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In (8, § 3.2) Steinberg proved the following result. 

THEOREM. Let K be a finite field, Gf a simple Chevalley group ("normal type1') 
over K. Then every automorphism of G' is the composite of inner, graph, field, 
and diagonal automorphisms. 

For the meaning of these notions, see (8). Our aim in this note is to indicate 
how the Theorem may be extended to arbitrary infinite fields K, provided 
we replace G' by the group denoted G in (5) and G in (8). This amounts to 
proving the Theorem for automorphisms of G' which are induced by auto
morphisms of G; when K is finite, Steinberg's results show that all auto
morphisms of G' arise in this way. As Steinberg points out, the sole use made 
of the finiteness of K in his argument is in the proof of the following statement: 
Let U be the subgroup of G' corresponding to the set of positive roots, and 
let a be any automorphism of G' ; then Ua is conjugate to U in G'. (For finite K, 
this amounts to an application of one of the Sylow theorems.) Henceforth, 
assume that K is infinite. We shall prove the following lemma, which, together 
with Steinberg's arguments (modified slightly), yields the above Theorem for G 

LEMMA. Let U be the subgroup of G corresponding to the set of positive roots, 
and let a be any automorphism of G. Then IIe7 is conjugate to U in G, and hence 
(by an easy application of the Bruhat decomposition) in G'. 

Before proving the Lemma we need to recall the relationship between 
Chevalley's earlier notion of algebraic linear group (4) and that of Weil; 
see (1, § 2.4) for details. Let 12 D K be a universal domain. If H C GL(«, K) 
is an algebraic linear group in the sense of (4), then its Zariski closure H* in 
GL(n, 12) is an algebraic linear group defined over K, with .K-rational points 
(H*)K = H* H GL(n, K) equal to H. H is connected (solvable, etc.) if and 
only if H* has the same property, and the dimension of H coincides with 
dim H* (cf. 4, vol. II, p. 113, proposition 5). In particular, let G (with derived 
group Gr) be the group over K defined by Chevalley in (5), say G C GL(n, K). 
According to a theorem of Ono (7, Theorem 2), G is an algebraic linear group 
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in the sense of (4), and G* = (G*)' is the simple Chevalley group over 0 of 
the same type. Moreover, the group U above and the standard diagonal group 
H are closed in G (7, Propositions 1-5) ; if B = H • U, then it follows readily, 
using the structure theory of (6), that B* = H* • U* is a Borel subgroup of G* 
with maximal torus H* and maximal connected unipotent group Z7*, all 
defined over K (in fact, i£-split). 

Proof of the Lemma. Suppose that 5 is a solvable subgroup of G including 
B ; then its closure in G is also solvable. Thus, if B is not maximal solvable, 
it lies in a larger closed solvable subgroup 5, and S* D 5* with S* solvable. 
Since Borel groups are maximal solvable (6, 9-05) we conclude that S* = B*, 
S = (S*)K = (B*)K = B. This shows that B, and hence also Ba, is maximal 
solvable; in particular, Ba is closed in G. For the remainder of the proof we 
distinguish two cases. 

(a) K has prime characteristic p. In this case, U is precisely the set of 
^-elements in B (elements of order a power of p) since U* is unipotent and 
H* is a torus. Thus, Ua is precisely the set of ^-elements in B°'. However, the 
closure of Ua, which lies in the closed group Ba, evidently consists of ^-elements, 
and therefore Ua is already closed. 

Consider the standard decomposition U = irXr, r ranging over the m 
positive roots, where m = dim U = dim [7* (8, § 2). Let wr and w in N(H) 
represent the symmetry with respect to r and the element of the Weyl group 
which interchanges positive and negative roots, respectively. If r is a simple 
root, then XT = U C\ wrwUw~lwT~l. This implies that (Xr)

a is the intersection 
of two closed groups, hence is closed. Since each root is conjugate under the 
Weyl group to a simple root, we conclude that all (Xr)

a are closed. Evidently, 
dim(Xr)

ff ^ 1; this implies that dim Ua ^ m, the product being semidirect. 
Now the identity component of (£/*)* is a connected unipotent group of 

dimension at least m. Since U* is a maximal connected unipotent group, and 
all such groups are conjugate, this forces dim Ua = m. Moreover, the identity 
component of (Uff)* is the unipotent radical of a Borel group of G* (namely, 
its normalizer in G*), whence we see that (U*)* is already connected. 

We next consider the dimension of Hff. Let / = dim H = dim H* be the 
rank of G*. Since H* is a maximal torus and H is dense in H*, H must contain 
a regular semisimple element x of G*; then H* = ZG*(x), whence H = ZG(x) 
and Ha = ZG(xa). In particular, H° is closed. Now choose a large enough 
power q of p so that uQ = 1 for all unipotent matrices u in GL(w, 0). In G* 
the criterion for an element of H* to be regular is that each simple root have 
value there different from 1 ; this implies at once that xq is again regular. Write 
xa = 5 • u as a product of commuting semisimple and unipotent elements 
inG* (s and u need not be in G). Then (xQY = sQandH = ZG(xq),H° = ZG(y), 
where y = (xqY = sq is a semisimple element of H*. Now the identity com
ponent Z of ZG*(y) is connected and defined over K (2, § 2.15d), and of 
maximal rank in G*; thus, Z includes a maximal torus T' of G* defined over 
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K (2, § 2.14a). By (2, § 2.14c), the group of i r rat ional points T = (T')K is 
dense in T', i.e., T* = T'. However, T lies in ZQ(y) = Ha; thus, dim H* ^ /. 

Since the product Ba = Hff • £7°" is semidirect, we conclude that (B*)* 
has dimension at least I - m = dim 5* ; it follows easily that (B*)* is a Borel 
group, defined over K. According to (2, § 4.13), B* is conjugate to (Ba)* by 
an element of (G*)K

 = G. I t is clear that U* is taken to the unipotent radical 
(Ua)* of (Bff)*; thus finally, U is conjugate to Ua in G, as required. 

This completes the proof in case (a). 

(b) K has characteristic 0. As before, let I = dim H = dim H*. We will use 
some standard facts about Cartan subgroups valid for arbitrary fields of 
characteristic 0 (4, vol. I l l , chapitre VI; 1, § 20). In the first place, H* is a 
Cartan subgroup of G* (6, 12-09, Theorem 2) ; therefore, H is a Cartan sub
group of G (4, vol. I l l , p. 224, Proposition 22). Since the definition of Cartan 
subgroup is purely group-theoretic, H* is also a Cartan subgroup. Now it 
follows that Ha is closed, connected, of dimension I; and that (Hff)* is a 
maximal torus of G*. In particular, Ha consists of semisimple elements. 

Since Ha is connected, it lies in the identity component of B°. From the 
standard structural properties of G, notably the generation of G' by copies of 
PSL(2, K) (cf. 5, p. 47, Lemma 1), we find at once that B has no normal 
subgroup of finite index including H except itself (thus, Bff has a similar 
property and must already be connected), and that U is precisely the derived 
group of B (thus, Ua is the derived group of B°). Now Ba is closed, connected, 
and solvable; therefore, it lies in a Borel group, and its derived group £7°" lies 
in the unipotent radical of that Borel group. Since (77e7)* is a torus, it is clear 
that Ua contains all the unipotent elements of Ba: recall that in characteristic 
0. G contains the semisimple and unipotent parts of its elements (4, vol. II, 
p. 184, théorème 18). The closure of U" consists of unipotents (1, §6.3), 
therefore, Ua must be closed. 

As in part (a), we can now argue that each (XTY is closed and then, that 
dim L7<T = m. This makes (£/*)* a maximal connected unipotent group (every 
unipotent group is connected in characteristic 0), defined over K. From 
(2, § 8.2) it follows that this group is i^-conjugate to [/*, and finally Ua is 
conjugate to U in G. 

Remark. The automorphism a was merely assumed to be an automorphism 
of G as an abstract group. Steinberg's remark (8, p. 614) that the Lemma is 
proved for algebraically closed K in (6) is therefore misleading, since the 
1 'automorphisms" discussed there are always required to be birational. 
However, it is quite easy to give a direct proof of the Lemma when K is 
algebraically closed, bypassing our complicated arguments above. 
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