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As shown by Wenzel et al. (J. Fluid Mech., vol. 930, 2022, A1), the Eckert number
Ec defined using the difference between recovery temperature T̄r and wall temperature
T̄w can be understood as a meaningful quantity to compare heat-transfer effects inside
compressible turbulent boundary layers (for a calorically perfect gas), no matter whether
these are caused by different Mach-number or wall-temperature conditions. While the
named study deduced this comparative behaviour of Ec from an integral perspective in
a strict sense, Cogo et al. (J. Fluid Mech., vol. 974, 2023, A10) performed a systematic
parameter study based on the previous findings to look at wall-normal profiles. They have
shown that the diabatic parameter Θ , being equivalent to Ec, is capable of categorizing
heat-transfer effects for cases at different Mach numbers, even to some extent for some
of the wall-normal profiles. Building on this progress, the present paper provides a
comprehensive classification of both existing and newly computed super- and hypersonic
direct numerical simulation data at various wall temperature conditions into heated cases,
adiabatic cases or weakly/moderately/strongly/quasi-incompressibly cooled cases. Hereby,
the classification is largely based on the wall-normal position of the temperature peak
occurring in cooled boundary-layer cases, which is one of the determining factors for the
topological characteristics of diabatic boundary-layer profiles. Integrating high-enthalpy
data into the analysis allowed us to confirm the reliability of the proposed classification
also in more complex scenarios, where the calorically perfect gas assumption no longer
applies and additional heat-transfer mechanisms come into play. While the Eckert number
is shown to well characterize heat-transfer effects on most important temperature-related
quantities for a wide range of Mach numbers and T̄w/T̄r conditions, also the local Reynolds
number Reτ is shown to notably affect the strength of heat-transfer effects. Since both
Ec and Reτ can be determined in advance – or estimated to a reasonable extent – a key
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advantage of the classification scheme is to allow for an effective a priori estimation of the
extent to which heat-transfer effects are to be expected for a given compressible turbulent
boundary-layer configuration.

Key words: compressible boundary layers, supersonic flow, turbulent boundary layers

1. Introduction

A major challenge in the investigation of compressible turbulent boundary layers (TBLs)
lies in the larger number of relevant variables compared with incompressible TBLs. In
addition to this extended parameter space, the complex interaction between different
physical mechanisms makes the analysis and design of both experiments and simulations a
challenging task. In particular, heat transfer inside the boundary layer affects the governing
terms of the energy equation, resulting in significant influences on the wall-normal
distributions of the most important terms of the governing equations. In the context of
cooled walls, for instance, the turbulent heat flux ρ̄h̃′′v′′ becomes negative near the wall as
a result of the positive temperature gradient in the near-wall region, and the turbulent

fluctuations of the temperature
√

T ′2 exhibit a tendency to form a second peak close
to the wall; here ρ̄ is mean density, and h′′ and v′′ fluctuating components of enthalpy
and wall-normal velocity. Although most basic turbulence modelling assumptions, such
as an almost constant turbulent Prandtl number Prt in the wall-normal direction, are
surprisingly insensitive to heat-transfer effects in most cases, it is well known that some
of the predictions made by the ‘original’ strong Reynolds analogy (SRA) of Morkovin
(1962) for the temperature field of ‘strongly’ cooled cases do not hold. These modelling
problems represent a large uncertainty in the prediction of boundary-layer behaviour,
especially in hypersonic flows where wall heat transfer often takes precedence over skin
friction as a design criterion. This particularly comes into play for the experimental
investigation of hypersonic boundary layers, where the T̄w/T̄r ratio is often very small due
to wall temperatures T̄w being far below the very high adiabatic (recovery) temperatures
T̄r. For general compressible TBLs, a clear assessment of how strong the heat-transfer
effects actually are is complicated because both the local Mach number – viscous heating
increases with the square of the Mach number – and the wall-temperature condition
contribute to the total heat transfer within the boundary layer. Consequently, easily
tangible quantities like the temperature ratio between the boundary-layer edge and the wall
Te/T̄w or between the wall and the adiabatic (recovery) temperature T̄w/T̄r are not fully
characterizing parameters. For instance, a temperature ratio of T̄w/T̄r = 0.5 represents
significant cooling in subsonic cases but becomes far less significant at hypersonic Mach
numbers, where viscous heating counteracts wall cooling.

1.1. Objective of the study
Significant progress has been made in the understanding of heat-transfer effects inside
compressible TBLs in recent years. This applies both to a far-reaching insight into how
severely the turbulent field of a compressible TBL can be affected by wall cooling at
all, and to an improved understanding of how comparable heat-transfer effects within
boundary layers are if cases with different Mach numbers and wall-temperature ratios
are considered. Building on this progress, the main objective of this study is to build
up a regime diagram, identifying the ranges in which heat-transfer effects cause a
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A regime diagram for heat-transfer effects

clearly pronounced and substantially different behaviour in the wall-normal profiles of
the temperature field. In order to have predictive capability, the classification scheme will
be related to the friction Reynolds number Reτ = ρ̄wuτ δ99/μ̄w, where uτ = √

τw/ρ̄w is
the friction velocity, δ99 the boundary-layer thickness, τw the wall-shear stress, ρw and μw
wall-density and wall-viscosity, and the Eckert number

Ec = u2
e

h̄r − h̄w

cp=const.= u2
e

cp(T̄r − T̄w)
= (γ − 1)M2

e Te

T̄r − T̄w
, (1.1)

which can be understood as a meaningful quantity to compare heat-transfer effects inside
compressible TBLs, no matter whether these are caused by different Mach-number or
wall-temperature conditions; hereby h̄r denotes the recovery enthalpy, for which no mean
heat transfer is present at the wall, see § 4.1.2. Here u, T and M is the velocity, temperature
and Mach number at the wall (subscript w), boundary-layer edge (subscript e) or its
recovery value (subscript r), cp is the specific heat and γ the specific heat ratio. By
including both literature and newly generated direct numerical simulation (DNS) data with
a specific sought-after behaviour, the advantages of this regime diagram are manifold:
(i) firstly, the regime diagram enables an estimate of to what extent the wall-normal
distributions of most important temperature-related variables are affected by heat-transfer
effects arising from the interplay of the Mach number, wall temperature and Reynolds
number. (ii) Secondly, as a direct consequence, the regime diagram allows a classification
within which Ec- and Re-number ranges of a compressible TBL can be considered
to be heated, adiabatic or weakly/moderately/strongly/quasi-incompressibly cooled. (iii)
Thirdly, the diagram enables an estimate of the modelling errors (e.g. from the SRA) that
can be expected for a given combination of Mach number, wall-temperature ratio and
Reynolds number. (iv) Lastly, the results help us to assess to which degree Ec can be
used as a comparative parameter for heat-transfer effects on wall-normal profiles at all.
Therefore, this study can be seen as a logical follow-up to a large number of recent studies,
bringing together different results and complementing the picture with new DNS data.

The paper is structured as follows: firstly, a thorough literature review will be given
in § 2, giving a summarizing overview of heat-transfer effects in compressible turbulent
boundary layers reported in the literature. Secondly, the newly computed DNS data are
introduced in § 3, before the regime diagram is introduced and discussed in §§ 4 and 5.
Final conclusions are given in § 6.

1.2. Terminology
Throughout this study, the Mach-number-dependent heat generated within the boundary
layer by the conversion of kinetic energy through reversible effects such as thermodynamic
work plus the irreversible dissipation is referred to as ‘viscous heating’ (aerodynamic
heating of the surface of super- and hypersonic vehicles). Besides, the heat transferred
through the wall due to the temperature difference T̄w − T̄r is referred to as ‘wall
heat transfer’ (or ‘wall-temperature effects’). Thus, the overall heat transferred within a
boundary layer is the sum of viscous heating and wall heat transfer, and is simply referred
to as ‘heat transfer’.

Reynolds (ensemble) averages are denoted by an overline f̄ , while Favre averages are
denoted by a tilde f̃ = ρf /ρ̄; both are also spanwise averaged. The fluctuating components
are denoted as f ′ = f − f̄ and f ′′ = f − f̃ for Reynolds and Favre averaging, respectively.
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Note that only quantities that actually fluctuate in time are indicated by an overline or tilde,
so for example, edge values are indicated without an overline or tilde.

2. State of the art

In compressible TBLs, the local heat transfer and the thermal quantities are the result of
the combined influence of the wall heat flux and wall-distant-dependent viscous heating

q ≈ qw + ūτw, (2.1)

where qw is the wall heat flux and τw the wall shear stress, see e.g. Gatski & Bonnet
(2013) and Bradshaw & Huang (1995). The thermal quantities within a boundary layer
are therefore determined by the balance between wall heat transfer and viscous heating.
This becomes apparent most intuitively when considering cooled flows, where the wall
heat transfer and viscous heating counteract each other; while qw acts as a sink in the
boundary layer’s enthalpy balance, viscous heating acts as a source. As a consequence,
the temperature profile exhibits a peak (∂T̃/∂y = 0) approximately at the wall-normal
position where ūτw equals qw < 0 (for cooling), or in other words, where the averaged
streamwise velocity ū = −qw/τw. The consequences of this temperature peak are far
reaching, as the change of sign in the temperature gradient largely affects the general
topology of thermal quantities inside the compressible TBL. For example, the root

mean square of the temperature fluctuations
√

T ′2 becomes minimal in the region of
the temperature maximum, and T ′ loses the known correlation with u′ for adiabatic
conditions. Remarkably, the presence of a temperature peak has no major consequences
for the topology of the velocity field, which follows the same principles as known for
incompressible cases with a constant stress layer forming near the wall. The resulting
conclusion that density essentially affects the velocity field only passively has led to
several outcomes, such as the velocity transformation, the semi-local scaling (which
compensates for non-constant fluid properties in the wall-normal direction) and can be
seen as the motivation for Morkovin’s hypothesis. In contrast to adiabatic and heated
cases, however, the ‘inversed’ correlation between u′ and T ′ below the arising temperature
peak makes the prediction of the temperature field notably more difficult for cooled cases,
which has led to increased efforts in the past to improve its prediction by reformulating
fundamental concepts like the SRA (see e.g. Gaviglio 1987; Huang, Coleman & Bradshaw
1995). In particular, the latest variant proposed by Zhang et al. (2014) has proven to be
effective in predicting the diabatic temperature field by utilizing a generalized recovery
enthalpy as a reference to the problem. Aside from using the similarity between the
momentum and energy equations, which leads directly to a velocity–temperature relation
of the form T = f (u), Patel, Boersma & Pecnik (2017) and Chen et al. (2022) derived
a temperature transformation using turbulent-viscosity models with the turbulent Prandtl
number; this temperature transformation can be seen as an analogue to the well-known
velocity transformation (see also Huang et al. 2023).

2.1. Categorization of heat-transfer effects
How intensely can a compressible TBL feel a given wall temperature? To answer this
question, the mechanisms of wall heat transfer and viscous heating have to be weighted
against each other. In the dimensionless total energy equation (enthalpy formulation)

ρ̄ũ
∂ h̃0

∂x
+ ρ̄ṽ

∂ h̃0

∂y
= Ec

Re

[
∂

∂y

(
τ̄xyū + τ̄yyv̄

)] + Ec
Re

[
∂

∂y

(
τ ′

xyu′ + τ ′
yyv

′ + τ ′
zyw′

)]
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A regime diagram for heat-transfer effects

− ∂ρ̄ṽ
′′h′′

∂y
− ∂ρ̄ũ′′h′′

∂x
− Ec

2

[
∂

∂y

(
ρ̄ ˜u′′2

v
′′ + ρ̄ṽ

′′3 + ρ̄ ˜w′′2
v

′′
)]

− Ec
[

∂

∂y

(
ũρ̄ũ′′

v
′′ + ṽρ̄ṽ

′′2
)]

− Ec
∂ ũρ̄ũ′′2

∂x
− 1

RePr
∂ q̄y

∂y
, (2.2)

where Ec, Re and Pr scale the physical importance of the individual terms with respect
to each other. The value of Ec given in the special form of (1.1), resembles by definition
the ratio between the effects of Mach number M2

e = (ρeu2
e)/(γ pe), with p the pressure,

to the effect of wall heat transfer. Note that this definition of Ec is based on (h̄r − h̄w)

as a characteristic enthalpy scale and the square of the boundary-layer-edge velocity u2
e

as a characteristic scale for the kinetic energy (for a detailed reasoning of this choice,
see Wenzel, Gibis & Kloker 2022). Furthermore, there is no explicit Mach-number
dependence in the dimensionless numbers that scale (2.2), since Me enters the equation
solely through Ec. Thus, if Re is fixed for a problem with constant Pr, (2.2) suggests that
the heat transfer within a boundary layer – and thus the manner in which a boundary
layer feels the combined effects of the Mach number and wall heat transfer – is mainly
determined by the local Ec. Note that the formulation of Ec in (1.1) is equivalent to
the definition of the diabatic parameter Θ = (T̄w − Te)/(T̄r − Te) given in Zhang et al.
(2014), as pointed out in Cogo et al. (2023). As shown in Wenzel et al. (2022) by mainly
evaluating the wall-normal integrals of the respective terms of (2.2), the Eckert number
(1.1) is able to predict the relative importance of the leading terms for a variety of diabatic
DNS data at different Mach numbers, underlining the validity of Ec as a heat-transfer
characterizing parameter. Wenzel et al. (2022) concluded that ‘flow cases with the same
Ec number are expected to exhibit the same integral behaviour and are thus physically
comparable to each other, regardless of how this Ec number is achieved by adjusting the
Mach number or the wall temperature’. Although these conclusions are mainly based
on the integral perspective, the recent results by Cogo et al. (2023) suggest that also
the wall-normal distribution itself, as well as the general flow structure, exhibits large
similarities if cases at the same Ec are compared with each other. As an example, the

wall-normal distribution of the temperature fluctuations
√

T ′2 shows an almost identical
course, including an arising inner peak for four cases with the same Ec but different Mach
numbers and wall temperatures.

2.2. A survey of heat-transfer effects in compressible turbulent boundary layers
There are a large number of studies in the literature that have investigated the influence
of Mach number, wall heat flux or Reynolds number on compressible TBLs with diabatic
wall conditions. Being widely scattered across the parameter space, these studies outline
the horizon of possible heat-transfer effects that may be encountered under diabatic
conditions. In order to put these results into context and refer to known phenomena in
the remainder of this study, a focused overview is given below.

2.2.1. Flow structure
In general, the flow structure is known to be strongly dependent on the Mach number,
the wall temperature condition and the Reynolds number. In the case of wall cooling,
for instance, the streaks within the boundary layer have been observed as tending
to be longer and more coherent (see e.g. Morinishi, Tamano & Nakabayashi 2004;
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Duan, Beekman & Martín 2010; Lagha et al. 2011). Xu, Wang & Chen (2023b) recently
reported wave-like structures near the wall, which are quite pronounced in the case of
strong wall cooling, but disappear in adiabatic cases. As a consequence of the broader
parameter space of compressible TBLs, however, it is difficult to clearly assess whether
the wall heat transfer or the Mach number is the dominant factor for the observed changes
in the flow structure (Huang, Duan & Choudhari 2022), which always leaves some
uncertainty in the interpretations of the results. In this respect, it is a notable conclusion
of the recent study by Cogo et al. (2023) that the flow structure seems comparable for
cases with the same Ec (or Θ) but different Mach number and heat-transfer conditions.
Furthermore, it was shown by Cogo et al. (2023) that the mean temperature profile –
and in particular the temperature maximum – has a strong impact on the thermal turbulent
structures. For example, in the vicinity of the temperature maximum for the strongly cooled
cases, the turbulent temperature structures lose the streaky pattern commonly observed in
the adiabatic case.

2.2.2. Temperature profile, turbulent heat flux and correlation coefficient
Essentially, the most dominant changes in any turbulent thermal flow properties are
directly due to variations in the wall-normal distribution of the temperature profile T̄
(or T̃). For cooled conditions, the wall-normal temperature gradient ∂T̄/∂y changes its
sign compared with adiabatic conditions, becoming positive below the temperature peak
∂T̄/∂y = 0 for large regions near the wall (see e.g. Duan & Martín 2011; Shahab et al.
2011). In the spirit of Prandtl’s mixing-length model, this causes the turbulent heat flux
ρ̄ṽ′′h′′ to also change its sign in the near-wall region where ∂T̄/∂y is positive, while
the Reynolds shear stress distribution ρ̄ũ′′v′′ remains negative throughout the boundary
layer (Morinishi et al. 2004). General trends from the literature show that ρ̄ṽ′′h′′ has a
smaller magnitude for cooled boundary layers compared with adiabatic cases; moreover,
higher-Mach-number cases tend to have a higher outer peak than lower-Mach-number
cases (Fernholz, Finley & Mikulla 1981; Maeder, Adams & Kleiser 2001; Duan et al.
2010; Shahab et al. 2011). Another commonly used indicator of heat-transfer effects

is the correlation coefficient Ru′T ′ = u′T ′/(
√

u′2
√

T ′2) between u′ and T ′. For adiabatic
boundary layers, Ru′T ′ has been reported to be around −0.6 throughout most regions of
the boundary layer (Guarini et al. 2000; Pirozzoli, Grasso & Gatski 2004; Pirozzoli &
Bernardini 2011). For strongly cooled cases, Ru′T ′ is found to be approximately +1 in the
near-wall region, is nullified approximately at the wall-normal position where ∂T̄/∂y = 0
(Duan & Martín 2011) and closely follows the adiabatic trend above. This behaviour is
frequently explained by using arguments based on gradient transport (Duan et al. 2010) or
temperature variance production (Duan et al. 2010; Gatski & Bonnet 2013).

2.2.3. Temperature fluctuation
Although not appearing directly in the total-enthalpy equation (2.2), the temperature

fluctuation
√

T ′2 gives a visual access to intuitively assess the strength of heat transfer
in compressible TBLs. Even if the reasons for its principal behaviour have already been

sketched in the previous section, it is often the wall-normal distribution of
√

T ′2 that is of

particular value in the evaluation of heat-transfer effects. As an example,
√

T ′2 can exhibit
an additional peak in the region below the temperature peak ∂T̄/∂y = 0 for cold cases,
which increases for higher cooling intensities while travelling further away from the wall
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A regime diagram for heat-transfer effects

(see e.g. Tamano & Morinishi 2006; Duan & Martín 2011; Yu & Xu 2021; Cogo et al.
2023; Xu, Wang & Chen 2023a). Due to the strong correlation between the temperature
gradient and the temperature fluctuations, the presence of this inner peak is usually only
expected for ‘very cold’ wall conditions, and thus serves as a qualitative measure of
how strongly a compressible TBL actually ‘feels’ a given wall temperature. Besides the
existence of this inner peak, many studies report in general a decrease in temperature
fluctuations with decreasing wall temperature (Shahab et al. 2011; Chu, Zhuang & Lu
2013). The reasoning is straightforward, the temperature fluctuations depend directly on
the temperature gradient (Gatski & Bonnet 2013; Cogo et al. 2023) and thus can be
included in Reynolds analogies that include the heat transfer (Gaviglio 1987; Huang et al.
1995; Zhang et al. 2014).

2.2.4. Mach-number and Reynolds-number effects on the thermal boundary layer

As outlined in § 2.1, the
√

T ′2 distributions of cases with different Mach number but the
same Ec and Reτ show large similarities for wide regions across the boundary layer (Cogo
et al. 2023). Nevertheless, although not explicitly appearing in (2.2), the Mach number
can be assumed to also have a direct effect on the wall-normal distributions of important
thermal flow variables. Moreover, the explicit appearance of Re in (2.2) suggests that
also the Reynolds number severely affects heat-transfer effects in compressible TBLs.
In reality, however, it is a challenging task to clearly assign pronounced changes in the
wall-normal distributions to either the Reynolds number or the Mach number. While many
studies have used the wall units to assess Reynolds-number dependencies, the semi-local
scaling has gained in popularity in recent years, whereby boundary-layer parameters
are scaled in the wall-normal direction with the local density and viscosity rather than
using their wall values. Essentially, this scaling can be interpreted as a compressibility
transformation of the wall-normal direction, as influences due to non-constant properties
are ‘eliminated’ from the flow field by the utilization of local values (see e.g. Huang
et al. 1995). Accordingly, also some of the recently proposed velocity transformations
are based in some sense on the idea of semi-local scaling (Patel et al. 2015; Trettel
& Larsson 2016; Griffin, Fu & Moin 2021), leading to notable improvements in the
understanding of compressible TBLs. Based on a comparison in semi-local scaling, it
has been observed that an increase in the Mach number can be usually associated with an
increased scale separation if cases at same Reτ are compared with each other (Cogo et al.
2023); similarly, cooling is assumed to decrease the scale separation (Huang et al. 2022).
General observations have been that the effect of the wall heat transfer is often limited to
the near-wall region, while a Mach-number change mostly affects the outer layer (Cogo
et al. 2023). For higher Mach numbers, the outer layer usually shows higher fluctuating
Mach numbers, as well as larger temperature and density variances, which are often traced
back to the increased occurrence of shocklets at the turbulent–non-turbulent interface
(Zhang, Duan & Choudhari 2018). For cases with additional heat transfer, cooled walls are
associated with higher Mτ = uτ /

√
γ p̄w/ρ̄w values, suggesting that compressibility effects

are more pronounced (Duan et al. 2010; Zhang et al. 2018). For the
√

T ′2 distributions at
very cold wall conditions, Xu et al. (2023a) reported that increasing the Reynolds number

slightly increases the intensity of the arising near-wall peak. Simultaneously, the
√

T ′2
distribution in the outer layer near the boundary-layer edge has been found to decrease

as Re and M increase. Further, it was noted that
√

T ′2 has stronger positive than negative
magnitudes near the boundary-layer edge.
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2.2.5. Pushing to hypersonics – high-enthalpy effects
High-enthalpy effects refer to a wide class of physical processes caused by the large
temperature values within the boundary layer of vehicles travelling at hypersonic speeds.
Their presence entails a variation in the distribution of the internal energy at the molecular
scale, and the generation of additional energy transfer pathways that could potentially
alter the classical ideal-gas picture, whereby the heat flux is solely driven by molecular
heat conduction. At high temperatures, oxygen and nitrogen molecules can be subject to
vibrational excitation and chemical dissociation processes, leading to an increase of the
thermal capacities and a modification of the local gas mixture composition. Due to the
newly available modes for storing energy and the endothermic nature of the reactions, the

net effect is an overall reduction of T̄ and
√

T ′2 values within the boundary layer (see e.g.
Duan & Martín 2011; Passiatore et al. 2021; Liu et al. 2023). Part of the energy drained by
molecular dissociation can be regained by atom recombination, which can be significant
in the viscous sublayer (Di Renzo & Urzay 2021). The relative decrease of the thermal
conduction contribution to the heat transfer – due to the reduced temperature gradients –
can be counterbalanced by the increase of the thermal diffusion component, driven by the
species’ concentration gradients. A major difference with respect to low-enthalpy flows
concerns indeed the role of gas–surface interactions in the heat-transfer rates. Catalytic
surfaces strongly enhance the heat-flux levels at the wall, such that the catalytic heat flux
can be a large portion of the total heat flux when the flow is significantly dissociated (Duan
& Martín 2011). Furthermore, ablative materials lead to further energy drain through
chemical reactions, sublimation and gas blowing processes (Candler 2019). At higher
enthalpies and lower pressures, vibrational and rotranslational modes might reequilibrate
slowly, resulting in a thermal non-equilibrium state. Under such a regime, Passiatore
et al. (2022) reported that the vibrational and rotranslational temperatures exhibit different
wall-normal profiles, therefore affecting the total heat-transfer distribution throughout
the boundary layer. The turbulent heat flux ρ̄ṽ′′h′′ is also shown to be sensitive to
high-enthalpy conditions, mainly because of the turbulent species’ transport contribution
(Li et al. 2022). Despite the intricate behaviour of the processes involved, generalized
enthalpy-based Reynolds analogies (Duan & Martín 2011; Zhang et al. 2014) have been
shown to perform reasonably well, even for high-enthalpy flows.

3. Simulation details

For this study, five DNS of compressible zero-pressure-gradient TBLs at a Mach number
Me = 2.0 are computed: a heated one, an adiabatic one and three cooled ones. As will be
elaborated in the following in more detail, the specific wall temperature of each cooled
case has been set to achieve what will later be denoted as weakly, moderately and strongly
cooled cases, see tables 1 and 2 for details. All five computations are performed using the
compressible high-order in-house DNS code NS3D, with the principal numerical set-ups
closely following Wenzel et al. (2019). A perfect gas with a constant γ = cp/cv = 1.4
and a constant Prandtl number Pr = 0.71 is assumed. The temperature dependency of
the viscosity and thermal conductivity is modelled by Sutherland’s law and the linear
law below the Sutherland temperature. The equations are solved on a block-structured
Cartesian grid spanning a rectangular integration domain. For spatial discretization,
sixth-order subdomain-compact finite differences (FDs) in all three directions are used,
see Keller & Kloker (2013); for time stepping, the classical fourth-order Runge–Kutta
scheme is employed, coupled with alternating forward- and backward-biased FDs for the
convective first derivatives, see Kloker (1997) and Babucke (2009). The wall temperature
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A regime diagram for heat-transfer effects

Case −1/Ec Θ T̄w/T̄r Reθ Reδ99 Reτ

(1) cZPGh 0.357 1.79 1.33 2199–6669 26 265–79 978 335–883
(2) cZPGad 0.0 1.0 1.0 2157–4349 23 272–46 731 439–804
(3) cZPGwc −0.224 0.5 0.79 1107–3481 11 235–34 607 314–830
(4) cZPGmc −0.434 0.03 0.6 895–2593 8433–23 768 367–898
(5) cZPGsc −0.686 −0.53 0.36 705–1564 6122–13 064 549–1063

Table 1. Summary of the simulation parameters for the cases simulated in this study. Quantities are given at
the beginning and end of the region of interest.

Case cf × 10−3 ch (Lx × Ly × Lz)/δ99,0 Lx,roi/δ99,0 Nx × Ny × Nz

(1) cZPGh 2.40–1.80 4.12–4.02 2040 × 85 × 90 400 17 408 × 408 × 1152
(2) cZPGad 2.66–2.21 — 1115 × 50 × 45 200 14 080 × 440 × 1120
(3) cZPGwc 3.35–2.47 1.99–1.44 830 × 40 × 52 150 9216 × 592 × 1216
(4) cZPGmc 3.77–2.85 2.22–1.67 530 × 35 × 30 100 11 008 × 520 × 1120
(5) cZPGsc 4.22–3.47 2.48–2.04 245 × 16 × 20 60 10 496 × 592 × 1152

Table 2. Summary of numerical set-up information for the compressible TBLs simulated in this study. The
parameters are given for the beginning (given by Lx,roi) and the end of the region of interest.

for all diabatic cases is prescribed as an isothermal no-slip condition; for the adiabatic case,
enforcing (∂T/∂y)w = 0 allows us to obtain the true recovery factor. For both diabatic
and adiabatic cases the wall pressure is computed according to (∂p/∂y)w = 0 using an
optimized fifth-order stencil like for (∂T/∂y)w = 0. A digital filtering technique was used
for the inflow condition (see Wenzel et al. 2018, 2019) with the modification of using the
relation of Zhang et al. (2014) for the temperature fluctuations to improve the stability
of the simulations at the inlet for moderately and strongly cooled cases. A maximum
grid spacing of 	y+

w � 0.5–0.6, 	x+
w � 8, 	z+

w � 4 at the wall and 	y+ � 4 in the
wall-normal direction away from the wall was targeted, see table 2 for the grid dimensions.
Data averaging is performed both in time and spanwise direction and only started after
the flow has passed the whole simulation domain at least twice. Consistently for all
cases, time averages were performed for longer than a flow-through time corresponding
to approximately 	tue/δ99 = 250, with δ99 the local boundary-layer thickness. Note that
the beginning of the region of interest Lx,roi (corresponding to the beginning of the
post-processed region) is between 60 and 400 inlet boundary-layer thicknesses δ99,0 away
from the inlet plane in all simulations. It is therefore far enough downstream to not be
adversely affected by the inlet boundary condition, see table 2 and Ceci et al. (2022).

4. Classification of heat-transfer effects

As summarized in § 2.2, specific features can be observed in the thermal properties of
compressible TBLs which can be clearly associated with the intensity of heat-transfer
effects within the boundary layer. Thus, assuming that Ec can classify heat-transfer effects
to a considerable degree at a given Re, it is possible to provide a physical feature-based Ec
categorization assessing the strength of heat-transfer effects for a given Mach number and
wall temperature. In this section, the basic behaviour of the Eckert number is first discussed
in § 4.1 as a function of T̄w/T̄r and Me, and the literature DNS data are arranged in the
parameter space. Afterwards, the identification of heat-transfer regimes is established in
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§ 4.2, which is mainly based on the wall-normal position of the temperature peak (∂T̃/∂y).
In the remaining §§ 4.3, 4.4 and 4.5, the influences of Reynolds number, Mach number
and high-enthalpy effects on the classification are discussed.

4.1. Introduction of the regime diagram
In figure 1, both the Eckert number Ec (left ordinate) and the diabatic parameter Θ (right
ordinate) are depicted as function of the boundary-layer-edge Mach number Me (abscissa)
and the commonly used wall-to-recovery-temperature ratio T̄w/T̄r (lines). In line with
Wenzel et al. (2022), the lines of constant T̄w/T̄r are computed for every Me and Ec under
the assumption of T̄r/Te = 1 + r(γ − 1)/2M2

e , where the recovery factor has been set to
r = Pr1/3 and γ = 1.4 for all cases. For cases with γ /= 1.4, the T̄w/T̄r lines differ at low
Me but coincide with the lines for γ = 1.4 at hypersonic Mach numbers, where the lines
become independent of γ

lim
Me→∞

(−1/Ec) = lim
Me→∞

(
T̄w

T̄r
− 1

) 1 + r
γ − 1

2
M2

e

(γ − 1)M2
e

=
(

T̄w

T̄r
− 1

)
r
2
. (4.1)

To illustrate the influence of a γ variation, only the T̄w/T̄r = 0 line is shown for an
exemplary value of γ = 1.3, which is representative for the high-enthalpy cases by Di
Renzo & Urzay (2021) and Passiatore et al. (2022). Note that the line for T̄w/T̄r = 0 is
indicative of the expected deviations for all T̄w/T̄r lines, which are omitted for the sake
of clarity. It is further noted that, for high-enthalpy cases, the location in the Ec-space
should strictly speaking rather be based on the h̄w/h̄r ratio instead of T̄w/T̄r. In contrast to
Wenzel et al. (2022), the Ec value on the left ordinate in figure 1 is defined by its negative
reciprocal −1/Ec due to three reasons: (i) while Ec becomes infinite for adiabatic cases,
its reciprocal becomes zero, representing thus a somewhat more intuitive choice. (ii) By
forming the reciprocal of Ec, the parameter space for strongly cooled or heated cases is
further fanned out, which enables a more clear distinction between the individual cases.
(iii) With the negative sign, −1/Ec is negative for cooled cases and positive for heated
cases, which is also somewhat more intuitive compared with the opposite case. Thus,
cases at adiabatic wall conditions (T̄w/T̄r = 1) are characterized by −1/Ec = 0 in figure 1;
cases in the upper half of figure 1 are cases with a heated/heating wall (T̄w/T̄r > 1),
while the lower half of the figure displays cases with a cooled/cooling wall (T̄w/T̄r < 1).
Implied by the course of the coloured lines for constant T̄w/T̄r, both an increase in
heating and cooling (increase and decrease in T̄w/T̄r, respectively) as well as a decrease
in Me result in an increase in the absolute value of −1/Ec, which is equivalent to the
fact that heat-transfer effects are more pronounced in the corresponding boundary layers.
Consequently, with increasing Mach number Me, an increasingly strong heating or cooling
|T̄r − T̄w| is necessary to achieve large absolute values for −1/Ec. In addition, as implied
by the almost constant course of the lines for constant T̄w/T̄r at higher Mach numbers,
the influence of Me on −1/Ec is shown to decrease drastically for high hypersonic Mach
numbers, leaving the value of −1/Ec almost exclusively a function of T̄w/T̄r only.

4.1.1. Physical interpretation
Essentially, all of the aforementioned trends are the direct consequence of the Ec definition
chosen. In its present formulation (1.1), the Eckert number is a measure of the contribution
of kinetic energy difference to wall heat transfer. For a fluid like air, this is similar to
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Figure 1. Collection of compressible DNSs at different Mach numbers Me plotted over −1/Ec (left axis) or
equivalently over the diabatic parameter Θ (right axis). For conversion, the values of −1/Ec resulting from a
given T̄w/T̄r are also plotted over Me as red and blue curved lines. The two horizontal blue lines denote the
approximate −1/Ec at which the regime change occurs for recent DNS with a Reynolds number of 400 �
Reτ � 1200. The data points with a circle denote cases plotted in figure 2.

the contribution of viscous heating to wall heat transfer where the Brinkman number
Br = EcPr is of the same order of magnitude. The course of the T̄w/T̄r curves in figure 1
thus merely reflects the fact that a boundary layer at low Mach numbers feels a given
T̄w/T̄r much more intensely than a boundary layer at higher Mach numbers, where
viscous heating comes increasingly into play as a dominant energy transfer mechanism.

995 A14-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

62
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.622


T. Gibis, L. Sciacovelli, M. Kloker and C. Wenzel

This becomes particularly evident by considering cooled cases with a (hypothetical)
maximum cooling intensity of T̄w/T̄r = 0. Due to the counteracting effects of wall cooling
(sink in the enthalpy balance) and viscous heating (source in the enthalpy balance), the
curve for T̄w/T̄r = 0 represents a natural limit for each corresponding Mach number below
which no further decrease in −1/Ec is possible. Essentially, this limit value simply states
that there is a minimum value in −1/Ec for which no more heat can be extracted by
the wall cooling than is simultaneously made available by heating within the boundary
layer. Accordingly, the trend of T̄w/T̄r = 0 takes on great importance, as it provides an
indication of how strongly a boundary layer can be influenced by heat-transfer effects at
a specific Mach number at all. It is indicated by the course of T̄w/T̄r = 0 in figure 1,
for instance, that a supersonic boundary layer at Me = 2 and T̄w/T̄r = 0.5 will show
heat-transfer effects in some of its thermal properties that are actually impossible to
physically reproduce at hypersonic Mach numbers, even for the strongest possible cooling
(T̄w/T̄r = 0). Moreover, the minimum achievable values (at T̄w/T̄r = 0) for −1/Ec and
Θ are well-defined values in the hypersonic limit; that is, limMe→∞(−1/Ec) = −r/2 and
limMe→∞(Θ) = 0, respectively, compare (4.1). The existence of this hypersonic limit is
a consequence of the fact that, in hypersonic flows, the internal energy of the free stream
is negligible compared with its kinetic energy, so that basically all of the heat transferred
through the wall stems from viscous heating within the boundary layer.

4.1.2. Introduction of the DNS data in the regime diagram
To get a first overview of the DNS data considered in the following, all data summarized
in table 3 are plotted as symbols in figure 1. Note that the recovery enthalpy h̄r for
the hypersonic cases with calorically non-perfect gases (h̄r /= cpT̄r) is estimated by h̄r =
he + (r/2)u2

e , where a recovery factor of r = 0.9 is assumed, consistent with Duan &
Martín (2011) and Passiatore et al. (2022). From figure 1, the vast majority of cases
was calculated for cooled-wall conditions, and only a few cases with low Mach number
for heated-wall conditions. For the cooled-wall cases, a large number of cases lie in the
range 0 > −1/Ec � −0.25, which will be referred to later as the weakly cooled regime; a
comparable amount lie between −0.25 � −1/Ec � −0.45, which will later be referred to
as the moderately cooled regime; and only a few data, especially at lower Mach numbers,
lie in the range of −1/Ec � −0.45, which will later be referred to as the strongly cooled
regime. When considering the temperature ratios T̄w/T̄r, the cases of Duan et al. (2010),
Duan & Martín (2011), Zhang et al. (2018), Di Renzo & Urzay (2021), Xu et al. (2021a),
Huang et al. (2022) and Passiatore et al. (2022) are noteworthy, with values for T̄w/T̄r

being very close to the cooling limit of T̄w/T̄r = 0 for the respective selected Mach
numbers. However, the case with the lowest value for −1/Ec – and thus the case that
exhibits the strongest heat-transfer effects in the following – is the newly computed case
with Me = 2 and T̄w/T̄r = 0.36, which was designed especially for this purpose, see § 3
for details. Further emphasis should be given to the data from Cogo et al. (2023), where a
3 by 3 array of data evenly distributed in the Me and Ec space was generated. This data set
is the most appropriate when Mach-number effects are to be identified for ‘comparable’
cases with the same −1/Ec and Reτ .

4.2. Classification of heat-transfer effects
Following the introduction of the regime diagram in the previous section, the objective of
this section is to present a subdivision of the parameter space for which the overall effect
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A regime diagram for heat-transfer effects

Case −1/Ec Θ T̄w/T̄r Me Reτ Mτ × 1000 Bq × 1000

(1) Present 0.357 1.79 1.33 2.0 335–882 69.5–60.2 −15– − 13
0.0 1.0 1.0 2.0 438–804 73.0–66.7 0.0

−0.224 0.50 0.79 2.0 314–830 81.8–70.3 14.6–12.4
−0.434 0.03 0.6 2.0 366–897 86.6–75.5 36.2–31.3
−0.686 −0.53 0.36 2.0 549–1063 92.5–83.8 77.2–69.8

(2) Cogo et al. (2023) −0.336 0.25 0.69 2.0 443 82.5 22.9
−0.224 0.5 0.79 2.0 443 79.6 13.4
−0.112 0.75 0.9 2.0 443 77.2 5.7

0.0 1.0 1.0 2.0 443 74.7 0.0
−0.336 0.25 0.44 4.0 443 132.7 61.0
−0.224 0.5 0.63 4.0 443 122.0 30.7
−0.112 0.75 0.81 4.0 443 113.7 11.7
−0.336 0.25 0.25 6.0 443 159.3 89.0
−0.224 0.5 0.5 6.0 443 140.8 40.5
−0.112 0.75 0.75 6.0 443 129.9 14.9

0.0 1.0 1.0 6.0 443 121.1 0.0
(2) Cogo et al. (2022) −0.26 0.42 0.76 2.0 340–620 — ≈160

−0.26 0.42 0.76 2.0 1240–2300 ≈65.6 ≈190
−0.125 0.72 0.76 5.86 290–520 — ≈130
−0.125 0.72 0.76 5.86 1080–1953 ≈108.2 ≈140

(3) Duan & Martín (2011) −0.641 −0.29 0.13 3.4 906 — —
−0.641 −0.29 0.13 3.4 910 — —
−0.422 0.08 0.13 9.4 786 — —
−0.423 0.07 0.13 9.3 741 — —
−0.551 −0.23 0.17 3.4 938 — —
−0.422 0.06 0.12 9.0 906 — —

(3) Duan et al. (2010) −0.450 0.00 0.18 4.97 798.1 — —
−0.357 0.20 0.35 4.97 624.7 — —
−0.258 0.42 0.53 4.97 522.2 — —
−0.176 0.61 0.68 4.97 433.8 — —

(7) Zhang et al. (2018) −0.396 0.13 0.25 5.84 450 170 140
−0.125 0.72 0.76 5.86 453 130 20
−0.254 0.43 0.48 7.87 480 150 60
−0.378 0.16 0.18 13.64 646 190 190

0.0 1.0 1.0 2.5 510 80 0.0
(8) Shadloo, Hadjadj & 0.536 2.21 1.5 2.0 350 64.1 —

Hussain (2015)
−0.536 −0.19 0.5 2.0 550 85.8 —

(10) Xu et al. (2021b) −0.311 0.31 0.4 6.0 1615 — —
−0.104 0.77 0.8 6.0 688 — —
−0.414 0.08 0.15 8.0 2444 — —
−0.292 0.35 0.4 8.0 887 — —
−0.097 0.78 0.8 8.0 1386 — —

(11) Wenzel et al. (2022) 0.97 3.17 1.03 0.3 274–726 — —
0.08 1.17 1.01 0.5 271–731 — —
0.35 1.79 1.03 0.5 263–714 — —
0.11 1.24 1.03 0.95 228–612 — —
0.04 1.10 1.04 2.0 146–478 — —

(12) Di Renzo & Urzay (2021) ≈ − 0.43 ≈0.05 ≈0.1 10 1104 230 260
(13) Passiatore et al. (2022) ≈ − 0.4 ≈0.11 ≈0.14 12.48 1128 210 240
(14) Huang et al. (2022) −0.375 0.16 0.2 10.9 772–1172 182–167 163–148

Table 3. Summary of parameters from the DNS datasets used in this study. The Eckert number Ec = u2
e/(h̄w −

h̄r), the diabatic parameter Θ = (T̄w − Te)/(T̄r − Te), the friction Reynolds number Reτ = ρ̄wuτ δ99/μ̄w, the
friction Mach number Mτ = uτ /āw where aw is the speed of sound at the wall, the inner-scaled heat transfer
Bq = qw/(ρ̄wh̄wuτ ). Note: for (13) the rotranslational dimensionless heat flux is given.
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of heat transfer on the compressible TBL can be expected to be significantly different.
In other words, it is the objective to identify physical feature-based regimes, for which
heat-transfer effects can be denoted to be weak, moderate or strong. To allow for an
assessment of how strongly the respective cases are influenced by heat-transfer effects, the
wall-normal distributions of the most important temperature-related quantities is given in
figure 2, as far as available for the data under consideration. Given quantities are: (i) the

temperature fluctuations
√

T ′2 as a quantity where the strength of heat transfer becomes
most tangible, (ii) the premultiplied wall-normal temperature gradient y∂T̃/∂y as the most
representative quantity and (iii) the turbulent heat flux ρ̄h̃′′v′′ as the most relevant quantity
in the energy equation for turbulence modelling. All data are labelled by their respective
values of −1/Ec and Mach number in brackets (Me); both for the presents data in red and
the data by Huang et al. (2022) in brown, data at two Reynolds numbers are plotted to
evaluate the trend of increasing Reynolds number in § 4.3. All wall-normal distributions
are plotted in semi-local scaling with y∗ = (ρ̄

√
τw/ρ̄y)/μ̄ and u∗

τ = √
τw/ρ̄, which has

been found to be superior in the context of the regime diagram than plotting in wall units
(see Appendix A for a variant in wall units). Another possibility would be to use the sub-
and buffer-layer definitions used in the multilayer scale definition of Wu et al. (2017). Note
that the proposed classification is, strictly speaking, limited to cases with Prandtl number
Pr = O(1) and additional regimes may occur for cases with Pr /= O(1).

Comments: the temperature fluctuations were plotted as Reynolds-averaged fluctuations,
as the corresponding Favre-averaged values are only available in a few data sets.
The difference is typically insignificant, see e.g. Huang et al. (1995). In figure 2,
the temperature in ∂T̃/∂y is represented in wall units, T̃+ = T̃/(γ T̃wMτ ), as a simple
semi-local scaling attempt similar to T̃∗ = T̃/(γ T̃M∗

τ ) that results in a nearly constant
function; nevertheless, to account for density variations in the wall-normal direction, the
semi-local part with ρ̄/ρ̄w was added as a multiplication outside the derivative. Besides,
ρ̄h̃′′v′′ is normalized with ρ̄u∗3

τ , which is motivated by the general result of Gibis et al.
(2019) that the energy scale should be proportional to the square of the velocity scale.
Other potential choices either involve qw, thus being not valid for adiabatic cases, or make
use of scaling variables similar to Bq, which are not able to scale all cases to the same
order of magnitude (compare Bq in table 3). Lastly, for the data by Di Renzo & Urzay
(2021), the distribution of ρ̄h̃′′v′′ is estimated from ρ̄˜T ′′v′′ with a local cp computed via
NASA polynomials for air (McBride, Zehe & Gordon 2002).

4.2.1. Adiabatic conditions
As a reference point for all subsequent discussions, the adiabatic cases shown in the
second row of figure 2 are introduced first. For adiabatic conditions, the temperature
gradient in panel (b ii) is caused exclusively by viscous heating. Since no heat is
transported through the wall, the temperature at the adiabatic wall is the highest within
the boundary layer, so the temperature gradient is strictly negative throughout the entire
boundary layer. Accordingly, the turbulent heat flux ρ̄h̃′′v′′ remains strictly positive in
panel (b iii). Furthermore, as both ∂T̃/∂y and ∂ ũ/∂y have the same qualitative two-peak
structure, the course of ρ̄h̃′′v′′ qualitatively follows that of the turbulent shear stress
ρ̄ũ′′v′′, as implied by the nearly constant course of the turbulent Prandtl number Prt =
(−ρ̄ũ′′v′′)/(−ρ̄˜T ′′v′′)(∂T̃/∂y)/(∂ ũ/∂y). Similarly, the turbulent temperature fluctuations
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Figure 2. Plot of the semi-locally scaled temperature fluctuation (labelled as (i) in the left column), the
pre-multiplied temperature gradient (labelled as (ii) in the middle column) and the normalized turbulent heat
flux (labelled as (iii) in the right column). The rows, from top to bottom, correspond to the regimes: (a) heated,
(b) adiabatic, (c) weakly cooled, (d) moderately cooled and (e) strongly cooled. Each data point is identified by
its respective value of −1/Ec and Mach number in brackets (Me). The legend in figure 1 includes the references
for the line colours and symbols.

in panel (b i) show minima and maxima at locations where the magnitude of ∂T̃/∂y is
small and large, respectively.

Although discussed in more detail later, the effects of Reynolds number and Mach
number on the curves shown can be estimated by comparing the present data with the
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data from Cogo et al. (2023). While present data in red are evaluated at the same Me
but at different Reτ , the data in blue are evaluated at different Me but same Reτ . Note that
the present data are the only ones computed under truly adiabatic conditions, implying that
temperature fluctuations in panel (b,i) do not disappear at the wall as they do in isothermal,
pseudo-adiabatic boundary conditions. In the chosen semi-local representation, increasing
both the Mach number and the Reynolds number pushes δ∗

99 further out on the abscissa;
the Mach number implicitly via an increase in the wall-normal density variation, the
Reynolds number directly via an increase in the boundary-layer thickness. On the ordinate,
an increase in both the Mach and Reynolds numbers increases only slightly the magnitude

of the inner peak of
√

T ′2, and more intensely the outer peak, see e.g. Cogo et al. (2023)
for more details. Consequently, in a semi-local scaling, an increase in Mach number acts
largely analogously to an increase in Reynolds number, which directly resembles the
physical spirit of a heated boundary layer.

4.2.2. Heating conditions
For the heated cases in panels (a i)–(a iii), the viscous heating is accompanied by wall heat
transfer. As both mechanisms act as a source, the heat has to be transported away from
the wall, similar to the adiabatic cases. Thus, the temperature gradient ∂T̃/∂y is strictly
negative throughout the boundary layer. Consequently, the distributions of the turbulent
heat flux in panel (a i) and the temperature fluctuations in panel (a iii) follow the same
reasoning as discussed in § 4.2.1 for adiabatic cases, essentially being only increased
in magnitude due to a steeper temperature gradient. In terms of the flow structure, the
increased wall temperature leads to an increased scale separation analogous to cases at
higher Mach numbers, as flow structures in the outer layer are smaller compared with
an adiabatic case, see also figure 7. However, since no significant change in the course
of essential thermal flow field variables is to be expected with an increase of −1/Ec, a
subdivision of the heated cases into sub-regimes has no additional value. For these cases,
only the specification of −1/Ec and Re (or Θ and Re) is decisive as a measure of the
strength of the heat transfer within a boundary layer.

4.2.3. Weak cooling conditions
Under cooling conditions, the wall heat transfer counteracts the effect of viscous heating,
see § 2.2.2. As a result, the temperature gradient ∂T̃/∂y becomes positive at the wall,
causing the temperature profile to develop a temperature peak in the near-wall region. As
shown in figure 2(c i–c iii), the term ‘weakly cooled’ is chosen for cases where the peak
of the temperature field – and thus the root of ∂T̃/∂y = 0 in panel (c ii) – is still in the
viscous sublayer at y∗ � 5, and thus in a region where the boundary-layer behaviour is
dominated by viscosity rather than turbulence. Consequently, the turbulent field is almost
‘blind’ to the region of positive ∂T̃/∂y near the wall and effectively only sees a – compared
with adiabatic cases – ‘less heated’ wall. Turbulence therefore still transports heat away
from the wall in the same sense as in adiabatic cases. As a result, both the profiles of the
temperature fluctuations in panel (c i) and the turbulent heat flux in panel (c iii) behave
comparably to those of adiabatic cases in panels (b i)–(b iii); they are only slightly reduced
in magnitude, but do not form an additional inner peak in panel (c i) or significant negative
regions near the wall in panel (c iii). Consequently, it is expected that the basic arguments
derived for TBLs under adiabatic conditions will still hold reasonably well for TBL cases
in the weakly cooled regime, and no substantial modelling problems are expected.
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Referring to figure 1, cases that are indicated as weakly cooled in figure 2(c i–c iii) are
located in the Ec range of −0.25 � −1/Ec < 0. Therefore, the value of −1/Ec ≈ −0.25
is indicated as the dividing line between weakly cooled and moderately cooled cases in
figure 1. As will be explained in more detail in § 4.3, this dividing line depends slightly on
the local Reynolds number and should therefore only be understood as a guideline for the
DNS data shown with rather low Reynolds numbers.

4.2.4. Moderate cooling conditions
In moderately cooled TBLs, the temperature peak – and thus the root of ∂T̃/∂y – in
figure 2(d ii) lies within the buffer layer (5 � y∗ � 30) and thus in regions with strong
turbulence production. As a result, regions with ∂T̃/∂y > 0 start affecting the turbulence
profiles. In contrast to the lower border of y∗ ≈ 5, the upper border has been defined rather
arbitrarily to y∗ ≈ 30, a wall-normal position often defined as the starting point of the
logarithmic law of the wall in incompressible flows (Pope 2000). From a physical point of
view, this limit was chosen as it roughly coincides with the point at which the inner peak

of the
√

T ′2 distributions will dominate the outer peak in the panel (d i), a feature that
will later be attributed to the regime of strong cooling. Characteristics for the moderately
cooled regime are a noticeably negative turbulent heat flux in the region near the wall,
see panel (d iii), and a quite characteristic double-peaked structure of the temperature
fluctuations with two peaks/plateaus in regions below and above the temperature peak,
see panel (d i). Consistently for all plotted data, the root of ∂T̃/∂y shifts to larger y∗ values
as −1/Ec decreases, while the temperature gradient becomes larger near the wall and
smaller in the outer region at the same time; similarly, the inner peak of the temperature
fluctuations increases and the outer peak decreases. Due to the topological differences
compared with adiabatic and weakly cooled cases, modelling issues are to be expected for
moderately cooled cases if modelling is solely based on adiabatic arguments.

Referring to figure 1, all cases that are indicated as moderately cooled in
figure 2(d i–d iii) are located in the Ec range of −0.45 � −1/Ec � −0.25 (where the
value of −0.45 stands for r/2). However, as for the weakly cooled cases discussed
in § 4.2.3, also the wall-normal position of the root of ∂T̃/∂y in panel (d ii) shows a
noticeable Reynolds-number dependence, compare the red coloured cases. Therefore, also
the dividing line between moderately and strongly cooled cases is to be understood as
an orientation for the given DNS data only and has to be adapted for higher Reynolds
numbers, see also § 4.3.

4.2.5. Strong cooling conditions
In strongly cooled TBLs, the temperature peak and thus the root of ∂T̃/∂y in figure 2(e ii)
lies above the buffer layer y∗ � 30. For these cases, the thermal quantities are expected
to be thoroughly mixed in the outer layer which causes the thermal turbulent field
to be dominated by the near-wall regions with ∂T̃/∂y > 0. The temperature gradient
in panel (e ii) is characterized by very steep positive temperature gradients near the
wall and only small remaining negative temperature gradients outside. As a result, the
temperature fluctuations in panel (e i) are dominated by the inner peak, while the outer
peak increasingly vanishes with decreasing −1/Ec; the same holds for the turbulent heat
flux in panel (e iii). A particular note should be given to the Reynolds-number dependence
of the root of ∂T̃/∂y in panel (e ii), which is much more pronounced for strongly cooled
cases compared with the weakly and moderately cooled regimes discussed before, compare
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the two red coloured lines. Since the temperature peak is no longer strictly in the inner layer
of the TBL, its wall-normal position scales more with outer scales than with inner scales,
leading to a linear outward shift of the temperature-peak position in y∗ with increasing
Reynolds number, see § 4.3 for details.

Referring to figure 1, the strongly cooled regime is virtually impossible to reach for
hypersonic cases as elaborated in § 4.1.1 (at least for low Reynolds numbers, see § 4.3).
However, cases such as high-temperature flows with strong cooling at only moderate
supersonic speeds, e.g. in rocket nozzles, gas turbines, etc., may well fall into this range
due to the large availability of internal energy.

4.2.6. Quasi-incompressible cooling conditions
For quasi-incompressible cooling conditions, the cooling at the wall is strong enough that
the temperature peak is close to or above the boundary-layer thickness δ99. Since the effect
of viscous heating is basically negligible in these conditions, the profiles behave similarly
to the incompressible case with q ≈ qw. In terms of the Mach number, this regime is only
available for lower Mach numbers. As none of the available reference data manage to
achieve such a strong cooling, this regime will not be discussed further.

4.3. Influence of the Reynolds number
Both from (2.2) and the discussion of figure 2 it is evident that the heat transfer within
a boundary layer is not solely influenced by the Eckert number alone, but also – at
least to a certain extent – by the local Reynolds number. For instance, the wall-normal
position where ∂T̃/∂y = 0 shifts slightly outwards for cases with a fixed Ec, but increasing
Re-number, as shown by the two red lines in figure 2. Consequently, since the strength
of how a TBL feels heat transfer increases with Re, a case with a fixed −1/Ec falling
within the range of weak cooling at low Reynolds numbers might be shifted to the range of
moderate or strong cooling at high Reynolds numbers. Strictly speaking, the (approximate)
blue-coloured dividing lines between the individual regimes in figure 1 are therefore only
valid for a small-Reynolds-number range, and their success is based primarily on the fact
that all DNS data discussed lie in a comparable ‘low’ range of Re. The objective of this
section is therefore to quantify the Reynolds number dependence of the root of ∂T̃/∂y – or
in other words: the regime bounds in terms of Ec – and to estimate its evolution at larger
Reynolds numbers.

4.3.1. Analytical estimation
According to Gatski & Bonnet (2013), the velocity at the wall-normal position of the
temperature peak (∂T̃/∂y = 0) can be approximated by

u+
∂T̃/∂y=0

= −Bq

(γ − 1)M2
τ

, (4.2)

in the inner layer, where Bq = qw/(ρ̄wuτ h̄w) and Mτ = uτ /aw. To associate (4.2) with Ec,
the Ec definition (1.1) is rewritten in terms of Bq and Mτ

Ec ≈ M2
τ

Bq

ue

uτ

(γ − 1)Prt, (4.3)
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Figure 3. Plot of the location of the temperature peak (∂T̃/∂y = 0) at y∗
∂T̃/∂y=0

vs the Reynolds number Reτ .
Shown is the evolution of the DNS data from the present work and Huang et al. (2022) compared with the
analytical considerations in § 4.3.1 as the red dotted line and the plot in figure 4 based on the tool of Hasan
et al. (2023a) as the blue dotted line.

by utilizing the heat-flux contribution of the SRA qw/τw ≈ (T̄w − T̄r)/Prt(cp/ue), see e.g.
Gatski & Bonnet (2013). Combining (4.3) with (4.2) results in

u+
∂T̃/∂y=0

= −Prt

Ec
ue

uτ

= −Prt

Ec

(
1
κ

ln(Reτ ) + c
)

, (4.4)

where ue/uτ is approximated by ue/uτ = 1/κ ln(Reτ ) + c, see e.g. Panton (2005).
Although this expression is an incompressible relation, it is expected to reflect at least
the trend of compressible data reasonably well. Based on (4.4) it is straightforward to
conclude for weakly cooled cases where ∂T̃/∂y = 0 is located in the viscous sublayer
(u+

∂T̃/∂y=0
= y+

∂T̃/∂y=0
), that the wall-normal position of the temperature peak y+

∂T̃/∂y=0
shifts outwards proportional to ln(Reτ ); thereby, Prt and κ are assumed constant, Ec
predefined and c negligible for large Reτ . Note that this trend perfectly matches the trends
observed for the present −1/Ec = −0.22 case as depicted in figure 3, if c is calibrated to fit
the data. Therefore, the Reynolds-number dependence of the separation line between the
weakly and moderately cooled cases in figure 1 is quite robust to changes in Reτ (especially
at high Reτ ), a result that is consistent with the only weak streamwise growth of the viscous
sublayer in general.

In the same vein it can be concluded for strongly cooled cases, where ∂T̃/∂y = 0 is
located in the logarithmic layer (u+

∂T̃/∂y=0
= (1/κ) ln( y+

∂T̃/∂y=0
) + d), that y+

∂T̃/∂y=0
shifts

outwards proportional to Reτ and thus is influenced quite severely. This expected linear
trend is consistent with the observed behaviour of the present −1/Ec = −0.68 case as
shown in the figure 3, with c and d calibrated to fit the data.

Finally, for cases in the moderately cooled regime where the temperature peak lies
within the buffer layer, the Reynolds-number dependence is expected to be somewhere
between a logarithmic and a linear evolution, see the present −1/Ec = −0.44 case in
figure 3.

4.3.2. Towards a regime diagram including Reynolds-number effects
To incorporate Reynolds-number influences in the regime diagram, the velocity and
temperature profile estimations of Hasan et al. (2023a) are utilized to estimate the
wall-normal position of the temperature peak y∗

∂T̃/∂y=0
for a wide range of Ec and Re.
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Hereby, the velocity profiles are computed using a modified Johnson–King mixing-length
eddy-viscosity model and Coles’ law of the wake, see Hasan et al. (2023a) for details.
The corresponding temperature profiles are computed from the improved Walz relation
of Zhang et al. (2014) with s Pr = 0.8 and Pr = 0.72, where s is the Reynolds analogy
factor, see e.g. Cogo et al. (2023) and Wenzel et al. (2021). Note that the profile estimation
does not account for high-enthalpy effects as the improved Walz relation by Zhang et al.
(2014) is applied in temperature formulation. Nevertheless, previous studies (Duan &
Martín 2011; Passiatore et al. 2022) have shown that the use of a similar enthalpy-based
relationship is successful. It is therefore expected that, by using enthalpies to compute
−1/Ec or the wall-to-recovery ratios, the current method is also able to provide reasonable
estimates under high-enthalpy conditions.

For all subsequent plots, the estimation was solved for specific Ec and Reτ values and
looped between −0.65 � −1/Ec � 0 and 2 × 102 � Reτ � 105. The influences of the
local Mach number Me (or Mτ ) are assumed to be small, so that all converged cases
with different Me but same Ec and Reτ were averaged, see § 4.4 for a discussion of this
assumption. To improve convergence for strongly cooled cases, minor modifications were
made to the initial solutions, such as in the u+-estimation or the Reτ -Reθ relation. Note
that the Walz relation directly relates the temperature gradient to the velocity gradient,
which makes the estimation of the temperature peak inaccurate for strongly cooled cases
where the temperature peak lies in regions of very small velocity gradients. These issues
are shared by alternative approaches such as by Huang et al. (2023) and Chen et al.
(2022) which are explicitly not valid in the wake region. In addition, the study by Hasan
et al. (2023a) was strictly speaking only validated for cases with low Reynolds numbers;
however, its extrapolation to high Reynolds numbers appears to be a reasonable estimate.

To validate the model under consideration, figure 3 compares the model’s prediction
of the wall-normal position of the temperature peak y∗

∂T̃/∂y=0
with those of the present

DNS. Essentially, the result confirms the expectation formulated above: the model is quite
accurate for weakly cooled cases and becomes increasingly inaccurate for moderately
and strongly cooled cases. However, as the general trends are predicted reasonably well,
it allows us to extrapolate the Reynolds-number evolution of the heat-transfer regimes
introduced for a large parameter space in figure 4. Hereby, all lines depicted indicate
constant values of y∗

∂T̃/∂y=0
, while the two red coloured lines with y∗

∂T̃/∂y=0
= 5 and 30

represent the regime boundaries between the weakly, moderately and strongly cooled
regimes, respectively. To emphasize that these regime boundaries are by no means abrupt
regime changes, but rather transitional regions, these are blurred in blue. Additionally, the
minimum possible value for −1/Ec is indicated on the right ordinate for every respective
Mach number for the hypothetical case of T̄w/T̄r = 0, which thus transfers the T̄w/T̄r = 0
line from figures 1 to 4.

From figure 4 it is noticeable that the Ec range of both the weakly cooled and the
moderately cooled regime become significantly smaller with increasing Reynolds number
Reτ . Consequently, in direct agreement with all previous discussions, figure 4 visually
underlines the fact that a compressible TBLs at constant −1/Ec feel heat-transfer effects
more strongly with increasing Reynolds number Reτ , as the temperature peak slowly
moves outwards. Consequently, a case with constant −1/Ec will gradually move towards
a higher cooling regime as Reτ increases. Vice versa, a reduction of the Reynolds number
Reτ implies that some of the proposed regimes are no longer achievable for all Mach-
and Reynolds-number combinations. Figure 4 thus visually explains why, with current
supercomputing capabilities, most of the recent hypersonic DNS cases with significant
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Figure 4. Regime diagram for the cooled cases as −1/Ec over Reτ . The dashed curved denote the estimated
position of y∗

∂T̃/∂y=0
and the proposed location of the regime change are marked as red curves. The symbols

and lines denote the position where the reference data are located in the plot. The two black lines mark the
location of the bounds plotted in figure 1 for the DNS data range 400 � Reτ � 1200. The right axis marks the
Mach number Me at the equivalent −1/Ec in the limit value T̄w/T̄r → 0.

cooling fall ‘only’ within the moderate cooling range, and why the two-peak structure of
temperature fluctuations was not shown in very early low-Reynolds-number DNS.

4.4. Influence of the Mach number
So far, the Mach number has been assumed to influence the heat transfer only indirectly
by its appearance in the definition of Ec, see (2.2). In reality, however, the Mach number
also influences the wall-normal distribution of important thermal variables to a certain
extent. These direct Mach-number influences are not captured in the definition of Ec; the
purpose of the current section is therefore to estimate to which extent these effects need to
be considered in the regime diagram.

4.4.1. Temperature peak
As elaborated in § 4.1, the regime diagram introduced is largely based on the wall-normal
position of the temperature peak y∗

∂T̃/∂y=0
. Thus, to assess its sensitivity to direct

Mach-number influences, y∗
∂T̃/∂y=0

is evaluated in figure 5(a) as a function of Mτ for a
constant Reτ . The data set by Cogo et al. (2023) is the only one available that allows for
this assessment, as it provides data at various Mach numbers (2.0 � Me � 6.0) but equal
Ec and Reτ ; these data are depicted as blue coloured symbols in figure 5(a) next to the
present data in red for reference. From the comparison of cases with the same −1/Ec in
figure 5(a), y∗

∂T̃/∂y=0
seems to be virtually unchanged for varying Mτ values. Hence, the

wall-normal position of the temperature peak can be assumed to be only slightly influenced
by direct Mach-number effects, at least for the parameter range covered by the data set by
Cogo et al. (2023).
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Figure 5. (a) Dependence of the location of the temperature maximum y∗
∂T̃/∂y=0

at Reτ = 443 on Mτ . (b)

Relative difference of the temperature maximum y∗
∂T̃/∂y=0

from the root of the turbulent heat flux y∗
ρ̄h̃′′v′′=0

.

For an extended estimation of direct Mach-number effects across the DNS data towards
higher Mach numbers and cooling intensities, figure 5(a) shows black-coloured trend lines
determined with the profile estimation of Hasan et al. (2023b,a). These data are computed
for a unique Reynolds number of Reτ = 443 and only show the parameter region where
convergence of the tool has been achieved. In general, the trend lines show excellent
agreement with the DNS data and almost perfectly resemble the slightly decreasing trend
for increasing Mτ , as long as y∗

∂T̃/∂y=0
stays below approximately 10. For higher cooling

intensities (−1/Ec � −0.4), the trend lines underestimate the present, red-coloured DNS
data with −1/Ec = −0.44, see also figure 4, and start to exhibit a much more pronounced
Mτ -dependence. Although this trend cannot be confirmed by DNS due to the scarcity
of data, the model at least allows us to hypothesize that direct Mach-number influences
might have a notable effect on the heat transfer for high–moderate and strongly cooled
cases. Note, however, that only a few Mach-number cases will actually be able to reach
such low −1/Ec-ratios for the comparatively low Reynolds number of Reτ = 443 chosen.
Consequently, more DNS data specially designed to validate this behaviour are sought.
A final note refers to the model by Hasan et al. (2023b) itself, which modifies the van
Driest damping constant to compensate for a slight shift of the logarithmic law as function
of Mτ . For the present study, the differences between using and not using this model are
practically non-existent for the temperature-peak location.

4.4.2. Relation of the temperature-peak position to the position of ρ̄h̃′′v′′ = 0
From figure 2 it is evident that the wall-normal position of the temperature peak (∂T̃/∂y =
0 in panels (c ii, d ii, e ii)) and the wall-normal position where the turbulent heat flux
becomes zero (ρ̄h̃′′v′′ = 0 in panels (c iii, d iii, e iii)) differ considerably for cooled cases at
high Mach numbers. This mismatch has relevant implications, as ρ̄h̃′′v′′ is usually directly
associated with ∂T̃/∂y in turbulence modelling, an assumption that does not hold for
those regions. To characterize the systematics of this trend, the relative distance between
y∗
∂T̃/∂y=0

and y∗
ρ̄h̃′′v′′=0

with respect to y∗
∂T̃/∂y=0

is evaluated in figure 5(b) as a function
of the Mach number Mτ . Only moderately and strongly cooled data are shown, as the
direction of the turbulent transport does not change for weakly cooled cases (ρ̄h̃′′v′′ > 0).
As all data points show a fairly consistent trend when plotted over the Mach number
Mτ , this mismatch can be approximated at least to the first order as a function of Mτ .
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While this mismatch is fairly small for Mach numbers up to around Mτ ≈ 0.12 (which
includes the cases to around Me ≈ 4), the wall-normal position of ρ̄h̃′′v′′ = 0 can exceed
that of ∂T̃/∂y = 0 by up to 25 % for the high-enthalpy flows of Di Renzo & Urzay
(2021) and Passiatore et al. (2022). While the trend appears to be consistent, its practical
significance is debatable, as the absolute difference is mostly rather small in cases with
large relative differences. In general, this will be the case for most cases as the combination
of high Mτ and high wall-normal position of the temperature peak is difficult or impossible
to achieve.

4.5. Influence of high enthalpy
Some data extracted from TBLs at high enthalpies (Duan & Martín 2011; Di Renzo &
Urzay 2021; Passiatore et al. 2022) have also been included in figure 1. Before discussing
the influence of high enthalpy on the proposed classification, however, the following
remarks are made. The regime diagram has been developed taking into account a large
collection of low-enthalpy configurations, for which the fluid behaves as a calorically
perfect, non-reacting, single-species gas. As discussed in § 2.2.5, high-enthalpy conditions
open up new energy transfer pathways that could alter the pictorial representation given
by the diagram. A notable example would be the potential presence of a species’ thermal
diffusion contribution to the wall heat transfer resulting from catalytic or ablative walls,
thermal processes a priori not covered by the present classification. Moreover, some
high-enthalpy effects – such as vibrational excitation and chemical reactions – require
the crossing of activation energy thresholds that make their significance depend not only
on temperature (or enthalpy) ratios, but also on their absolute values. Lastly, it should
be pointed out that vehicles subjected to high stagnation enthalpy conditions are often
designed for enhancing heat transfer, because of the need to keep the wall temperature
below the creep limits of the surface’s material. As a consequence of this engineering
constraint, most references consider cooled-wall conditions and the available data fall
essentially within the same regime of moderate cooling; the discussion will therefore be
mostly limited to such regime. Notwithstanding such limitations, the inclusion of these
data allows us to identify how and to which extent high-enthalpy flows can be treated
within the present framework, thereby assessing the applicability limits of the regime
diagram.

The high-enthalpy data of Di Renzo & Urzay (2021) and Passiatore et al. (2022) are
shown in panels 2(d i)–(d iii); note that, for the thermal non-equilibrium case of Passiatore
et al. (2022), only the rotranslational temperature is reported. Plotted in semi-local units,
similar trends are observed with respect to the low-enthalpy configurations within the
moderate cooling regime. The wall-normal temperature peak being located in the buffer
layer, high-enthalpy phenomena are likely to be most relevant within this flow region,
which also corresponds to the area where turbulence activity is the strongest. Owing to
the endothermic nature of dissociation reactions and the increase of the fluid’s thermal
capacity with T , these processes tend to lower T̃ values and therefore also the wall-normal
temperature gradient throughout the boundary layer. The reduction of ∂T̃/∂y, however,
is less evident close to the wall and in the outer layer, due to the prescribed Tw and Te
values being lower than the activation temperature for molecular oxygen dissociation.
Since the species’ production/depletion rates only depend on the local thermodynamic
state, the temperature peak’s location is not significantly altered. The null gradient position
is therefore located in the buffer layer and shows a tendency to be shifted outwards
for decreasing −1/Ec values. Note that both data from Di Renzo & Urzay (2021) and
Passiatore et al. (2022) consider non-catalytic wall conditions, therefore ruling out the
effect of gas–surface interactions. The latter can alter the total heat transfer at the wall,
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potentially causing a further shift of the temperature peak towards the log layer. That is
the case for the Me = 3.4 configuration considered by Duan & Martín (2011) and reported
in figure 1 within the strong cooling regime. Compared with the non-catalytic wall,
supercatalytic conditions were shown to move the null gradient location from y/δ ≈ 0.1
to ≈0.2 (see figure 17 in Duan & Martín 2011). In that case, the catalytic heat-flux
contribution is greatly enhanced by the presence of strongly dissociated flow due to the
large Te which, in turn, causes the free stream to be supersonic. On the other hand, when
Te is kept sufficiently low for hypersonic conditions to occur (Me = 9.4 configuration)
the ∂T̃/∂y = 0 locations for the fully and non-catalytic cases are almost superposed,
suggesting only a minor influence of the surface’s condition. These observations point
towards confirming the difficulty of achieving a strong cooling regime at hypersonic
speeds, even under high-enthalpy conditions.

With regard to the turbulent heat flux in panel 2(d iii), no substantial deviations are
observed for high-enthalpy data. The integral decomposition performed by Li et al. (2022)
and Liu et al. (2023) revealed that the wall-normal species’ turbulent transport term
consistently keeps negative values throughout the boundary layer; with respect to the
temperature-related term, its contribution is negligible in the linear region and becomes
of the same order of magnitude from the log layer outwards. This implies that the sign
change of ρ̄h̃′′v′′ is solely due to the temperature component and justifies the negligible
influence observed in § 4.4.2.

When thermal relaxation processes come into play, the longer relaxation times of
vibrational modes lead to pronounced deviations of the wall-normal profile of the
vibrational temperature (T̃V ) compared with the rotranslational one (T̃). Owing to the
sustained vibrational under-excitation within the boundary layer, T̃V sensibly decreases
and T ′2

V loses the characteristic double-peaked structure. The latter, however, should not be
considered as a change in the wall cooling regime from the vibrational standpoint, since
the ∂T̃V/∂y = 0 location is essentially unchanged. Rather, it is a result of the stronger
interaction in the buffer layer with turbulence, whose activity tends to smooth out TV
fluctuations. No significant effects are registered on the turbulent heat-flux profile, also
because the vibrational component accounts for less than 10 %. Thermal non-equilibrium
is stronger close to the turbulence onset; at larger Reynolds numbers, as the flow moves
away from this region, its influence decreases and the effects described in § 4.3 are
expected to become dominant.

5. Discussion/significance

It was shown in the previous sections that Ec can classify the strength of heat transfer
effects to a considerable extent. Further, it was shown that Ec ranges can be identified for
which specific characteristics of the thermal flow field occur. It is the aim of this section
to work out to what extent some fundamental modelling assumptions, e.g. of the SRA,
can be assumed to be approximately valid in the ranges identified or, vice versa, are likely
to fail. To this end, figure 6 shows a summary of representative quantities that are either
the outcome of the classical SRA (Morkovin relations, derived for adiabatic cases, see
Morkovin 1962) or the outcome of more advanced SRAs. Note that only our own DNS data
are discussed below for overview purposes; however, all conclusions derived are validated
with literature data.

First, the wall-normal distribution of the turbulent Prandtl number Prt =
(ρ̄ṽ′′u′′/ρ̄˜v′′T ′′)(∂T̄/∂y)/(∂ ū/∂y) is discussed in outer scaling (y/δ99) in panel (a) and
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Figure 6. (a) Turbulent Prandtl number over semi-local y∗, (b) turbulent Prandtl number over y/δ99, (c) the
correlation coefficient between T ′ and u′ over the semi-local y∗ and (d) ratio between (I) and (III) over y/δ99,
verifying (5.1). All plots are evaluated at Reτ = 700.

semi-local scaling (y∗) in panel (b). In various studies, the turbulent Prandtl number has
been found to be surprisingly insensitive to the wall-temperature condition and usually
shows a falling trend from values of approximately 1 at the wall towards values of
approximately 0.75 near the boundary-layer edge. Besides, it is a defining feature for
cooled cases that the turbulent Prandtl number exhibits a singularity at the wall-normal
position where ρ̄˜v′′T ′′ = 0, which moves outward as cooling increases. Note that the
systematics of how Prt approaches the singularity are closely related to the mismatch
of ∂T̃/∂y = 0 and ρ̄h̃′′v′′ = 0 discussed in § 4.4.2. For all cooled cases except for the
strongly cooled case in panel (a), this singularity is close to the wall in the low buffer
layer or even the viscous sublayer. Note that increasing the cooling intensity for adiabatic
to moderately cooled cases has virtually no influence on the wall-normal distribution
of Prt, which is almost identical for these cases above the singularity. For the strongly
cooled case, in contrast, the value of Prt is almost identical to the prediction made by the
classical SRA of Prt = 1 (Morkovin 1962) below the singularity for approximately 40 %
of the boundary-layer thickness, and thus severely differs from the other cases; above the
singularity, the distribution perfectly matches that of all other cases. It is interesting to note
that this mismatch seems to be almost completely eliminated in the semi-local scaling
in panel (b), where all cases show a highly comparable trend that is well captured by
e.g. the Prt relation by Huang et al. (2023) (Prt = 1.05–0.2 tanh3( y∗/A∗) with A∗ = 70).
Thus, panels (a,b) give evidence that, for strongly cooled cases, the choice of a suitable
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Figure 7. Instantaneous temperature fields T/T̄w at Reτ = 700 for the (a) heated, (b) adiabatic, (c) weakly
cooled, (d) moderately cooled and (e) strongly cooled cases.

Prt relation is more relevant than for weakly or moderately cooled cases. For the present
strongly cooled case, for example, a y/δ99-based model will be significantly misleading for
almost 40 % of the boundary layer, while a y∗-based model turns out to be more universal
and reliable.

Next, the correlation coefficient Ru′T ′ = u′T ′/(
√

u′2
√

T ′2) between the velocity and
temperature fluctuations u′ and T ′ is plotted in panel (c) in semi-local wall-normal units y∗.
This quantity intuitively allows us to assess the interplay between velocity and temperature
fluctuations. Starting from the far field, all heat-transfer conditions lead to the well-known
correlation coefficient of Ru′T ′ ≈ −0.6 reported in, e.g. Guarini et al. (2000) and Pirozzoli
et al. (2004). However, when moving towards the wall, the correlation coefficient moves
to Ru′T ′ ≈ 1 due to the change in the temperature gradient for increased cooling strength,
see also Duan & Martín (2011). Thus, panel (c) illustrates the significance of the positive
temperature gradient regions near the wall, which – especially for the strongly cooled case
– dominate large parts of the boundary layer near the wall. It is a major achievement of
the more recent formulations of the SRA like the generalized SRA (Zhang et al. 2014), for
instance, √

T ′2︸ ︷︷ ︸
(I)

=
∣∣∣∣ 1

Prt

∂T̄
∂ ū

∣∣∣∣
√

u′2
︸ ︷︷ ︸

(II)

= ± ρ̄˜v′′T ′′

ρ̄ṽ′′u′′

√
u′2

︸ ︷︷ ︸
(III)

, (5.1)

that those positive temperature gradient regions in non-adiabatic cases can be incorporated
also for the relationships between the temperature fluctuations and the streamwise velocity
fluctuations, which essentially constitute the spirit of the SRA. Evaluating the ratio
between terms (I) and (III) in panel (d) (equivalent to the ratio of (I) and (II)) shows
that (5.1) holds remarkably well for large regions of the boundary layer. For regions where

ρ̄˜v′′T ′′ ≈ 0 or ∂T̄/∂ ū ≈ 0, (5.1) predicts
√

T ′2 ≈ 0, resulting in a singularity in panel (d)
for real flow data. For the strongly cooled case, this region extents over almost the entire
boundary-layer thickness, which would predict the temperature fluctuations to be near zero
for large regions of the boundary layer. Essentially, this prediction is qualitatively sound,
as the temperature fluctuations are indeed small over most of the boundary layer in this
case, see figure 7. However, as shown by a comparison with figure 2(e i), the temperature
fluctuations for the strongly cooled case never actually become zero. Among others, this
discrepancy between the prediction by the SRA and the DNS data can be attributed to
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limiting assumptions in the derivation of the SRA such as the parallel flow assumption or
the assumption of weak turbulence. However, it is worth noting that this inaccuracy only
makes the relative error of (5.1) appear large for strongly cooled cases, while the absolute
error is acceptable for most practical applications.

In summary, all previously discussed modelling quantities demonstrate that a variety of
modelling approaches already exist today that allow an excellent prediction of the thermal
flow field over the entire Ec range. In this context, it is a key value of the regime diagram
that an a priori estimate can be made of which models should be used for a particular case
and how large the expected uncertainties are, if Ec and Re are known.

6. Summary and conclusion

In this study the heat-transfer effects arising from the interplay of Mach number (viscous
heating) and wall heat transfer are classified in a regime diagram. To this end, the
characteristics of temperature-field-related quantities are considered for both existing and
newly computed DNS data within a wide range of Mach numbers and wall-temperature
conditions, thereby founding the conclusions on a broad basis. It is shown that the effect
of heat transfer can be classified based on the wall-normal position of the temperature
peak arising for cooled cases, which separates regions of positive ∂T̃/∂y near the wall
from regions of negative ∂T̃/∂y above. Since the temperature peak shifts further away
from the wall with increased cooling strength, the interaction between regions having
positive ∂T̃/∂y and boundary-layer turbulence is greatly enhanced. The temperature peak
is therefore a determining factor for the topological characterization of diabatic boundary
layers. In order to have predictive capability the regime diagram is related to the Eckert
number Ec (more precisely −1/Ec) and the local Reynolds number Reτ . While the Eckert
number has been shown to well characterize heat-transfer effects on most important
temperature-related quantities for a wide range of Mach numbers and T̄w/T̄r conditions,
also the local Reynolds number Reτ has been shown to affect the strength of heat-transfer
effects. Its influence has been quantified for the DNS data under consideration, and
estimated at higher Reynolds numbers. Since both Ec and Reτ can be determined in
advance – or estimated to a reasonable extent, it is a key advantage of the classification
scheme to allow an effective estimation of to what extent heat-transfer effects are to
be expected for the compressible turbulent boundary layer in question. Furthermore, it
enables a well-founded prediction of how well different modelling approaches, like the
SRA, are suited to a particular boundary-layer case, or whether they need to be replaced
by more suitable ones.

More precisely, the regimes introduced are specified as follows:

Heated: No topological differences are present in the temperature
profile compared with adiabatic cases, hence, the heat-transfer
strength is characterized solely according to −1/Ec and Reτ .

Adiabatic: All cases with ∂T̃/∂y = 0 at the wall.
Weakly cooled: A temperature peak ∂T̃/∂y = 0 is located in the viscous

sublayer. Thus, the turbulent thermal field is only barely
influenced by the near-wall region with ∂T̃/∂y > 0, leading to

great similarities compared with adiabatic cases. Here,
√

T ′2
shows almost no near-wall peak and ρ̄ṽ′′h′′ is only very weakly
negative near the wall (if at all).
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Moderately cooled: The temperature peak ∂T̃/∂y = 0 is located in the buffer-layer
region, causing the near-wall regions with ∂T̃/∂y > 0 to

strongly affect the thermal turbulent field. Here,
√

T ′2 shows a
pronounced near-wall peak and ρ̄ṽ′′h′′ is clearly negative near
the wall.

Strongly cooled: The temperature peak ∂T̃/∂y = 0 is located in the log layer or
within the wake. Thus, the thermal turbulent field is dominated
by regions of ∂T̃/∂y > 0. Consequently,

√
T ′2 is dominated

by the near-wall inner peak, ρ̄ṽ′′h′′ by the near-wall negative
region.

Quasi-incompressibly The temperature peak ∂T̃/∂y = 0 is close to or above the

cooled: boundary-layer thickness. The outer peak of
√

T ′2 has almost
completely vanished, ρ̄ṽ′′h′′ is almost completely negative.

For the considered super- and hypersonic DNS data at approximately 400 � Reτ �
1200, the borders between weakly/moderately and moderately/strongly cooled regimes are
located at approximately −1/Ec ≈ −0.25 and −0.45, respectively; most of today’s DNS
data are thus located in the weakly and moderately cooled regime. However, it should be
explicitly noted that the distinction between cooled cases, in particular between moderate
and strong cooling, should be regarded as a fluent transition rather than a sharp dividing
line.

Further conclusions that can be drawn from the regime diagram are:

Eckert-number effects: both an increase in heating and cooling (increase or decrease
in T̄w/T̄r) and a decrease in Me result in heat-transfer effects being more pronounced
in the wall-normal profiles of temperature-related quantities, since both influences are
combined in the Eckert number (see also Wenzel et al. 2022). Consequently, with
increasing Mach number Me, an increasingly strong heating or cooling (T̄r − T̄w) is
necessary to actually achieve strong heat-transfer effects. In addition, the influence of Me
on heat-transfer effects decreases drastically for high hypersonic Mach numbers, leaving
the heat transfer almost exclusively a function of T̄w/T̄r only. In the case of wall cooling,
strong heat-transfer effects already occur at comparatively high T̄w/T̄r at low supersonic
Mach numbers, and only at extremely low T̄w/T̄r values at high supersonic Mach
numbers.

Reynolds-number effects: as the wall-normal position of the inner-scaled temperature
peak shifts outward with increasing Reynolds number, a boundary layer feels heat-transfer
effects more severely at high Reynolds numbers compared with low Reynolds numbers.
In this sense, low-Reynolds-number cases are much more likely to be classified into the
weakly and moderately cooled regime than in the strongly cooled regime. Vice versa, for
hypersonic flows, where strong cooling is virtually impossible to achieve for low Reynolds
number, this regime becomes accessible for higher Reynolds numbers. Furthermore, it
is noted that Reynolds-number effects become stronger the further the temperature peak
shifts away from the wall, i.e. the stronger heat-transfer effects become.

Mach-number effects: in addition to ‘passive’ Mach-number effects, which are already
implicitly taken into by the definition of Ec, ‘direct’ Mach-number effects were shown to
affect the regime diagram only very weakly. More precisely, the wall-normal position of
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the temperature peak was found to be rather insensitive to a change in the Mach number
Mτ , at least for cases with weak or moderate cooling.

High-enthalpy effects: albeit designed on the basis of low-enthalpy flows, the regime
diagram is shown to be quite robust with respect to the introduction of high-enthalpy
effects. Vibrational excitation and chemical reactions modulate the magnitude of
thermal-related quantities, but the wall-normal locations of their critical points are
essentially unchanged. For thermal non-equilibrium conditions, the behaviour of the
rotranslational modes closely follows the trends observed in low-enthalpy configurations.
Owing to their additional heat-flux contribution, catalytic processes can favour stronger
cooling regimes when acting in highly dissociated environments, still at the expense of
a decrease in the Mach number and a transition from hyper- to supersonic conditions,
as predicted by the diagram. Whether a combination of these effects can actually
allow to achieve a strongly cooled regime at hypersonic speeds needs therefore further
investigation.
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Appendix A. Inner scaling

For reference, figure 8 shows the plots of figure 2 in wall units.

Appendix B. Validation of the DNS

In this section a brief description of the validation process of all newly computed DNS
cases is given. To this end, figure 9 shows a selection of turbulent quantities at Reτ = 580
together with the adiabatic reference by Pirozzoli & Bernardini (2011) at Me = 2.0;
furthermore, the outer part of the streamwise velocity fluctuation of the weakly cooled
case is compared in figure 10(a) with its equivalent reference by Cogo et al. (2023) at
Reτ = 443, where no data are available at Reτ = 580. Both from figures 9 and 10(a)
the adiabatic and weakly cooled cases show an overall good match with their equivalent
reference data. Differences are mainly the result of the different inlet condition employed
(digital filtering vs recycling) and are well in the range of known uncertainties, see e.g.
Ceci et al. (2022). Since also the moderately cooled case, for which no equivalent reference
is available, follows the trend of the other literature data in figure 2, we consider the
adiabatic, weakly cooled and moderately cooled cases as validated. For the heated and
strongly cooled cases, in contrast, no reference data are available at all. However, as both
cases strictly follow the Ec trend of the three previously discussed cases in figure 9,
both data sets can be considered to be at least plausible. To further enhance reliability
of especially the strongly cooled case – which plays a prominent role in this work as
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Figure 8. Plot of the inner-scaled temperature fluctuation (labelled as (i) in the left column), the pre-multiplied
temperature gradient (labelled as (ii) in the middle column) and the normalized turbulent heat flux (labelled as
(iii) in the right column). The rows, from top to bottom, correspond to the regimes: (a) heated, (b) adiabatic,
(c) weakly cooled, (d) moderately cooled and (e) strongly cooled. Each data point is identified by its respective
value of −1/Ec and Mach number in brackets (Me). The legend in figure 1 includes the references for the line
colours and symbols.

it was performed at a uniquely low value of −1/Ec – figure 10(a,b) provides a grid
convergence study at three grid resolutions: (i) the present fine grid used for the study
(ii) a coarse grid where the resolution in x is reduced by a factor of 2, y by 1.33 and z by
1.5 (iii) and a very fine grid where the resolution in x and z is increased by a factor of
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A regime diagram for heat-transfer effects

4.0
Pirozzoli & Bernardini (2011)

Peak shift

1
Ec1

Ec

–

–
–



1
Ec– 

 1
Ec 

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

3.5

3.0

2.5

2.0

1.5 Strongly cooled
Moderately cooled
Weakly cooled
Adiabatic
Heated

Strongly cooled
Moderately cooled
Weakly cooled
Adiabatic
Heated

1.0

0.5

0
100 101

y+ y+
102 103 100 101 102 103

�ρ̄
/
ρ̄

w
�u

′2+

–(
ρ̄
/
ρ̄

w
) 

u′
v
′+

(b)(a)

Figure 9. Fluctuating velocity components in inner scaling at Reτ = 580. For reference, the adiabatic case of
Pirozzoli & Bernardini (2011) is shown as black squares. (a) Inner-scaled root mean square of the streamwise
velocity. (b) Inner-scaled u′v′ Reynolds stress.
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Figure 10. (a) Inner-scaled root mean square of the streamwise velocity fluctuation. The adiabatic case is
plotted in comparison with Pirozzoli & Bernardini (2011) (black squares) at Reτ = 580. The weakly cooled
case is plotted in comparison with Cogo et al. (2023) (green triangles) at Reτ = 443. The strongly cooled case
is plotted in three resolutions at Reτ = 580. (b) Wall shear stress fluctuations over Reτ with red squares and
incompressible trend line from Schlatter & Örlü (2010). (c) Peak value of the fluctuating streamwise velocity
component with adiabatic Me = 2.0 trend line from Ceci et al. (2022).

1.3, while the y resolution is identical. To evaluate grid convergence, figure 10(a) depicts

the turbulent velocity fluctuation
√

u′2+
in the outer layer (some reference data are only

available in Reynolds averaging), a quantity sensitive to poor grid resolution in this region.

Besides, the root mean square of the turbulent wall shear stress τ+
w,rms =

√
τ ′2

w /τ̄w and

the density-scaled u′2+
-peak value over Reτ are depicted in panels (b,c), respectively,

see also table 4 for a summary of resulting parameters. Overall, all results suggest an
already grid-converged state for the coarse grid, which simply results from the fact that, for
strongly cooled cases, the effective grid resolution above the viscous sublayer is already
drastically increased compared with the nominal grid resolution at the wall because the
density has become significantly smaller and the viscosity larger. A minimal grid influence
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Case 	x+ 	y+
w 	z+ cf × 1000 H

cZPGsc Coarse 10.4 0.46 9.24 4.162 1.524
cZPGsc Fine 5.19 0.34 4.62 4.166 1.523
cZPGsc Very Fine 3.94 0.35 3.54 4.167 1.523

Table 4. Grid resolution analysis for the strongly cooled case cZPGsc at Reτ = 580. Given parameters are
the resulting grid resolutions 	x+, 	y+

w and 	z+ in the streamwise, wall-normal and spanwise directions,
respectively, as well as the skin-friction coefficient cf and the shape factor H.

can only be seen for the peak value in panel (c), which is marginally higher for the strongly
cooled range than for adiabatic cases, see also figure 9(a).
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