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Coleman integration for even-degree models of hyperelliptic curves

Jennifer S. Balakrishnan

Abstract

The Coleman integral is a p-adic line integral that encapsulates various quantities of number
theoretic interest. Building on the work of Harrison [J. Symbolic Comput. 47 (2012) no. 1, 89–
101], we extend the Coleman integration algorithms in Balakrishnan et al. [Algorithmic number
theory, Lecture Notes in Computer Science 6197 (Springer, 2010) 16–31] and Balakrishnan
[ANTS-X: Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book
Series 1 (Mathematical Sciences Publishers, 2013) 41–61] to even-degree models of hyperelliptic
curves. We illustrate our methods with numerical examples computed in Sage.

1. Introduction

The use of p-adic integration to study rational points on curves was initiated in the 1980s
by Coleman [5, 7, 8]. This theory relies on locally defined antiderivatives that are extended
analytically by the principle of Frobenius equivariance. Coleman used these techniques to re-
interpret the method of Chabauty [4], giving an explicit bound on the number of rational points
on curves in certain cases [6]. In the spirit of this work, together with Besser and Müller [2], we
gave a ‘quadratic’ Chabauty method, using p-adic heights re-interpreted as double Coleman
integrals to find integral points on hyperelliptic curves with odd-degree models.

All of this relies on explicitly computing various Coleman integrals. In joint work with
Bradshaw and Kedlaya [3], we gave explicit methods to compute single Coleman integrals
for hyperelliptic curves with odd-degree models. The key theoretical input was Kedlaya’s
algorithm [12] to compute the action of Frobenius on Monsky–Washnitzer cohomology,
formulated for odd-degree models of hyperelliptic curves. In a similar vein, we also gave
algorithms to compute iterated Coleman integrals on hyperelliptic curves with odd-degree
models [1] and used these algorithms to carry out the quadratic Chabauty method on
hyperelliptic curves with odd-degree models [2].

Recently, Harrison [11] extended Kedlaya’s algorithm to even-degree models. Thus, in the
current paper, building on Harrison’s work, we extend the Coleman integration algorithms
in [3] and [1] to even-degree models of hyperelliptic curves over unramified extensions of Qp
and discuss what would be needed to carry out quadratic Chabauty for even-degree models.

The main difference between our approach to odd- and even-degree models lies in the
dimension of the space of cohomology we compute with, and how the dimension of this
space relates to the dimension of the Tate module of the Jacobian of the hyperelliptic curve.
In the odd-degree case, the two dimensions coincide. In the even-degree case, they do not.
Nevertheless, in the even-degree case, the eigenvalues of Frobenius on the relevant cohomology
are easily computable, and one can set up a linear system, as in the odd-degree case, to recover
the global p-adic integrals.
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The structure of the paper is as follows: in § 2, we outline a few essential results of
Harrison [11] concerning the relevant background in p-adic cohomology. We use these results
to give our Coleman integration algorithms in § 3. In § 4, we present some numerical examples,
computed using our implementation in Sage [13].

2. Some p-adic cohomology

We begin by setting some notation. Let p be an odd prime, let k = Fq be the finite field of
q = pm elements, and let W (k) be the ring of integers of K, the unique unramified degree-m
extension of the local field Qp. Let f(x) be a polynomial of degree 2g + 2 with coefficients
in W (k) and distinct roots modulo p. The projective normalization C of the affine curve
C : y2 = f(x) is a smooth hyperelliptic curve of genus g with two points at infinity, ∞+ and
∞−. We assume that C has good reduction at p. When necessary, we shall assume that p > g.

Let C ′ be the affine curve obtained by taking C and deleting the Weierstrass points, which
are now just the support of the divisor of y. Let C,C ′, and C denote the reductions of C,C ′,
and C, respectively. Let A = W (k)[x, y, z]/(y2 − f(x), yz − 1) denote the coordinate ring
of C ′. We briefly recall some essential p-adic cohomology from [11, 12].

Let A† denote the Monsky–Washnitzer weak completion of A; it is the ring consisting of
infinite sums of the form

∞∑
i=−∞

Si(x)

yi
, Si(x) =

2g+1∑
j=0

ajx
j ∈W (k)[x],

subject to the conditions that lim infi→∞ vp(Si)/i > 0 and lim infi→∞ vp(S−i)/i > 0, where
vp(Si(x)) = mini{vp(ai)}; when necessary, one uses the relation y2 = f(x) to convert terms
with large powers of x into terms with y2.

Note that by having deleted the support of y, elements of A† do not have poles in the space
over which we integrate. Since even 1-forms can be integrated directly in terms of x, we focus
our attention on odd 1-forms, those negated by the hyperelliptic involution, which we write as

ω = G(x, y)
dx

2y
, G(x, y) ∈ A†.

Any such differential can be written as

ω = dh+ c0ω0 + . . .+ c2gω2g, (2.1)

with h ∈ A†, ci ∈ K, and

ωi = xi
dx

2y
(i = 0, . . . , 2g). (2.2)

Namely, Harrison has proved the following result.

Lemma 2.1. The set {ωi} for i = 0, . . . , 2g forms a basis of the odd part of the de Rham
cohomology of A†.

Proof. See [11, § 3.2].

We can lift the p-power Frobenius to an endomorphism φ of A† by defining it as the canonical
Witt vector Frobenius φk on W (k), then extending it to W (k)[x] by sending x to xp and

φ(y) = yp
(

1 +
φ(f(x))− f(x)p

f(x)p

)1/2

= yp
∞∑
i=0

(
1/2

i

)
(φ(f(x))− f(x)p)i

y2pi
,
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and using the relations

y2 = f(x),

d(xiyj) = (2ixi−1yj+1 + jxif ′(x)yj−1)
dx

2y

to reduce large powers of x and large (in absolute value) powers of y. By functoriality, φ
induces a K-linear automorphism φ∗ on cohomology. Finally, we compute q-power Frobenius
by computing the mth power of p-power Frobenius φ (see Remark 1).

When C is given by an odd model, the corresponding cohomology has basis {xi (dx/2y)}2g−1i=0 .
By computing the action of Frobenius on each of the 2g basis differentials and reducing
using the relations above, one knows the action of Frobenius on the entire space. This
reduction process was first described by Kedlaya [12] and is now known as Kedlaya’s algorithm.
Harrison [11] showed that the reduction works in essentially the same way when C is given by
an even model: one computes the action of Frobenius on each of the 2g+ 1 differentials above
and applies the same reduction steps to one extra differential.

To compute Coleman integrals, we must now understand how the eigenvalues of q-power
Frobenius change when one introduces this extra differential. To look at this more precisely,
let PC(t) denote the numerator of the zeta function of C, with PC(t) = t2g+c2g−1t

2g−1+. . .+c0,

a monic polynomial over Z. Denote its roots by (αi)
2g
i=1; recall that |αi| = q1/2. By applying

the Lefschetz fixed point formula to C ′ and its image Pa (where Pa = P1
k\S, with S the set

of finite places corresponding to the irreducible factors of f(x) ∈ k[x] and infinity), Harrison
obtained the following result.

Proposition 2.2 (Harrison [11], § 3.1). The eigenvalues of q-power Frobenius on H1
−, the

odd part of the de Rham cohomology of A†, are

{α1, . . . , α2g, q}.

Stated in another way, let M denote the matrix of q-power Frobenius with respect to
the basis of H1

− given by elements of the form (2.2). The characteristic polynomial P (t) of the
action of q-power Frobenius on the odd part of the de Rham cohomology of A† is

P (t) = (t− q)PC(t).

In particular, none of the eigenvalues of M are equal to 1 and M − I is invertible over K.
Note that we compute M from an expression involving the matrix of p-power Frobenius,

which we will denote by B; see Remark 1 and (3.3) for the computation producing M from
B. When p is small relative to the genus of the curve g (in particular, when p 6 g), then B
is not necessarily p-adically integral, that is, the integral lattice generated by the basis is
not necessarily stable under Frobenius. This is undesirable because repeated multiplications
involving a non-integral B (in particular, the computation in Remark 1) could result in
problems with p-adic precision. To this end, we recall that Harrison also proved a lemma on
integrality of the matrix of Frobenius B: namely, if p > g, the matrix B of the action of p-power
Frobenius with respect to the basis in Lemma 2.1 is p-adically integral. Consequently, so is the
matrix of q-power Frobenius M . Thus, for computational purposes, we will assume that p > g.

We will use the above in § 3 to compute a linear system involving the Frobenius action on
these differentials as in [3] and recover Coleman integrals.

3. Coleman integration on even-degree models

We now give algorithms to compute Coleman integrals on even-degree models of hyperelliptic
curves. As in the odd-model case, local coordinates allow us to compute Coleman integrals
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between two points in the same residue disk. In particular, we will distinguish between finite
non-Weierstrass and Weierstrass residue disks. A point P = (a, b) ∈ C(K) is in a finite non-
Weierstrass disk if a ∈ W (k) and b ∈ W (k)×; a point P = (a, b) ∈ C(K) is in a Weierstrass
disk if a ∈W (k) and b ∈W (k)\W (k)×.

3.1. Local coordinates

Algorithm 1 (Local coordinate at a point in a finite non-Weierstrass disk).
Input: A point P = (a, b) ∈ C(K) in a finite non-Weierstrass disk and precision n.
Output: A parametrization (x(t), y(t)) at P in terms of a local coordinate.

(i) Let x(t) = t+ a, where t is a local coordinate.
(ii) Solve for y(t) =

√
f(x(t)) by Newton’s method: take y0(t) = b, then set

yi(t) =
1

2

(
yi−1(t) +

f(x(t))

yi−1(t)

)
, i > 1

with yi(t)→ y(t). The number of iterates i to be taken depends on the necessary power
series precision; for precision O(tn), one can take i to be dlog2 ne.

Algorithm 2 (Local coordinate at a point in a Weierstrass disk).
Input: A point P = (a, b) in C(K) in a Weierstrass disk and precision n.
Output: A parametrization (x(t), y(t)) at P in terms of a local coordinate.

(i) Let y(t) = t+ b, where t is a local coordinate.
(ii) Iteratively solve for x(t) as follows: take x0(t) = a; then Newton’s method yields

xi(t) = xi−1(t)− f(xi−1(t))− y(t)2

f ′(xi−1(t))
, i > 1

with xi(t)→ x(t). The number of iterates i to be taken depends on the necessary power
series precision; for precision O(tn), one can take i to be dlog2 ne.

3.2. Integrals

We use the local coordinates above to compute ‘tiny’ Coleman integrals, those integrals between
points in the same residue disk. Note that when one of the end points of integration is above
infinity, one can change coordinates to work with finite non-Weierstrass points.

Algorithm 3 (Tiny Coleman integrals).
Input: Points P,Q ∈ C(Cp) in the same residue disk (neither equal to ∞+,∞−) and a basis
differential ωi.
Output: The integral

∫Q
P
ωi.

(i) Using Algorithm 1 or 2, compute a parametrization (x(t), y(t)) at P in terms of a local
coordinate t.

(ii) Formally integrate the power series in t:∫Q
P

ωi =

∫Q
P

xi
dx

2y
=

∫ t(Q)

0

x(t)i

2y(t)

dx(t)

dt
dt.

Now we consider the case when the points P,Q ∈ C(Cp) are in different residue disks. As
noted earlier, an odd differential ω on C can be represented as a linear combination

ω = dh+ c0ω0 + . . .+ c2gω2g.

The computation of
∫Q
P
ω thus can be reduced to the computation of Coleman integrals on

(ωi)
2g
i=0, and we have the following algorithms.
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Algorithm 4 (Coleman integration between finite non-Weierstrass disks).
Input: The differentials (ωi)

2g
i=0, points P,Q ∈ C(Cp) in finite non-Weierstrass residue disks,

and a positive integer m such that the residue fields of P,Q are contained in Fpm .

Output: The integrals (
∫Q
P
ωi)

2g
i=0.

(i) Calculate the action of the mth power of p-power Frobenius φ on each basis element (see
Remark 1 below):

(φm)∗ωi = dhi +

2g∑
j=0

M t
ijωj . (3.1)

(ii) By change of variables (see Remark 2), we obtain

2g∑
j=0

(M t − I)ij

∫Q
P

ωj = hi(P )− hi(Q)−
∫φm(P )

P

ωi −
∫Q
φm(Q)

ωi (3.2)

(the fundamental linear system). As the eigenvalues of the matrix M are algebraic
integers of norm not equal to 1 (see Proposition 2.2), the matrix M t − I is invertible,

and we may solve (3.2) to obtain the integrals
∫Q
P
ωi.

Remark 1. To compute the action of φm, we carry out the following strategy. Let B be the
matrix of p-power Frobenius φ with respect to the standard basis {ωi}, so that

φ∗ωi = dgi +

2g∑
j=0

Btijωj ,

where Bt denotes the transpose of B. We compute the action of φm by iteratively computing
the action of φ, using the vector of functions g = (gi) and the matrix B above to write

(φm)∗ωi = dhi +

2g∑
j=0

M t
ijωj ,

where

h = φm−1(g) +

m−1∑
i=1

φm−1k (Bt) . . . φik(Bt)φi−1(g),

M t = φm−1k (Bt) . . . φk(Bt)Bt.

(3.3)

Remark 2. We obtain (3.2) as follows. By change of variables,∫φm(Q)

φm(P )

ωi =

∫Q
P

(φm)∗ωi

=

∫Q
P

(
dhi +

2g∑
j=0

M t
ijωj

)

= hi(Q)− hi(P ) +

2g∑
j=0

M t
ij

∫Q
P

ωj .

Adding
∫φm(P )

P
ωi +

∫Q
φm(Q)

ωi to both sides of this equation yields∫Q
P

ωi =

∫φm(P )

P

ωi +

∫Q
φm(Q)

ωi + hi(Q)− hi(P ) +

2g∑
j=0

M t
ij

∫Q
P

ωj ,

which is equivalent to (3.2).
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In Algorithm 4, note that the function hi belongs to A† and need not converge at a
Weierstrass point P . It is for this reason that Algorithm 4 cannot be directly applied to
the situation where P or Q is a Weierstrass point.

So, let us suppose that P is a Weierstrass point. Here is how we adapt Algorithm 4. Note that
hi converges at any point R near the boundary of the residue disk containing P : in particular,
Algorithm 4 can be applied using R as one of the end points. So, we first find an auxiliary
point R near the boundary of the disk of P . Next, to compute the integral between P and
any other finite non-Weierstrass point Q, we use a tiny integral (between P and R) and the
fundamental linear system in Algorithm 4 (between R and Q) to recover the desired integral:∫Q
P
ωi =

∫R
P
ωi +

∫Q
R
ωi.

Thus, to compute integrals in a Weierstrass disk, we first compute an auxiliary point.

Algorithm 5 (Finding a near-boundary point in a Weierstrass disk).
Input: A Weierstrass point P and a positive integer d.
Output: A point R = (x(p1/d), y(p1/d)) in the disk of P , near the boundary of the disk.

(i) Using Algorithm 2, compute a parametrization (x(t), y(t)) at P in terms of the local
coordinate t.

(ii) Evaluate the parametrization at t = p1/d. This is R.

Algorithm 6 (Coleman integration between a Weierstrass disk and a finite non-Weierstrass
disk).
Input: A point P in a Weierstrass disk, a positive integer d, a point Q in a finite non-
Weierstrass disk, and a basis differential ωi.

Output: The integral
∫Q
P
ωi.

(i) Use Algorithm 5 to find R.

(ii) Compute
∫R
P
ωi as a tiny integral.

(iii) Use the fundamental linear system in Algorithm 4 to compute
∫Q
R
ωi.

(iv) Use additivity in end points to recover
∫Q
P
ωi =

∫R
P
ωi +

∫Q
R
ωi.

Remark 3. In practice, we choose d in Algorithms 5 and 6 by starting with an initial guess
based on p, g, and precision n. If the resulting value of the integral produced by Algorithm 6
is not in K (up to O(pn)) but is rather in K(p1/d), the value of d is subsequently increased
and the computation of the integral repeated until one sees the value of the integral converge
to an element of K (up to O(pn)).

One can see, then, that the algorithms for single Coleman integrals do not depend on the
model of the hyperelliptic curve in an essential way. Indeed, the algorithms for odd- and
even-degree models are essentially the same.

With this observation in hand, we now state the generalization of our method to iterated
integrals on hyperelliptic curves of even-degree model and refer the interested reader to [1] for
the details in the odd-model case, which carry over directly to the even-model case.

An iterated Coleman integral ∫Q
P

ξn . . . ξ1

of 1-forms ξ1, . . . , ξn formally behaves like an iterated path integral∫1
0

∫ t1
0

. . .

∫ tn−1

0

fn(tn) . . . f1(t1) dtn . . . dt1.

Within a single residue disk, we may use a local coordinate to parametrize the path between
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points and iteratively integrate. Between two different residue disks, we think of the integral∫Q
P

ξ1ξ2 . . . ξn−1ξn :=

∫Q
P

ξ1(R1)

∫R1

P

ξ2(R2) . . .

∫Rn−2

P

ξn−1(Rn−1)

∫Rn−1

P

ξn,

using a collection of dummy parameters R1, . . . , Rn−1 and repeatedly compute the action of
Frobenius on differentials to yield a linear system giving the values of integrals between points
in different residue disks. Thus, for C/K a hyperelliptic curve given by an even-degree model,
we also have the following result.

Theorem 3.1. Let P,Q ∈ C(Cp) be finite non-Weierstrass points such that the residue
fields of P,Q are contained in Fpm . Let M be the matrix of the action of the mth power of
p-power Frobenius on the basis differentials ω0, . . . , ω2g. For constants ci0,...,in−1

computable
in terms of (n− 1)-fold iterated integrals and n-fold tiny iterated integrals, the n-fold iterated
Coleman integrals on basis differentials between P,Q can be computed via a linear system of
the form 

...∫Q
P
ωi0 . . . ωin−1

...

 = (I(2g+1)n×(2g+1)n − (M t)⊗n)−1


...

ci0...in−1

...

 .

For details turning this theorem into an algorithm in the odd-degree case, see [1, §§ 4–7].
The only differences between the odd- and the even-degree cases are in the dimensions of the
tensor powers of the relevant matrix of Frobenius.

4. Applications

4.1. Computing single integrals and carrying out the Chabauty method

Consider the genus-2 curve X given by y2 = (x2 + 1)(x2 + 2)(x2 + 2x+ 2), whose Jacobian J
has rank 1, as computed by Flynn [9, Example 3.1]. The rational points X(Q) were computed
by Flynn [10, Example 3.1] by computing appropriate elements in the kernel of the reduction
map from J(Q3) to J(F3).

Here we take another approach, constructing an annihilating differential ω on the curve
by computing Coleman integrals between different residue disks. Consider P = (0, 2) and
ι(P ) = (0,−2), its image under the hyperelliptic involution ι. Then we have

a :=

∫ ι(P )

P

ω0 = 2 · 32 + 2 · 33 + 35 +O(38),

b :=

∫ ι(P )

P

ω1 = 2 · 32 + 2 · 33 + 2 · 34 + 2 · 36 +O(38),

and thus the integral of

ω := bω0 − aω1

computed from the base point P can be used to find the other rational points on X. In
particular, X has the following rational points:

{(0, ±2), (− 1
2 , ±

15
8 ),∞+,∞−}.
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4.2. Quadratic Chabauty for even-degree models of hyperelliptic curves

By Theorem 3.1, we can compute double integrals on even-degree models of hyperelliptic
curves, which is a crucial step in carrying out quadratic Chabauty for even-degree models
of hyperelliptic curves. Nevertheless, one must also explicitly compute the local component of
the p-adic height pairing above p for even-degree models of hyperelliptic curves. We plan to
address this in future work with Besser and Müller.
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