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Abstract

We derive an explicit formula for the N-point correlation FN (s) of the van der Corput sequence in base
2 for all N ∈ N and s ≥ 0. The formula can be evaluated without explicit knowledge about the elements
of the van der Corput sequence. This constitutes the first example of an exact closed-form expression of
FN (s) for all N ∈ N and all s ≥ 0 which does not require explicit knowledge about the involved sequence.
Moreover, it can be immediately read off that limN→∞ FN (s) exists only for 0 ≤ s ≤ 1/2.
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1. Introduction

For a sequence (xn)n∈N of elements in [0, 1], a natural number N ∈ N and s ∈ R+0 , we
define

FN(s) :=
1
N

#
{
1 ≤ k � l ≤ N : ‖xk − xl‖ ≤

s
N

}
, (1.1)

where ‖·‖ is the distance of a number from its nearest integer. It measures the
behaviour of gaps between the first N elements of (xn)n∈N on a local scale. A
sequence (xn)n∈N is said to have Poissonian pair correlations (see, for example, [2,
14]) if F(s) := limN→∞ FN(s) = 2s for all s ≥ 0. As (1.1) corresponds to the N-point
correlation in [6, 7] (with the f in the definition therein being chosen as the indicator
function), we also call FN(s) the N-point correlation of (xn)n∈N. To distinguish it from
FN(s), we call F(s) the limiting pair correlation function.

A generic uniformly distributed random sequence in [0, 1] drawn from the uniform
distribution has Poissonian pair correlations (see [8] for a proof). Nonetheless, there
are few explicitly known such examples (see [2] and more recent examples in [5, 7]).
One of the reasons why such examples are difficult to find is that it is, in general,
hard to completely describe the gap structure of a finite sequence, that is, the lengths
and combinatorics of gaps between neighbouring points (see [12]). Although research
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has mainly focused on the generic (Poissonian) case, the nongeneric case has also
attracted more attention in recent times. In [9], it is shown that the limiting gap
distribution of ({log(n)})n∈N, where {·} denotes the fractional part of a number, has an
explicit distribution which is not a Poissonian distribution but close to an exponential
distribution. In [13], the limiting pair correlation function of ({log(2n − 1)/log(2)})n∈N
is explicitly calculated by exploiting the simple gap structure of this sequence. Another
result in [4] describes the limiting pair correlation function of orbits of a point
in hyperbolic space under the action of a discrete subgroup. Finally, in [11], the
nongeneric pair correlation statistic of the sequence (nα)n∈N is studied for 0 < α < 1.

In this note, we add to the growing body of literature by calculating for all N ∈ N
and s ≥ 0 the N-point correlation FN(s) of the van der Corput sequence in base 2. The
van der Corput sequence is a classical example of a low-discrepancy sequence and
thus, in particular, a uniformly distributed sequence. Because of their importance in
uniform distribution theory, their intuitive geometry and their generalisations to higher
dimensions, van der Corput sequences are widely discussed in the literature (see [1, 3,
10, 14]).

Recall that for an integer b ≥ 2, the b-ary representation of n ∈ N is n =
∑∞

j=0 ejbj

with 0 ≤ ej = ej(n) < b. The radical-inverse function is defined by gb(n) =
∑∞

j=0 ejb−j−1

for all n ∈ N and the van der Corput sequence in base b is given by xi := gb(i − 1) for
i ≥ 2. For convenience, we add x1 = 0 as the first element of a van der Corput sequence
because it simplifies the presentation of results in our context.

THEOREM 1.1. Let N ∈ N and s ≥ 0. Let the 2-ary representation of N be N =
∑M

j=0 ej2j

with the coefficients e0, e1, . . . , eM ∈ {0, 1}. Then for the van der Corput sequence
(xn)n∈N in base b = 2 we have

FN(s) =
1
N

M∑
k=0

ek

(⌊ s
N

2k
⌋
+

N∑
l=k+1

el · 2 ·
⌈1
2

⌊ s
N

2l+1
⌋⌉)

2k+1. (1.2)

To the best of our knowledge, this constitutes the first example of an exact
closed-form expression of FN(s) for all N ∈ N and all s ≥ 0, where the right-hand side
does not rely on explicit knowledge of the involved sequence. Moreover, the expression
on the right-hand side is surprisingly simple. The formula is superior in terms of
running time because the time needed to evaluate the N-point correlation from the
definition grows quadratically in N, while the running time to compute the right-hand
side of (1.2) only grows logarithmically. For example, it would be almost infeasible to
calculate the N-point correlation for a given s > 0 and N = 109 on a standard computer
via (1.1), while the evaluation of (1.2) takes less than a second.

The main step in proving Theorem 1.1 is to decompose the set{
1 ≤ k � l ≤ N : ‖xk − xl‖ ≤

s
N

}

into several subsets, where the indices of the elements of (xn)n∈N depend on powers of
2 instead of N. This idea goes back to [14], where the weak limiting pair correlation
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function of van der Corput sequences was calculated. In principle, our proof technique
could be applied to van der Corput sequences in arbitrary base but the expression on
the right-hand side of (1.2) would be much longer and more complex. Therefore, we
decided here to restrict to the case where a short formula can be given. The reason
why this can only be done in base b = 2 is that there are only at most two different
gap lengths for all N ∈ N, while there are up to three different gap lengths for all bases
b ≥ 3.

Our formula has the following application.

COROLLARY 1.2. The limit limN→∞ FN(s) exists if and only if 0 ≤ s ≤ 1
2 . In this case,

F(s) = 0.

2. Proof of results

We prove our main result for the van der Corput sequence in base b = 2 by applying
the same decomposition of (1.1) into subsets as in [14].

PROOF OF THEOREM 1.1. Let us write the N-point correlation as

N · FN(s) = #
{
‖xi − xj‖ ≤

s
N

: 1 ≤ i � j ≤ 2M
}

︸������������������������������������︷︷������������������������������������︸
=:A(s,M,N)

+ 2#
{
‖xi − xj‖ ≤

s
N

: 1 ≤ i ≤ 2M , 2M + 1 ≤ j ≤ N
}

︸������������������������������������������������������︷︷������������������������������������������������������︸
=:B(s,M,N)

+ #
{
‖xi − xj‖ ≤

s
N

: 2M + 1 ≤ i � j ≤ N
}
.

︸�������������������������������������������︷︷�������������������������������������������︸
=:C(s,M,N)

Since the set A(s, M, N) consists of all points xi which are numbers of the form k/2M

with 0 ≤ k < 2M , its magnitude can be calculated immediately as

#A(s, M, N) =
⌊ s
N

2M
⌋
· 2M · 2 =: a(s, M, N).

In the definition of the set B(s, M, N), the xi are again of the form k/2M with
0 ≤ k ≤ 2M , while the xj all have the form l/2M+1 with odd l such that 1 ≤ l < 2M+1

by the definition of van der Corput sequences. Hence, it follows that

#B(s, M, N) =
⌈1
2

⌊ s
N

2M+1
⌋⌉
· (N − 2M) · 2 =: b(s, M, N).

Thus, it only remains to calculate C(s, M, N). To do that, we first see that (xj)N
j=2M+1

is the van der Corput sequence (xj)N−2M+1
j=1 translated to the right by 2−(M+1). Note

that ‖xi − xj‖ is invariant under simultaneous translation of xi and xj. If we treat the

https://doi.org/10.1017/S000497272300093X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272300093X


474 C. Weiß [4]

simpler situation N = 2M + 2k with k < M, then we can proceed inductively and apply
the formula for A(s, M, N) which yields

#C(s, M, N) =
⌊ s
N

2k
⌋
· 2k · 2,

because the set of type B is empty here. In the general case,

C(s, M, N) =
∑

ek ·
(
a(s, k, N) + 2 · b

(
s, k, N −

M∑
l=k+1

el2l
))

,

where the factor 2 appears because sets of type B are counted twice. Substituting the
corresponding expressions for A(·) and B(·) yields a sum of the form

N∑
k=1

ek

(⌊ s
M

2k
⌋
2k+1 + 4

⌈1
2

⌊ s
M

2k+1
⌋⌉ k−1∑

l=1

el2l
)
.

Collecting powers of 2 yields the formula on the right-hand side of (1.2). �

Having (1.2) at hand, it is not hard to calculate the limiting behaviour of FN(s).

PROOF OF COROLLARY 1.2. For 2M ≤ N < 2M+1, the 2-ary representation of N ∈ N
is of the form N = 2M +

∑M
k=1 ek2k. Thus,⌊ s

N
2N+1
⌋
= 0

for 0 ≤ s ≤ 1
2 and the limit is FN(s) = 0 by Theorem 1.1. Now let s ∈ [l, l + 1)

for some l ∈ N0. Then, we have FN(s) = 2l for N = 2M , again by Theorem 1.1. If
s ∈ (1/2 + l, 1/2 + l + 1] for some l ∈ N0, we choose N big enough such that

2M+1

2M + 1
· s > 2.

Then FN(s) ≥ 2M+1/(2M + 1) for all N = 2M+k + 2k with k ∈ N. Thus, FN(s) cannot
converge for s > 1

2 . �
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