3 Schematic drawing of strengthening mechanisms showing various kinds of
resistance against dislocation motion using motor vehicles as examples (inspired by an
illustration by Tanino, 1966).

to obstruct dislocation movements. This means that the plasticity can be artificially
controlled (or we should say, freely controllable), which is substantially different
from “elasticity” that is uncontrollable in principle, as stated in Section 1.1 (see
Figure 1.1.2(a)). Figure 1.2.3 illustrates representative obstacles against the motion of
dislocations in a cartoonish manner (adapted from Tanino, 1996). They are (b) impu-
rities or solute atoms for solution hardening, (c) small precipitates for precipitation
hardening, (d) dislocations for dislocation hardening (resembling traffic congestion),

and (e) grain boundary (GB) for GB hardening.
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Figure 1.2.4 Schematic illustration of strengthening mechanisms via (a) solid solutions
(interstitial and substitutional types) and (b) precipitations (coherent and incoherent types),
together with (c) schematics about interstitial-free (IF) steel, and (d) the attendant improved
stress—strain relationship with respect to “nonsmooth” yielding.

Practically, especially in high-strength steels and metals, these strengthening mech-
anisms are combined to achieve the desired strength properties. More detail on (b) and
(c) can be found in Figure 1.2.4(a) and (b), respectively; in Figure 1.2.4(a) two types
of solution, interstitial and substitutional types, are schematically depicted, while two
types of precipitate are indicated in Figure 1.2.4(b), coherent and incoherent.

Figure 1.2.5 shows a schematic indicating the Cottrell atmosphere typical in com-
mercially pure Fe or low-carbon steels, where carbon and nitrogen atoms tend to
gather around (below) an edge dislocation — below because of the larger space due
to the extra half plane of an atomic layer intruding from above. Under stress, trapped
dislocations must break away to start moving, causing nonsmooth yielding in mild
steels (Figure 1.2.4(c)), which can also trigger inhomogeneous postyield plasticity,
for example, Liiders elongation, which is normally undesired in practical situations.

Note that, for steels, even a ppm order of C and/or N can cause such “yielding”
phenomena in Fe and steels. Since the complete removal of them is quite difficult
practically, they are inactivated by adding Ti and/or Nb to form TiC/NbC, which
anchors these interstitials. Such steel is known as IF steel (Figure 1.2.4(c)) and is
further detailed in Section 1.4.2.

Looking again at Figure 1.2.4(a)—(d), we can review the previous discussion,
together with schematic stress—strain curves (d) indicating nonsmooth and smooth
yielding, corresponding to that associated with the Cottrell atmosphere (Figure 1.2.5)
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Figure 1.2.5 Schematic of Cottrell atmosphere for iron around an edge dislocation, where the
insertion of an extra half plane from the top is illustrated for the purpose of emphasizing the
induced compressive/tensile stress field above/below.

and IF steels, respectively, from which we also recognize the importance of impurities
in metals and alloys in terms of their roles and thus their pertinent controls.

By appropriately combining the strengthening methods (b) through (e) in Figure 1.2.3,
along with well-controlled heat treatment processes, we can design “microstructures”
to achieve desired strength-related mechanical properties. A wide variety of such met-
allurgical microstructures for Fe and steels, together with typical stress—strain curves,
are presented in Figure 1.2.6(a) and (b), while representative structural factors such as
characteristic sizes are also indicated in Figure 1.2.6(a) (Tomota, 2001).

A noteworthy example in the present context is the lath martensite structures in
high Cr heat-resistant ferritic steels, for example, Mod. 9Cr-1Mo steel, where the
alloys are strengthened not only by lath martensite structures with high dense dis-
locations (Figure 1.2.6(a), (e), and (d)) and the associated block/packet structures
(Figure 1.2.6(a) and (e)), but also by precipitations via V/Nb additions, that is, MX/
M,3Cq (Figure 1.2.6(a) and (c)), together with W/Mo solid solutions (Figure 1.2.6(a)
and (b)). As noted, all the strengthening methods are combined to achieve an excel-
lent high-temperature creep strength. One more thing worth mentioning concerns
the hierarchically emerging nature of the strengths as summarized in Figure 1.2.7,
revealed via the multisized indentation technique (NIMS, 2003). As can be seen, the
macro-strength indicated by the broken line cannot be achieved until the indentor
size becomes large enough, whereas, for example, the scale corresponding to the
minute lath with high dense dislocations does not support the strength alone. This
implies there exists an intimate interplay among the composing hierarchical scales
for achieving the macroscopically observed strength, meaning “the partial sum is not
necessarily the whole.” A schematic stress—strain relationship is also shown on the
right, whose stress levels are built up from the base strength. Therefore, modeling
such complex material systems requires a “genuine” multiscale perspective, which is
tackled in Chapter 9 and based on the FTMP discussed in the present book.
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Figure 1.2.6 Typical metallurgical microstructures for Fe and steels (a) as a variety of
combinations of strengthening mechanisms in Figure 1.2.3, together with typical stress—strain
curves (b) for representative microstructures.

Let us return to “dislocations.” Figure 1.2.8 is a micrograph showing an atomistic
image of a dislocation (dislocated region). A Burgers circuit encircling the disturbed
region is drawn, showing that the Burgers vector b surely exists. This proves or cor-
roborates the single-edge dislocation existing within the circuit.

It should be noted that the notion of a dislocation “line” is conceptual in the sense
that it is not a substantial object, but a “state” of being disturbed in a background
(crystalline) field existing a priori. This implies that the notion of “field” is suitable
for describing dislocations, as will be frequently mentioned throughout the book. A
multilevel image of a dislocation field is presented in Chapter 5 (Figure 5.1.1) in terms
of three representative field theories.
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Figure 1.2.7 Example of appropriate combinations of all the strengthening methods in

Figures 1.2.3 and 1.2.4, that is, high Cr ferritic steel composed of martensite lath/block/packet
structures embedded within prior austenitic grains, whose hierarchically emerging strengths
are revealed via multiscale indentation tests (NIMS, 2003).
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Figure 1.2.8 Atomistic image demonstrating the existence of dislocation, where the Burgers
circuit encircling a dislocated region is shown to produce closure failure measured by the
Burgers vector (courtesy of Prof. Julia R. Greer).
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1.2.2 Types of Dislocation

There are three types of dislocation —edge, screw, and mixed. The former two are more
important than the third, since the last is expressed by combinations of the other two.

Various ways to draw or schematize an edge dislocation exist, as shown in Figure
1.2.9. Here we provide several typical examples found in conventional textbooks.
Some emphasize an extra half plane (b) and some highlight the Burgers circuit or
closure failure (c). Some are suitable for stress-field calculation (a). It is important
to observe that the direction of the dislocation line [ is always perpendicular to the
Burgers vector, p, thatis, [ | b, which is the mathematical definition of the edge dis-
location component.

One can note that the intuitive image of the edge dislocation is quite tangible com-
pared with the screw counterpart. However, as will be discussed later, the stress field
produced around an edge dislocation is much more complex than that for the screw
dislocation, and, furthermore, is difficult to calculate.

The former has both the normal and shear components of stress, whereas the latter
has shear components only.

Screw dislocation is often exemplified by “stair-case steps.” Figure 1.2.10 shows
various schematics depicting a screw dislocation. The important thing again is the
relationship between the directions of dislocation line and the Burgers vector, that is,
they must be mutually in parallel, [ // p. This allows screw dislocations to cross slip
onto other intersecting planes sharing the same Burgers vector. Also the screw dislo-
cation is a good example for understanding the topological nature of dislocations in
terms of multivaluedness. (This is also true for the edge dislocation, but the present

Edge Dislocation
(a) l (b)

QoT—

Q v Q8090000
PP VW
PPV

933883

Figure 1.2.9 Various representations of an edge dislocation.
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Figure 1.2.10 Various representations of a screw dislocation.

case is more intuitive.) The starting point, after encircling the Burgers circuit, does
not coincide with the ending point, as can easily be confirmed with any one of the
examples shown in the figure. This emphasizes that dislocation is a topological object
or imperfection. It is also important for understanding the differential geometrical
aspects of dislocation theory (to be detailed in Chapter 6). This closure failure means
torsion of the space in the context of differential geometry.

Another type of dislocation is termed a “mixed” component. Figure 1.2.11 displays
various schematics. It is usually very difficult to gain a clear image of the mixed por-
tion of a dislocation. Fortunately, the mixed components can always be resolved into
edge and screw components and expressed by combinations of the two.

As is understood from the so-called Volterra operation, explained in Figure 1.2.12,
dislocation can be viewed as a region in a medium (crystalline body) where there is
a boundary between “slipped” and “nonslipped” regions. Since the “slipped” region
has experienced shear deformation, the distribution of shear strain for a dislocation
loop becomes similar to that represented in Figure 1.2.11(b). You can notice the
“strain gradients” where dislocation lines exist; this will be revisited in Section 6.5.1
(Figure 6.5.1) in Chapter 6.

One should notice the difference between real objects and dislocation as an excitation
of a medium. As schematically shown in Figure 1.2.13, the screw dislocation line, for
example, moves perpendicularly to the direction of the force (shear stress), which seems
to be against the rule of common-sense mechanics. The edge component, on the other
hand, moves in the same direction as the applied (shear) force in accordance with our
intuition. The former resembles the act of peeling a poster off a wall from one corner,
where the boundary between the already-peeled off and unpeeled regions corresponds
to the screw dislocation. Figure 1.2.14 provides more tangible images for both cases.
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Figure 1.2.11 Schematics of a mixed dislocation (a), together with a dislocation loop and
corresponding strain distribution (b), where regions with finite strain gradient detect a
dislocation line.
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Figure 1.2.12 Schematic illustration explaining the “Volterra operation,” providing another
representation of the dislocation loop that can be well described mathematically based on
micromechanics.
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Figure 1.2.13 Comparison of moving directions between edge and screw components against

external shear stress.

| Edge Dislocation | Extra
Half Plane

W ol .,
oo o oo o L]

88 /800,

088 /4
.‘M’.‘.’.{,

Moving Direction
of Dislocation Line

Figure 1.2.14 Atomic lattice-based representation of moving dislocations against external
shear stress comparing the directions between them for edge and screw components
(Smallman, 1970).
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1.2.3 Stress Field around Dislocations

One important feature of dislocations is their long-range nature, that is, inversely
proportional to the distance from them r, o«c 1/r. Not only does this make numerical
treatments difficult, for example, the “cutting-off” treatments in discrete dynamics
simulations, but it also provides the origin of the long-range stress field evolved
within dislocation s, differentiating them from other substructures, to be discussed
in Chapter 3. Here, we deal with the most fundamental case of single straight dis-
location lines.

For straight dislocations, it is relatively easy to find the stress fields around them in
the sense just discussed, although the edge dislocation requires some elaborate tech-
niques. This is largely due to the absence of the self-stress in the straight segments,
whereas, for curved dislocation lines, the treatments become extremely complicated,
as briefly mentioned in Section 6.4.

1.2.3.1  Screw Dislocation
To obtain the stress field around a straight screw dislocation, a typical setup, together
with a cylindrical polar coordinate system (r, 0, x3), is depicted in Figure 1.2.15,
where the displaced cylinder along the axial direction coincides with x5 is prepared,
containing a coaxially extending screw-dislocation line. The displacement field in the
x5 direction is easily expressed as

weev= g b [ 2 (1.2.1)
2r 2 X

Otherwise, 1" = 5% = 0. From Eq. (1.2.1), the strain field and, thus, stress field,
can be obtained. They are given, respectively, as

Stress Field around A Dislocation — Straight Screw

Displacement:

u =20 O o
2 27 X,

u; increases
continuously with 6 ——

|
i 3%, 3555
ol = : & 5
27 x2+x} Dislocation
1 2
SYM 0 byl tne

Figure 1.2.15 Cylindrical polar coordinates introduced around a straight screw dislocation, used
for finding the stress field therein.
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oo 2!
g5 = o o (1.2.2)
| SYM 0 |
and
o = o o | (1.2.3)
| SYM 0 |

where p is the shear modulus and b the magnitude of the Burgers vector, b = | b |

1.2.3.2 Edge Dislocation

The inset in Figure 1.2.16 shows the setup for obtaining the stress field for a straight-
edge dislocation, which is basically the same as that for the screw dislocation. Since
no displacement in the x5 direction exists, we can assume the plane strain condition.
In this case, even if it is straight, one needs a special sort of technique, because the
treatment of the displacement field is not straightforward as in the screw counter-
part: There is a jump at 8 =z which prevents us from expressing u; by a simple
function (unlike in the screw case), because doing so violates the stress-equilibrium
condition.

To cope with this, it is necessary to use an elaborated stress-function method, in
which we need to seek a suitable form of the stress function that satisfies the bihar-
monic equation, that is, V*y = 0 with the Laplacian

Stress Field around Dislocations X3
- Straight Edge X ~9
Displacement: /% b
b b X | > 7
u=—=¢=—tan"| 2 X X, !
27 2z X,
— does not satisfy Dislocation
equilibrium eq. Line

bll

* Displacement Jump at O=7

_Hb x2(3x12+x22) pb  x(xl-x2) 0
27(1-v) (x12+x§)2 27(1-v) (x12+>:§)2

ub xz(x12—x22)
i 2 232 0
27(1-v) (x; +x3)
puvb  x,

SYM - B
z(l-v) x; +x,

Figure 1.2.16 Cylindrical polar coordinates introduced around a straight-edge dislocation, to be
used for finding the stress field therein.
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for the cylindrical coordinates. For the edge dislocation problem, the following form
of the stress function can be used:

1(1,0) = R)$©®) = —L—rsinon
21~ (1.2.6)
ub s 2 i
= In(x“+ ,
21—v)” (x+5°)
from which we readily obtain
B ub sin6
2(1-v) r
. (1.2.7)
ub  cosf
O,p=0¢gr=_—"—
2(1-v) r

In Eq. (1.2.6), R(r)¢(0) is intended to emphasize the separable nature of the stress
function, in this case via respective functions of r and 6. Since the present case sat-
isfies the plane-strain condition, another component is given by o, =v(0,, +0gg).

Note that a more sophisticated method based on micromechanics is also available
(Mura, 1963). For the anisotropic case, refer, for example, to Asaro et al. (1973) and
Willis (1970).

The stress field around a straight-edge dislocation is rewritten in matrix form as

__ ub  sinf ub  cos6 0 |
2r(1-v) r 2n(l-v) r
odee ___ Kb sinb 0 . (128)
v 2r(l-v) r
SYM __kvb sinb
L r(l-v) r

where not only the shear component (off-diagonal) but also the normal components
(diagonal) exist. Detailed derivation processes can be found in Hirth and Lothe (1982),
Kato (1999) and Suzuki (1967).

The corresponding expressions to Eqs. (1.2.3) and (1.2.8) with respect to the
Cartesian coordinates are given by

0 b %
2n xl2 +x5
o = , M (1.2.9)
2 xl2 +x,
sYM o

and
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|Stress Field around Dislocations — in Cartesian Coordinates |
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Figure 1.2.17 Stress field around straight screw and edge dislocations with respect to the

Cartesian coordinate system.
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respectively. These results are summarized in Figures 1.2.17 and 1.2.18.

One of the most important aspects for us to recognize about the stress fields pro-
duced by a dislocation is its long-range nature, for example, decaying in proportion to
1/r (see Eqgs. (1.2.3) and (1.2.8)). This actually introduces many computational com-
plexities in dealing with dislocation-dislocation interactions (see also Section 1.4.4).

The corresponding strain fields

screw
ij

and

are
, ;
0 0 —— 2x2 2
4r x"+ x5
0o le 2
4m x”+x;
SYM 0o |
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| Stress Field around Dislocations — in Cylindrical Coordinates |
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Figure 1.2.18 Stress field around straight screw and edge dislocations with respect to the
cylindrical polar coordinate system.
b X {QA+3p)d+ pad | b ox(Roxd)
21 (A+2u)(xE+x3)? 2r(1-v) (xf+x3)?
e b X2 {QA+ it -l
g = — I (1.2.12)
2 (A+2u)(xf +x3)
L SYM 0|

The displacement field is obtained when the strain field in Eq. (1.2.12) is integrated as

—wsine Inr+ sin6 +0cosO
uedge 2(1 —V) (1—\/
Ut b= o -9 _gsing (1.2.13)
edge | 27| 2(1-v) 41-v)
uZ
0
For Cartesian coordinates, the corresponding expression is
tan~! ] + . L A
uedge X1 2(1 _V)(xl2 +X% )
1
_ 2_ 2
e = 2 i1n(x%+x§)+L222 (1.2.14)
e 4(1-v) 4 =v)(x{ +x3)
Uy 0
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Hydrostatic Stress Fields
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Figure 1.2.19 Hydrostatic stress distribution around screw and edge dislocations. Nonzero
hydrostatic stress for edge components brings about interactions with point obstacles.

1.2.3.3  Stress Contours
Let us consider the hydrostatic stress o, = (0 +02,+033) / 3 for both the components
as a representative. Figure 1.2.19 shows the hydrostatic stress fields for both the dislo-
cations. Screw dislocation always yields zero hydrostatic stress, that is,

screw
mo =0,

- (1.2.15)

simply because of the absence of the normal component of stress, as in Egs. (1.2.3)

or (1.2.9).
For edge dislocation, on the other hand, the hydrostatic stress is calculated as
pedee_ _HB[1+V ) (1.2.16)
3n\1-v ) xt+x3

One can immediately notice that this is in proportional to the o33 component.
Therefore, the hydrostatic stress field around a straight-edge dislocation, displayed in
the inset of Figure 1.2.19, is identical to that for 33, as far as the profile is concerned.
As can be imagined from the atomic configuration, we have a compressive stress field
in the upper region, due to the insertion of an extra atomic layer, and a tensile stress
field in the lower region. The latter tends to attract interstitials, as discussed in Figure
1.2.5 in the context of the Cottrell atmosphere.

1.24 Elastic Strain Energy of Dislocations

Based on the stress field we have just obtained, we can evaluate the strain energy for
the dislocations (Figure 1.2.20). For a straight screw dislocation extending infinitely
along the x; direction, we have
sCcrew 1 SCIew ., SCrew
EX*Y =— o Ve XV dx
2 J. Voo Y y

— [ do]ar[” axy(oyee), (1217

12 R o ub?
= EJ.O do . eroo dxz [—87'[2}’2 ]
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|Strain Energy of Dislocations— Straight Screw
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Figure 1.2.20 Strain energy evaluation for a straight screw dislocation.
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Figure 1.2.21 Strain energy for a disclination dipole, demonstrating its mathematical
equivalence to that for an edge dislocation line, together with that for a single disclination line
as well as its stress field.

o0

Since I dx; is proportional to the length, we can find an explicit expression per unit
—00

length as

2
Ey™©Y= ﬂln[ﬁ} (1.2.18)
ar Ty

where R and 7, are the upper and lower bounds in the radial integral with ry ~5b
corresponding to the core radius. Note that since, with R — oo, E§™" logarithmically
diverges, we need to set a cut-off radius, normally taken as being a mean free path of
the order of 10 um. Here the subscript “0” shows that the quantity is represented per
unit length, that is, Ef™" = E*V /L.

Note that the same logarithmic-type strain energy representation can be obtained
for a disclination dipole, as concisely summarized in Figure 1.2.21, although a single
disclination line produces the strain energy in proportion to the square of the sample
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Strain Energy of Dislocationsl

2
Eedge_Lln[Rj

T

~4z-v)
2
ESCVE\(': ﬂ'ln(ﬁj
4 7

Edisloc :a/lbz
(@=0.5~1)

Core Energy | [ disloc _() | x E%slec
core

Figure 1.2.22 Rough estimation of strain energy of dislocations, together with that for core
regions.

size, that is, R%, which strongly inhibits its existence within metallic crystals in gen-
eral. Here, Q) represents the Frank vector that specifies disclinations, corresponding
to the Burgers vector against dislocations. More details are mentioned in Chapter 6, in
the context of differential geometry.

Similarly, for a straight-edge dislocation we have

2
peie— _HET (R, (1.2.19)
4r(1-v) Ty

this also relates to per unit length. Since both cases yield the same form, we may
roughly express them together (as in Figure 1.2.22):

E((i)isloc :a’ub2 (a =05~ 1) (1.2.20)

The energy of the core region can normally be regarded as about 10% of E§sloc,
Hence, it can be taken into account altogether in E%*1°° by replacing r, ~ 5b with 1b.
It is important to remember that the energy of dislocations, whatever the types, are
given in proportion to b2

Figure 1.2.23 provides an example of the energy of a screw dislocation for Cu.
We have E§™ =2.5x107J per unit length, and 6.4x107'?J per atom. This roughly
corresponds to 4 eV, which is much larger than that for a vacancy (~1 eV), meaning
the dislocations are thermodynamically unstable within a crystal (Kato, 1999). Note
that 1 eV =1.602 176x107" J.

For a mixed component, a simple superposition can be utilized, since there are
no overlapping components of stress fields between the two, as can be confirmed by
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Example for Cu
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Figure 1.2.23 Example of strain energy for Cu.

|Strain Energy of Dislocations— Straight Mixed I

Eried _ pedze o062 04 5T gin? O

edge

Figure 1.2.24 Strain energy for straight mixed dislocation per unit length, given as a simple
superposition of those for edge and screw components, rationalized due to the nonoverlapping
of stress-field components between the two.

Egs. (1.2.2) and (1.2.3). Figure 1.2.24 shows the process to obtain the corresponding
energy per unit length, that is,

Edired - o2 0052 0 B sin’ 0
2 1221)
:L(l—vcoszﬂ)ln 5 s
4r(1-v) %

where 0 is the angle between the two components.

1.2.5 Dislocation Processes (Important Features)

This subsection presents and details several important dislocation processes. One
immediate feature that must be pointed out is that the dislocations are created and anni-
hilated. We will discuss the multiplication (i.e., creation) due to the Frank—Read mech-
anism, and the annihilation due to cross slip (Figure 1.2.25), which is followed by the
LC junction formation. In particular, for understanding the latter two, the SFE associ-
ated with dislocation dissociation is defined and its significances are emphasized. The
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Annihilation ‘ For Screw Dislocations... |
Edge Dislocations

S

Figure 1.2.25 Schematic drawing of pair annihilation of two dislocations of opposite sign,
together with a possible process yielding the reaction via two screw dislocations cross slipped
onto a common slip plane sharing the same Burgers vector.

cross slip is considered to be responsible for efficiently reducing dislocation density
during the course of deformation, called “dynamic recovery.” This is further responsi-
ble for the dislocation cell formation, extensively discussed in Chapter 2.

1.2.5.1 Frank-Read Source and Multiplication

Schematics of the Frank—Read source (Frank and Read, 1950) and associated multi-
plication mechanisms are presented in Figure 1.2.26. The multiplication process from
the Frank—Read source is one of the most important mechanisms, among other possi-
bilities. Consider a pinned segment (see Figure 1.2.16(a)) with a length L that, under
the force f=1b (step 1), starts bowing out (step 2) until the critical configuration (a
half-circular arc [step 3]) is reached, after which the segment becomes unstable and
continues to expand spontaneously. The critical shear stress 7., corresponding to the
critical configuration is given by

2T 2oub

== , 1222
=T 3 ( )

where T is the line tension of the dislocation segment evaluated as T = aub® with a a
proportional factor. The critical stress is also called Orowan stress. If expansion con-
tinues, the curved segments tend to go around the pinning points from both sides (step
4) until they meet and react on the reverse side to leave an expanding loop (step 5).
By repeating this process, dislocations can multiply. This can occur wherever similar
pinned segments exist. This series of processes is schematized in Figure 1.2.26(b).
Figure 1.2.26(c) provides an example of a double cross-slip event, which is consid-
ered one of the possible mechanisms for enhancing the Frank—Read multiplication
process (sites for the Frank—Read source to occur).

Examples of the experimentally observed Frank—Read source, in Si (via chemical
etching) (Dash, 1957) and in age-hardened Ni-Fe alloy (via transmission electron
microscopy [TEM]) (Murr, 2015, 2016) are presented in Figures 1.2.27 and 1.2.28,
respectively. Here, the F-R source in Si yields an anisotropic shape, reflecting its
anisotropy in the slip systems, whereas, for the Ni-Fe FCC alloy, almost isotropically
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Figure 1.2.26 Multiplication mechanism via the activation of a Frank—Read source based on the
bowing-out behavior of a dislocation segment (a) and (b), together with a possible process by
which this can occur (c), that is, a double cross slip, which can generate a pinned segment of a
screw dislocation.

Frank-Read Source Si |

0.1mm

Figure 1.2.27 Example of experimentally observed Frank—Read source in silicon, showing
successive generations of anisotropically expanding dislocation loops, which are delineated

by chemical etching (Dash, 1957).
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Frank-Read Source |

L.E. Murr (Original image taken by Bilby)

Figure 1.2.28 Example of experimentally observed Frank—Read source in age-hardened Ni-Fe
alloy, yielding circular multiplication of dislocation loops (Murr, 2015, 2016).

—

Simulated Loop Proliferation Process AN \
by Frank-Read Mechanism N N\
based on Discrete Dislocation Dynamics \ \

Figure 1.2.29 Example of a simulated series of snapshots for proliferating dislocation loops
under shear stress on the [111] slip plane in FCC metal, based on the discrete dislocation
dynamics method.

expanding dislocation loops are observed. Figure 1.2.29 displays a series of simulated
snapshots of proliferating dislocation loops based on the discrete dislocation dynam-
ics method.

A closely related important interaction of a dislocation against second-phase par-
ticles (e.g., relatively large precipitates) to the bowing-out mechanism is the Orowan
process (Orowan, 1984). A schematic is given in Figure 1.2.30, where bow-out
dislocation segments around spherical particles ultimately leave loops of disloca-
tion behind. These dislocation loops can further act as obstacles against subsequent
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Orowan Mechanism

52

Figure 1.2.30 Schematic illustration of the Orowan mechanism, depicting the dislocation
interaction, with second-phase particles leaving behind Orowan loops. When a dislocation
line tries to pass through the array of particles, it bows out around them to form loops, which
will act as further obstacles against subsequent dislocations.

dislocation motions that pass through, increasingly enhancing the effective diameter
of the particles, thus, with decreasing interparticle spacing, this efficiently contributes
to strengthening; this is regarded as one of the important strengthening mechanisms
in alloyed metals and is known as the Orowan mechanism. Figure 1.2.31 shows a
series of snapshots for the Orowan process, simulated by utilizing the discrete dis-
location dynamics method together with a precipitate model introduced in Yamada
et al. (2008), demonstrating the formation of double Orowan loops. Notice that, in
the double Orowan loops, the inner loops have slightly shrunk in diameter due to the
stress field of the loop-forming dislocations, and, at the same time, the second loops
are elongated in the stressing direction. The former can ultimately lead to the collapse
of the particles as the Orowan process continues.

More specifically, this process can take place rather exclusively against incoherent
or partially coherent precipitates with relatively large interspacing (or the order of 100
nanometers). On the other hand, dislocations can cut through smaller and coherent
precipitates by shearing. A comprehensive summary of this distinction is shown in
Figure 1.2.32 (Sugimoto et al., 1991). Note that distinctions between the coherent
and incoherent precipitates are shown in Figure 1.2.4(b) and revisited in Section 1.4.4
(Figure 1.4.16).

For further details about strengthening by alloying in general, including more
sophisticated and advanced treatments as well as their experimental verifications,
refer to a comprehensive monograph by Argon (2012).
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Figure 1.2.31 Simulated series of snapshots of the Orowan mechanism up to the second
Orowan loop formations, based on discrete dislocation dynamics, utilizing a precipitate model
proposed in Yamada et al. (2008).
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Figure 1.2.32 Comparison of mechanism for dislocation-precipitate interactions (Sugimoto
et al., 1991). Adapted with permission of the publisher (Asakura Publishing Co.).
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1.2.5.2  Partial Dislocations and Stacking Fault

SFE is one of the most important notions in understanding the diversity of mechanical
behaviors of metals, especially those with an FCC structure, because it substantially
controls the dislocation motions in terms of their interactions, such as junction for-
mations and associated strain hardening, cross slip and resultant dynamic recovery,
and further, attendant substructure evolutions. Also a sharp distinction can be found
between FCC and BCC metals in the light of SFE.

A dislocation can be split into two partial dislocations. Figure 1.2.33 shows an
example for FCC metals, where the reaction is expressed as

AM101] = 41121+ 4[211], (1.2.23)
2 6 6

where a is the lattice constant. This cases shows Shockley’s partial dislocations. This
dissociation is energetically favorable when the SFE is absent, that is, | b |2 > |b1 |2 + |b2 |2,
as confirmed by simple arithmetic. We must not, however, ignore the SFE to be added
to the right-hand side of the inequality, as shown in Figure 1.2.34. This ultimately
decides whether the dissociation takes place or not. The SFE is the interfacial
energy for the imperfect stacking sequence of atomic layers situated between the
extended dislocations (termed leading and trailing partials, respectively). The table
in Figure 1.2.33 lists the values of SFE for typical metals. Roughly speaking, FCC

Stacking Fault and Stacking Fault Energy

Dislocation Line lf‘a‘;t"i'm Partial (Extended)
(Perfect Dislocation) o Dislocations

Ng

b—> b +b, +S.F.

LStacking Fault EnergyJ

Extended
Width

Y or Y [mJ/m2] (SFE)

Ag Cu Ni Al Fe Mo
20 40 80 200 950 1840

Figure 1.2.33 Dissociated dislocations (called partial dislocations) with a stacking fault located
between them, which demands additional energy for creating a planer defect due to the
imperfection of a stacking sequence of atomic layers called SFE. The table lists examples of
SFE for typical metals.
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Dissociation of a Dislocation into Partialsl
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Figure 1.2.34 Schematic drawing of dissociation of perfect dislocation into a pair of Shockley
partial dislocations for FCC metals, which is energetically favorable in the absence of
stacking fault.

metals have relatively small SFE, while BCC metals yield extremely large values.
Aluminum is known to have the largest values, of about 100-200 mJ m~2, among FCC
metals, while Cu is recognized as having relatively small SFE, that is, 40 mJ m2
They are frequently referred to as typical FCC metals with large and small SFE in the
literature. The smallest SFE for FCC metals goes to Cu-Si alloys (e.g., Cu-8.8at% Si)
with 3-5 mJ m~ or less (e. g., Murr, 1975), followed by aluminum-bronze (Cu-about
10% Al alloys) and a-brass (Cu-less than 35% Zn alloys) with less than 10 mJ m2,
and austenitic stainless steels (e.g., 18-8 or type 304) with around 10-13 mJ m™

It is commonly recognized that BCC metals basically do not have a stacking fault
because it is not energetically favorable. The values of the SFE are extremely large in
comparison even with that for Al. This means that dislocations in BCC metals sub-
stantially do not (or never) extend.

Figures 1.2.35 and 1.2.36 show a stacking fault viewed from the top, each indicat-
ing shifts in the stacking sequence of atoms above and below, and raised electron den-
sity distribution in the SF (Suzuki, 1967), respectively. The inset in Figure 1.2.35is a
table listing the extended widths w for Cu and Al, comparing the values for edge and
screw components (Karashima, 1972). Screw component tend to have larger SFE than
the edge for both the metals, since the SFE is inversely proportional to the extended

width, that is,
2 —
__mam 273 | (1.2.24)
]6717/51:}3 3(1 —V)

where ygpg stands for the SFE of the material concerned.

1.2.5.3  SFE and Cross Slip
The SFE is closely related to the cross-slip process by the screw dislocations (compo-
nent). Figure 1.2.37 shows a schematic of the cross-slip process for an extended screw
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Figure 1.2.35 Schematic drawing of stacking fault illustrated as an imperfect stacking sequence
of atomic layers (Suzuki, 1984). Adapted with permission of the publisher.

Stacking Fault: Electron Density Distribution

Stacking Fault

Figure 1.2.36 Representation of a stacking fault as a region with high electron density in Cu
(Suzuki, 1967). Adapted with permission of the publisher (Agne Publishing Co.).
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Cross Slip of Extended Screw Dislocationl

/’Constrict
| into Perfect
~_ Dislocation

N

Stacking (a)
Fault

(b)

(c)

Figure 1.2.37 Schematic drawing of the cross-slip process. Dissociated dislocation must be
constricted once in order to realize the cross slip onto another plane, after which double
kinking can promote the further motion of the cross-slipped segment.

dislocation. When a cross slip occurs from one slip plane to another (referred to as the
cross-slip plane), the extended partial dislocations, each having the Burgers vectors
slightly deviating from the line direction, must constrict once in order to change the
glide plane, because the Burgers vectors must be parallel to the dislocation line to
share the slip planes. Energetically, this cannot take place all at once but can occur
partially (Figure 1.2.37(a)), and the constricted part will proceed to the cross-slip
plane (Figure 1.2.37(b)). Once this happens, the kinking mechanism can help advance
the cross-slipped segment further along the cross-slip plane where the pair of kinks
of the cross-slipped segment spread laterally, as depicted by open arrows (Figure
1.2.37(c)). Figure 1.2.38 displays an example of simulated results by discrete disloca-
tion dynamics, providing a series of snapshots for a cross-slip process. This process
is assisted by the resolved shear stresses (RSSes) both on the primary and cross-
slip planes and particularly the help of thermal vibrations, which will be detailed in
Chapter 2 in the context of the thermal activation mechanism.

Since this mechanism requires shrinkage of the extended dislocations into a perfect
one, the frequency is substantially controlled by the SFE. As is shown in the table in
Figure 1.2.39, the ease or difficulty of the cross slip is measured by the SFE. Metals
with smaller SFE yield lower cross-slip frequency, whereas those with higher SFE
exhibit higher frequency. Among FCC metals, Al yields the largest frequency of the
cross-slip events, while Ag and Cu show greatly restricted cross slip due to their rel-
atively small values of SFE. BCC metals, on the other hand, coupled with relatively
larger number of slip systems than FCC metals, have a propensity to yield extremely
frequent cross slips during plastic deformation.
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Simulated Cross Slip Process (DD)

Figure 1.2.38 Simulated cross-slip process by discrete dislocation dynamics.

Annihilation by Cross Slip

For Screw Dislocations...

Cross Slip

Ag Cu Ni Al Fe Mo
20 40 80 200 950 1840

Cross Slip Difficult % : Easy

Dislocation? B
Interactions Strong - : Weak

Figure 1.2.39 Relationships between the SFE and dislocation processes, that is, cross-slip
and dislocation—dislocation interaction strength. Small SFE yields less frequency of cross
slip and large interaction strength, whereas large SEF results in higher frequency of cross-
slip phenomena and weaker interaction strength. The table lists typical values of SEF for
representative metals including not only FCC but also BCC.

Figure 1.2.40 shows an atomistic simulation result for cross slip from the primary
plane (first line) to the cross-slip plane (second line), demonstrating that it takes place
quite spontaneously given the initial and final states (Rasmussen et al., 1997). The
bottom image in the figure displays an experimentally observed image of the cross-
slip process (Robertson and Fivel, 1999).
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Figure 1.2.40 Live images of cross-slip processes obtained in atomistic simulation (top)
(Rasmussen et al., 1997). and that observed experimentally via TEM (bottom) (Phillips,
2001). Adapted with permission of the publishers (APS Publishing Co. for the simulation
results, while Cambridge Univ. Press for the TEM micrograph).

One of the manifestations of such trends is the slip-line geometries that emerge on
the sample surfaces, as schematically shown in Figure 1.2.41(a)—(c) (Takamura, 1999),
where comparison is made among o-brass, Al, and a-Fe. They show sharp contrast:
a-brass exhibits straight slip lines due to highly restricted cross slip, while Al shows
occasional direction changes in the slip lines as the sign of cross slips. Further, o-Fe
exhibits wavy slip lines due to restlessly occurring cross slips together with indefinite
slip planes. Figure 1.2.41(d) illustrates such equivocally wandering slip behavior, called
“pencil glide” because the slip trace looks like a hexagonal cylinder wall of a pencil.

1.2.54  Dislocation-Dislocation Interactions
Dislocation interactions are important ingredients in understanding the hardening
phenomena in terms of the metals’ responses. Even in 100% pure metals, many com-
plications exist because of the complexities associated with the variation of the inter-
actions and the resultant reaction products. This chapter does not intend to address the
state-of-the-art of dislocation interactions, which have seen large advances in their
reporting recently, coupled with massive and direct atomistic or dislocation dynam-
ics’ simulations (e.g., Bulatov et al., 2006), but rather to concentrate on fundamental
but often overlooked issues of importance.
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Slip Lines of Metals with Different SFE
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Figure 1.2.41 Schematic illustration of slip lines typically observed on aluminum, alpha-brass,
and iron sample surfaces, together with pencil glide for iron (Takamura, 1999). Adapted with
permission of the publisher (Kyoto University Press).

One may gain the impression that even a single interaction process of dislocations
involves many details. Although the elucidation of such details is certainly relatively
important, what is paramount is why such microscopic details do not have much effect
on the macroscopic response, showing, in a sense, a sort of “universality,” rather than
“specificity.” A candidate mechanism for this “specificity—universality” transition
problem will be given in Chapter 5.

1.2.5.5 LC Sessile Junction
For understanding hardening mechanisms, junction formations are the most important
reaction between dislocations. The LC reaction and the resultant LC junction (or lock)
formation are of particular importance for FCC metals, among others, simply because
it is the strongest, that is, it is a sessile lock yielding maximum strength. Since the
reaction takes place between two leading partial dislocations belonging to different
planes, as depicted in Figure 1.2.42, the SFE also plays a decisive role in terms of both
the frequency and the strength. As indicated in the figure, the smaller the SFE is, the
higher the strength, but with lower frequency.
This reaction is expressed as

%[ﬁ1]+%[2ﬁ] —>%[1To]. (1.2.25)
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Interactions:
Lomer-Cottrell Junction (Lock)
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Figure 1.2.42 Formation mechanism of an LC junction as a result of the reaction between two
leading partial dislocations. Since the reaction product has a resultant Burgers vector with the
“third” direction, it becomes sessile.

Figure 1.2.43 Geometrically tractable representation of the formation of an LC junction.

As a result of the reaction, a junction segment having a different Burgers vector
a/6[110] from the parent dislocations is produced, which makes the lock sessile
(Figure 1.2.43). Figures 1.2.44 and 1.2.45 provide two more schematics representing
the LC junction. An intersection of dislocations on the primary and the conjugate
systems is illustrated in the figures.

Figure 1.2.46 presents simulation results for the LC junction formations produced
by Shenoy et al. (2000) based both on molecular dynamics (atomistic; not shown here)
and dislocation dynamics (linear elasticity), comparing the configurations between Al
and Ag. In Al the slightly extended dislocations due to high SFE react to form an LC
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Figure 1.2.44 Schematics of the LC junction formed between two intersecting dislocations
on the primary and conjugate slip systems, where the close-up view indicates the reaction
product having the “third” Burgers vector a/6[.110]
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Figure 1.2.45 Simulated LC junction formation process by discrete dislocation dynamics.

sessile junction along the intersection line of the two slip planes, while Ag exhibits a
similar LC junction but with largely extended dislocations because of low SFE. The
excellent agreement between the atomistics and continuum elasticity implies that the
configuration is determined so as to lower the strain energy, excluding the core region
where the linear elasticity is considered to become inaccurate. This implies that the
configuration of the LC junction is basically dominated by the linear elasticity.

Figure 1.2.47 shows a TEM micrograph of an LC junction observed in stage II for
Cu-15at%Al (Karnthaler and Winter, 1975). The configuration of the simulated result
for Al in Figure 1.2.46 agrees well with the experimentally observed one for Cu alloy,
even for the stair-rod shape at the edge of the junction.

To summarize this discussion, we now understand many of the mechanical proper-
ties of FCC metals, which can be relatively easily captured if we focus on the “SFE,”
as overviewed in Figure 1.2.48. Here, Cu and Al are taken as representatives of low
and high SFE, respectively (Figure 1.2.48(d)), as they normally exhibit mutually con-
trasting mechanical properties, manifested as the hardening characteristics appearing
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Ag Cu Ni Al
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Figure 1.2.46 Simulated LC junctions based on linear elasticity-based dislocation dynamics
for two typical FCC metals with high and low SFE, that is, Al and Ag. The configurations
are demonstrated to agree nicely with those via atomistic simulations (Shenoy et al., 2000,
p. 1491). Adapted with permission of the publisher (APS Publishing Co.).

| Lomer-Cottrell Sessile Junction |

B it R
Cu-15at%Al (Stagell)
by Karnthaler and Winter (1975)

Figure 1.2.47 Experimentally observed LC junction for Cu-15at%Al during stage II hardening
(Karnthaler and Winter, 1975). Adapted with permission of the publisher (Elsevier Science &
Technology Journals).
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Figure 1.2.48 Overview of the dislocation-based unified perspective for macroscopic
mechanical properties in FCC metals as a summary from the viewpoint of SFE.

in the stress—strain responses, yet both, nevertheless, belong to the same FCC family.
A schematic comparison of their stress—strain relations under monotonic tension is
presented in Figure 1.2.48(e), emphasizing the difference in the hardening moduli.
With large enough SFE, as in Al, one may safely ignore the extension of disloca-
tions into partials (Figure 1.2.48(a)), resulting in frequent cross slip and subsequent
pair annihilations (dynamic recovery) (Figure 1.2.48(b)), while easily dissociable LC
junctions scarcely contribute to strain hardening (Figure 1.2.48(c)). The reverse is true
for Cu with small enough SFE, that is, less frequent cross slip tends to hinder dynamic
recovery on one hand, while fully extended dislocations are apt to form strong LC
sessile locks that ultimately enhance strain hardening on the other.

Some practical examples of such SFE-based views are presented in both Appendix
A2 and Chapter 3 (Figure 3.3.13), which may provide strong leverage for justifying
the above views. In the former, a systematic series of experiments on the coupling
effects between the nonproportional (NP) strain history and the strain rate, including
the impact loading regime, are extensively discussed, while, in the latter, a systematic
set of variations observed in the evolved dislocation cell structures strongly depend-
ing on the SFE are discussed based on experimental results under NP cyclic straining.

It should be noted that understanding BCC metals is not that simple, unlike the
FCC case described previously, but a good start for tackling the issue is provided in
the “FCC versus BCC” perspective.
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1.2.5.6 Jog Formation

Let us mention “jog,” which may become important, particularly in understanding
hardening in BCC metals, as summarized in Figure 1.2.49. Jog is a product of the
orthogonal intersecting of two dislocation lines (one of the forest intersection), char-
acterized as a step formed on a dislocation line in the out-of-slip plane (those formed
on the same slip plane are called “kinks” [see Figure 2.2.7]). There are four kinds
of such orthogonal intersection depending on the combinations of edge and screw
components, that is, “edge against edge or screw” and “screw against edge or screw.”

The intersection expected to be exceptionally important in BCC metals (in terms
of hardening) is that formed between two screws (i.e., on a screw dislocation against
a screw segment), as schematically shown in Figure 1.2.50. The intersecting screw
dislocation line leaves “jog” on it. Since the “jog” portion of the dislocation segment

Screw

Screw
It I Forest

Forest Edge

slip plane

on same plane on same plane
)

(a)

Figure 1.2.49 Formations of jog and kink as a result of intersecting edge dislocation (a) and
screw dislocation (b) against edge and screw forests, respectively.

Interactions between Two Screws: Jog Drag |

Ibz \’
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2 \ Ve )
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Figure 1.2.50 The jog-drag mechanism as a result of the intersection of two mutually
perpendicular screw dislocations. One of the dislocations yields a “jog” with the nature of an
edge component, which cannot continue to glide except a climb motion, where vacancies are
provided from the surroundings, which induces resistance against the dislocation motion.
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Figure 1.2.51 Schematics of “jog drag” showing the sequence of motion of a jogged screw
dislocation line (a), followed by (b) bowing out, (c) formation of edge dipoles, and (d)
resultant jog dragging leaving vacancy rows behind.

(@)

is perpendicular to the Burgers vector b; (which is conserved), it acts as an “edge”
component that cannot be slipped along the same slip plane any further. For it to glide
further, vacancies must be brought from somewhere to replace the “excessive” atoms
(this process is thus “nonconservative,” in contrast to other dislocation motions, and
is called a “climb” motion). Therefore, the glide motion of a screw jog must leave an
array of vacancies along the trace, as depicted on the right-hand side of Figure 1.2.50
(this is called “jog drag”). The “jog-dragging” process will also produce an edge
dipole, as illustrated in Figure 1.2.51, since dislocations tend to bow out due to the
line tension, while the jog is highly resistant compared with the other portions of the
screw dislocation line. Note that the reverse motion of the screw jog produces an array
of “interstitial” atoms instead of vacancies.

Examples of discrete dislocation-based simulation results for the “jog-related” pro-
cesses, including “jog drag,” are displayed in Figure 1.2.52, that is, (a) formation of a
jog dipole, (b) the jog-dragging process, and (c) bypassing after jog dipole formation.
Continuous stressing against (a) results in (c), further acting as a Frank—Read source
that leads to multiplication. These overall observations remind us of a versatile aspect
of the “jog-related” processes critical to many aspects of plasticity.

Note that the process just described is of further importance when we look into a
fatigue-crack initiation mechanism from persistent shear band (PSB) ladder struc-
tures (under high-cycle fatigue, see Section 3.7.1), because the “jog-dragging”
accompanying-edge dipoles produced within the interladder wall regions can produce
a number of vacancies, as will be briefly discussed in Appendix A9.

1.2.5.7  About Dislocation Density
Let us consider afresh an intuitive image of “dislocation density” for metals, by
focusing on two typical extreme cases (Kato, 1999), as displayed in Figure 1.2.53:
For well-annealed pure metals, we normally have p ~10°—10'°m~2, whereas for
deformed states the values reach 10"*—109m™,
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Simulated “Jog-related” Formation Processes
based on Discrete Dislocation Dynamics

JogDipole Formation |

(c) Jog Dipole Bypassing

Figure 1.2.52 Simulated “jog-related” processes by discrete dislocation dynamics: (a) jog
dipole formation, (b) jog-dragging process, and (c) bypassing a formed jog dipole.

|Examples of Dislocation Density
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Figure 1.2.53 Examples of typical dislocation density for fully annealed and work-hardened
samples, together with the commensurate total length of the dislocation line assumed to be
contained in a unit cube. See also Figure 1.4.2.
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Figure 1.2.54 Intuitive images of 2D and 3D dislocation density, that is, mean spacing for 2D
and total length per unit volume for 3D definitions, based on which we evaluate typical values
of the smallest and largest dislocation density, as listed in Figure 1.2.53.

For an intuitive image of “dislocation density,” let us use two quantities — “mean
spacing” and “total length” per unit volume (m?). The former is directly related to the
two-dimensional (2D) definition of p, while the latter to the 3D definition. Figure
1.2.54 schematically illustrates how we define “dislocation density” in the context of
2D and 3D images, respectively.

As can be readily understood from the schematics illustrated in Figure 1.2.54,
the mean spacing of dislocations can be roughly estimated from the density via
p "2, assuming uniform distribution. The dislocation density of 10'°m~ corresponds
to ;pacing ~ 10 um (Figure 1.2.53). This is of the order of the grain size in conventional
polycrystalline metals, meaning few dislocations included within a crystal grain. In
sharp contrast, the density of 10" m~2 is commensurate with Zpacmg ~ 30 nm, roughly
corresponding to 100 atoms. From this fact one can discover the maximum density
that crystals can contain to be around 10'®m~2.

For the total length, the former yields Ly, = 10 km, while the latter L,,,,;=10° km
(Figure 1.2.53). This is equivalent to several times the distance to the moon from the
Earth (which is about 3.8 x10* km).

A typical example of the highest dislocation density is that in martensite or
bainite structures. Figure 1.2.55 shows a TEM picture of lath martensite observed in
Fe-0.6%C (Maki et al., 1979), where the black contrasted regions depict high-density
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Lath martensite in Fe-0.6%C (TEM)

N

Figure 1.2.55 TEM micrograph of a martensite lath structure as an example of one of the
highest dislocation densities.

Figure 1.2.56 TEM micrograph presenting an example of intense dislocation debris with
the highest density observed in the proximity of the bainite/austenite transformation
front (Bhadeshia, 2001). Reprinted with permission of the publisher (Cambridge
University Press).

dislocations. They are basically introduced for accommodation reasons when mar-
tensitic phases with body-centered tetragonal (BCT) structures abruptly emerge dur-
ing quenching and intrude into the FCC-structured matrix phase (austenite). A close
up of such an “intruded” front can be found in Figure 1.2.56 (not for a “marten-
sitic” transformation, but for a “bainitic” one) (Bhadeshia, 2001), where extremely
high-density debris of dislocations have been introduced at the austenite () )-bainitic
ferrite (e,;,) interface for the purpose of accommodating the attendant incompatibility.
The corresponding situations for the lath martensite formation process are schemati-
cally illustrated in Figure 1.2.57, where lath-shaped martensitic phases are nucleated
and subsequently grown from the prior austenite (y) boundaries, ultimately evolving
into lath block/packet structures. Note that thus-introduced high-density dislocations
are pinned by minute precipitates and/or solute atoms introduced separately, without
which most of them do not remain anchored. Figure 1.2.58 shows a set of measured
plots of dislocation density p as a function of the transformation temperature, includ-
ing those not only for the martensite and bainite, but also for some ferritic phases
(Bhadeshia, 2001).

https://doi.org/10.1017/9781108874069.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108874069.003

1.3 Crystallography 45

Dislocations are
Massively Introduced
for Accommodating
the Incompatibility

L ogllil, Ll
Py~

Prior y /'
Boundary

my &

Laths Satisfying Specific )
VariantRelationships are ( ey oy T,

Formed ]
Relax the Transformation -
L Strain Field Cf. Fig.1.6¢

Figure 1.2.57 Schematic illustration of the lath martensite formation process under austenite/
martensite transformation.
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Figure 1.2.58 Variation of dislocation densities in martensite, bainite, acicular ferrite, and

ferrite, with transformation temperature (Bhadeshia, 1997, 2001). Adapted with permission of
the publishers (Routledge and Cambridge University Press).

1.3 Crystallography

1.3.1 Crystal Systems (Structures)

Crystal structure is typically classified into three systems as schematically depicted
in Figure 1.3.1, that is, FCC, BCC, and hexagonal close-packed (HCP) structures. As

https://doi.org/10.1017/9781108874069.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108874069.003

46 Dislocation Theory and Metallurgy

|Crystal Lattice Structures
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Figure 1.3.1 Typical crystal lattice structures for FCC, BCC, and HCP metals, together with
representative slip systems in the Miller index notation.
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Figure 1.3.2 Various atomistic representations of typical crystal lattice structures of FCC, BCC,
and HCP, together with respective coordination numbers and packing factors. This schematic
is adapted by permission (© Iowa State University Center for Nondestructive Evaluation).

atomically represented in Figure 1.3.2, the FCC and HCP are the closest-packed sys-
tems with the maximum density of atoms. The isotropic bonding state of the outer-shell
electrons of the metals results in these structures, while a slight distortion of the bonding
structure due to additional anisotropy tends to lead HCP. The two structures differ in the
order of stacking of the atomic layers. ABAB ... stacking produces the HCP, while the
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Figure 1.3.3 Distinction between FCC and HCP structures in terms of packing sequences
of atomic layers (both are the closest-packing structures) (Shimura, 2000). Adapted with
permission of the publisher (Asakura Publishing Co.).

Figure 1.3.4 Comparison of stacking sequence of atoms between FCC and BCC structures.

ABCABC ... stacking corresponds to the FCC, as depicted in Figure 1.3.3. As one can
readily understand, these are the ways to stack bolls (atomic layers) in the densest manner.

The BCC, on the other hand, is a loosely packed system, as a result of the direc-
tionality in the electronic boding states, normally reflecting, for example, the d-bands
for transition metals. Typical metals yielding this system are Mo, W, Ta, Nb, and Co.
They have partially “covalent-type” bonds, making them relatively high-temperature
resistant. The difference in the atomic stacking sequence between FCC and BCC is
presented in Figure 1.3.4.
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1.3.2 FCC versus BCC

In this section, distinctions between FCC and BCC metals in terms of plasticity are
discussed. In my experience, many researchers will tend to answer such a question as
“what is the substantial difference between FCC and BCC?” in an obvious context.
One of the most frequent answers is likely to be about “the number of slip systems.”
Some might mention “interactions among dislocations,” especially in recent years.
While these answers are true, they are rather insubstantial and rather secondary at
most, in the sense that they are derivable. A more fundamental difference would be
FCC and BCC’s mutually “dual” construction of atomic structures, on which almost
all the specifics are derived, from dislocation core structures to contrasting rate and
temperature dependencies. Needless to say, this originates from the electronic struc-
tures, governed ultimately by quantum mechanics, however it is not always necessary
to proceed down this path, unless chemistry is explicitly involved, as in Fe, which is
revisited in Section 4.2.2 (citing a work reported in Chen et al., 2008).

The dual-atomic constitutions manifest themselves as the dual constructions of the
slip systems, that is, {110}<111> for FCC and {111}<110> for BCC, as depicted in
Figure 1.3.5. Note that, as is widely known, for BCC other planes containing <111>
orientations may also be slip planes, for example, {112}, {123}, and so on, but they
are excluded here for simplicity. As can be seen, BCC and FCC combinations are
totally opposite; the slip planes in the FCC are the slip directions in the BCC and vice
versa. The same is true for “twin” deformations (see Section 1.4.1).

The dual construction in the slip system is primarily due to the dual-atomistic con-
figurations between the FCC and BCC, whose dual interrelationship is defined in
the context of the reciprocal lattice (Kittel, 1953). Figure 1.3.6 provides such com-
parisons, summarizing the interrelationship between the FCC and BCC lattices. The
reciprocal lattice to the FCC lattice agrees with the BCC lattice, and vice versa. (Note
that the reciprocal of a simple cubic lattice is also a simple lattice.) In other words, the

Slip Plane {111} {110}

Slip Direction (]10) e (111)

Figure 1.3.5 Dual constitution of FCC and BCC crystal structures; the nature of crystalline
plasticity substantially differs between the two.
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Figure 1.3.6 Dual constitution of FCC and BCC metals in terms of the atomic structure, known
as Wigner—Seitz primitive cells in real space, and their reciprocal relationship, termed as the
first Brillouin zone, which are mutually transferable via Fourier transform.

Fourier transform of the FCC lattice generates the BCC lattice, and the reverse is true.
In the field of solid state physics, we often use the “Wigner—Seitz cell” representation
in the Bravais lattice for determining the first Brillouin zone based on the recipro-
cal space representation, since they coincide with the Bragg-reflected wave vectors.
A similar procedure with attendant “duality” is found in Section 6.6.1, where we dis-
cuss graph theory-based representation of granular assemblies It should be noted that
the “Wigner—Seitz cell” is equivalent to the “Voronoi cell,” constructed (drawn) via
the Voronoi tessellation procedure.

Since the FCC lattice is close packed, accordingly the dual-BCC lattice is not;
indeed, it may safely be stated to be “loose.” From an atomistic point of view, such
looseness in the packing structure of BCC metals can cause a situation whereby the
closest-packed plane is not clearly identified, unlike in the FCC, and hence several
“nearly” closest-packed planes can coexist. This “looseness” in packing structure is
the very reason for the resulting multiple slip systems (unidentifiable slip planes) in
BCC metal. Furthermore, it is the source of the often observed complexity and vari-
ety in the mechanical responses peculiar to BCC metals as well as their much higher
Peierls—Nabarro (PN) stress than FCC. Immediate examples are BCC metal’s strong
strain rate and temperature dependencies on the stress response and the complexities
in the core structure of the screw dislocation for BCC metals in general. (These will
be discussed in later chapters, especially Chapter 4.)

In the case of a-Fe, this is, as a matter of fact, not a natural-born BCC metal, as is
pointed out and discussed in some detail in Section 4.2.2. The specific origin of the
BCC structure, coupled with the complexity in the screw core structure (see Section
4.2.1), is considered to be a crucial source of the extreme varieties in the mechanical
properties of this metal. Furthermore, combined with the fact that the high temperature
austenitic phase (¥-Fe) with FCC structure is within easy reach on the phase diagram
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Figure 1.3.7 Intriguing correspondence in {111} and {100} pole figures representing rolling
textures between FCC copper in RD and BCC Fe-3Si in ND, as a manifestation of the “dual
constitution” of slip systems (Rollett and Wright, 1998). Adapted with permission of the
publisher (Cambridge University Press).

via appropriate heat treatments, the complexity regarding a-Fe also provides us with
such a fertile spectrum of metallurgical microstructures (such as pearlite, martensite,
and bainite structures). Appreciating a-Fe this way is quite important for recognizing
the phenomenology and fully understanding the necessity of multiscale approaches in
the present context.

One prominent consequence of the already mentioned duality in slip-system con-
structions is the difference in the textures to be evolved, for example, under cold roll-
ing (details about “texture” and “pole figure” are given in Section 1.4.2). Figure 1.3.7
compares <111> and <100> pole figures between FCC metal (Cu) and BCC alloy
(Fe-3%Si) cold-rolled up to 80% reduction in thickness, where those with RD (roll-
ing direction) for the former and ND (normal direction) for the latter are indicated
(Kocks et al., 2000; Rollett and Wright, 1998). Note that the transposition of the
RD and ND ensures the two sets of pole figures for FCC and BCC correspond well.
This dual-texture evolution is regarded as an eloquent manifestation of the previously
discussed dual construction in the atomic structures between FCC and BCC. Note
that slight differences may be largely due to the geometrical effects of the elongated
crystal grains along the RD, which differentiate the transposed case from the refer-
ence. As conjectured from this duality in the rolling textures, we suppose some type
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Figure 1.3.8 Typical {100} pole figure representing y-fibered texture, specific to rolled BCC
iron and IF steels, comparing experiments and a corresponding schematic.

of indigenous preferred orientation should exist in relation to the crystal structure, for
example, FCC has its own inherently preferred orientations that will evolve, although
the texture in FCC metals depends quite strongly on the SFE (see Figure 1.4.10). This
is also true for BCC metals. Iron (Fe) or high purity steels such as IF steel, among
others, are well documented to yield {111}<110>—<112> ¥-fibered textures, where
the {111} plane tends to be directed in parallel to the sheet sample surface, together
with the preferred orientations in between <110> and <112> in RD (also expressed
as that with strong <111> Il ND fiber). The typical y-fibered texture for IF steels, for
example, is manifested as the pole figures displayed in Figure 1.3.8, where (b) rep-
resentative and (c) schematic (or ideal) {100} pole figures are compared. Since the
representative y-orientations of {111}<110>and {111}<112> are located periodically
along a concentric circle on the pole figure, as shown in (c), we can understand why
the experimentally observed pole figures become like the one demonstrated in (b),
that is, with an isotropically converging concentration of the preferred orientation.
The 7-fibered texture is revisited in Section 1.4.2, with another representation (via
orientation distribution function [ODF]).

As easily imagined based on the above argument, FCC metals, having the dual-crystal
structure relative to BCC metals, should give rise to totally different textures from the
above, for example, f-fibered texture; it will be extremely difficult for them to yield
the 7-fiber. (Typical rolling textures for FCC metals are shown in Section 1.4.2.)

1.3.3 Slip Systems in FCC and BCC

FCC metals have 12 independent slip systems, as represented in Figure 1.3.9, that
is, four independent slip planes with each containing three slip directions, making
the total number of the slip systems 12, where the combination of slip plane and
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Figure 1.3.9 Slip systems for FCC metals, consisting of four crystallographically equivalent
slip planes, each having three independent slip directions, based on Schmid—Boas notations.

direction is called “slip system.” The four slip planes are often referred to as primary
(B), conjugate (D), cross-slip (C), and critical (A), respectively, according to their
configurations and roles viewed from the primary system (B), while the slip direc-
tions are labeled by numbers corresponding to the six independent directions, that
is, from 1 through 6. The combination of them (A-D and 1-6) is referred to as the
Schmid—Boas notation (Schmid and Boas, 1950 [1968]), which is widely used in the
literature for identifying each slip system. For example, “B2” denotes the slip system
on the primary plane (B) with direction 2. Figure 1.3.10 displays the corresponding
vector representations, where m'® and s* indicate the unit vectors for the slip plane
normal and the slip direction (i.e., that of the Burgers vector), respectively, with the
superscript (ct) denoting the slip system, thatis, a =1, 2, ..., 12 for FCC metals. These
notations are further used in the mathematical treatment of crystal plasticity, partially
mentioned in conjunction with the Schmid factor (SF) (e.g., Figure 1.3.17).

As is inferred from the “FCC versus BCC” arguments in Section 1.3.2, BCC has a
dual construction of slip systems in contrast to that of FCC crystals. The closest-packed
plane for BCC crystals is {110} and we normally regard the associated slip systems
of the {110}<111> type as the representative system. Figure 1.3.11 displays the 12
independent slip systems of the {110} type for BCC metals, that is, six equivalent
slip planes with two slip directions each, summarized in Figure 1.3.11 in terms of
the Schmid—Boas notation. The corresponding vectorial representations are given in
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Figure 1.3.10 Explicit expressions of slip systems for FCC in Figure 1.3.9 via unit vectors for
slip planes and slip directions (i.e., the Burgers vector) of FCC metals.
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Figure 1.3.11 Slip systems for BCC metals ({110}<111> type only), consisting of six
crystallographically equivalent slip planes, each having two independent slip directions,
based on Schmid-Boas notations, yielding dual construction, in contrast to those of FCC
counterparts shown in Figure 1.3.9.

Figure 1.3.12. From the figure, one can confirm the “duality” relative to FCC, espe-
cially by looking at the Schmid—Boas notation, that is, “A-D” denotes the slip direc-
tions, while “1-6" expresses the slip plane, based on which we readily obtain a set of
expressions for BCC from that of FCC via simple transpositions of s{*) — m(%) and
m{) — s\*). Here, to avoid confusion, the subscript “fcc/bee” is attached to the plane
normal and direction vectors.

As pointed out in Section 1.2, BCC-constituting atomic structures are rela-
tively loosely packed compared to FCC’s (compare the packing factors listed in
Figure 1.3.2), which gives rise to difficulty in distinguishing the most densely stacked
planes from others, that is, there exist plural dense planes very close to the densest
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Figure 1.3.12 Explicit expressions of slip systems for BCC in Figure 1.3.11 via unit vectors for

slip planes and directions (i.e., the Burgers vector), yielding dual construction in contrast to
those for FCC metals in Figure 1.3.10.
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Figure 1.3.13 Three typically recognized slip planes for BCC metals containing the common
slip direction in the <111> orientation.

one. This serves as the major reason for the indefinite slip planes often observed in
BCC metals, combined with the extremely large SFEs, manifested typically for o-Fe
as “wavy” slip-traces (c) and “pencil glide” (d) in Figure 1.2.41.

Figure 1.3.13 summarizes a set of generally postulated variations of the slip planes
for BCC structures, that is, {110}, {112}, and {123}, where the most densely packed
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Figure 1.3.14 SF map applicable both to FCC and BCC crystals, together with schematically
drawn typical stress—strain curves in the case of FCC metals.

direction is uniquely identified to be <111>, providing the definite slip direction of
BCC metals. This can be visually confirmed also in Figure 1.3.13, where these three
planes intersect on the common <111> line, and hence they are called to form the
<111> zone. The independent slip planes for {112} and {123} types are partially
shown in the figure, having 12 and 24 slip systems, respectively. Therefore, BCC met-
als have 48 slip systems altogether if we assume all the contributions from the above
three kinds including the {123}<111> types.

Since the SF is measured by (5% ®m(“))sym, as detailed in Section 1.3.4, we
notice from the earlier discussion about duality in slip systems between FCC and
BCC, namely (s{%) ® m{%) )iy = (st ® m?) ), that two crystal systems’ SFs coin-
cide, as far as the {110} types for BCC are concerned. Figure 1.3.14 shows the con-
tour map of the SF, commonly applicable to both the crystal structures. The map is
drawn on the standard triangle of the stereographic projection (see Figure 1.4.13 for
details), together with the number of active slip systems under tension in the pre-
scribed orientations. The orientations [001], [111], and [011], located at the apices
of the triangle, are highly symmetric, which are followed by orientations along the
edges (with two equivalent slip systems), as explicitly specified in (a). The orienta-
tions inside the triangle, on the other hand, yield low symmetry, manifesting a limited
number of slip-system activities, for example, single slip. Some immediate examples
of the corresponding stress—strain curves are schematically shown in (b), showing a
highly symmetric multiple slip orientation [111] (six equivalent slip systems) and a
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Figure 1.3.15 A do-it-yourself kit of cubic structure model containing all the fundamental
planes of {100}, {110}, and {111} (Shimura, 2000). Adapted with permission of the
publisher (Asakura Publishing Co.).

single-slip orientation [123], together with a moderately symmetric orientation along
the triangle edge [-112] (two slip systems), for FCC metals, as examples. Single-slip
orientations tend to yield two- to three-stage hardening, as also detailed in Figure 3.1.6
in conjunction with evolving dislocation structures, and revisited in Figure 4.1.3 in the
context of “single crystal versus polycrystal” plasticity.

Regarding the SF, such low-symmetric orientations are apt to take relatively larger
values, stemming from the biased activities of their slip systems, with a maximum
of 0.5 realized at [149], followed by, for example, 0.497 at [136], and so on, located
inside the triangle, as a natural consequence.

For easy understanding of the slip-system configurations for FCC and BCC crys-
tals, Figure 1.3.15 provides a do-it-yourself kit for representing all the typical planes
including <111> and <110>, in addition to the <100> cube planes for cubic structures
(Shimura, 2000). The completed drawing is shown in the upper left.

1.3.4 RSS and the SF

For discussing slip-system activities and/or slip-system-wise shear deformations, we
use the RSS. Figure. 1.3.16 illustrates how we define the RSS together with the asso-
ciated SF. The force F acting on the cylindrical sample, as in the figure, is projected
onto the slip plane in the slip direction, inclined by ¢ from the loading axis, that is,
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Figure 1.3.16 Schematics showing how to obtain the RSS, where the SF is defined as the
measure for evaluating slip activities.

Fcos f. By dividing it by the area of the slip plane Ag;, = A/ cos6, we obtain the RSS,
that is,

TZFCOS¢=£COSQCOS¢ (L.3.1)
A A

slip
Since F'/A = o, we finally have
7 =0 cosfcosd. (1.3.2)

Here, the prefactor cos6 cos¢ =  is called the SF, which measures the RSS. By using
this factor, we can distinguish the activity of the slip systems, for example, “primary”
or “secondary,” and “active” or “inactive.”

The equation for finding the RSS can be generalized into the one for the tenso-
rial definition, which serves as the foundation of the kinematics of crystal plasticity
(e.g., Asaro et al., 2003; Khan and Huang, 1995; Nemat-Nasser, 2004). Figure 1.3.17
displays the process and the definition. The SF is generalized as the Schmid tensor,
indicating 3D slip-system constitutions, defined as

1
E§a>=5(s}a>m§“>+ s§“>m§“>), (1.3.3)
P — (s““@m(“) )Sym - %(s‘“)®m(a)+ me @ ) (1.3.4)

,.("‘) and m}a) are unit vectors representing the slip direction and slip plane

normal belonging to the slip system specified by the superscript (o), respectively. The
subscript “sym” in Eq. (1.3.4) denotes “symmetrization.” By using the Schmid tensor,
we can calculate the RSS via

where s

t=P"c (1.3.5)

ij

1=P%:0 = tr(P%.0), (1.3.6)
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Figure 1.3.17 Three-dimensional generalization of the SF, referred to as the Schmid tensor or
direction tensor, which is constructed by the tensor product of two unit vectors representing
slip direction and slip plane normal, together with the corresponding relationship for
calculating the RSS. Two expressions, via direct and index notations, indicated for both SF
and RSS, are presented.

where “:” denotes the scalar product for tensors. The rewriting of the second expres-
sion in Eq. (1.3.6) is simply due to a computational reason, because algorisms for
calculating the multiplication P‘*.o are simpler than directly computing P*“: o

It is also known that BCC metals do not always obey the Schmid law, often referred
to as the “non-Schmid effect,” requiring additional calculations (Ito and Vitek, 2001).
Some related topics are discussed in Section 4.2 in relation to the complexity of screw
core structures peculiar to BCC metals.

When the SF is summed up over multi-orientations for the purpose of representing
polycrystal versions of the relationship between o and 7, this is called Taylor factor,
that is, M for o = M. Roughly, it has been reported that M = 3.06 for FCC metals
and M = 2.83 for BCC metals (Figure 1.3.17).

The skew-symmetric part of s*’ ®m'®, defines the spin tensor, to be used in the
kinematics of finite crystal plasticity formulation for expressing deformation-induced
lattice rotations, that is,

(1.3.7)

L

1
(o) _ (o), (a)_ (&) (a)
W,-ja —5<s-a mja—sja m® ),

W= (sOem@), = L(s0@m®@ _m@es®), (1.3.8)
2

skew

where “skew” indicates “skew (anti)-symmetrization.”

Dislocation—Dislocation Interactions Revisited: Interaction Matrix

Figure 1.3.18 displays an example of the interaction matrix for FCC metals, classify-
ing the kinds of pairwise interaction for the arbitrary combinations of the slip systems.
In the case of FCC metals, such interactions are expressed by a 12x12 matrix. Here,
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Figure 1.3.18 Example of an interaction matrix for FCC metals expressing kinds and strengths
of dislocation—dislocation interactions, also explaining how to view the interaction matrix, for
example, from the primary slip system denoted by thick double-pointed arrow in Thompson’s
tetrahedron on the right.

the Schmid-Boas notation (see Figure 1.3.9) is used to symbolize the slip systems.
The inset shows a 2D representation of Thompson’s tetrahedron, expressing the con-
stitution of the FCC slip systems, together with the interactions specified with respect
to the primary slip system, indicated by a broad doubled-pointed arrow.

The interactions among dislocations in FCC metals have empirically been classi-
fied into five kinds, that is, (O) self-hardening, (H) Hirth lock or reaction-producing
jogs, (C) coplanar junction among those on the same slip plane, (G) glissile junction,
and (S) LC sessile junction. The last one is described in detail in Section 1.2.5.5. The
interaction associated with the LC sessile junction formation exhibits the maximum
strength, which is followed by the glissile lock. There have been arguments about the
others (Bassani and Wu, 1991; Francoisi et al., 1980).

Also explained in Figure 1.3.18 is how to read the interaction matrix. If the primary
system denoted by O be the reference, which corresponds to B5 according to the
Schmid—Boas notation (corresponding to the slip system along the lower edge of the
primary plane in Figure 1.3.9), we need first to find it in the row. As can be confirmed
in the figure, “B5” is located on the eighth row from the top. Then we can identify all
the interactions with arbitrary others by looking at this row. For example, the inter-
action with D1 is found to be “S,” meaning LC sessile junction formation, and so on.

The values of the components in the above interaction matrix, that is, the strengths
of the interactions, can be identified (or at least evaluated) by a series of experiments
which make up the latent hardening test.
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Figure 1.3.19 Schematics of the latent hardening test consisting of two-step loading (tensile)
tests, by which the components in the interaction matrix can be evaluated (Wu et al., 1991).
Adapted with permission of the publisher (Royal Society Publishing).

Schematics of the latent hardening test are shown in Figure 1.3.19, where a two-
step test on a single crystal specimen is performed. The details of the test are as fol-
lows. The first test is conducted on a parent specimen normally directed in single slip,
and the second test follows it on a child sample machined from the parent with a spec-
ified direction from its stress axis, such that the interaction between the primary slip
system activated in the first test and the latent systems start operation in the second
test can be measured. The graph in the figure shows an example of the output results,
where shear stress—strain curves for the primary and the secondary tests are indicated,
from which the latent hardening ratio (LHR) is obtained as

LHR = L&, (1.3.9)

Tp

Here, 7, and 7, are the values of flow stress in the primary and secondary tests,
respectively, where A2 or D6 orientation is assumed in the secondary tension against
a B2 primary orientation, corresponding to LC junction and no junction formations,
respectively, as extrema. There are some arguments about how to determine 7, since
the secondary curve contains a number of subtleties. Usually the backward extrapola-
tion is employed, as in the figure.

Examples of experimentally observed responses for Cu are displayed in Figures
1.3.20 (Wu et al., 1991) and 1.3.21 (Jackson and Basinski, 1967), respectively. In
the former (Figure 1.3.20), the backward extrapolation procedure is indicated for
evaluating the secondary flow stress. In Figure 1.3.21, on the other hand, three sec-
ondary orientations of B2, A2, and D1 are chosen against the B4 primary counter-
part, corresponding to G (glissile junction) in common in the interaction matrix
Jop listed in Figure 1.3.18. As observed, D1 and A2 exhibit marked stress increase
around the reyielding, whereas B2 shows no additional hardening but is demonstrated
to smoothly continue the primary stress curve. Since B4 — B2 is classified as C
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Figure 1.3.20 Example of the latent hardening test for a Cu single crystal (Nemat-Nasser, 2004;
Wu et al., 1991). Adapted with permission of the publishers (Cambridge University Press and

Royal Society Publishing).
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Figure 1.3.21 Examples of latent hardening test results with various orientations in the
secondary experiments for a single crystal Cu (Jackson and Basinski, 1967). Adapted with
permission of the publisher (Canadian Science Publishing).

(coplanar junction) in f,s, the present result implies no distinction among the three
coplanar slip systems in their contributions to the strain hardening at least for Cu,
meaning that the C component in f;,4 is supposed to take the value of 1.0, that is, no
extra/additional contribution to the self-hardening.
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Figure 1.3.22 Variations of LHR with (a) shear stress in the primary test (Francoisi et al., 1980)
and (b) normalized SFE (Francoisi, 1985), respectively, where the maximum values of LHR
are used for each material for the latter (b). The primary system for all the tests is B4, yielding
formations of sessile (A6), glissile (A2), and coplanar junctions (B2), respectively. Adapted
with permission from the publisher (Elsevier Science & Technology Journals).

It is noteworthy that the components of the interaction matrix f,z are not constant in
general, but roughly yield a decreasing function of the primary shear strain, as shown in
Figure 1.3.22(a). From the comparison of LHR among the secondary orientations, A6,
A2, and B2, not only can we confirm the strength order of the dislocation interactions
as S (sessile) > G (glissile) > C (coplanar), but we also learn that all these interactions
follow the same decreasing trend for both Al and Cu. It is further worth noting that a
rough negative correlation of the LHRs for S, G, and C with increasing SFE exists, as
observed in Figure 1.3.22(b). This corroborates the summarized overview concerning
SFE-hardening behavior relationship for FCC metals given in Figure 1.2.48.

We next consider the case of BCC metals, although they have been quite limited,
in contrast to FCC metals, primarily due to complexity relating to BCC indefinite
slip-system activities (cf. Figures 1.2.41 and 1.2.13). Among others, Nakada and Keh
(1966) systematically investigated — for single crystal Fe, choosing [111] as the pri-
mary system direction — the effects of a Burgers vector combination, the amounts
of prestrain, and temperature, concluding the LHR tends to vary between 1.2 and
1.4, roughly independent of those factors. Figures 1.3.23 and 1.3.24 show examples
of their results. In Figure 1.3.23, what we can readily confirm is the markedly pro-
nounced additional hardening at yielding compared to the FCC cases shown earlier,
followed by similar flow responses regardless of the secondary slip systems (oriented
in#1[111], #2 [111], #3[111], and #4 [111]). In Figure 1.3.24, on the other hand, an
exceptionally high rate of additional hardening is found for the reloaded curve #4',
in which two secondary slip systems, where double slip with [1 11] and [1 1 1] direc-
tions are activated simultaneously, distinctly differ from FCC. Figure 1.3.24 provides
a comparison of results for the case of “coplaner” latent hardening, where the RSS
was designated to be zero on the latent system during the first test, and, similarly, the
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Figure 1.3.23 Examples of latent hardening tests for a BCC Fe single crystal with various
secondary orientations, denoted as 1 to 4 on the stereographic projection (Nakada and
Keh, 1966). Adapted with permission of the publisher (Elsevier Science & Technology

Journals).
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Figure 1.3.24 Examples of latent hardening tests for a BCC Fe single crystal with various
secondary orientations, denoted as 1’ to 4’ on the stereographic projection, with 4’ being
double-slip oriented (Nakada and Keh, 1966). Adapted with permission of the publisher
(Elsevier Science & Technology Journals).
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Dislocation Interaction Matrix for BCC Fe
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Figure 1.3.25 Interaction matrix for BCC Fe integrated from literatures, that is, with reactions
classified by Madec and Kubin (2004), and values evaluated by Francoisi (1983).

RSS on the primary system was zero during the second test, meaning latent hardening
in the absence of secondary activation of the slip systems. Relatively large coplaner
interaction is observed, which is another feature of BCC metals.

Figure 1.3.25 provides an example of the interaction matrix for BCC Fe which
will be used in the simulations that follow in the present book. The values of the
components are determined in an integrated manner and refer to several data sources,
that is, the classification of the interactions is based on a series of dislocation dynam-
ics simulations (Madec and Kubin, 2004; Tang et al., 1999), and the values them-
selves specified in the list in the right are from those evaluated by Francoisi (1983) in
the latent hardening tests, where the slip systems are limited to the {110}<111> and
{112}<111> families, that is, BS through A2 and B5' through A2’, respectively. Since
there is no distinction in the reaction of the two dislocations, the interaction matrix in
this case is symmetric. Note that in the following series of simulations we used “1.0”
for components not available in the literature.

Figure 1.3.26 displays another source of the interaction matrix for BCC metal
(Cuitind et al., 2001) where a specific interaction, that is, between a moving edge
dislocation and a stationary screw dislocation, forming jogs as a result of the reac-
tion, is considered (see also Figure 1.2.49(a)). Cuitind et al. evaluated all the 24 x24
interactions in terms of the formation of energy based on energy and mobility consid-
erations for Ta. Since the reactions of an edge dislocation against a screw counterpart
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Normalized Jog-Formation Energies for Ta (BCC) ‘
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Figure 1.3.26 Interaction matrix for BCC Ta representing normalized jog formation energy
numerically evaluated (Cuitind et al., 2001).

are assumed, the matrix becomes asymmetric, in contrast to that in Figure 1.3.25.
Sorting the original matrix by the number, from 1 through 24, used in Figure 1.3.25,
we notice some noteworthy features that are roughly classified into four submatrices
corresponding to the reactions for

(1) {110} edge against {110} screw (upper left),

(2) {110} edge against {112} screw (upper right),
(3) {112} edge against {110} screw (lower left), and
(4) {112} edge against {112} screw (lower right),

exhibiting mutually common trends in the component structure, with some minor
exceptions, for example, periodically crossing cater-corner bands of “1.0” or “-”
(shaded in the figure), and intercorrespondence of the values between “1.5 and 3.2”
and “2.4 and 1.8” (these can be mutually converted by swapping). These common fea-
tures imply qualitatively similar contributions of the {110}<111> and {112}<111>
family dislocations to the jog formations.

1.4 Miscellaneous

1.4.1 Twin

Another mode of plastic deformation is “twinning.” There are two types of twin
in terms of their forming mechanisms, that is, annealing twin and deformation (or
mechanical) twin. The former is introduced to reduce the energy of the system as a
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Figure 1.4.1 Schematics of twinning in FCC metals.

part of “static recovery” in the absence of stress or deformation, while the latter takes
place in order to accommodate the imposed deformation under stress. This subsection
basically deals with the latter — deformation twin.

The deformation twin is considered to be a major deformation mode for HCP met-
als, and also for some FCC metals with low SFE less than 25 mJ m~2 and BCC metals
under high strain rates and low temperatures. Even in FCC metals with intermediate
SFE around 50-70 mJ m~2 (such as Cu and Ni), where most of the plastic deformation
can be carried out by the dislocation motion, mechanical twinning can take place, for
example, under impact or hypervelocity impact loading, as partially shown in Figure
3.5.2. It is known that the critical stress for the onset of mechanical twinning for FCC
metals is in proportion to the SFE. This means that small SFE metals and alloys (such
as o-brass and SUS304 [austenitic stainless steels]) tend to exhibit mechanical twin-
ning quite easily.

Figures 1.4.1 and 1.4.2 detail the crystallography of the twinning for FCC and BCC
metals, respectively. As can be confirmed by comparing the two, putting them side by
side, as in Figure 1.4.3, there also exists a “dual” constitution, that is, {112}<111> for
FCC and {111}<112> for BCC. It is worth comparing this with the case of “slip” in
Section 1.3.2 or Figure 1.3.5.

For BCC metals, another distinction should be kept in mind, which is that between
twin and antitwin directions, depending on the directionality of deformation due to
its geometrical constitution, causing, for example, tension—compression asymmetry.
Note that the emission of a partial dislocation from a GB in nanocrystalline aggre-
gates, leading to the formation of twins across the grain, has been considered to be
responsible for the outset of plastic deformation in such nanocrystal samples (e.g.,
Asaro et al., 2003; Van Swygenhoven et al., 2002).
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Figure 1.4.3 Duality in twin deformation modes between FCC and BCC metals as a
consequence of their dual constitution of crystallographic structures.

Figure 1.4.4 presents a schematic comparison of dislocation-based representations
of “twin” and “microband (MB)” between FCC and BCC (Murr et al., 1996), where
we can find some similarity between the twin and MB, except for the case of twin for
FCC. Comparisons between deformation twins and MBs formed under oblique shock/
hypervelocity impact loading for Cu can be found in Figure 1.4.5, which demonstrates
the micrographically resembling morphologies between them. It is worth noting that
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Figure 1.4.4 Schematics of deformation twins and MBs, comparing FCC and BCC metals and
demonstrating the similarity of the two deformation modes (Murr et al., 1996, p. 131, figure
8). Adapted with permission of the publisher (ASM International).
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Figure 1.4.5 Comparison of deformation twin and MB formed on a polycrystalline Cu surface:
(a)(d) twins in oblique shocked copper targets with dg = 375 um and 141 pm, respectively,
and (b)(c) MBs below hypervelocity impact crater in copper targets with d; = 763 um and
35 um, respectively (Murr et al., 1996, p. 124, figure 2). Adapted with permission of the
publisher (ASM International).
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the arrays of dislocations illustrated there will not always be “lattice” dislocations,
but more likely CD ones (namely, “virtual” — see Section 1.4.4 for details). This tends
to mean researchers experienced in TEM observations may not always accept (or be
rather skeptical about) such dislocation-based representations.

The twinning in FCC can be interpreted quite distinctly from that in BCC, as a
serial stacking of plural “stacking faults” sandwiched between pairs of partial dis-
locations. Therefore, the formation mechanism is greatly attributed to the motion of
leading and trailing partial dislocations.

Since, basically, both the twins and MBs are well described as CD dislocations to
be introduced via accommodation of a sort of “excessive” local deformation, extended
use of the “incompatibility tensor’-based model will be effective for descriptions of
them, as discussed in Chapter 11 in the context of application to single crystal pure Mg.

1.4.2 Texture and Pole Figure

Another important item to be added to Part I, “Fundamentals,” is “texture,” especially
rolling texture, that is, recrystallization texture and deformation texture. Figure 1.4.6
provides a schematic drawing of the rolling process of sheet metal, together with the
attendant deformation of crystal grains rotated toward and elongated into the RD.
This is accompanied by the developments of “preferred orientations” of grains in
addition to their significant shape changes. The term “texture” refers formally to the
former, the preferred orientation, not the latter. However, the actual texture, presented
via the pole figure or ODF, inevitably includes the effect of such morphological
aspects of the composing grains, together with likely occurring intragranular inho-
mogeneous deformations manifested as various forms of deformation structure (cf.
Chapter 3). Representative rolling textures are schematically summarized in Figure
1.4.7, that is, cube, copper, brass, y, and gross orientations, expressed via {hkl} <uvw>
as {rolling direction}(rolling plane), together with their relationships with the
Bunge-type Euler angles (¢;,®, ¢,). Euler angles are described in some detail in
Appendix Al.7.

about Texture

Normal
Direction

Cold Rolling |

Rolling
Direction
(RD)

Elongated Crystal Grains
with “Preferred” Orientation

[Texture

Figure 1.4.6 Schematic illustration of rolling process and attendant “texture” development with
preferred orientation.

Sheet Metal
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Figure 1.4.7 Schematics showing representative rolling textures, that is, cube, gross,
and y orientations, together with copper and brass orientations, represented as {rolling
plane }<rolling direction>.

For scrutinizing the texture, we generally need the pole figure, or more precisely,
the ODF for their 3D totality. Figure 1.4.8 concisely explains how we obtain a pole
figure, while Figure 1.4.9 provides an overview of the ODF, both assuming texture
presentations. The pole figure is a 2D stereographic representation of the orientation
of a “selected” plane normal (pole) with respect to the sample reference frame, often
utilized to describe texture, for example, for a rolled sheet metal, on which a set or
group of all the equivalent specific crystallographic orientations of the crystal phases
involved in the targeted sample are stereographically projected. In Figure 1.4.8, a
<100> pole is taken as an example with respect to a sample reference frame, specified
as RD, ND, and transverse direction (TD). Here, a single crystal cube located at the
center of a projection sphere is depicted, from which three cube directions of [100],
[010], and [001] are ultimately projected onto the projection plane, resulting in the
pole figure (a). By repeating the process, we obtain the corresponding plot (b) and the
contour plot (c), indicating the intensity of such distributions of projected points. For
the ODF, on the other hand, Figure 1.4.9 displays presentations in (a) full 3D, (b) 2D,
and (c) a selected 2D Euler angle space (¢;,®, ¢, ), together with typical examples of
the rolling textures (c) and (d), respectively, specifying typical o, 8, and y fibered tex-
tures. Special emphasis is placed on the y fibered texture, to be discussed as follows.

As shown already in the context of “FCC versus BCC” (in Section 1.4.1), the dual
constitution of the atomic structures is also manifested as distinct textures of high
contrast between them (see Figure 1.3.7). Typical textures for FCC metals observed
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Figure 1.4.8 Schematic drawing showing how to obtain and view the pole figures for a
textured sheet via cold rolling, taking an example of {100} poles of a cubic single crystal. A
stereographic projection of <100> directions onto a projection plane is illustrated, together
with rolling, transverse, and normal directions of the rolled sheet sample, indicated as RD,
TD, and ND, respectively (Hatherly and Hutchinson, 1979).
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Figure 1.4.9 An overview of the ODF presented in Euler angle space, (¢;, D, ¢,), with an
emphasis on the ¥ fibered texture, typical to Fe and low-carbon steels such as IF steel. (a)
2D presentation on the (¢,,®) plane at ¢, =45° (Urabe and Jonas, 1994, p. 437, figure 4), (b)
3D view of (b) (Hirsch and Liicke, 1988a, p. 142, figure 5(b)), and (c) that for FCC metals,
schematizing typical rolling textures (Hirsch and Liicke, 1988b, p. 2869, figure 3). Adapted
with permission of each publisher (Iron and Steel Institute of Japan, Hindawi, and Elsevier).
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Figure 1.4.10 Typical pole figures in FCC metals, referred to as “pure copper” type and
“o-brass” type (Hu et al., 1952). Used with permission of The Minerals, Metals & Materials
Society.

in cold rolling are depicted in Figure 1.4.10, that is, (a) pure Cu type and (b) a-
brass type compared on {111} pole figures (Hu et al., 1952), where the former is
for 95%-rolled Al, while the latter is 95%-rolled for 70-30 brass. The BCC metals,
on the other hand, have their own counterpart, widely known as V-fibered texture
(see Figure 1.3.8). It is worth noting that the difference observed between (a) and
(b) in Figure 1.4.10 is largely attributed to the difference in the SFE, where type
(b) is considered to be greatly affected by the alternative deformation mode, that is,
twinning (Section 1.4.1). The former type of pole figure (described as (123)[412]
and (146)[§T1]) has been widely observed for FCC metals with relatively high SFE,
whereas the latter type (described as (1 10)[T12]) for those with low SFE such as
brass and silver (Ag). Transition reported from the former toward the latter seems to
be very informative, realized by decreasing the rolling temperature down to —196°C
(e.g., Hu and Goodman, 1963), demonstrating that the high-intensity areas near the
center of the former tend to split, eventually becoming closer to the former as a func-
tion of temperature. These authors discussed the close relationship with SFE change.

For the case of the V-fibered texture for BCC metals mentioned in Section 1.3.2
in the context of high r-value, the <100> pole is often used where the intensity tends
to be concentrated in the circular region, as schematically illustrated in the top right
of Figure 1.4.11 for the case of IF steels. With this type of texture, the r-value can
reach 2.5 or more.
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Interstitial Free Steel
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Figure 1.4.11 Schematics showing a typical texture called y-fiber found in mild steels such as
IF steels, where the C-impurity level is significantly reduced down to a few ppm or less, with
the residuals being anchored by adding Ti or Nb as a form of TiC/NbN, and so on.

|Lankford Value (r-Value) |

T

w
[El=1n— width strain
‘ W,
t
&= lnt— Thickness Strain
0

Larger r-Value

D 4
Higher Deep-drawability

Figure 1.4.12 Definition of r-value (also referred to as the Lankford value) as a measure of deep
drawability.

Incidentally, the V-fibered texture has been known to be suitable for press forming,
especially in deep drawing, because of its superior thinning resistance manifested as
high r-value (Lankford value or plastic anisotropy parameter [Wagoner and Chenot,
2001]). The r-value, as schematically explained in Figure 1.4.12, is defined by the
ratio of width strain ¢,, to the thickness strain &,, that is,

™

- |e,=In(w/wy)

r=—"with (1.4.1)
& g,=In(t/ty)

As understood from Eq. (1.4.1), the large r-value means to yield, for example, a
large transverse deformation with a relatively small thickness reduction. In the

metal-forming technology, this provides an index of deep drawability, since the large
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r-value yields easier shrink-type flanging deformation, allowing larger amount of
materials to be drawn into a die cavity (the ability to allow circumferential shrinkage
at the flange part against the reducing thickness).

The high r-value in the V-fibered texture (~2.5 or larger) basically stems from
the intrinsic slip-system constitutions to BCC metals as described earlier. As can
be imagined, with the {111} plane in parallel to the sheet surface, the deformation
through thickness direction is restricted because the slip direction <111> is normal
to the surface of the sheet, as schematically illustrated in Figure 1.4.11. It is inter-
esting to note that some researchers, assuming the same mechanism will work, have
tried to realize the 7-fibered texture in certain kinds of aluminum alloy (FCC) for
the purpose of enhancing the press formability. As readers may readily notice, this
will probably not be possible due to the following three reasons: (1) the 7-fibered
texture is indigenous to BCC structures, (2) the relationship between the 7-fibered
texture and high r-value is peculiar to BCC metals, and (3) the slip plane to be
aligned in parallel to the blank sheets ought to be {110} for FCC metals according
to the above logic.

1.4.3 Stereographic Projection and Standard Triangle

One of the standard ways of describing crystallographic orientations explicitly is
via stereographic projection. This is also called the “inverse” pole figure, since in
this case the crystallographic axes are taken as the reference, instead of the targeted
sample, as in the pole figure (see Figure 1.4.8 in Section 1.4.2). A way to obtain the
stereographic projection is schematically given in Figure 1.4.13, where a two-step
projection is indicated, that is, (a) from a cube (of atomic structure) to an enveloping
sphere, and (b) from the sphere to a tangent circle. The resultant projection is shown
in (c), where a standard triangle out of the 24 geometrical equivalents is highlighted.
The standard triangle is composed of the three representative orientations of <100>,
<110>, and <111>. Note that the term “stereographic projection” itself stands for the
projection of a sphere onto a plane, corresponding to the above process (b), which
preserves local angles (referred to as the conformal transformation [or map]) but not
length or area.

Arbitrary crystallographic orientation is represented as a dot in the standard trian-
gle, as exemplified in Figure 1.3.14(a). It should be noted that the dot in the standard
triangle, however, does not contain all the crystallographic information because it
represents just a single direction with respect to the cube axes. Based on Euler angles,
it is represented by two angles, for example (®, ¢,). Therefore, we need one more
piece of information about the direction to fully identify the 3D configuration of the
crystallographic orientation, for example, (¢, D, ¢, ), as in the ODF described earlier
(Figure 1.4.9).

Figure 1.4.14 summarizes the stereographic projections described in Sections 1.4.2
and 1.4.3, by compactly combining Figures 1.4.8 and 1.4.13, emphasizing the obtain-
ing processes up to the resultant pole figure and the standard triangle, respectively.
Here, the cubic structure model provided as the do-it-yourself kit in Figure 1.3.15 is
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Standard
Triangle

Figure 1.4.13 Schematic illustration of the process for obtaining stereographic projection
of directions in a cubic crystal, where a standard triangle is highlighted in (c) ((a) and (b)
are reconstructed from Marder, 2000, p. 33, figure 2.17). Adapted with permission of the
publisher (John Wiley & Sons).

used as the cube to be projected in the place of the one situated in Figure 1.4.13(a), for
the sake of easier comparisons.

1.44 Crystal Dislocations versus CD Dislocations

There is often confusion among researchers about the distinction between “CD dislo-
cations” and “lattice or crystal dislocations.” They are, as a matter of fact, essentially
distinct concepts (Shiotani, 1989; Yokobori, 1968; Yokobori and Ichikawa, 1967). As
pointed out in Section 1.2.1, the notion of “dislocations” (of the CD kind) were ini-
tially introduced within the continuum mechanics framework (Love, 1944; Volterra,
1907) with no explicit correspondence to the “crystal” dislocations. Furthermore, the
concept had been used in solving mechanics problems of continuum solids (not based
on crystalline plasticity). While the crystal dislocations have a finite Burgers vector
roughly commensurate with the lattice constant of the crystal considered, the CD
dislocations have an infinitesimal Burgers vector. Unless at least the slip systems are
specified and projected onto it, we cannot interpret the CD dislocations as the crystal
counterparts. The CD dislocations can be imaginary, and do not always need to corre-
spond to (or be attributed to) the “crystal” ones.
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Figure 1.4.14 Summary overview of two stereographic projections in Figures 1.4.8 and 1.4.13,
that is, pole and inverse pole figures, comparing how to obtain and how to view the pole
figures, taking an example of {100} poles of a cubic single crystal.

Precipitates - Incoherent versus Coherent

Wl 1

Figure 1.4.15 Comparison between interfacial dislocations and misfit dislocations, where
the former can be mimicked by CD dislocations with an infinitesimal Burgers vector, thus
normally yielding a long-range stress field, whereas the latter is represented by an array of
isolated crystal dislocations with a finite Burgers vector introduced so as to relax the misfit
situation.

Figure 1.4.15 provides an example eloquently comparing the two cases, which con-
siders the interfaces of two atomic structures with slightly different lattice constants,
like those with coherent precipitates (comparison of precipitates between coherent
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Figure 1.4.16 Comparison of precipitate-matrix interfaces between coherent and incoherent types.
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Figure 1.4.17 Application of the notion of CD dislocations to the crack problem (mode I type)
(Bilby et al., 1963).

and incoherent types is given in Figure 1.4.16). The left denotes CD dislocations
accommodating the misfit caused by the difference in the lattice spacing between the
two phases, whereas the right is for the same interface but has been relaxed via an
array of “crystal” dislocations. The former is called “interfacial” dislocations, while
the latter “misfit” dislocations. As can be readily understood, the former case does not
actually include “crystal” dislocation at all, meaning the illustrated dislocation array
is imaginary. Instead, such a situation is well described via a stress field based on the
dislocation theory.

Another example where such “imaginary” arrays of dislocations can work nicely
as a model is “crack” (known as the BCS [Bilby-Cotterell-Swinden] model [Bilby
et al., 1963]). Figure 1.4.17 displays a crack model via CD dislocations under mode I
loading. The long-range nature of the stress field (as mentioned in Section 1.2.3.2) as
well as the singularity of dislocations (in the present example, edge dislocations) are
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Figure 1.4.18 Analytical solution of the crack problem given in Figure 1.4.17 in the form of the
distribution function of CD dislocations.

Interaction Between ; o
Crack and Dislocations
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Size of Plastic Region
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COD = (Zb, ]sin 0 Vitek (1976)
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Figure 1.4.19 A crack expressed by CD dislocations interacting with emitted discrete
dislocations for evaluating COD (Vitek, 1976b).

the reasons this model works well. As you can see, the assumed dislocation array is
nothing more than the imaginary one, situated so as to satisfy both the crack-tip stress
field and the boundary conditions. The corresponding distribution of dislocations to
the crack is obtained by solving a kind of integral equation (1st Fredholm type) with
respect to the distribution function f(x) (inset of Figure 1.4.17), and is explicitly
shown in Figure 1.4.18. Application examples of this technique to the fatigue-crack
propagation problem can be found in Homma (1989) and Homma et al. (1984). Figure
1.4.19 displays an example of such applications to crack-tip problems, for the purpose
of evaluating the crack-opening displacement (COD), where interactions with a dis-
crete array of dislocations are considered (Vitek, 1976b). Elaborate achievements in
dislocation theory-based fracture mechanics have been published as a monograph by
Johannes Weertman (1996).
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Appendix A1 Energy Landscape for Dislocation Pairs

A1.1 Derivation of Peach—Koehler Equation (Formula)

Forces acting on dislocations are called the “Peach—Koehler (P-K) force” and the for-
mula for calculating them is generally referred to as the “Peach—Koehler (P-K) equa-
tion.” We show in the following a standard derivation process for the P-K equation.
Note that the expression for the P-K force is a specific version of the energy-momentum
tensor that applied to a dislocation line, just like the J-integral against a crack tip. We
derive the P-K equation along this line in Chapter 7, in the context of the gauge field-
based formalism of dislocations and defects; reference is also make to the J-integral.

Consider a straight dislocation line (the unit vector along with it is represented as
&) with the Burgers vector b (inclined to it at an angle 0). Displacing the dislocation
line by 6r, we measure the area swept by the operation as

ds =& xdr. (AL.L1.1)
Under the application of stress o, the corresponding force acting on the dislocation
line is calculated as

Sz =0'~ds=0'-(§><dr). (A1.1.2)
Since the resultant shear displacement should be b, the work done by the above oper-
ation is given by
oW =f:-b
:[0' (& xdr)]b,

=b-[o-(&xdr)]
=(b-0)-(&xdr)
=(b-o)x&-dr
=(o-b)x&-dr.
To obtain the last line, we used the invariance of the operation under cyclic permuta-
tions, that is, a-(bxc)=(axb)-c =[abc]=[bca]=[cab].
Therefore, the force per unit length of dislocation line is obtained as

f=(c-b)xE. (A1.1.5)

This is called P-K equation, defining the P-K force (cf. Eq. (7.3.65) in Section 7.3.7).
The corresponding index notation is expressed as

Ji =€4ji0 ib&; = — €5 0 ib&;. (A1.1.6)

From this result, we immediately learn that the force on dislocation lines f always
acts perpendicularly to them &, thatis, f L &.

From projections of the P-K force, f, on the appropriate directions, we readily
obtain the corresponding components (Hirth and Lothe, 1982). For the climb com-
ponent, for example, it should be the direction both normal to b and &, which can be
calculated by taking the inner product with the unitary vector of (bx &), that is,

(Al1.1.3)

(Al.1.4)
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(bx&) [(o-b)xE]-(bxE)

o= f. = Al.1.7
fchmb f |b><€| |b><€| ( )
Similarly, for the glide component we obtain
Ex(bxE) [(o-b)xE]-[ExBx8)]
fotiae=f" = , (A1.1.8)
ghd |b><§| |bx§|

because this should be normal to both £ and (bx&).

If the Burgers vector p is inclined to the dislocation line (&) at an angle 6, it is made
up of two components, that is, the edge component, b 4o, = bsin6, normal to &, and
the screw component, b, = bcos6, parallel to £. The glide plane is defined as that
which contains both the dislocation line and the Burgers vector.

Another important thing we should know is that applied stress o can be replaced
by more generalized stress, or the linear superposition of various contributions or
origins. Such stress typically includes those produced by or associated with: (1)
self-interaction of a curved dislocation, (2) image force in the presence of the free
surface, and (3) interactions with other dislocations and defects.

O =Ocxit Ogelr + O-image+ Oint (A1.1.9)
Correspondingly, we can deal with the P-K forces independently as

S = fox * S +f;mage + fint (A1.1.10)

A1.1.1  Examples of P-K Force

Consider a dislocation line & = [0,0,17". Assuming edge and screw dislocation lines
b=[h,0,0]" and b = [0,0,b], respectively, we have, explicitly,

€ (2} €3
T T
fb Z[O'“b, Glzb, 61319] X[O,O,l] = Gllb O-lzb O'l3b
0 0 1

= [Glzb, —oyb, O]T for the edge dislocation.
ﬁ) = [O-SIb’ 0'3217, G33b]T X[O,O,I]T

T . .
=[03:b, —03,b, 0] for the screw dislocation.

A1.2 Force Acting on a Parallel Dislocation Pair

Consider two straight-edge dislocation lines & =[0,0,1]” aligned in parallel. Assume
they have b, =[b,,0,0]” and by =[bg,0,0]", respectively, and are situated d apart.

The interaction energy between the two edge dislocations A and B is given by

int0

pedee _ Ivozdge:ggdgedx (A1.2.1)
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Rewritten in terms of the eigenstrain, this becomes
edge _ edge . *edge
E 5 = IVGA igg ©dx
(A1.2.2)
_ edge _*edge edge _*edge
= Iv( Cantpal tOA2Ep1r |dx

Here, the eigenstrain components for the edge dislocation B is given by (see Eq. (A1.5))
i o s (n-a (-] 129

while the stress component is

o (x,x%) =o5is (3, ) = (A1.2.4)

Substituting them into Eq. (A1.2.2), we have

Eier:jt%e == ‘ubAbB J._OOJ.OO al (XI -x2 )6( X _d)H{ ('xl —)C)} dxldxz

2m(1—v) = d=o (21 x
__ ‘LtbAbB J’X .xl(.xl d)
2n(—v) = (el

x ; x o d’
=- Hbaby I i dxl—j ————dx; ;.
2n(1=v) |1 (xf +d*)? = (xf +d*)?

The above integration can be analytically performed, provided the lower bound —oo is
replaced by a reasonable value —R, as,

peie ___Pbaby |1 [xi4d”) 4 &
" 2a(1-v) |2 | R24+d? ) xF+d® R*+d>

Al1.3 Elastic Strain Energy for Dislocations

Elastic strain energy for dislocations is given in two ways as
is 1 1 ,
disloc _ . € - Lo
E —2J.VO'.8 dx 2_[‘/0'.5 dx, (A1.3.1)

where & represents the eigenstrain introduced by the dislocations. Correspondingly,
o in the second expression indicates the induced internal stress field.

By rewriting the elastic strain ¢ using & in the first expression, that is, s€=g — g*,
we have

[ disloc _ %J'Vo_ . (8_8*)dx

(A1.3.2)
=1_[ G:(a—ujdx—lj o:&dx
27V ox 2V

Here, o : € in the first line can be replaced by o : (Ou / 0x) (Ou / Ox = B is the distortion
tensor that is generally asymmetric) because of the symmetry of o. The first term is
further rewritten as follows by performing integration by parts:
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1 1%/ 1 1 0
EJ.VO':(a—;ljdxzzj‘so-uds—aj‘v(a—:j-udx

1 1 .
:ELn-O'-uds—EJ‘devo“udx (A1.3.3)
=0.
Since we are looking at the internal stress that yields zero at the surface, the first term
in the second line vanishes. The second term, on the other hand, also becomes zero

because divo =0 in the absence of body force. Therefore, we ultimately obtain the
expression Eq. (A1.3.1) from Eq. (A1.3.2).

A14 Elastic Interaction Energy for a Dislocation Pair
For elasticity, the interaction between two dislocation fields can be evaluated by the
linear superposition (the superposition principle if linear elasticity) as

Edisloc:%-[V(O-A+o-B):<g§ +g§)dx

1 e 1 . e 1 . e 1 . e
:E.‘-VGA.gAdx +§J‘VO-B.£de +§J‘VO-A.Ede +5.[VGB.8Adx (A1.4.1)
= Egisloc +Egisloc +Eint

Here, the interaction energy is defined as
; 1 1
E™=—| o :e5dx +=| op:€5dx
ZJV ZIV (A1.4.2)
:.[VGA:EBCLX: :.[VO-B:EAd.x,

where 0 4: €5 = 0p: € is used. Using the eigenstrain formalism, we alternatively have

Eimz—jvaA:s;dx (: —jvaB:g;dx). (A1.4.3)

Al1.5 Examples of Dislocations in Eigenstrain Representation

Let us consider a straight-edge dislocation on the x; —x, plane. We can introduce it by
the following operation.

A cut is made in the x;< 0 region (Figure 1.2.16) first, and then the opposite sur-
faces of the cut are welded to restore the continuity after displacing them relative
to each other by b. This results in an edge dislocation situated at the origin with the
Burgers vector b = (b,0,0). This procedure is the so-called Volterra operation. Since
the displacement caused by this operation is u = (b,0,0), the strain components are
given as

&1 5= g5 = gé(xz YH (=x,), (AL5.1)
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otherwise zero.
Here, 6(x) is the Dirac delta function and H(x) represents the Heaviside step

function. They are defined respectively as

o (at x=0) ¢a
5(x) ={0 at +20) J_aS(x)dx =1 (a>0), (A1.5.2)
and
0 (ar x<0)
H(x)=<1/2 (at x=0). (A1.5.3)
1 (at x>0)
There is a following relationship between the two functions, that is,

(Al1.5.4)

5(x) = M(© H(x)= j ! S(x)dt)
dx —o0

Energy Landscape of Edge Dislocation Pairs

Consider a pair of straight-edge dislocations on the x;—x, plane, as depicted in
the inset in Figure A1.6.1, where relative angles 6, and 6, are ranged from 0O to
180°, as well as the mutual distance between them. Here, 6 =180° corresponds to

A1.6

Energy Landscape
For Dislocation Pairs
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Figure A1.6.1 Energy landscape for pairwise configurations of edge dislocations.
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vacancy-type dipole configuration, while 6 = 0° represents the monopole alignment.
The former, with the 45° alignment, yields the minimum energy, as shown in the
bottom-left region in Figure A1.6.1, whereas the latter takes the maximum, as dis-
played in the middle-upper region. With the mutual distance tending to O for the
dipole configuration, the energy decreases down to 0, as shown in the bottom-right
region, demonstrating roughly a double-well-type energy landscape responsible for
the pairwise interaction. This is assumed in Chapter 10 for the derived effective theory
with respect to the annihilated field.

Al1.7 Euler Angles

Euler angles can uniquely specify 3D rotations of the targeted coordinates with respect
to a reference coordinate system by using three angles. In metallurgy, there are two
conventions for defining the Euler angles, that is, Bunge and Roe (Nagashima, 1984).
Throughout the book, we use the Bunge-type definition, represented conventionally
by (¢;,D, @, ). Note, the Roe convention uses (y,0, ¢) instead.

An easy way to understand Euler angles is to break down the associated coordinate
transformation process into three steps, as illustrated in Figure A1.7.1, that is, from
(X4,Y4,Z,) to (Xp,Y5,Zp). Since each step is simply a rotation about an axis, all
we have to consider is the order of the axes. For the Bunge convention, we choose
Z — X — Z. This is the very reason for this style to use ¢, — ® — ¢, as the notation.
Note that, in the Roe style, the choice is Z — “Y” — Z, thus a simple set of conver-
sions holds between the two conventions, as ¢; =y +7 /2, ® =0, @, =+ /2.

The three steps are as broken down sequentially as follows, as displayed in Figure
Al.7.1(a) and (b). The first step is the rotation about Z 4-axis, specified by the angle

@, given by
x cosg; sing, 0|[X,4 X,
y'r=|—-sing, cosp, 0|Y, E[(pl] Yy ¢, (A1.7.1)
4 0 0 1(|Z,4 Zs

which transforms from (X,4,Y,,Z,) to (x',y',z’). Likewise, since the second step
refers to the rotation about the ““ X ,-axis,” specified by @, we have

x" 1 0 0 x' x'
Y'r=|0 cos® sin® |1y r=[D]<y' ¢, (A1.7.2)
7" 0 —sin® cos® ||z Z

expressing the transformation from (x',y’,z") to (x",y",z"). Lastly, the third step is
again the rotation about the z'-axis with angle ¢,, which is given by the same form as
that for the first step, that is,

Xp cosp, sing, O|[x" x"
Yp +=|—sing, cosp, 0[4y" E[(pz] Y. (A1.7.3)
Zy 0 0 1]z 7"
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| Euler Angles: (Bunge Type) | (¢, ®,0,)

[{.x-s}=[¢:u¢1[¢11{x.4}] ®
7 9

f,\"] cosg, sing OlfX,) (X,
1Yi=|-sing cosg O ¥, ¢=|@l]] ¥,
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Figure A1.7.1 A series of processes obtaining Euler angles (Bunge style).

By combining the above three processes, Eqs. (Al1.7.1) to (A1.7.3), we define the
Euler angles of Bunge type as

X} =[o][@][e ]{X4}, (AL74)
Xp cosp, singp, O0]f1 0 0 cosp, sing, O0||X,
& qYp p=|-sing, cosp, 0[|0 cos® sin® ||—sing, cosp, O[]Y,
Zg 0 0 1{|0 —sin® cos® 0 0 111Z,4

Ccos, cos@;—sin@,cosDsing; cose,sin@,+sin@,cos®cosp, sin@,sind

=|—sing, cos@;—cos @, cosDsin@, —sin @, sin@;+cos@, cosD@cosgp; cos,sin D

sin @ sin @, —sin® cos @, cos®
Xa
X YA
Z, (A1.7.5)

Notice that the first two steps determine the [001] direction away from the referential
Z, — X, (ND-TD) plane, as conformed in Figure A1.7.1(c). Therefore, if we assume
we skip the first step, the [001] direction stays on the Z, — X, (ND-TD) plane, while
the [100] direction coincides with the X, (RD) axis. Based on this consideration, we
obtain a simple schematic, as inserted in Figure 1.3.14(d) and Figure 1.4.14(d), indi-
cating a crystal orientation with respect to the cube axes by using the remaining two
angles (@, ¢, ). This is convenient for quick and intuitive recognitions of crystal ori-
entations, for example, on standard triangles (Figure 1.3.14(c) and Figure 1.4.14(c)).
In this case, of course, the other two crystal orientations are indefinite, and should be
specified by ¢,.
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