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1. Introduction

1.A. Positivity of normalised tangent bundles

Let X be an n-dimensional projective manifold, and let C ⊂X be an irreducible projective

curve. The (semi)stability of the restriction TX |C is very closely related to the global
geometry of X. For example, a famous result of Mehta and Ramanathan [33] says that

the restriction TX |C of TX to a general complete intersection curve C of sufficiently

ample divisors is again (semi)stable provided that TX itself is (semi)stable with the
respective polarisation. However, apart from very special situations, the variety X usually

contains many dominating families of irreducible curves to which the restrictions of TX

are not (semi)stable. Using the language of positivity of Q-twisted vector bundles, the
semistability of TX |C is equivalent to the nefness of the restriction of the normalised

tangent bundle TX<− 1
nc1(X)> of X to C (see [29, Proposition 6.4.11]). Thus, our

expectation above can be rephrased by saying that X should be very special if its

normalised tangent bundle is positive in some algebraic sense.
Let π : P(TX) → X be the projectivised tangent bundle (in the Grothendieck sense)

with tautological divisor Λ. The normalised tangent bundle TX<− 1
nc1(X)> is said

pseudoeffective (respectively, ample, big, nef ), if so, is the class Λ− 1
nπ

∗(c1(X)). The
normalised tangent bundle is said almost nef if all irreducible curves C ⊂ X, to which

the restriction of TX<− 1
nc1(X)> is not nef, are contained in a countable union of proper

subvarieties of X. Since the normalised tangent bundle of a curve is numerically trivial,
we will only consider varieties of dimension at least 2.

The positivity of normalised tangent bundles has already been studied in various

contexts. In particular, we have the following theorem, which can be easily derived from
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the works of Höring-Peternell [16, Theorem 1.9], Jahnke-Radloff [23, Theorem 0.1] and

Liu-Ou-Yang [32, Theorem 1.6]. It can be viewed as a strong evidence to our expected

picture above.

Theorem 1.1. Let X be a projective manifold of dimension at least 2. Then the

normalised tangent bundle of X is almost nef if and only if X is isomorphic to a finite

étale quotient of an Abelian variety.

The motivation of this paper is to study a weaker positivity: the pseudoeffectivity

of normalised tangent bundles. This problem has already been studied by Höring-
Peternell in [16] for Kawamata log terminal (klt) projective variety with numerically

trivial canonical class. Moreover, Nakayama has studied this problem in [38] for semi-

stable vector bundles of rank 2 over projective manifolds of arbitrary dimension, and

he obtained a complete classification for such vector bundles (see [38, IV, Theorem 4.8]
for a precise statement). In particular, Nakayama’s result provides a satisfactory answer

to our problem above for projective surfaces. For instance, it turns out that a del Pezzo

surface S has pseudoeffective normalised tangent bundle if and only if S is isomorphic to a
quadric surface (see Theorem 4.8). Note that the product of two projective manifolds with

pseudoeffective normalised tangent bundle has again pseudoeffective normalised tangent

bundle. To exclude the product cases, we will focus on the case where X is a Fano
manifold of Picard number 1 with dimension at least 3 in this paper. Note that in this

situation, the pseudoeffectivity of the normalised tangent bundle of X implies that the

tangent bundle of X is big, and it is expected that the bigness of the tangent bundle is

already a rather restrictive property (see [15]). We expect the following classification:

Conjecture 1.2. Let X be a Fano manifold of Picard number 1 with dimension at least 3.

Then the normalised tangent bundle of X is pseudoeffective if and only if X is one of the

following varieties:

(1) a smooth quadric hypersurface;

(2) the Grassmann variety Gr(n,2n);

(3) the spinor variety S2n;

(4) the Lagrangian Grassmann variety LG(n,2n);

(5) the 27-dimensional E7-variety E7/P7.

Note that the normalised tangent bundles of the varieties in the list are already shown

to be pseudoeffective but not big by [47, Corollary 1.4] (see Proposition 5.14 for another

proof). We will prove a more general result in Theorem 1.14. On the other hand, if we
use the pseudoeffective threshold (with respect to an ample line bundle A) introduced in

[47] which is defined as:

α(X,A) := sup{α ∈ R |Λ−απ∗A is effective},

then we can reformulate Conjecture 1.2 as follows:
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Conjecture 1.3. Let X be a Fano manifold of Picard number 1 with dimension at least 3.
Then:

α(X,−KX)≤ 1

dim(X)

with equality if and only if X is one of the varieties in Conjecture 1.2.

Remark 1.4. By Theorem 1.1, the normalised tangent bundle of a projective manifold

can not be nef and big (see also [38, IV, Corollary 4.7]). On the other hand, Conjecture 1.2
implies that there does not exist examples of Fano manifolds of Picard number 1 with

big normalised tangent bundle, and we suspect the existence of such examples even for

Fano manifolds of higher Picard number. Here, we recall that if the tangent bundle TX

of a Fano manifold X is semistable with respect to some ample line bundle A, then the

normalised tangent bundle of X can not be big (see Lemma 2.8).

A powerful tool to study Fano manifolds is the variety of minimal rational tangents

(VMRT) theory developed by Hwang and Mok (cf. [18]). Fix a dominating family of
minimal rational curves K on a Fano manifold X and a general point x ∈X. The tangent

directions at x of members in K passing through x form a projective subvariety Cx
in P(ΩX,x). The projective geometry of Cx encodes many global properties of X. For
example, we can recover irreducible Hermitian symmetric spaces (IHSS for short) from

their VMRTs by the following result of Mok:

Theorem 1.5 (34, Main Theorem). Let G/P be an irreducible Hermitian symmetric

space, and let X be a Fano manifold of Picard number 1. Assume that the VMRT of
X at a general point is projectively equivalent to that of G/P . Then X is isomorphic

to G/P .

As all the varieties listed in Conjecture 1.2 are IHSS, we may try to determine first the

VMRTs of X in Conjecture 1.2, and then apply Theorem 1.5. This is the approach that
we will use in this paper.

It is interesting to remark that among IHSS, only the following varieties do not appear

in Conjecture 1.2: Gr(a,a+ b) with a �= b, S2n+1 and E6/P1. These varieties are exactly
those among IHSS which appear in stratified Mukai flops (cf. Proposition 5.2). As it will

become clearer, there exists a delicate relationship between the pseudoeffective threshold

and the birational geometry.

Table 1. IHSS and their VMRTs.

IHSS G/P Qn Gr(a,a+ b) Sn LG(n,2n) E6/P1 E7/P7

VMRT Co Qn−2 Pa−1×Pb−1 Gr(2,n) Pn−1 S5 E6/P1

embedding Hyperquadric Segre Plücker Second Veronese spinor Severi
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1.B. Varieties with small codegree

Recall that the codegree codeg(Z) of a projective variety Z ⊂ PN is defined as the degree

of its dual variety Ž ⊂ P̌N (see Definition 3.1). Varieties with small degree have been

thoroughly studied, while very little is known for varieties with small codegree. Segre

proved in [46] that for an irreducible and linearly nondegenerate projective variety Z �

PN , if its dual variety Ž ⊂ P̌N is a hypersurface with nonvanishing hessian, then we have

the following Segre inequality:

codeg(Z) := deg(Ž)≥ 2(N +1)

dim(Z)+2
. (1.1)

The above inequality is sharp, and, in fact, the following complete divisibility conjecture
due to Russo and Zak predicts the boundary varieties:

Conjecture 1.6 ([45, Question 5.3.11] [56, Conjecture 4.15]). Let Z � PN be an

irreducible and linearly nondegenerate projective variety. If the dual variety Ž ⊂ P̌N is

a hypersurface with nonvanishing hessian, such that:

codeg(Z) := deg(Ž) =
2(N +1)

dim(Z)+2
, (1.2)

then Z is isomorphic to one of the following varieties:

(1) a smooth quadric hypersurface (codeg(Z) = 2);

(2) the Segre variety Pn−1×Pn−1 ⊂ P(n−1)(n+1) (codeg(Z) = n);

(3) the Grassmann variety Gr(2,2n)⊂ Pn(2n−1)−1 (codeg(Z) = n);

(4) the Veronese variety ν2(P
n−1)⊂ P

(n−1)(n+2)
2 (codeg(Z) = n);

(5) the 16-dimensional Cayley plane E6/P1 ⊂ P26 (codeg(Z) = 3).

Conjecture 1.6 is still widely open for codeg(Z)≥ 4. The case codeg(Z) = 2 is easy, as Z

must be a hyperquadric. When codeg(Z) = 3, then we have dimZ = 2N−4
3 , which is the

bound for Severi varieties. Thanks to Zak’s classification of smooth varieties of codegree 3

(see [55, Theorem 5.2]), it turns out in this case, Z is one of the following Severi varieties:

ν2(P
2)⊂ P5, P2×P2 ⊂ P8, Gr(2,6)⊂ P14or E6/P1 ⊂ P26.

As a corollary, Conjecture 1.6 is confirmed in the following two cases:

(1) dim(Z)> 2N−4
3 ;

(2) Z is smooth and dim(Z)> N−3
2 .

On the other hand, initiated from the 1950s, there have been many efforts trying to

classify nonsingular curves and surfaces with small codegree, which proves Conjecture 1.6

up to dimension 2. More precisely, we have:

Proposition 1.7 ([51, Theorem 2.1] [56, Propositions 3.1 and 3.2]). If Z � PN is a

smooth projective variety of dimension at most 2 satisfying (1.2), then Z is either a conic

curve, a quadric surface or the Veronese surface ν2(P
2)⊂ P5.

https://doi.org/10.1017/S1474748022000366 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000366


154 B. Fu and J. Liu

There are very few papers devoted to threefold cases (see, for example, [27]). We will

confirm Conjecture 1.6 for smooth projective threefolds. More precisely we shall show:

Proposition 1.8. Let Z � PN be a linearly nondegenerate smooth projective threefold of

degree d and codegree d∗. Then one of the following statements holds:

(1) pg(S) �= 0 and d∗ ≥ 2N , where S is a general hyperplane section of Z.

(2) 2d∗ ≥ d with equality if and only if Z is projectively equivalent to either the Veronese

variety ν2(P
3)⊂ P9 or its isomorphic projection in P8.

In particular, Conjecture 1.6 holds for smooth projective threefolds. More precisely, if

Z � PN is a linearly nondegenerate smooth projective threefold satisfying the equality

(1.2), then Z is either a quadric threefold in P4 or the Veronese embedding ν2(P
3)⊂ P9.

The relation between Conjectures 1.2 and 1.6 can be easily seen from Table 1 above:
the varieties listed in Conjecture 1.6 are nothing else but the VMRTs of the varieties

listed in Conjecture 1.2. Indeed, if we assume that the VMRT of X at a general point

is not dual defective, then the pseudoeffectivity of the normalised tangent bundle can be

interpreted as information on the cohomological class of the total dual VMRT (cf. [15,
22]). This allows us to relate Conjectures 1.2 to 1.6. In particular, combining this with

the known results for Conjecture 1.6 yields the following first main result of this paper.

Theorem 1.9. Let X be an n-dimensional Fano manifold of Picard number 1 with n≥ 3.

Assume that the VMRT Cx ⊂ P(ΩX,x) at a general point x ∈X is not dual defective.

(1) If we assume in addition that the VMRT is irreducible and linearly nondegenerate,

such that its dual variety has nonvanishing hessian, then:

(1.1) α(X,−KX)≤ 1
dim(X) ;

(1.2) Conjecture 1.6 implies Conjectures 1.2 and, hence, 1.3;

(2) Conjectures 1.2 and 1.3 hold if one of the following holds:

(2.1) dim(Cx)> 2n−6
3 ;

(2.2) Cx is smooth and dim(Cx)>max
{

n−4
2 ,0

}
or

(2.3) Cx is irreducible, smooth, linearly nondegenerate and dim(Cx)≤ 3.

Our statement is actually a bit stronger: if in Theorem 1.9, the normalised tangent

bundle of X is assumed to be pseudoeffective, then the VMRT Cx ⊂ P(ΩX,x) satisfies the

reverse Segre inequality (1.1) (see Proposition 4.3). Typically, a projective variety is dual
defective only in very special cases and the VMRTs of a large class of Fano manifolds

are smooth and irreducible. Thus, the assumption on smoothness, irreducibility and

nondefectiveness is not very restrictive. However, the assumption on the nondegeneracy
seems to be a strong restriction as many known examples of Fano manifolds have

degenerate VMRTs.

Corollary 1.10. Let X be an n-dimensional Fano manifold of Picard number 1, such

that 3 ≤ n ≤ 5. Assume that the VMRT Cx ⊂ P(ΩX,x) at a general point is smooth and
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nonlinear. Then the normalised tangent bundle of X is pseudoeffective if and only if X is
a smooth quadric hypersurface in Pn+1 (3≤ n≤ 5).

Remark 1.11. Let X be a Fano manifold of Picard number 1. To the best of our
knowledge, the known examples of X with singular VMRTs have dimension at least

6 (cf. [19, Theorem 1.3]) and the known examples of X, not isomorphic to projective

spaces, with linear VMRTs also have dimension at least 6 (cf. [36, Proposition A.8]).

Corollary 1.12. Let X be an n-dimensional Fano manifold of Picard number 1, such that

3 ≤ n ≤ 11. Assume that the VMRT Cx at a general point x ∈X is irreducible, smooth,
linearly nondegenerate and not dual defective. Then the normalised tangent bundle of X

is pseudoeffective if and only if X is one of the following varieties:

(1) a smooth quadric hypersurface in Pn+1 (3≤ n≤ 11);

(2) the Lagrangian Grassmann varieties LG(3,6) and LG(4,8) or

(3) the Grassmann variety Gr(3,6).

1.C. Rational homogeneous spaces

As mentioned in the previous subsection, the pseudoeffectivity of the normalised tangent
bundle implies the bigness of the tangent bundle and, to our knowledge, there are very

few known examples of Fano manifolds of Picard number 1 with big tangent bundle.

Apart from rational homogeneous spaces, only two examples are known, namely, the
del Pezzo threefold V5 of degree 5 [15, Theorem 1.5] and the horospherical G2-variety

X [44, Theorem 2.3] (see Remark 6.4 and [31]). Thus, a natural question is to verify

Conjecture 1.2 for those examples. This is more or less equivalent to determine the

pseudoeffective cone of the projectivised tangent bundle, or equivalently, to determine
the invariant α(X,−KX), and it fits into the following general problem in the study of

positivity of vector bundles.

Problem 1.13 (38, IV.4, Problem). Let E be a vector bundle over a projective manifold

X, and let Λ be the tautological class of the projectivised bundle π : P(E)→X. Describe

the set:

V (X,E) := {D ∈N1(X) |Λ+π∗D is pseudoeffective}.

The second part of this paper is devoted to study Problem 1.13 for rational homogeneous

spaces X = G/P of Picard number 1 and for E = TX . This is equivalent to determine
whether the following cohomological group:

H0(X,(SymrTX)⊗OX(−dH))

vanishes or not, where H is the ample generator of Pic(X). In general, it is quite difficult

to compute these cohomological groups due to the lack of tools. However, recently
it is observed in [15] that the problem can be translated into the calculation of the

cohomological class of the total dual VMRT if the VMRT is not dual defective. By

combining this with the geometry of stratified Mukai flops, we will completely settle
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Problem 1.13 for rational homogeneous spaces of Picard number 1 with E being the
tangent bundle, which reads as follows:

Theorem 1.14. Let G/P be a rational homogeneous space of Picard number 1 with

dimension at least 2. Let Λ be the tautological divisor on P(TG/P ) and π : P(TG/P )→G/P
be the natural projection. Denote by H the ample generator of Pic(G/P ). Then there exist

two integers a,b (explicitly determined in Appendix A) associated to G/P , such that:

(1) The pseudoeffective threshold α(G/P,H) is equal to b/a, namely, Λ− λπ∗H is

pseudoeffective if and only if λ≤ b/a.

(2) Let r and d be two arbitrary positive integers. Then:

H0(G/P,(SymrTG/P )⊗OG/P (−dH)) �= 0⇐⇒ b
⌊ r
a

⌋
≥ d;

(3) Conjecture 1.2 and, hence, Conjecture 1.3 hold for G/P .

Note that Shao proved in [47], with completely different techniques (via the Borel-Weil-

Bott Theorem), the statements of Theorem 1.14 for IHSS. It seems hard to extend his
arguments to this general setting.

The main idea of the proof is to use the generically finite Springer map ŝ : T ∗
G/P →O

from the cotangent bundle of G/P to its Richardson orbit closure. By taking the Stein
factorisation, and then taking the projectivisation, we get a birational map ε : P(TG/P )→
Y. The birational geometry of ε is well understood ([10], [39], [40]), which implies, for

example, when ε is small, there exists a (projectivised) stratified Mukai flop (over Y)

μ : P(TG/P ) ��� P(TG/Q) with G/P �G/Q. This allows us to determine the effective cone
and the movable cone of P(TG/P ) (cf. Theorem 5.5) in terms of the exceptional divisor

Γ of ε (respectively, μ∗π∗
2H) when ε is divisorial (respectively, when ε is small), where

π2 : P(TG/Q)→G/Q and H is an ample generator of Pic(G/Q). The two numbers a and
b in Theorem 1.14 are the unique positive integers, such that:

Γ≡ aΛ− bπ∗H (resp. μ∗π∗
2H ≡ aΛ− bπ∗

1H).

It turns out the integer a is very geometrical, which is related to the codegree of the
VMRT of G/P or to the degree of the images of lines under the stratified Mukai flops,

while b is an integer taking value 1 or 2, and b= 2 if and only if the VMRT of G/P is not

dual defective and G/P is not isomorphic to E7/P4. Subsequently, we will divide G/P

into different types (Definition 5.6). In order to compute them, we carry out a detailed
study of stratified Mukai flops.

One interesting observation is that we have (a,b) = (4,2) for Fano contact manifolds of

Picard number 1 different to projective spaces (cf. Proposition 5.14), and their VMRTs
are the homogeneous Legendre varieties, which form the main series of the conjectural

list of nonsingular varieties with codegree 4 and are also the examples of varieties of next

to minimal degree (cf. [50, p. 168] and [56, Remarks 3.6 and 4.16]).
Other interesting examples of Fano manifolds with Picard number 1 are provided by

moduli spaces SUC(r,d) of stable vector bundles of rank r and degree d over a nonsingular

projective curve of genus g. Based on the work of Hwang-Ramanan [22], we show in
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Corollary 3.5 that the tangent bundle of SUC(r,d) is not big if g ≥ 4, r ≥ 3 and (r,d) = 1.

In particular, the normalised tangent bundle of SUC(r,d) is not pseudoeffective in this

case.

Remark 1.15. As predicted by Conjecture 1.2, a Fano manifold of Picard number 1
with pseudoeffective normalised tangent bundle must have nef tangent bundle. If we can

prove this, then Conjecture 1.2 would follow from Theorem 1.14 and the famous Campana-

Peternell conjecture (see [5]), which predicts that Fano manifolds with nef tangent bundles
must be homogeneous.

Here is the organization of this paper: after a brief recall of various notions of positivity
of vector bundles in Section 2, we describe in Section 3 the pseudoeffective cone of P(TX)

in terms of total dual VMRT when X is a Fano manifold of Picard number 1 with

a big tangent bundle whose VMRT is not dual defective. Section 4 is devoted to the
proof of Theorem 1.9. We determine the pseudoeffective cone of P(TG/P ) in Section 5 for

rational homogeneous spaces G/P of Picard number 1. Two nonhomogeneous examples

are studied in Section 6.

2. Cone of divisors and positivity of vector bundles

2.A. Cone of divisors

Given a projective variety X, we consider the real vector spaceN1(X) :=N1
R(X) of Cartier

divisors, with real coefficients, up to numerical equivalence. Its dimension is equal to the

Picard number ρ(X) of X. This vector space contains several important convex cones.

(1) The effective cone Eff(X) is the convex cone in N1(X) generated by classes of
effective divisors. This cone is neither closed nor open in general. The closure Eff(X)

of Eff(X) is called the pseudoeffective cone of X. The interior of the effective cone

Eff(X) is the big cone Big(X) of X, which is the convex cone generated by big
R-Cartier divisors.

(2) Denote by Mov(X) the cone in N1(X) generated by classes of movable divisors; that

is, Cartier divisors D on X, such that its stable base locus B(D) has codimension at

least 2. Again, this cone is neither closed nor open. The closure Mov(X) of Mov(X)
is called the movable cone. Recall that the stable base locus of a Q-Cartier Q-Weil

divisor D on a projective variety X is the Zariski closed subset defined as:

B(D) :=
⋂

m∈N, mD Cartier

Bs(mD).

(3) The nef cone Nef(X) is the cone of classes inN1(X) having nonnegative intersection

with all curves in X. This cone is closed by definition, and its interior is the ample
cone Amp(X), which is generated by classes of ample divisors. In general, the nef

cone is neither polyhedral nor rational.

Clearly, there are inclusions: Nef(X)⊆Mov(X)⊆ Eff(X).
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2.B. Divisorial Zariski decomposition

Let D be a pseudoeffective R-divisor on a smooth projective variety X. Recall that for a

prime divisor Γ on X, we can define:

σΓ(D) = lim
ε→0+

inf {MultΓD
′ |D′ ≥ 0 and D′ ∼R D+ εA},

where A is any fixed ample divisor. By [38, III, Corollary 1.11], there are only finitely

many prime divisors Γ on X, such that σΓ(D)> 0. This allows us to make the following
definition (see [4] and [38, III]).

Definition 2.1. Let D be a pseudoeffective R-divisor on a projective manifold X. Define:

Nσ(D) =
∑
Γ

σΓ(D)Γ and Pσ(D) =D−Nσ(D).

The decomposition D = Nσ(D) +Pσ(D) is called the divisorial Zariski decomposition

of D.

Note that Nσ(D) is an effective R-Weil divisor and Pσ(D) is a movable R-divisor, that

is, [Pσ(D)] ∈Mov(X) (cf. [38, III, Proposition 1.14]). In particular, for any prime divisor
Γ⊂X, the restriction Pσ(D)|Γ is pseudoeffective.

2.B.1. Augmented and restricted base loci. Let D be an R-Cartier R-Weil divisor

on a normal projective variety X. The augmented base locus (a.k.a., nonample locus) of
D is defined to be:

B+(D) :=
⋂
A

B(D−A),

where the intersection is over all ample divisors A, such that D−A is a Q-Cartier Q-Weil
divisor. The restricted base locus (a.k.a., nonnef locus) of D is defined as:

B−(D) :=
⋃
A

B(D+A),

where the union is taken over all ample divisors A, such that D+A is a Q-Cartier Q-

Weil divisor. Recall that the augmented and restricted base loci depend only on the
numerical equivalence class of D, and we refer the reader to [8] for a detailed discussion

of these notions. Let us denote by B1
+(D) (respectively, B1

−(D)) the union of codimension

1 components of B+(D) (respectively, B−(D)).

Lemma 2.2. Let D and D′ be two pseudoeffective R-Cartier R-Weil divisors on a normal
projective variety X. Assume that there exists an ample divisor A, such that [D] is contained

in the interior of the two-dimensional cone 〈[D′],[A]〉. Then we have B+(D)⊂ B−(D
′).

Proof. By assumption, there exist positive real numbers λD′ and λA, such that D ≡R

λD′D′+λAA. By [8, Lemmas 1.8 and 1.14], we obtain:

B+(D) = B+(λD′D′+λAA)⊂ B−(λD′D′) = B−(D
′),

which concludes the proof.
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Lemma 2.3. Let M be a movable R-Cartier R-Weil divisor on a normal projective variety
X. Then [M ] is contained in the interior of Mov(X) if and only if B1

+(M) = ∅.

Proof. Let A be an arbitrary ample divisor on X. By [8, Proposition 1.5], there exists
0< ε� 1, such that B+(M) = B(M− ε′A) for any 0< ε′ ≤ ε. In particular, it follows that

B1
+(M) = ∅ if and only if B(M − ε′A) does not contain divisorial parts, that is, M − ε′A

is movable, which holds if and only if [M ] is contained in the interior of Mov(X).

2.B.2. Comparing base loci and Nσ(D). Given a pseudoeffective R-Weil divisor D

on a projective manifold X, the augmented and restricted base loci are closely related to
the divisorial Zariski decomposition of D.

Lemma 2.4. Let D be a pseudoeffective R-Weil divisor on a projective manifold X.
Then:

(1) Supp(Nσ(D)) is precisely the divisor B1
−(D).

(2) If D is not movable and [D] generates an extremal ray of Eff(X), then there exists

a unique prime divisor Γ⊂X, such that: [Γ] ∈ R>0[D]. Moreover, we have:

Γ = Supp(Nσ(D)) = B1
−(D).

Proof. Statement (1) follows from [38, V, Theorem 1.3], and statement (2) is proved in

[15, Lemma 2.5]

As an immediate application, a pseudoeffective R-Weil divisor D on a projective
manifold X is movable if and only if B1

−(D) is empty (see also [38, III, Proposition

1.14].

Corollary 2.5. Given a projective manifold X, let D be a pseudoeffective R-Weil divisor

and let M be a movable R-Weil divisor on X. Assume that:

(1) the divisor D is not movable and [D] generates an extremal ray of Eff(X);

(2) the divisor class [M ] is not contained in the interior of Mov(X) and

(3) there exists an ample divisor A, such that [M ] is contained in the interior of the
two-dimensional cone 〈[D],[A]〉.

Then we have B1
+(M) = B1

−(D) = Supp(Nσ(D)), which is the unique prime divisor

contained in the ray R>0[D].

Proof. By our assumption (3) and Lemma 2.2, we have B+(M) ⊂ B−(D). As [M ] is

not contained in the interior of Mov(X), it follows from Lemma 2.3 that B1
+(M) is not

empty. On the other hand, according to assumption (1) and Lemma 2.4, one obtains that
B1
−(D) = Supp(Nσ(D)) is the unique prime divisor which is contained in R>0[D]. This

forces that B1
+(M) = B1

−(D).
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2.C. Positivity of vector bundles

Given a projective variety X, let E be a vector bundle of rank r over X. Denote by

π : P(E)→X the projectivised bundle in the sense of Grothendieck; that is,

P(E) := ProjX

⎛⎝⊕
r≥0

SrE

⎞⎠ .

Denote by Λ the tautological divisor of P(E), that is, OP(E)(Λ) ∼=OP(E)(1). We will use

the following terminologies throughout this paper (see [29] for more details).

Definition 2.6. Let X be a projective variety.

(1) A Q-twisted vector bundle E<δ> on X is an ordered pair consisting of a vector

bundle E on X, defined up to isomorphisms and a numerical equivalence Q-Cartier
divisor class δ ∈N1(X).

(2) The normalisation of a vector bundle E of rank r on X is the Q-twisted vector

bundle:

E<−1

r
c1(E)> .

(3) A Q-twisted vector bundle E<δ> is said to be pseudoeffective (respectively, ample,

big, nef) if the class Λ+π∗δ is pseudoeffective (respectively, ample, big, nef) on

P(E).

(4) A Q-twisted vector bundle E<δ> is said almost nef if for a very general curve C,

the restriction E<δ> |C is nef. Here, very general curves mean that they intersect

the complementary part of a countable union of proper subvarieties.

The following properties are well known for experts, and we include a complete proof

for the reader’s convenience (see also [15, Lemmas 2.2 and 2.3]).

Proposition 2.7. Let X be a projective variety. Let E and F be vector bundles over X,

and let δ ∈N1(X) be a Q-Cartier divisor class.

(1) The Q-twisted vector bundle E<δ> is pseudoeffective if and only if for an arbitrary
big Q-Cartier Q-Weil divisor D on X and an arbitrary Q-Cartier Q-Weil divisor Δ

on X, such that [Δ] = δ, there exists an effective Q-Weil divisor N satisfying:

N ∼Q Λ+π∗(Δ+D).

(2) The Q-twisted vector bundle E<δ> is big if and only if the Q-twisted vector bundle
E<δ−γ> is pseudoeffective for some big Q-Cartier class γ ∈ Big(X).

Proof. One direction of statement (1) is clear since the pseudoeffective cone Eff(P(E))
is closed. For the converse, we assume that E<δ> is pseudoeffective. Since D is big, by

[28, Chapter 2, Corollary 2.2.7], there exists an ample Q-Cartier Q-Weil divisor A and

an effective Q-Weil divisor N ′, such that D ∼Q A+N ′. On the other hand, as Λ+π∗δ is

https://doi.org/10.1017/S1474748022000366 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000366


Normalised tangent bundle, varieties with small codegree and pseudoeffective threshold 161

π-ample, there exists a rational number 0< ε� 1, such that the Q-Cartier Q-Weil divisor
ε(Λ+π∗Δ)+π∗A is ample. This implies that:

Λ+π∗(Δ+D)∼Q ε(Λ+π∗Δ)+π∗A+(1− ε)(Λ+π∗Δ)+N ′

is big since Big(P(E)) is the interior of Eff(P(E)). Then it follows again from [28, Chapter

2, Corollary 2.2.7] that there exists an effective Q-Cartier Q-Weil divisor N, such that:

N ∼Q Λ+π∗(Δ+D).

One can easily obtain one implication of statement (2), since Big(P(E)) is open.
Conversely, we assume that E<δ− γ> is pseudoeffective for some big Q-Cartier class

γ. Similar to the proof of statement (1), there exist a rational number 0 < ε � 1 and

an ample Q-Cartier Q-Weil divisor A and an effective Q-Weil divisor N such that the

Q-Cartier divisor class ε(Λ+π∗(δ−γ))+π∗A is ample and:

Λ+π∗δ ≡Q ε(Λ+π∗(δ−γ))+π∗A+(1− ε)(Λ+π∗(δ−γ))+N.

Note that the Q-Cartier divisor class (1− ε)(Λ+ π∗(δ− γ)) is pseudoeffective by our

assumption. Then it is clear that the Q-Cartier divisor class Λ+π∗δ is big.

We recall the following folklore result:

Lemma 2.8. Let X be a projective manifold of dimension n and H an ample divisor. Let

E be an H-semistable vector bundle of rank r on X. Then the normalised vector bundle
E<− 1

r c1(E)> is not big.

Proof. Assume E〈−ac1(E)〉 is effective for some rational number a > 0; that is, we have:

H0(X,SymmE⊗det(E∗)⊗(am)) �= 0

for some positive integer m, such that am is an integer. This gives an injection:

det(E)⊗(am) → SymmE,

which yields:

μmax
H (SymmE)≥ μH(det(E)⊗(am)) = amc1(E) ·Hn−1.

On the other hand, as E is H -semistable, so is SymmE. Hence, we obtain:

μmax
H (SymmE) = μH(SymmE) =

mc1(E) ·Hn−1

r
,

which gives that a≤ 1/r. In particular, it follows from Proposition 2.7 that E<− 1
r c1(E)>

is not big.

3. Fano manifolds with semiample tangent bundles

3.A. Dual variety of VMRTs

Let X be a smooth projective variety of dimension n. Denote by RatCurvesn(X) the

normalisation of the open subset of Chow(X) parameterising integral rational curves. By

a family of rational curves in X, we mean an irreducible component K of RatCurvesn(X).
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We denote by Locus(K) the locus of X swept out by curves from K. We say that K is

minimal if, for a general point x ∈ Locus(K), the closed subset Kx of K parameterising

curves through x is proper. We say that K is dominating if Locus(K) is dense in X. For
an ample divisor H on X, we write H · K the intersection number of H with a general

curve parameterised by K.

3.A.1. Variety of minimal rational tangents. Every uniruled projective manifold

X carries a dominating family of minimal rational curves. Fix one such family K. A

general member [C] ∈ K is a standard rational curve, that is, if we denote by f : P1 → C

its normalisation, then there exists a nonnegative integer p, such that:

f∗TX
∼=OP1(2)⊕OP1(1)⊕p⊕O⊕(n−p−1)

P1 .

Given a general point x∈X, let Kn
x be the normalisation of Kx. Then Kn

x is a finite union

of smooth projective varieties of dimension p. Define the tangent map τx :Kn
x ��� P(ΩX,x)

by sending a curve that is smooth at x to its tangent direction at x. Define Cx to be the

image of τx in P(ΩX,x). This is called VMRT at x associated to the minimal family K.

The map τx :Kn
x ��� Cx ⊂ P(ΩX,x) is in fact the normalisation morphism by [20, 25].

3.A.2. Dual variety. Let us recall the definition of dual varieties of projective varieties,

and we refer the reader to [50] for more details. Let V be a complex vector space of

dimension N +1, and let Z ⊂ PN = P(V ) be a projective variety. We denote by TZ,z the
tangent space at any smooth point z ∈ Zsm, where Zsm is the nonsingular locus of Z.

We denote by TZ,z ⊂ PN the embedded projective tangent space of Z at z. A hyperplane

H ⊂ PN is a tangent hyperplane of Z if TZ,z ⊂H for some point z ∈ Zsm.

Definition 3.1. Let Z ⊂ PN = P(V ) be a projective variety.

(1) The closure of the set of all tangent hyperplanes of Z is called the dual variety

Ž ⊂ P̌N = P(V ∗), where V ∗ is the dual space of V.

(2) The dual defect def(Z) of Z is defined as N − 1− dim(Ž), and Z is called dual

defective if def(Z)> 0.

(3) The codegree codeg(Z) of Z is defined to be the degree of its dual variety Ž ⊂ P̌N .

3.A.3. Total dual variety of minimal rational tangents. Let C be a standard

rational curve parameterised by K with normalisation f : P1 → C. A minimal section of
P(TX) over the curve C is a section (denoted by C̄) which corresponds to a quotient

f∗TX →OP1 . Recall that p = n− 1 if and only if X is isomorphic to Pn (cf. [7, 24]). In

particular, if X is not isomorphic to projective spaces, such minimal sections always exist.
Furthermore, we have Λ · C̄ = 0 for the tautological divisor Λ on P(TX).

Definition 3.2. Let X be a uniruled projective manifold equipped with a dominating

family K of minimal rational curves. The total dual variety of minimal rational tangents

of K is defined as:
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Č :=
⋃

[C]∈K: standard

C̄
Zar

⊂ P(TX),

where the union is taken over all minimal sections over all standard rational curves in K.

We remark that Č is an irreducible projective variety. Moreover, for a general point

x ∈ X, let us denote by Čx the fibre of Č → X over x. The next result justifies the

terminology in Definition 3.2:

Proposition 3.3 (37, Propositions 5.14 and 5.17). Let X be an n-dimensional uniruled

projective manifold equipped with a dominating family K of minimal rational curves and
x ∈X a general point. Then Čx is the dual variety of Cx.
Moreover, let c be the dual defect of Cx ⊂ P(ΩX,x). Then for a minimal section C̄ over

a general standard rational curve [C] ∈ Kx with normalisation f̄ : P1 → C̄, we have:

f̄∗TP(TX)
∼=OP1(−2)⊕OP1(2)⊕OP1(−1)⊕c⊕OP1(1)⊕c⊕O⊕(2n−2c−3)

P1 .

As an immediate corollary of Proposition 3.3, the dual variety of the VMRT Cx at

a general point x is always pure dimensional. Moreover, the total dual VMRT Č is a
prime divisor in P(TX) if and only if Čx ⊂ P(TX,x) at a general point x ∈X is a (possibly

reducible) hypersurface, that is, Cx ⊂ P(ΩX,x) is not dual defective.

The importance of the total dual VMRT in the study of positivity of tangent bundles

is illustrated in the following theorem (see also [14, 15, 37, 41].

Theorem 3.4. Let X be a Fano manifold of Picard number 1 equipped with a dominating

family K of minimal rational curves. Let H be the ample generator of Pic(X), and let Λ
be the tautological divisor of π : P(TX)→X. Assume that the VMRT Cx ⊂ P(ΩX,x) at a

general point x ∈ X is not dual defective. Denote by a and b the unique integers, such

that:

[Č]≡ aΛ− bπ∗H.

Then a is equal to the codegree of Cx and the following statements hold.

(1) TX is big if and only if b > 0.

(2) If TX is big, then bH · K ≤ 2 with equality if and only if there exists a minimal

section C̄ over a general standard rational curve [C] ∈ K, such that Č is smooth

along C̄.

(3) If TX is big, then [Č] generates an extremal ray of Eff(P(TX)); that is, we have:

Eff(P(TX)) = 〈[Č],[π∗H]〉.

Proof. By our assumption, the projective variety Čx ⊂ P(TX,x) is a (possibly reducible)

hypersurface of degree codeg(Cx). On the other hand, we have:

[Č]|P(TX,x) ≡ (aΛ− bπ∗H)|P(TX,x) ≡ c1
(
OP(TX,x)(a)

)
.

This implies that a is equal to the codegree of Cx.
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Proof of (1). Note that if b > 0, then it follows from Proposition 2.7 that TX is big.

Now we assume that TX is big. Denote by αX := α(X,H) the pseudoeffective threshold

of X, namely, the maximal positive real number, such that Λ−αXπ∗H is pseudoeffective.
Note that Č is dominated by minimal sections C̄ over standard rational curves in K, and

we have:

(Λ−αXπ∗H) · C̄ =−αXH ·C < 0.

Therefore, the restriction (Λ−αXπ∗H)|Č is not pseudoeffective. In particular, the R-
divisor Λ−αXπ∗H is not movable and the total dual VMRT Č is contained in the effective

Weil divisor:

Γ := Supp(Nσ(Λ−αXπ∗H)) = B1
−(Λ−αXπ∗H).

As X has Picard number 1, it follows that ρ(P(TX)) = 2 and R= R≥0[Λ−αXπ∗H] is an

extremal ray of Eff(P(TX)). Then it follows from Lemma 2.4 that Γ is a prime divisor
generating the extremal ray R. This yields that Γ = Č, and, hence, b > 0.

Proof of (2). Let C̄ be a minimal section over a general standard rational curve C in K
with normalisation f̄ : P1 → C̄. As Cx is not dual defective, by Proposition 3.3, we have:

f̄∗TP(TX)
∼=OP1(−2)⊕OP1(2)⊕O⊕(2n−3)

P1 . (3.1)

Moreover, by the generic choice of C, we may assume that C̄ is not contained in the

singular locus of Č. Then we have the following exact sequence of sheaves:

N ∗
Č/P(TX)

−→ ΩP(TX)|Č −→ ΩČ −→ 0,

where N ∗
Č/P(TX)

is the conormal sheaf of Č in P(TX). In particular, since Č is a Cartier

divisor in P(TX), we have:

N ∗
Č/P(TX)

=OP(TX)(−Č)|Č =OP(TX)(−aΛ+ bπ∗H)|Č .

Consequently, the conormal sheaf is invertible. Pulling back the exact sequence by f̄
yields an exact sequence:

f̄∗N ∗
Č/P(TX)

∼=OP1(bH ·C) f̄∗ΩP(TX) f̄∗ΩČ 0.ι

Note that the map ι is generically injective since C̄ is not contained in the singular locus
of Č. As b > 0, it follows from (3.1) that bH ·C ≤ 2 with equality if and only if ι is an

injection of vector bundles, that is, f̄∗ΩČ is locally free. By Nakayama’s lemma, the latter

one is equivalent to the smoothness of Č along C̄. Conversely, if Č is smooth along C̄,
then ι is an injection of vector bundles. In particular, as b > 0, we obtain bH ·C = 2 by

(3.1).

Proof of (3). Since TX is big and X has Picard number 1, we have:

Eff(P(TX)) = 〈[Λ−αXπ∗H],[π∗H]〉.

On the other hand, note that Č is dominated by curves with Λ-degree 0, it follows that the

restriction (Λ−αXπ∗H)|Č is not pseudoeffective. In particular, the R-divisor Λ−αXπ∗H
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is not movable and Č is contained in Supp(Nσ(Λ−αXπ∗H)). Then it follows from Lemma

2.4 that Č =Supp(Nσ(Λ−αXπ∗H)) and [Č] is contained in the ray R>0[Λ−αXπ∗H].

Corollary 3.5. Let C be a nonsingular projective curve of genus ≥ 4. Let X := SUC(r,d)

be the moduli space of stable vector bundles of rank r with fixed determinant of degree d.

Assume that r and d are coprime. If r ≥ 3, then TX is not big.

Proof. It is known that X is a nonsingular Fano manifold of Picard number 1, such that

−KX = 2H, where H is the ample generator of Pic(X). On the other hand, there exists
a dominating family K of minimal rational curves on X given by the so-called Hecke

curves, such that −KX ·K= 2r [22, §3]. By [22, Theorem 4.4], the total dual VMRT Č is

a divisor in P(TX). Then Theorem 3.4 implies that TX is not big as H ·K = r ≥ 3.

Remark 3.6. If C is a nonsingular projective curve of genus g = 2, then the moduli

space X := SUC(2,r) with r odd is isomorphic to the intersection of two quadrics in P5,
and it is shown in [15, Theorem 1.5] that TX is pseudoeffective but not big.

3.B. Semiample tangent bundles

We consider in this subsection Fano manifolds with big and nef tangent bundles. It is
conjectured by Campana-Peternell in [5] that a Fano manifold with nef tangent bundle

must be a rational homogeneous space. Conversely, it is also known that the tangent

bundle of a rational homogeneous space is big and globally generated. Recall that a vector
bundle E over a projective variety is said to be semiample if OP(E)(1) is semiample.

Lemma 3.7. Let X be an n-dimensional projective manifold, such that TX is big and
nef.

(1) The tangent bundle TX is semiample.

(2) The projectivised tangent bundle P(TX) is a Mori dream space.

Proof. As TX is big and nef, P(TX) is a weak Fano manifold, that is, −KP(TX) is big

and nef. Then statement (1) follows from the base-point-free theorem, and statement (2)

follows from [3, Corollary 1.3.2] since a weak Fano manifold is always log Fano.

We refer the reader to [17] for the definition of Mori dream spaces and their basic

properties.

Definition 3.8. Let X be a Q-factorial normal projective variety. A small Q-factorial

modification (SQM for short) of X is a birational map g : X ��� X ′, where X ′ is a Q-

factorial normal projective variety and g is an isomorphism in codimension 1.

Throughout the rest of this subsection, we will always assume that X is a Fano manifold
of Picard number 1, such that TX is big and nef. Let us denote by H the ample generator

of Pic(X) and by Λ the tautological divisor of P(TX). Then the evaluation of global

sections defines a birational morphism:
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X := ProjX

(⊕
r≥0S

rTX

)
Y := Proj

(⊕
r≥0H

0(X,SrTX)
)

X.

ε

π
(3.2)

The morphism ε is an isomorphism if and only if TX is ample, and Mori proved in [35]

that the tangent bundle of a projective manifold X is ample if and only if X is isomorphic

to a projective space. For projective spaces, we have the following description of the cones
of divisors.

Example 3.9. Let X be the n-dimensional projective space Pn with n≥ 2, and let Λ be

the tautological divisor class of π : P(TX)→X. Then we have:

Eff(P(TPn)) = Eff(P(TPn)) = Nef(P(TPn)) = 〈[Λ−π∗H],[π∗H]〉,

where H is a hyperplane section of Pn. Indeed, we consider the following Euler sequence:

0−→OPn −→OPn(1)⊕(n+1) −→ TPn −→ 0.

It follows that TPn(−1) is globally generated. In particular, the divisor class [Λ−π∗H] is
contained in the intersection Eff(P(TX))∩Nef(P(TX)). On the other hand, it is known

that Λ− π∗H is not big, and, hence, [Λ− π∗H] is not contained in the interior of

Eff(P(TX)).

Let us collect some basic properties about the morphism ε.

Proposition 3.10. Let X be a Fano manifold of Picard number 1, such that TX is big

and nef. Denote by ε : X →Y the birational morphism given in (3.2). If ε is a divisorial

contraction, then the following statements hold.

(1) The projective variety Y has at worst Q-factorial canonical singularities.

(2) The exceptional locus of ε is an irreducible divisor Γ, such that the general fibre of
Γ→ ε(Γ) consists of either a smooth P1 or the union of two P1’s meeting at a point.

(3) Let F be an irreducible component of a general one-dimensional fibre of ε. Then

there exists a nonnegative integer a, such that:

TX |F ∼=OP1(2)⊕OP1(−2)⊕OP1(1)⊕a⊕OP1(−1)⊕a⊕O⊕2n−2a−3
P1 .

Proof. Claims (1) and (2) follow from [37, Proposition 5.10] and [52, Theorem 1.3]. To

prove (3), we follow the argument of [52, Proposition 2.13]. Let:

0→ E → TX →OX (1)→ 0

be the natural contact structure on X . By our assumption, we have OX (1)|F ∼=OF . Then

the contact structure induces a natural isomorphism E|F ∼= E∗|F . Let:

E|F ∼=
2n−2⊕
i=1

OP1(ai)
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be the decomposition with a1 ≥ ·· · ≥ a2n−2. Since the problem is local in Y, after removing
a subvariety of codimension at least 4 of Y, we may assume that all fibres of ε are at

most one dimensional. Then the argument of [52, Proposition 2.13] applies verbatim to

our situation to obtain h1(F,ΩX |F ) = 1 and the short exact sequence below:

0−→OF −→ ΩX |F −→ E∗|F = E|F −→ 0 (3.3)

implies h1(F,E|F ) = 1. This implies that a2n−2 =−2 and a2n−3 ≥−1. The isomorphism

E|F ∼= E∗|F shows that E|F must be of the form:

OP1(2)⊕OP1(1)⊕a⊕O⊕2n−2a−4
P1 ⊕OP1(−1)⊕a⊕OP1(−2).

Then it follows from (3.3) and the fact h1(E|F ) = h1(E∗|F ) = 1 that TX |F is either of the

form E⊕OP1 or of the form:

OP1(2)⊕OP1(1)⊕a⊕O⊕2n−2a−4
P1 ⊕OP1(−1)⊕a+2.

It is clear that the Chow(X ) has dimension ≥ 2n− 3 at [F ] as Γ has dimension 2n− 2

and the deformation of F dominates Γ. Hence, we have h0(F,TX |F )≥ 2n and TX |F is of

the form E⊕OP1 .

Definition 3.11. Let X be a Fano manifold of Picard number 1, such that TX is big and

nef. Denote by ε : X → Y the birational morphism given in (3.2). The projective variety
Y is of type A1 (respectively, A2) if the morphism ε is a divisorial contraction and the

general fibre of E → ε(E) is a smooth P1 (respectively, union of two P1’s meeting in a

point).

In the sequel of this subsection, we will focus on the description of the cones of divisors

of X . Similar to the pseudoeffective threshold αX := α(X,H), we define the movable
threshold βX := β(X,H) to be the maximal real number, such that the R-divisor Λ−
βXπ∗H is movable. Clearly, we have αX ≥ βX . Since Λ is big, by Proposition 2.7, we

obtain αX > 0. Moreover, as Λ is semiample, we also have βX ≥ 0.
Given a Weil divisor Γ ⊂ X , let us denote by a(Γ) and b(Γ) the unique integers, such

that:

Γ≡ a(Γ)Λ− b(Γ)π∗H.

First, we have the following general observation.

Proposition 3.12. Let X be an n-dimensional Fano manifold of Picard number 1, such

that TX is big and nef.

(1) Both αX and βX are rational numbers, and there exists a SQM g : X ′ ��� X , such
that the Q-Cartier Q-Weil divisor g∗(Λ−βXπ∗H) is semiample.

(2) If αX �= βX , then there exists a unique prime divisor Γ⊂X , such that:

[Γ] ∈ R>0[Λ−αXπ∗H] and g∗Γ · (g∗(Λ−βXπ∗H))
2n−2

= 0,

where g : X ′ ��� X is the SQM provided in statement (1).
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Proof. Recall that X is a Mori dream space by Lemma 3.7. By [17, Proposition 1.11],

there exists a SQM g : X ′ ��� X , such that:

[g∗(Λ−βXπ∗H)] ∈Nef(X ′).

Moreover, as X ′ is again a Mori dream space, it follows that Nef(X ′) is generated by
semiample Q-Cartier divisors. Hence, βX is a rational number.

Now assume that αX �= βX . Then Λ−αXπ∗H is not movable. Moreover, as X has Picard

number 1, it is clear that R = R>0[Λ−αXπ∗H] is an extremal ray of Eff(X ). Then, by
Lemma 2.4, there exists a unique prime divisor Γ⊂X , such that [Γ] ∈ R>0[Λ−αXπ∗H].

In particular, we have:

αX =
b(Γ)

a(Γ),

and, hence, αX is again a rational number. Denote by Γ′ the divisor g∗Γ. Note that the

pseudoeffective cones and movables are preserved by g∗. In particular, by Lemma 2.2, we

obtain:

B1
+(g

∗(Λ−βXπ∗H))⊂ B1
−(Γ

′)⊂ Γ′.

Since Λ−βXπ∗H is not contained in the interior of Mov(X ), so is the pull-back g∗(Λ−
βXπ∗H). In particular, by Lemma 2.3, we have:

B1
+(g

∗(Λ−βXπ∗H)) = Γ′.

On the other hand, as g∗(Λ−βXπ∗H) is nef, by [2, Theorem 1.4], Γ′ is contained in the

null locus of g∗(Λ−βXπ∗H). In particular, we obtain:

g∗Γ · (g∗(Λ−βXπ∗H))
2n−2

= Γ′ · (g∗(Λ−βXπ∗H))
2n−2

= 0.

This completes the proof.

According to Proposition 3.12, the calculation of the cones of divisors of X is very
closely related to the study of possible SQMs of X , which in general seems to be a very

difficult problem. However, if we assume that the morphism ε : X → Y is a divisorial

contraction, then the cones of divisors of X can be explicitly determined.

Proposition 3.13. Let X be an n-dimensional Fano manifold of Picard number 1, such

that TX is big and nef and the VMRT of X at a general point is smooth. Assume that the

evaluation morphism ε :X →Y is a divisorial contraction with exceptional divisor Γ. Let
F be an irreducible component of a general fibre of Γ→ ε(Γ). Then we have:

(1) βX = 0, B+(Λ) = Γ and [Γ] generates the extremal ray R>0[Λ− αXπ∗H]. In
particular, we have Γ ·Λ2n−2 = 0.

(2) b(Γ) ≤ 2 with equality if and only if Y is of type A1 and there exists a dominating

family K of minimal rational curves on X, such that Č = Γ and H ·K = 1.

Proof. Since Λ is big and nef, it follows from [2, Theorem 1.4] that B+(Λ) coincides with

the exceptional locus Γ of ε. In particular, Γ ·Λ2n−2 = (Λ|Γ)2n−2 = 0. Moreover, according

to Lemma 2.3, [Λ] is not contained in the interior of Mov(X ). This implies βX = 0. Then
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it follows from Corollary 2.5 that [Γ] ∈ R>0[Λ−αXπ∗H]. Combining Proposition 3.10

with the same argument as in the proof of Theorem 3.4(3) shows that b(Γ)π∗H ·F ≤ 2

with equality if and only if Γ is smooth along F. Then we obtain that b(Γ) ≤ 2 with
equality if and only if Γ is smooth along F and π∗H ·F = 1. Now the result follows from

the following two claims.

Claim 1. Γ is smooth along F if and only if Y is of type A1.

Proof of Claim 1. First, we assume that Γ is smooth along F, then the nonsingular locus
Γsm contains F. In particular, by generic smoothness and the generic choice of F, it follows

that the fibre of Γsm → ε(Γsm) over ε(F ) is smooth. Nevertheless, if the fibre of ε over

ε(F ) consists of another irreducible component F ′, such that F and F ′ are meeting at

a point x, then we have x ∈ Γsm, and, therefore, F ′ ∩Γsm is not empty. In particular,
the fibre of Γsm → ε(Γsm) over ε(F ) is not smooth, a contradiction. Hence, Y is of

type A1.

Conversely, if Y is of type A1, then Γ → ε(Γ) is a smooth P1-fibration over a Zariski
open subset of ε(Γ). In particular, the singular locus of Γ does not dominate ε(Γ), and,

hence, Γ is smooth along F as F is a general fibre.

Claim 2. π∗H ·F = 1 if and only if there exists a dominating family K of minimal
rational curves over X, such that H ·K = 1 and Č = Γ.

Proof of Claim 2. First, we assume that π∗H ·F = 1. Then the induced morphism F →
π(F ) is birational and H ·F = 1. In particular, the images of the irreducible components

of general fibres of Γ→ ε(Γ) in X form a dominating family K of rational curves, such

that H ·K = 1. Therefore, K is actually a dominating family of minimal rational curves.
Let Č be the total dual VMRT of K. As Č is dominated by curves with Λ-degree 0, it

follows that Č ⊂ Γ. On the other hand, as the VMRT of X at a general point is smooth,

every rational curve parameterised by K passing through a general point is standard (cf.

[18, Proposition 1.4]). In particular, by generic choice of F, we may assume that π(F ) is
a standard rational curve parameterised by K. In particular, the curve F is a minimal

section over π(F ). It follows that Γ⊂ Č, and, hence, Γ = Č.
Conversely, assume that there exists a dominating family K of minimal rational curves

on X, such that H · K = 1 and Č = Γ. As Č is dominated by minimal sections C̄ over

standard rational curves C in K, it follows that C̄ is contained in a general fibre of

Γ → ε(Γ). In particular, we have π∗H · C̄ = H ·C = 1. By the generic choice of F, the
curve F is actually a minimal section over some standard rational curve in K, and, hence,

π∗H ·F = 1.

Remark 3.14. In the setting of Proposition 3.13, to explicitly determine the pseudo-

effective cone Eff(X ), it is enough to calculate the cohomological class of Γ in Pic(X ),

that is, determining a(Γ) and b(Γ). Statement (2) gives a totally geometric method to
determine b(Γ). Then one can use the equality Γ ·Λ2n−2 = 0 in statement (1) to obtain

the rational number b(Γ)/a(Γ), and finally we get the precise value of a(Γ). On the other

hand, if there exists a dominating family K of minimal rational curves on X, such that Č
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is a divisor, then we must have Č = Γ, and we can also apply Theorem 3.4 to calculate

a(Γ). In a later section, we will apply these results to rational homogeneous spaces.

4. Varieties of small codegree and Proof of Theorem 1.9

4.A. Segre inequality

Let us recall the following Segre inequality, which gives a sharp lower bound for the
codegree of an irreducible and linearly nondegenerate projective variety in terms of its

dimension and codimension.

Theorem 4.1 (46). Let Z � PN be an n-dimensional irreducible and linearly nonde-

generate projective variety. Assume that the dual variety Ž ⊂ P̌N is a hypersurface with

nonvanishing hessian. Then we have:

codeg(Z) := deg(Ž)≥ 2(N +1)

n+2
. (4.1)

Moreover, the equality holds if and only if Ž ⊂ P̌N is a hypersurface defined by F = 0,

such that its hessian hF satisfies hF = FN−n−1.

Remark 4.2. Zak kindly informed us that the Segre inequality may fail if the dual variety
Ž is a hypersurface with vanishing hessian. There are very few known examples of smooth

projective varieties whose dual variety is a hypersurface with vanishing hessian. Gondim,

Russo and Staglianò proved in [12, Corollary 4.5] that the projection from an internal

point of ν2(P
n)⊂ P

n2+3n
2 is a smooth variety Z ⊂ P

n2+3n−2
2 , such that the dual variety Ž

is a degree n+1 hypersurface with vanishing hessian. It would be very interesting to find

more examples.

It is somewhat surprising that there exists a link between Conjectures 1.6 and 1.2,

which is bridged by the following simple observation:

Proposition 4.3. Let X be an n-dimensional Fano manifold of Picard number 1 equipped

with a dominating family K of minimal rational curves. If the normalised tangent bundle

of X is pseudoeffective and the VMRT Cx ⊂ P(ΩX,x) at a general point is not dual
defective, then we have:

codeg(Cx)≤
2dim(X)

dim(Cx)+2
. (4.2)

Proof. Let H be the ample generator of Pic(X) and denote by αX := α(X,H) the

pseudoeffective threshold of X with respect to H. Let iX be the index of X, that is,

−KX = iXH. Then the normalised tangent bundle of X is pseudoeffective if and only if

the following inequality holds:

αX ≥ iX
dim(X)

.
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On the other hand, since Cx is not dual defective, the total dual VMRT Č ⊂ P(TX) is a

prime divisor. Write [Č]≡ aΛ− bπ∗H. Then, by Theorem 3.4, we obtain:

a= codeg(Cx), 0< bH ·K ≤ 2 and αX =
b

a
.

Therefore we get:

2

codeg(Cx)
≥ αXH ·K ≥ iXH ·K

dim(X)
=

dim(Cx)+2

dim(X)
,

and the result follows. Here, we use the fact that dim(Cx) =−KX ·K−2= iXH ·K−2.

Given a Fano manifold X of Picard number 1, once the VMRT Cx ⊂ P(ΩX,x) of X can

be explicitly determined and the VMRT is not dual defective, then Proposition 4.3 is
quite useful to check whether the normalised tangent bundle of X is pseudoeffective or

not. For Conjecture 1.6, we recall the following results for curves and surfaces.

Theorem 4.4 ([51, Theorem 2.1] [56, Propositions 3.1 and 3.2]).

(1) Let C ⊂ PN be a linearly nondegenerate smooth projective curve of degree d and
codegree d∗. Then the following statements hold.

(1.1) d∗ ≥ 2d−2 with equality if and only if C is a rational curve.

(1.2) d∗ ≥ 2N −2 with equality if and only if C is a normal rational curve.

(2) Let S ⊂ PN be a linearly nondegenerate smooth projective surface of degree d and
codegree d∗. Then the following statements hold.

(2.1) d∗ ≥ d−1 with equality if and only if S is isomorphic to the Veronese surface

ν2(P
2)⊂ P5 or its isomorphic projection in P4, and d∗ = d if and only if S is

a scroll over a curve and the cases 1≤ d∗−d≤ 2 do not happen.

(2.2) d∗ ≥N−2 with equality if and only if S is isomorphic to the Vernoese surface

ν2(P
2)⊂ P5, and d∗ =N−1 if and only if S is either an isomorphic projection

of ν2(P
2) to P4 or a rational normal scroll and the cases 0 ≤ d∗−N ≤ 1 do

not happen.

4.B. Projective threefolds with small codegree

This subsection is devoted to prove Proposition 1.8, which confirms Conjecture 1.6 for

smooth threefolds. We start with a classification of projective threefolds, such that its

general hyperplane section is a smooth surface with equal sectional genus and irregularity.
Let us recall that for an n-dimensional polarised projective manifold (X,L), the sectional

genus of X (with respect to L) is defined to be:

g(X,L) :=
(KX +(n−1)L) ·Ln−1

2
+1.

Lemma 4.5. Let Z �PN be an irreducible, smooth and linearly nondegenerate projective
threefold and denote by L the restriction OPN (1)|Z . Let S be a general smooth hyperplane

section of Z. Assume that the sectional genus g of S is equal to the irregularity q of S.

Then (Z,L) is isomorphic to one of the following varieties:
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(1) the three-dimensional quadric hypersurface (Q3,OQ3(1)) and codeg(Z) = 2 or

(2) a three-dimensional scroll, that is, a projective bundle P(E) → B over a smooth
curve B, such that all fibres are linearly embedded and L is the tautological line

bundle OP(E)(1). In particular, the dual defect of Z = P(E) is equal to 1 and

codeg(Z) = deg(Z) = c1(E).

Proof. Denote by L̄ the restriction L|S . As g = q, by [53] (see also [49, Corollary 1.5.2]),

we know that either S is a geometrically ruled surface with smooth C ∈ |L̄| as sections
or the pair (S,L̄) is isomorphic to one of the following:

(P2,OP2(1)) or (P2,OP2(2)).

First, we note that the case (S,L̄) = (P2,OP2(2)) does not happen. This was already

proved by Gaetano Scorza. Indeed, by Bott’s formula, we have H1(P2,TP2(−2)) = 0. Then
we can apply Zak’s inextendibility theorem (see [54]) to conclude that Z is a cone over

S. In particular, Z is singular, which is a contradiction.

Next, we assume that the pair (S,L̄) is isomorphic to (P2,OP2(1)). Then, we have

L3 = L̄2 = 1. In particular, (Z,L) itself is isomorphic to (P3,OP3(1)), which contradicts
our assumption.

Finally, we assume that S is a geometrically ruled surface over a smooth curve.

According to [30, Theorem 1.3], the pair (Z,L) is one of the following varieties:

(1) (Q3,OQ3(1));

(2) (P3,OP3(2)) or

(3) there exists a vector bundle E of rank 3 over B, such that Z = P(E) and S is an

element in the linear system |OP(E)(1)|.

In Case (1), it is clear that Z ⊂ PN is linearly normal, and, hence, it is a quadric
hypersurface of P4. In Case (2), one can easily obtain that g(S) = 1, while q(S) = 0,

which does not satisfy our assumption. In Case (3), we note that Z ⊂ PN is actually a

three-dimensional scroll, such that all the fibres of P(E)→B are linearly embedded. As
B is a curve, it is well known that the dual defect of Z is equal to 1 in this case (see,

for instance, [50, Theorem 7.21]) and the fact codeg(Z) = deg(Z) = c1(E) follows from

Lemma 4.6 below.

Lemma 4.6. Let Z = P(E)⊂ PN be a three-dimensional scroll over a smooth projective

curve B, such that OP(E)(1)∼=OPN (1)|Z . Then we have:

codeg(Z) = deg(Z) = c1(E).

Proof. Let H be a hyperplane section of Z and denote by π : P(E) → B the natural
projection. By [1] (see also [50, Theorem 6.1]), we have:

codeg(Z) = c2(J (H)) ·H = c1(ΩZ ⊗H) ·H2+ c2(ΩZ ⊗H) ·H,

where J (H) is the first jet bundle. By a straightforward computation, we get:

c1(ΩZ) = π∗c1(E)+π∗KC −3H,
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and:

c2(ΩZ) =−3π∗KC ·H−2π∗c1(E) ·H+3H2.

As a consequence, we obtain codeg(Z) = c1(E) ·H2 =H3 = deg(Z).

Remark 4.7. Zak informed us of a geometric proof of Lemma 4.6 which is valid for

scrolls of any dimension. We keep the proof here to indicate how to use the formula given
in [1] to compute the codegree of an arbitrary variety, and this method will also be used

in Lemma A.2 to compute the codegree of the VMRT of F4/P3.

Now we are in the position to prove Proposition 1.8.

Proof of Proposition 1.8. Denote by L the restriction of OPN (1)|Z , and let S ⊂Z be a

general hyperplane section. According to Lemma 4.6, we shall assume that Z is not dual
defective (cf. [50, Example 7.6]). By the codegree formula (cf. [27, Proposition 1.1]), we

have:

d∗ = (b3(Z)− b1(Z))+2(b2(S)− b2(Z))+2(g(S)− q(S)). (4.3)

Set A = b3(Z)− b1(Z), B = b2(S)− b2(Z) and C = 2(g(S)− q(S)). Then both A and C

are even nonnegative integers and B is a positive integer since Z is not dual defective by
our assumption (see [27, Propositions 1.2 and 1.4]). If C = 0, then we can conclude by

Lemma 4.5 that Z satisfies d∗ = d. Hence, we may assume also that C > 0 in the sequel.

On the other hand, if pg(S) �= 0, then it follows from [27, Proposition 2.5] that we have
g(S)− q(S)≥N −1. In particular, we obtain:

d∗ ≥ 2B+2(g(S)− q(S))≥ 2+2(N −1) = 2N.

From now on, we shall assume that B > 0, C > 0 and pg(S) = 0. In particular, it follows

[49, Theorem 1.5] that KS+ L̄ is globally generated and [49, Proposition 2.1] implies that

we have:

d= L̄2 ≤K2
S +4g(S)−4,

where L̄ is the restriction L|S and the equality holds if and only if Φ|KS+L̄| is not
generically finite, that is, dim(Φ|KS+L̄|(S)) ≤ 1. In particular, S is uniruled and so is

Z. On the other hand, by Noether’s formula, we have:

K2
S = 12χ(OS)−χtop(S) = 10−8q(S)−h1,1(S).

This implies:

d≤ 6+4g(S)−8q(S)−h1,1(S).

Applying the codegree formula (4.3), we get:

d≤ 6+2(d∗−2B−A)−4q(S)−h1,1(S)

≤ 2d∗+6−4(B+ q(S))−2A−h1,1(S).
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Note that q(S) and A are nonnegative integers. Thus, since B and h1,1(S) = b2(S) are

positive integers, it follows that we have d≤ 2d∗ unless the following condition happens:

B = h1,1(S) = b2(S) = 1 and A= q(S) = 0.

This is impossible since we have b2(S)> b2(Z)≥ 1 by our assumption. Moreover, an easy
similar argument shows that if the equality d= 2d∗ holds, then we must have:

B = 1, h1,1(S) = b2(S) = 2 and A= q(S) = 0.

This implies that ρ(Z) = b2(Z) = 1. In particular, as Z is uniruled, it follows that Z is a

Fano threefold of Picard number 1. Note that (KZ+2L)|S =KS+ L̄ is globally generated

but not big. This implies that −KZ = 2L. In particular, the pair (Z,L) is isomorphic to
either (P3,OP3(2)) or a del Pezzo threefold. If Z is a del Pezzo threefold, then S is a del

Pezzo surface with b2(S) = 2 and −KS = L̄. However, according to the classification of

del Pezzo threefolds of Picard number 1, we must have d = L̄2 = K2
S ≤ 5. This implies

that b2(S)≥ 4, which is a contradiction. Hence, 2d∗ = d if and only if (Z,L) is isomorphic

to (P3,OP3(2)); that is, the projective variety Z ⊂ PN is projectively equivalent to either

the second Veronese variety ν2(P
3)⊂ P9 or its isomorphic projection in P8.

Finally, we assume that Z satisfies the equality (1.2). Then we have 5d∗ = 2(N +1). In
particular, by our results above, we must have:

4(N +1)

5
= 2d∗ ≥ d≥N −2.

This implies N ≤ 14 and d∗ ≤ 6. Then, by the classification of smooth projective threefolds

of codegree at most 6 given in [27], one can easily check that the only possibilities are

the quadric threefold Q3 ⊂ P4 (with d∗ = 2) and the Veronese variety ν2(P
3)⊂ P9 (with

d∗ = 4).

4.C. Proof of Theorem 1.9

We start with the following classification of del Pezzo surfaces with pseudoeffective
normalised tangent bundle, which is easily deduced from [38, IV, Theorem 4.8].

Theorem 4.8. Let S be a smooth del Pezzo surface, that is, −KS is ample. Then the

normalised tangent bundle of S is pseudoeffective if and only if S is isomorphic to the

quadric surface P1×P1.

Proof. Note that TS is always semistable with respect to −KS by [9], and its
normalisation is not nef by Theorem 1.1. On the other hand, since S is simply connected,

there does not exist nontrivial unramified coverings of S. In particular, applying [38, IV,

Theorem 4.8] to S and TS , we see that only Case (A) and Case (C) of [38, IV, Theorem
4.8] may happen in our situation. In other words, either TS splits as a direct sum L1⊕L2

as in Case (A) or −KS ≡ 2L for some line bundle L on S as in Case (C). In the latter

case, it is easy to see that S is isomorphic to the quadric surface from the classification of
del Pezzo surfaces. In the former case, the surface S is isomorphic to a product of curves

(see, for instance, [13, Theorem 1.4]). This implies immediately that S is isomorphic to

the product P1×P1 as S is rationally connected.
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From now on, we will assume that n ≥ 3. To prove Theorem 1.9, we start with the
following:

Theorem 4.9. Let X be an n-dimensional Fano manifold of Picard number 1 equipped

with a dominating family K of minimal rational curves. Assume that the VMRT Cx ⊂
P(ΩX,x) at a general point x ∈ X is not dual defective. If dim(Cx) ≥ 1 and n ≥ 3, then
codeg(Cx)≥ 2 and the following statements hold.

(1) If codeg(Cx) = 2, then X is a smooth quadric hypersurface in Pn+1.

(2) If the normalised tangent bundle of X is pseudoeffective and the VMRT Cx is

smooth with codeg(Cx) = 3, then X is one of the following varieties: the Lagrangian

Grassmann variety LG(3,6), the Grassmann variety Gr(3,6), the 15-dimensional

spinor variety S6 or the 27-dimensional E7-variety E7/P7.

Proof. By the biduality theorem, the dual variety Čx does not contain hyperplanes as

irreducible components since Cx is purely dimensional, and, hence, codeg(Cx)≥ 2. Let us

denote by Pm = P(W )⊂ P(ΩX,x) the linear span of Cx.
First, we assume that codeg(Cx) = 2, that is, the dual Čx ⊂ P(TX,x) is an irreducible

quadric hypersurface of P(TX,x). Then the VMRT Cx itself is irreducible. On the other

hand, if Čx is not smooth, then it is an irreducible quadric cone. According to the biduality

theorem, since Cx is not dual defective, the VMRT Cx is a smooth quadric hypersurface
in Pm ⊂ P(ΩX,x). Then it follows from [18, Propositions 2.4 and 2.6] that we must have

Pm = P(ΩX,x). Therefore, by Theorem 1.5, the variety X is isomorphic to a quadric

hypersurface.
Next, we assume that Cx is smooth with codeg(Cx) = 3 and the normalised tangent

bundle of X is pseudoeffective. Then, Čx is an irreducible hypersurface of degree 3, and,

hence, Cx is irreducible and smooth. By Zak’s classification of linearly nondegenerate
smooth varieties with codegree 3 [55, Theorem 5.2], we obtain that dim(Cx)≥ 2 and:

dim(Cx)>
m−1

2
,

unless Cx ⊂ Pm is ν2(P
2) ⊂ P5. On the other hand, it can be directly checked that the

tangential variety of ν2(P
2)⊂ P5 is linearly nondegenerate. Therefore, it follows from [18,

Proposition 2.6] that the tangential variety of Cx is linearly nondegenerate. Then we can

apply [18, Proposition 2.4] to obtain that Pm = P(ΩX,x). In particular, as Cx is assumed
to be not dual defective, it follows from Proposition 4.3 that Cx ⊂ P(ΩX,x) is projectively

equivalent to one of the four Severi varieties. Then one can apply Theorem 1.5 to conclude

that X is isomorphic to one of the four varieties in the theorem.

Compared with Proposition 4.3, we do not require that the VMRT of X at a general

point is irreducible or linearly nondegenerate in Theorem 4.9 above.

Proof of Theorem 1.9. For statement (1), we assume that the VMRT Cx ⊂ P(ΩX,x) is
irreducible, linearly nondegenerate and not dual defective. Let Č ⊂P(TX) be the total dual

VMRT. Write [Č] ≡ aΛ− bπ∗H, where Λ is the tautological divisor of the projectivised

tangent bundle π :P(TX)→X and H is the ample generator of Pic(X). Let iX be the index
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of X. Without loss of generality, we may assume that α(X,−KX) > 0, or equivalently,

TX is big. In particular, by Theorem 3.4, we have b > 0 and:

α(X,−KX) =
b

aiX
=

b

iX codeg(Cx)
≤ b

iX
· dim(Cx)+2

2dim(X)
.

The last inequality follows from the Segre inequality (1.1). In particular, note that we

have dim(Cx)+2 =−KX ·K = iXH ·K and bH ·K ≤ 2, thus, we get:

α(X,−KX)≤ 1

dim(X)

with equality only if the VMRT Cx ⊂ P(ΩX,x) satisfies the equality (1.2). Hence, if
the normalised tangent bundle of X is pseudoeffective and Conjecture 1.6 holds, then

the VMRT Cx ⊂ P(ΩX,x) is projectively equivalent to one of the varieties listed in

Conjecture 1.6 and we then conclude by Theorem 1.5 and Table 1.
For statement (2), assume that the VMRT Cx ⊂ P(ΩX,x) is not dual defective and the

normalised tangent bundle of X is pseudoeffective. By Proposition 4.3, if the condition

(2.1) (respectively, condition (2.2)) holds, then we get codeg(Cx) < 3 (respectively,
codeg(Cx) < 4) and the results follow from Theorem 4.9 above. If the condition (2.3)

holds, then it is clear that dim(Cx)≥ 1 as the VMRT can not be a single point. Then the

result follows from statement (1.2), Proposition 1.8 and Theorem 4.4.

Proof of Corollary 1.10. By assumption, the VMRT Cx ⊂ P(ΩX,x) is either a nonlinear
smooth curve, a nonlinear smooth surface or a nonlinear smooth hypersurface (n = 5).

In particular, the VMRT Cx is not dual defective by [50, Examples 1.19 and 7.5 and

Theorem 4.25]. Then the result follows directly from Theorem 1.9 (2.2).

Proof of Corollary 1.12. The result follows from Theorem 1.9 (2.2) and (2.3).

5. Rational homogeneous spaces

Throughout this section, for a vector bundle E over a variety X, we denote by P(E) the

projective bundle over X, whose fibre over x ∈X is the set of lines in Ex. It is isomorphic

to P(E∗) in our previous notation. Moreover, all the varieties in this section are assumed
to have dimension at least 2. The main aim of this section is to calculate the cones

of divisor of P(T ∗
G/P ) = P(TG/P ) for a rational homogeneous space G/P with Picard

number 1.

5.A. Springer maps

Let G be a complex simple Lie algebra, and let g be its Lie algebra. Then G has the

adjoint action on g. The orbit Ox of a nilpotent element x ∈ g is called a nilpotent orbit,
which is invariant under the dilation action of C∗ on g. For any parabolic subgroup P of

G, the group G has a Hamiltonian action on the cotangent bundle T ∗
G/P and the image

of the moment map T ∗
G/P −→ g� g∗ is a nilpotent orbit closure O, which will be called
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the Richardson orbit associated to P. The induced morphism:

ŝ : T ∗
G/P →O

will be called the Springer map associated to P, which is a generically finite G×C∗-
equivariant projective morphism. We denote by:

T ∗
G/P

ε̂−→ Õ τ̂−→O

the Stein factorisation of ŝ. It follows that ε̂ is birational and τ̂ is a finite morphism.
Note that ŝ−1(0) =G/P is irreducible, the pre-image τ̂−1(0) is a single point in Õ. This

implies that the projectivised Springer map:

s :P(T ∗
G/P )→P(O)

has the Stein factorisation given by:

P(T ∗
G/P )

ε−→P(Õ)
τ−→P(O).

From now on, we shall assume that G/P is a rational homogeneous space with Picard

number 1; that is, P corresponds to a single-marked Dynkin diagram.

Example 5.1. Given an (n+ 1)-dimensional complex vector space V, the rational

homogeneous spaces for the group SLn+1 = SLn+1(V ), are determined by the different

markings of the Dynkin diagram An. For instance, the Grassmann variety Gr(k,n+1)
corresponds to the marking of the k -th node:

1 2 3 k n
.

Proposition 5.2 (39, Proposition 5.1). Assume G/P is of Picard number 1. Then the

projectivised Springer map s :P(T ∗
G/P )→P(O) is birational and small if and only if G/P

is one of the following:

An

(
k <

n+1

2

)
k n−k

Dn(n : odd≥ 5)
n−1

n

E6,I
1

2

3 4 5 6 1

2

3 4 5 6

E6,II
1

2

3 4 5 6 1

2

3 4 5 6
.

Furthermore, the pair (P,Q) in each group has the same Richardson orbit and the

corresponding Springer maps give a birational map μ̂ : T ∗
G/P ��� T ∗

G/Q, which is called

the stratified Mukai flop of type An,k (respectively, Dn,E6,I,E6,II) according to the types
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of corresponding marked Dynkin diagrams. In this case, there exists a (noncanonical)

isomorphism G/P �G/Q.

Proposition 5.3 (40, Proposition 3.1). Assume G/P is of Picard number 1. Then the
birational contraction ε : P(T ∗

G/P ) → P(Õ) is small if and only if either G/P is as in

Proposition 5.2 or ŝ has degree 2 and G/P is one of the following:

Bn (k : even,k ≥ 2n+1

3
)

k

Cn (k : odd,k ≤ 2n

3
)

k

Dn (k : odd,
2n

3
≤ k ≤ n−2).

k
.

In the latter case, by interchanging the two points in general fibres of ŝ, this gives a

stratified Mukai flop of type Bn,k (respectively, Cn,k,Dn,k) μ̂ : T ∗
G/P ��� T ∗

G/P according
to the types of corresponding marked Dynkin diagrams.

We will describe these flops in detail in Section 5.D.

Proposition 5.4. The Springer map ŝ : T ∗
G/P →O is not birational if and only if G/P is

as in Proposition 5.3 or G/P is G2/P1 or F4/P3 with deg(ŝ) being 2 and 4, respectively.

Proof. For classical cases, this follows from the proof of [40, Proposition 3.1]. For
exceptional cases, assume G is of exceptional type. In most cases, O is an even orbit

or an orbit with trivial fundamental group, which implies that ŝ is birational. For the

remaining cases, the degree is computed in [10, Appendix].

5.B. Cones of divisors

We start with the following result, which describes the cones of divisors on P(T ∗
G/P ) =

P(TG/P ).

Theorem 5.5. Let G/P be a rational homogeneous space of Picard number 1 but not a
projective space. Denote by H the ample generator of Pic(G/P ). Let Γ be the exceptional

locus of ε :P(T ∗
G/P )→P(Õ). Then the following statements hold.

(1) If Γ has codimension at least 2, that is, ε is small, then there exists a commutative
diagram:

P(T ∗
G/P ) P(T ∗

G/Q)

G/P P(Õ) G/Q,

μ

ε
π1

ε
π2
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where μ : P(T ∗
G/P ) ��� P(T ∗

G/Q) is a nonisomorphic flop with G/P � G/Q. In

particular, we have:

Eff(P(T ∗
G/P )) = Eff(P(T ∗

G/P )) =Mov(P(T ∗
G/P )) =Mov(P(T ∗

G/P ))

= 〈[μ∗π∗
2H],[π∗

1H]〉 .

(2) If Γ has codimension 1, that is, ε is divisorial, then Γ is a prime divisor, such that:

Mov(P(T ∗
G/P )) =Mov(P(T ∗

G/P )) = 〈[Λ],[π∗H]〉

and:

Eff(P(T ∗
G/P )) = Eff(P(T ∗

G/P )) = 〈[Γ],[π∗H]〉 .

Proof. Since G/P is not isomorphic to projective spaces, the birational contraction

ε : P(T ∗
G/P ) → P(Õ) is not an isomorphism and Nef(P(T ∗

G/P )) = 〈[Λ],[π∗H]〉. Let
α(G/P,H) be the pseudoeffective threshold of G/P with respect to H, then [Λ−
α(G/P,H)π∗H] generates an extremal ray of Eff(P(T ∗

G/P )). Statement (2) follows directly

from Proposition 3.13. Thus, it remains to prove statement (1).
By our assumption, the birational contraction ε is small. By Propositions 5.2 and 5.3,

there exists a flop μ :P(T ∗
G/P ) ���P(T ∗

G/Q), with G/P �G/Q as projective varieties. It

follows that the pull-back μ∗Nef(P(T ∗
G/Q)) is contained in Mov(P(T ∗

G/P )) (cf. Lemma

3.7). Moreover, it is clear that we have μ∗Λ = Λ since −KP(T∗
G/P

) = nΛ and μ is

a SQM. This implies that the pull-back μ∗Nef(P(T ∗
G/P )) is contained in the cone

〈[Λ−α(G/P,H)π∗
1H],[Λ]〉. Nevertheless, as π∗

2H is not big, it follows that [μ∗π∗
2H] is

not contained in the interior of Eff(P(T ∗
G/P )). So we get:

Eff(P(T ∗
G/P )) =Mov(P(T ∗

G/P )) = 〈[μ∗π∗
2H],[π∗

1H]〉.

On the other hand, as π∗
2H is globally generated and μ is a SQM, the stable base locus

B(μ∗π2H) has codimension at least 2. Hence, we obtain:

Eff(P(T ∗
G/P )) = Eff(P(T ∗

G/P )) =Mov(P(T ∗
G/P )) =Mov(P(T ∗

G/P )).

This finishes the proof.

While Theorem 5.5 already gives a very nice geometric description of the cones of

divisors of P(T ∗
G/P ), it is not very easy to apply it to compute explicitly the cones in

terms of Λ and π∗H. We introduce the following notion to divide G/P into several types

in order to carry out this computation.

Definition 5.6. Let G/P be a rational homogeneous space of Picard number 1
corresponding to a single marked Dynkin diagram.

(1) G/P is said of the first type (I) if s is a birational small morphism (cf.
Proposition 5.2).

(2) G/P is said of type (II-s) if s is not birational and ε is small (cf. Proposition 5.3).

(3) G/P is said of type (II-d-d) if ε is divisorial and the VMRT of G/P is dual defective.
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(4) G/P is said of type (II-d-A1) (respectively, (II-d-A2)) if ε is divisorial but the

VMRT of G/P is not dual defective and P(Õ) is of type A1 (respectively, A2) (cf.

Definition 3.11).

Remark 5.7. Recall there are following isomorphisms between different rational homo-

geneous spaces: Cn/P1 � A2n/P1,Bn/Pn � Dn+1/Pn and G2/P1 � B3/P1. Their types
are the same except the following cases: Cn/P1 is of type (II-s), while A2n/P1 is of type

(I); and for n even, Bn/Pn is of type (II-s), while Dn+1/Pn is of type (I). In fact, note that

Cn/P1 � P2n−1. Let Omin ⊂ sl2n be the minimal nilpotent orbit (corresponding to the
partition [2,12n−2]), then there exists a generically 2-to-1 morphism Omin →Od. The flop

Cn,1 is nothing else but the Mukai flop A2n,1. Moreover, by [40, Example 3.3], Bn,n-flop

is the same as Dn+1-flop for n even.

Proposition 5.8. Under the notation and assumption as in Theorem 5.5. Assume that ε

is small. Let �i be a general line in a general fibre of πi. If a(H) and b(H) are the unique

positive integers, such that:

[μ∗π∗
2H]≡ a(H)[Λ]− b(H)[π∗

1H],

then we have:

a(H) = π∗
2H ·μ∗(�1) and a(H)− b(H)π∗

1H ·μ−1
∗ (�2) = 0.

Moreover, the morphism μ(�1)→ π2(μ(�1)) is birational. In particular, we have:

a(H) =H ·π2∗μ∗(�1).

Proof. Since μ is a SQM and �i’s are general, we may assume that both μ and μ−1 are
isomorphisms in a neighborhood of �i. In particular, we have:

a(H) = (a(H)Λ− b(H)π∗
1H) · �1 = μ∗π∗

2H · �1 = π∗
2H ·μ∗(�1)

and:

0 = π∗
2H · �2 = μ∗π∗

2H ·μ−1
∗ (�2) = a(H)− b(H)π∗

1H ·μ−1
∗ (�2).

Here, we note that μ∗Λ = Λ and Λ · �i = 1. Now it remains to show that the morphism

μ(�1)→C := π2(μ(�1)) is birational. Let f : P1 →C be the normalisation. As TG/Q is nef,

there exist integers a1 ≥ ·· · ≥ ak > ak+1 = · · ·= an = 0 (with k ≤ n), such that:

f∗TG/Q
∼=

k⊕
i=1

OP1(ai)⊕O⊕(n−k)
P1 .

Denote by d the degree of μ(�1)→ C. Then we have:

π∗
2TG/Q|μ(�1) ∼=

k⊕
i=1

OP1(dai)⊕O⊕(n−k)
P1 .

As Λ ·μ(�1) = 1, if d≥ 2, then μ(�1) is contained in:

P(O⊕(n−k)
P1 )⊂ P(f∗TG/P ).
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On the other hand, as P(O⊕(n−k)
P1 ) is dominated by curves with Λ-degree 0, thus,

P(O⊕(n−k)
P1 ) is contained in the exceptional locus of ε and so is μ(�1), which is absurd.

Proposition 5.9. Under the notation and assumption as in Theorem 5.5. Assume that
ε :P(T ∗

G/P )→P(Õ) is divisorial. Let a(Γ) and b(Γ) be the unique positive integers, such

that:

[Γ]≡ a(Γ)[Λ]− b(Γ)π∗H.

Then the following statements hold.

(1) The projective variety P(Õ) is a Q-factorial variety of Picard number 1. Moreover,
let Λ′ and H ′ be the push forward of Λ and π∗H by ε. Then we have:

b(Γ)

a(Γ)
=

Λ2n−1

Λ2n−2 ·π∗H
and H ′ ≡ a(Γ)

b(Γ)
Λ′.

(2) If G/P is of type (II-d-A1) or (II-d-A2), then a(Γ) = codeg(Co), where Co is the

VMRT of G/P at a referenced point o ∈G/P .

(3) b(Γ)≤ 2 with equality if and only if G/P is of type (II-d-A1).

(4) G/P is of type (II-d-A2) if and only if P(Õ) has cA2-singularities in

codimension 2.

Proof. First, note that the morphism ε is a Mori extremal contraction with respect to a
klt pair (P(T ∗

G/P ),Δ) (see [37, Proposition 5.5]). Thus, as ρ(P(T ∗
G/P )) = 2, ε is divisorial

and P(T ∗
G/P ) is rationally connected, it follows that P(Õ) is a Q-factorial Fano variety of

Picard number 1. Moreover, note that we have Γ ·Λ2n−2 = 0. This implies immediately:

b(Γ)

a(Γ)
=

Λ2n−1

Λ2n−2 ·π∗H
.

Let H̃ be a general member in |π∗H|, and set H ′ = ε∗H̃. As P(Õ) is Q-factorial, there

exists a rational number r, such that H ′ ≡ rΛ′. Moreover, by the negativity lemma, there

exists a nonnegative rational number α, such that:

ε∗H ′ ≡Q H̃+αΓ.

As ε∗Λ′ = Λ, we obtain:

rΛ≡ ε∗H ′ ≡ π∗H+α(a(Γ)Λ− b(Γ)π∗H).

Since Λ and π∗H are linearly independent, comparing the coefficients shows that we have:

αb(Γ) = 1 and αa(Γ) = r.

This implies r = a(Γ)/b(Γ), and statement (1) is proved.
If G/P is of types (II-d-A1) or (II-d-A2), the total dual VMRT is a divisor. It follows

from Corollary 2.5, Theorem 3.4 and Proposition 3.13 that we have Č = Γ, and, hence,

a(Γ) = codeg(Co).
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For statement (3), by Proposition 3.13, we have b(Γ) ≤ 2 with equality if and only if

P(Õ) is of type A1 and there exists a dominating family K of minimal rational curves

on G/P , such that Č = Γ and H ·K= 1. Note that in our situation, there exists only one
dominating family K of minimal rational curves on G/P and H ·K = 1. Thus, b(Γ) = 2

if and only if Č = Γ and P(Õ) is of type A1. The latter conditions are equivalent to say

that G/P is of type (II-d-A1) by definition.
For statement (4), if G/P is of type (II-d-A2), it follows from definition that P(Õ)

has cA2 singularities in codimension 2. Conversely, from the proof of Proposition 3.13, it

is known that b(Γ)π∗H ·F ≤ 2 with equality if and only if Γ is smooth along F, where
F is an irreducible component of a general fibre of Γ→ ε(Γ). In particular, if P(Õ) has

cA2-singularities in codimension 2, then we must have b(Γ) = π∗H ·F = 1. Then Claim

2 in the proof of Proposition 3.13 implies that Č = Γ and consequently G/P is of type

(II-d-A2).

As an immediate application of Proposition 5.9, one can easily derive the following

result.

Corollary 5.10. Under the notation and assumption as in Theorem 5.5. Assume that ε
is divisorial. Then the following statements hold.

(1) G/P is of type (II-d-d) if and only if Č �= Γ and if and only if b(Γ) = 1 and P(Õ)
has only cA1 singularities in codimension 2.

(2) G/P is of type (II-d-A1) if and only if b(Γ) = 2 and Č = Γ and if and only if P(Õ)

has cA1-singularities in codimension 2 and Č = Γ.

(3) G/P is of type (II-d-A2) if and only if b(Γ) = 1 and Č = Γ and if and only if P(Õ)
has cA2-singularities in codimension 2.

5.C. Types of rational homogeneous spaces

By Propositions 5.8 and 5.9 in the previous subsection, to compute a(E), b(E), a(H) and

b(H), we need to determine the types of G/P . Propositions 5.2 and 5.3 give, respectively,
the classification of G/P of type (I) and type (II-s). In this subsection, we will determine

the types of all other G/Pk, where Pk is the maximal parabolic subgroup associated to

the k -th simple root of G.

The VMRT Co of G/Pk is determined in [26, Theorem 4.8], which is again a rational
homogeneous space if Pk corresponds to a long root. When Pk corresponds to a short

root, Co is a two-orbit variety. The embedding Co ⊂P(TG/P,o) is in general degenerated,

and the dual defect of Co can be computed from the following when it is homogeneous
(cf. [48], [50, Theorems 7.54 and 7.56]).

Proposition 5.11. Let G/P ⊂ PN be the minimal G-equivariant embedding. Then it is

dual defective if and only if G/P is one of the following:

(a) Pn with def = n;

(b) Gr(2,2m+1) with def = 2;

(c) the ten-dimensional spinor variety S5 with def = 4;
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(d) a product G1/P1×G2/P2 with G1/P1 as above, such that def(G1/P1)> dimG2/P2.

In this case, the dual defect is def = def(G1/P1)−dimG2/P2.

Proposition 5.12. Let X = G/Pk be a rational homogeneous space, such that Pk

corresponds to a short root. Then the VMRT Co of X is dual defective if and only if

X is one of the following:

Bn/Pn (n≥ 3 odd), Cn/Pk (2n≥ 3k) or F4/P4.

Proof. If X = G/Pk is one of the following: Bn/Pn, Cn/P1 and G2/P1, then it is
isomorphic, respectively, to Dn+1/Pn+1, A2n−1/P1 and B3/P1. In particular, the VMRT

of X is still a rational homogeneous space in these cases, and we can apply Proposition

5.11. If X = G/Pk is the rational homogeneous space of type Cn/Pk with k ≥ 2, it is
shown in Lemma A.1 that the VMRT Co ⊂ P(ΩX,o) is dual defective if and only if

2n ≥ 3k. If X = G/Pk is the variety F4/P3, then it is shown in Lemma A.2 that the

VMRT Co ⊂ P(ΩX,o) is not dual defective with codegree 8. If X = G/Pk is the variety
F4/P4, then the VMRT Co ⊂ P(ΩX,o) is a hyperplane section of S5 ⊂ P15. Recall that the

dual defect of S5 ⊂ P15 is equal to 4, thus, the dual defect of the VMRT Co ⊂ P(ΩX,o) is

3 by [50, Theorem 5.3].

Now we determine the singularity type of P(Õ).

Proposition 5.13. Assume that ε : P(T ∗
G/P ) → P(Õ) is divisorial and the VMRT of

G/P is not dual defective. Then P(Õ) is of type A1 except for G/P =E7/P4, which is of

type A2.

Proof. Consider first the case where ŝ is birational, then P(Õ) is just the normalisation
of P(O), whose generic singularity type is determined in [11]. It turns out only for E7/P4,

the generic singularity is of type A2, while all others are of type A1.

Assume now ŝ is not birational. By Proposition 5.4, G/P is either G2/P1 or F4/P3 as ε
is divisorial. Consider first the case of G2/P1, which is isomorphic to the five-dimensional

quadric Q5. Let O be the ten-dimensional nilpotent orbit in g2 and O′ ⊂ so7 the nilpotent

orbit corresponding to the partition [3,14]. Then there is a generically 2-to-1 morphism
ν : O′ → O, which is induced from the projection so7 → g2. The map ŝ : T ∗

G2/P1
→ O

factorises through ν. As O′ is normal, we have Õ = O′, which has generic singularity
type A1.

Now consider the case of F4/P3. In this case, the Springer map ŝ : T ∗
F4/P3

→ OF4(a3)

has degree 4 [10, Appendix]. By Theorem 1.3 in [11], the transverse slice T from the
codimension 6 orbitOA2+Ã1

toOF4(a3) is isomorphic to the quotient (C3⊕C3∗)/S4, where

S4 acts on C3 by reflection representation. The only index 4 subgroup of S4 is S3, hence,

the degree 4 map τ̃ : Õ →OF4(a3) is locally the quotient (C3⊕C3∗)/S3 → (C3⊕C3∗)/S4.

Hence, the generic singularity of Õ is the same as that of (C3 ⊕C3∗)/S3, which is of

type A1.

We can summarise the types of G/P in the following table. By Proposition 5.9 and

Corollary 5.10, we get the number a,b for G/P not of type (I) and (II-s), the latter cases

will be done in the next subsection by applying Proposition 5.8.
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Table 2. Types of rational homogeneous spaces.

II-d-d II-d-A1 II-d-A2

An - k = n+1
2 -

Bn
2n+1

3 ≤ k ≤ n−1 and k odd

{
k ≤ 2n

3

k = n and n≥ 3 odd
-

Cn 2≤ k ≤ 2n
3 and k even k ≥ 2n+1

3 -

Dn
2n
3 ≤ k ≤ n−2 and k even

{
k ≤ 2n−1

3

k = n−1 or n, and n≥ 4 even
-

En E6/P2,E7/P6,E8/Pk (k = 3,4,6) otherwise E7/P4

F4 k = 4 k = 1,2,3 -

G2 - k = 1,2 -

As an immediate application, we obtain:

Proposition 5.14. Let X =G/P be a rational homogeneous space of Picard number 1.
Denote by H the ample generator of Pic(X) and by π : P(TX)→X the natural projection.

(1) If X is isomorphic to one of the varieties listed in Conjecture 1.2, then the

normalised tangent bundle of X is pseudoeffective but not big.

(2) If X is a homogeneous Fano contact manifold different from a projective space, then

the total dual VMRT Č ⊂ P(TX) is a prime divisor satisfying:

[Č]≡ 4Λ−2π∗H.

Proof. For statement (1), this is already proved in [47]. Here, we use the total dual

VMRT to give a new proof. In fact, this can be easily derived from the table below:

G/P Qn Gr(n,2n) S2n LG(n,2n) E7/P7

VMRT Co Qn−2 Pn−1×Pn−1 Gr(2,2n) Pn−1 E6/P1

embedding Hyperquadric Segre Plücker Second Veronese Severi

codegree a 2 n n n 3

Note that the VMRT of X is not dual defective and its codegree is given in the last

row of the table above. Moreover, by Proposition 5.13 and Corollary 5.10 we have:

[Č]≡ aΛ−2π∗H.

Then one can easily check case by case that we have a · index(X)−2 ·dim(X) = 0. Hence,
the normalised tangent bundle of X is pseudoeffective but not big by Theorem 3.4.

For statement (2), it can be derived from the table below by the same argument as

above:
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G/P OG(2,n+6) E6/P2 E7/P1 E8/P8 F4/P1 G2/P2

VMRT Co P1×Qn Gr(3,6) S6 E7/P7 LG(3,6) P1

embedding Segre Plücker spinor O(1) O(1) O(3)

Note that all the VMRTs above are not dual defective with codegree 4 (see [50, p. 169]).
In particular, by Proposition 5.13 and Corollary 5.10, we have [Č]≡ 4Λ−2π∗H.

5.D. Geometry of stratified Mukai flops

This subsection is devoted to explicitly calculate the positive integers a(H) and b(H) in

Proposition 5.8. It turns out that the flops are symmetric. In particular, according to

Proposition 5.8, after exchanging μ and μ−1, we get a(H) = π∗
1H ·μ−1

∗ (�2), and, hence,
we always have b(H) = 1. It remains to determine a(H), which by Proposition 5.8 can be

interpreted as the degree of the image under the flop of a general line in the projectivised

cotangent space. We will describe in detail the flops which will enable us to determine

this degree.
For a stratified Mukai flop μ̂ : T ∗

G/P ��� T ∗
G/Q (where P may coincide with Q), it induces

a rational map ν : P(T ∗
G/P,o) ��� G/Q by composing the projectivisation of μ̂ with the

projection P(T ∗
G/Q) → G/Q. The aim of this section is to describe the rational map ν

and then compute the degree of ν(�) for a general line � in P(T ∗
G/P,o). The result is

summarised in the following table:

Table 3. Degree of lines under stratified Mukai flops.

Type An,k D2n+1 E6,I E6,II Bn,k Dn,k Cn,k

degree ν(�) k n 2 4 2n−k 2n−1−k 2k−2

condition for
k

2k < n 2n+1
3 ≤ k ≤ n−1,
k even

2n
3 ≤ k ≤ n−2,
k odd

2≤ k ≤ 2n
3 ,

k odd

5.D.1. Preliminary. Recall that for a simple Lie algebra g, there exist only finitely

many nilpotent orbits in g. In classical types, these orbits are parameterised by certain

partitions, which correspond to sizes of the Jordan blocks in each conjugacy class.
Now we consider classical B-C-D types. Let ε ∈ {0,1} and V a d -dimensional vector

space with a nondegenerate bilinear form, such that 〈v,w〉= (−1)ε〈w,v〉 for all v,w ∈ V .

Given a nilpotent element φ : V → V preserving the bilinear form, we can associate to

it a partition d = [d1, · · · ,dl] of d. Except a few cases in type D, this partition uniquely
determines the conjugacy class of φ, denoted by Od.

We identify the partition d with a Young table consisting of d boxes, where the i -th row

consists of di boxes for each i. We denote by (i,j) the box of d lying on the i -th column
and j -th row. Let us recall the following classical result (cf. Proof of [39, Theorem 4.5]).

Proposition 5.15. For an element φ ∈ Od, there exists a basis e(i,j) of V indexed by

the Young diagram d with the following properties:
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(a) φ(e(i,j)) = e(i−1,j) for all (i,j) ∈ d.

(b) 〈e(i,j),e(p,q)〉 �=0 if and only if p= dj−i+1 and q= β(j), where β is a permutation

of {1,2, · · · ,l} (l is the length of the partition), which satisfies β2 = id, dβ(j) = dj
and β(j) �≡ j(mod 2) if dj �≡ ε(mod 2). One can choose an arbitrary β within these

restrictions.

We start with the following elementary result.

Proposition 5.16. Let a < b be two integers and m an odd integer. Let A,B,W be vector
spaces of dimension a,b,m, respectively.

(1) Consider the rational map ν1 : P(Hom(A,B)) ��� Gr(a,B) by sending a general

element ψ ∈ Hom(A,B) to its image Im(ψ) ⊂ B. Then ν1 sends a general line in
P(Hom(A,B)) to a curve of degree a in Gr(a,B).

(2) Consider the rational map ν2 : P(∧2W ) ��� PW ∗ by sending a general element

ψ ∈ ∧2W to its kernel Ker(ψ) (by viewing ψ as a map from W ∗ to W). Then ν2
sends a general line in P(∧2W ) to a curve of degree m−1 in P(W ∗).

Proof. (1) Take a general (parameterised) line [ψλ] ∈P(Hom(A,B)) (with λ ∈P1), then

ψλ :A→B is injective. Take a basis e1, · · · ,ea of A, then Im(ψλ)⊂Gr(a,B) corresponds

to the curve (under the Plücker embedding):

λ �→ ψλ(e1)∧·· ·∧ψλ(ea),

which is of degree a as ψλ is linear in λ.
(2) For a general element ψ ∈ ∧2V , it has the maximal rank m−1 as m is odd. Take a

general subspace W ∗
0 ⊂W ∗ of codimension 1, then ψ :W ∗

0 → Im(ψ) is an isomorphism.

By taking a basis of W ∗
0 and using a similar argument as in (1), we see that ν2 maps a

general line to a degree m−1 curve in Gr(m−1,W )�PW ∗.

5.D.2. Type An,k. Let V be an (n+1)-dimensional vector space and k < (n+1)/2

an integer. The An,k flop is the birational map μ̂ : T ∗Gr(k,V ) ��� T ∗Gr(k,V ∗), which is

given as follows:

For any [F ]∈Gr(k,V ), there exists a natural isomorphism T ∗
[F ]Gr(k,V )�Hom(V/F,F ).

An element φ ∈Hom(V/F,F ) gives naturally an element:

φ∗ ∈Hom(F ∗,(V/F )∗)⊂Hom(F ∗,V ∗).

If φ is general, then φ : V/F → F is surjective as dimF < dimV/F . This gives an

injective map φ∗ :F ∗ → (V/F )∗, whose image gives an element [Im(φ∗)]∈Gr(k,(V/F )∗)⊂
Gr(k,V ∗). The flop μ̂ sends ([F ],φ) to ([Im(φ∗)],φ∗). Hence, the rational map ν is given by:

ν :P(T ∗
[F ]Gr(k,V )) ���Gr(k,(V/F )∗)⊂Gr(k,V ∗), [φ] �→ [Im(φ∗)].

By Proposition 5.16, ν maps a general line to a curve of degree k on Gr(k,V ∗).

5.D.3. Type D2n+1. Let (V ,〈,〉) be an orthogonal space of dimension 4n+2. The

spinor variety S := S2n+1, which parameterises (2n+1)-dimensional isotropic subspaces

of (V ,〈,〉), consists of two irreducible components S+,S−. It turns out the Richardson
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orbits in so4n+2 associated to S+ and S− are the same, which corresponds to the partition

[22n,12]. The two Springer maps T ∗S+
ŝ+−−→ O ŝ−←−− T ∗S− are birational, which gives the

D2n+1 flop μ̂ : T ∗S+ ��� T ∗S−.
The flop μ̂ can be described as follows (cf. [39, Lemma 5.6]): given a general element

φ ∈ O, the kernel Ker(φ) is of dimension 2n+2, which contains the two-dimensional
vector subspace Im(φ). The quotient V̄ := Ker(φ)/Im(φ) is a two-dimensional orthogonal

vector space, which has exactly two isotropic lines (say L+,L−). Then their preimages

in Ker(φ) give two (2n+1)-dimensional isotropic subspaces F+,F− of V. This gives two
points [F±] ∈ S±. The flop μ maps ([F+],φ) to ([F−],φ). Note that we have a natural

isomorphism F−/Im(φ)�Ker(φ)/F+, which shows that F− is the linear span of Im(φ)

and Ker(φ)/F+.

For an element [F ] ∈ S+, we have a natural isomorphism V/F � F ∗ induced from
the pairing 〈,〉 on V as F = F⊥. Furthermore, T ∗

[F ]S
+ � ∧2F . We fix a (noncanonical)

isomorphism V � F ⊕F ∗, such that the pairing 〈,〉 on V corresponds to the natural

pairing on F ⊕F ∗.
For general φ ∈ ∧2F , its kernel is one-dimensional (as dimF is odd), which defines a

point [f∗
φ ] ∈PF ∗. Then Im(φ) is just the hyperplane Hφ in F annihilating f∗

φ = 0. Thus,

the rational map ν is the composition of maps:

P(∧2F ) ���PF ∗ ⊂ S−, [φ] �→ [f∗
φ ] �→<Hφ,f

∗
φ > .

By Proposition 5.16, ν maps a general line in P(∧2F ) to a curve of degree 2n in the
Plücker embedding of S−.
Note that the composition S− ⊂ Gr(2n+1,V ) ⊂ P(∧2n+1V ) is induced by OS−(2),

hence, this gives a degree n curve on S−.

5.D.4. Type E6,I . Consider the E6,I flop μ̂ : T ∗(E6/P1) ��� T ∗(E6/P6). Fix a point

o ∈ E6/P1, then the cotangent space T ∗
o (E6/P1) can be identified with the spinor

representation S of Spin10. Let Q
8 be the smooth eight-dimensional hyperquadric. By [6,

Proposition 1.5], there exists a unique C∗×Spin10-equivariant rational map ν̂ : S ���Q8,

which is defined as follows: the affine cone of the ten-dimensional spinor variety Ŝ5 ⊂ S
is defined by ten quadratic equations Q1 = · · · = Q10 = 0, and the map ν̂ is given by
z �→ [Q1(z) : · · · : Q10(z)] ∈ P9, whose image is contained in Q8. This implies that if we

take a general line � in PS, then ν(�) is a conic on Q8.

By [6, Theorem 3.3], the map ν̂ is the composition of μ̂ with the projection T ∗(E6/P6)→
E6/P6 (under the natural embedding Q8 ⊂ E6/P6). This shows that the rational map

ν :PT ∗
o (E6/P1) ��� E6/P6 maps a general line to a conic.

5.D.5. Type E6,II . Let F be a five-dimensional vector space. By [6, Proposition 2.1],
there exists a unique GL2×GL(F )-equivariant rational map:

g : ∧2F ∗⊕∧2F ∗ ���Gr(3,F ),

which maps a general element (ω1,ω2) ∈ ∧2F ∗⊕∧2F ∗ to Ker(ω1)
⊥ω2 ∩Ker(ω2)

⊥ω1 . Here,

ωi ∈∧2F ∗ is viewed as a two form on F and Ker(ω1)
⊥ω2 means the orthogonal space with
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respect to ω2 of the subspace Ker(ω1). As ωi is general, it has rank 4, hence, Ker(ωi)

is one-dimensional, which shows that Ker(ω1)
⊥ω2 ∩Ker(ω2)

⊥ω1 is a three-dimensional

vector subspace in F. By [6, Lemma 2.3], we have g(aω1+bω2,a
′ω1+b′ω2) = g(ω1,ω2) for

a general element

(
a b
a′ b′

)
in GL2. By [6, Lemma 2.4], a general element φ= (ω1,ω2) ∈

∧2F ∗⊕∧2F ∗ can be codiagonalised as follows (under a suitable basis f∗
1 , · · · ,f∗

5 of F ):

ω1 = f∗
2 ∧f∗

4 +f∗
3 ∧f∗

5 , ω2 = f∗
1 ∧f∗

5 +f∗
3 ∧f∗

4 .

Take another element φ′ = (ω′
1,ω

′
2) defined as follows:

ω′
1 = f∗

1 ∧f∗
4 +f∗

3 ∧f∗
5 , ω′

2 = f∗
1 ∧f∗

2 +f∗
3 ∧f∗

4 .

Consider the following plane in ∧2F ∗⊕∧2F ∗ given by φs,t = sφ+ tφ′ = (ωs,t
1 ,ωs,t

2 ) for

(s,t) ∈ C2. By a direct computation, we have:

Ker(ωs,t
1 ) = C(sf1− tf2), Ker(ωs,t

2 ) = C(sf2− tf5).

One remarks that for any (s,t) �= (0,0), the subspaces Ker(ωs,t
1 ) and Ker(ωs,t

2 ) are pne-

dimensional and they intersect only at (0,0). Moreover, one shows directly that:

ω2(Ker(ωs,t
1 ),·)∩ω1(Ker(ωs,t

2 ),·) = {0}.

This shows that g(φs,t) is well defined for (s,t) �= (0,0). By a direct computation, we have:

g(φs,t) =

{∑
i

xifi|x5 =
t2

s2
x1−

t

s
x2,x4 =

(s+ t)t

s2
x3

}
.

This gives a basis for g(φs,t), which, under the Plücker embedding is mapped to the

following curve on Gr(3,F ):

[s : t] �→ [(f1+
t2

s2
f5)∧ (f2−

t

s
f5)∧ (f3+

(s+ t)t

s2
f4)].

Note that this gives a degree 4 curve on Gr(3,F ).

Consider the E6,II flop μ̂ : T ∗(E6/P3) ��� T ∗(E6/P5). By [6, Theorem 4.3], the

composition T ∗
o (E6/P3) ��� T ∗(E6/P5)→ E6/P5 can be identified with the composition

of g with the natural embedding Gr(3,F )⊂ E6/P5. The precedent argument shows that
a general line in PT ∗

o (E6/P3) is mapped to a degree 4 curve on E6/P5.

5.D.6. Type Bn,k. Let (V ,〈,〉) be an orthogonal space of dimension 2n+1. A vector

subspace F ⊂ V is said orthogonal if F ⊂ F⊥. The k -th orthogonal Grassmann variety

Bn/Pk parameterises k -dimensional orthogonal vector subspaces in V. There exists an
isomorphism:

T ∗(Bn/Pk)� {([F ],φ) ∈Bn/Pk× so(V )|φ(V )⊂ F⊥,φ(F⊥)⊂ F ⊂Ker(φ)}.

Under this isomorphism, the Springer map ŝ : T ∗(Bn/Pk)→Od sends ([F ],φ) to φ.

https://doi.org/10.1017/S1474748022000366 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000366


Normalised tangent bundle, varieties with small codegree and pseudoeffective threshold 189

When k is even, such that k > 2n+1
3 , the Springer map π is generically finite of degree 2

and d= [32n+1−2k,23k−2n−2,12]. The involution on general fibres of π gives the Bn,k-flop:

μ̂ : T ∗(Bn/Pk) ��� T ∗(Bn/Pk).
For φ ∈ Od, we choose a basis e(i,j) of V as described by Proposition 5.15 (by

taking β satisfying β(k) = k+1). Then Ker(φ) has dimension k+1 and is generated

by e(1,1),e(1,2), · · · ,e(1,k+ 1). The two fibres π−1(φ) are given by the following two
orthogonal subspaces (cf. Proof of [39, Theorem 4.5]):

F1 =
∑

1≤j≤k

Ce(1,j) and F2 =
∑

1≤j≤k−1

Ce(1,j)+Ce(1,k+1).

One notes that F0 := F1∩F2 = F1∩ Im(φ) = Im(φ)∩Ker(φ) is of dimension k−1 and

F2/F0 is naturally isomorphic to Ker(φ)/F1. The flop μ̂ interchanges the two fibres.
Namely, the flop μ̂ sends ([F1],φ) to ([F2],φ), where F2 is the linear span of F1 ∩ Im(φ)

and Ker(φ)/F1, the latter being one-dimensional. Furthermore, 〈Ker(φ)/F1,F0〉 = 0 and

as F0 ⊂ F1 is a hyperplane, it is exactly the orthogonal part in F of Ker(φ)/F1. This
implies that F2 is in fact uniquely determined by Ker(φ)/F1. We summarise these in the

following picture on Young table.

φφ

2n+1−2k

3k−2n−2

2

kerφ

F0

F1/F0

F2/F0

F⊥
1 /F1

F1

F2 V/F⊥
1

Fix an orthogonal space [F ] ∈Bn/Pk, then F⊥/F is an orthogonal space of dimension

2n+1−2k and V/F⊥ is isomorphic to F ∗ via the pairing F ×V/F⊥ → C induced from
the bilinear form on V. We fix a (noncanonical) isomorphism V � F ⊕F ∗⊕F⊥/F , such

that the orthogonal form on V is given by that induced on F⊥/F and the natural one

on F ⊕F ∗.
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By [26, Proposition 5.1], we have:

ιF : T ∗
[F ](Bn/Pk)�Hom(F⊥/F,F )⊕∧2F.

This isomorphism is given as follows: for φ ∈ T ∗
[F ](Bn/Pk), it induces a map φ0 ∈

Hom(F⊥/F,F ) as F ⊂ Ker(φ) and φ(F⊥) ⊂ F . As φ(V ) ⊂ F⊥, it induces a map

(φ1,φ2) : V/F
⊥ → F⊥/F ⊕F . It turns out that φ ∈ so(V ) is equivalent to the following:

(1) the map φ1 : V/F
⊥ � F ∗ → F⊥/F is the dual −φ∗

0 of the map −φ0 (here, F⊥/F is
self-dual) and (2) the map φ2 : V/F

⊥ � F ∗ → F is in fact an element in ∧2F . Then the

isomorphism ιF sends φ to (φ0,φ2).

Conversely, given (φ0,φ2)∈Hom(F⊥/F,F )⊕∧2F , we construct φ̄ as a map from V/F �
V/F⊥⊕F⊥/F to F ⊕F⊥/F , which is given as follows:

φ̄=

(
φ2 φ0

−φ∗
0 0

)
.

Thus, φ̄ is represented as an antisymmetric matrix of size dimV/F = 2n+1−k. Note
that dimV/F is odd as k is even, so for a general choice of (φ0,φ2), the map φ̄ is of

maximal rank 2n−k and Ker(φ̄) is one-dimensional. Note that Ker(φ̄) = Ker(φ)/F . By

the natural quotient V/F → V/F⊥ �F ∗, the image of Ker(φ̄) gives a line Cf∗ ⊂F ∗. Then
the flop μ maps ([F ],φ) to ([F ′],φ), where F ′ ⊂ F ⊕F ∗ ⊂ V is the subspace generated

by Hf∗ and f∗, here, Hf∗ is the hyperplane in F defined by f∗ = 0. Then the map

ν :P(T ∗
[F ](Bn/Pk)) ���Bn/Pk is then given by [φ0,φ1] �→ [F ′].

Note that Hf∗ is uniquely determined by f∗, while f∗ is given by the kernel Ker(φ̄∗).
By Proposition 5.16, ν maps a line to a curve of degree 2n−k on Bn/Pk for the Plücker

embedding of Bn/Pk. Thus, for k �= n, this gives a degree 2n−k curve on Bn/Pk, while

for k = n, this gives a curve of degree n/2 on Bn/Pn as Bn/Pn ⊂ Gr(n,2n+1) ⊂ PN is
induced by O(2).

Remark 5.17. By [40, Example 3.3], B2n,2n-flop is the same as D2n+1-flop. Hence, we

recover the result in Section 5.D.3.

5.D.7. Type Dn,k. Let (V ,〈,〉) be an orthogonal space of dimension 2n. As in the
Bn,k-flop case, we have the following isomorphism of the cotangent bundle of the k -th

orthogonal Grassmann variety Dn/Pk:

T ∗(Dn/Pk)� {([F ],φ) ∈Dn/Pk× so(V )|φ(V )⊂ F⊥,φ(F⊥)⊂ F ⊂Ker(φ)}.

Under this isomorphism, the Springer map ŝ : T ∗(Bn/Pk)→Od sends ([F ],φ) to φ.

When k is odd, such that n− 2 ≥ k > 2n
3 , the Springer map ŝ is generically finite of

degree 2 and d= [32n−2k,23k−2n−1,12]. The involution on the general fibres of ŝ gives the

Dn,k-flop: μ̂ : T ∗(Dn/Pk) ��� T ∗(Dn/Pk).
This flop is similar to the Bn,k-flop. By the similar argument, we see that a general line

in P(T ∗
[F ](Dn/Pk)) is mapped to a curve of degree 2n−k−1.

5.D.8. Type Cn,k. Let (V ,ω) be a symplectic vector space of dimension 2n. A vector

subspace F ⊂V is said isotropic if F ⊂F⊥. The k -th symplectic Grassmann variety Cn/Pk
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parameterises k -dimensional isotropic vector subspaces in V. There exists an isomorphism:

T ∗(Cn/Pk)� {([F ],φ) ∈ Cn/Pk× sp(V )|φ(V )⊂ F⊥,φ(F⊥)⊂ F ⊂Ker(φ)}.

Under this isomorphism, the Springer map ŝ : T ∗(Cn/Pk)→Od sends ([F ],φ) to φ.

When k is odd, such that k ≤ 2n
3 , the Springer map π is generically finite of degree 2

and d= [3k−1,22,12n−3k−1]. The involution on the general fibres of π gives the Cn,k-flop:

μ̂ : T ∗(Cn/Pk) ��� T ∗(Cn/Pk).

When k = 1, then d = [22,12n−4] and an element φ ∈ Od has rank 2, so Im(φ) is two
dimensional. The flop μ sends ([F ],φ) to ([Im(φ)/F ],φ). In this case, if we take a general

pencil φλ ∈ T ∗
[F ](Cn/P1), then the flop μ̂ maps it to a line in Cn/P1.

Now we consider the case 3≤ k ≤ 2n
3 . Fix [F ] ∈ Cn/Pk and take a general pencil φλ ∈

T ∗
[F ](Cn/Pk). Note that φ2

λ = φλ ◦φλ has rank k−1, hence, Im(φ2
λ) is a vector subspace

of dimension k−1 in F. It defines an element f∗
λ in F ∗ � V/F⊥, which is unique up to a

scalar. Then the image of ([F ],φλ) under the flop μ̂ is ([Fλ],φλ), where Fλ is spanned by

Im(φ2
λ) and f∗

λ . This gives a curve on Cn/Pk, which is given in the Plücker embedding

φ2
λ(v1)∧φ2

λ(v2) · · · ∧φ2
λ(vk−1) for general chosen k− 1 vectors v1, · · · ,vk−1 of V, as φ2

λ is

quadratic in λ. This gives a curve of degree 2(k−1).

5.E. Proof of Theorem 1.14

If the morphism ε :P(T ∗
G/P )→P(Õ) is a divisorial contraction, then Proposition 5.9 and

Corollary 5.10 can be applied to determine a and b. Nevertheless, in general, it is not

easy to compute the Segre classes Λ2n−1 and Λ2n−1 ·π∗H. In the following, we shall use

a similar method as the previous subsection to determine a and b in the classical cases.
We start with the following result which computes the pseudoeffective threshold for G/P

of type (II-d-d).

Proposition 5.18. Let G/P be a rational homogeneous space of type (II-d-d) of classical
type. Then the pseudoeffective threshold of G/P is given by αG/P = 1/a, where a is the

integer given by the following table.

Table 4. Values of a in the case (II-d-d).

g node nilpotent orbit O a

Bn
2n+1

3 ≤ k ≤ n−1 and k odd [32n+1−2k,23k−2n−1] 2n+1−k

Cn 2≤ k ≤ 2n
3 and k even [3k,12n−3k] 2k

Dn
2n
3 ≤ k ≤ n−2 and k even [32n−2k,23k−2n] 2n−k

Proof. Note that for G/P of type (II-d-d), the Springer map ŝ : T ∗
G/P →O is birational

by Proposition 5.4. Let Γ be the exceptional divisor, and write [Γ]≡ a(Γ)Λ−b(Γ)π∗H. By

Corollary 5.10, we have b(Γ)= 1. By Theorem 5.5, we have αG/P =1/a(Γ). By Proposition

5.9, we have a(Γ)Λ′ ≡H ′, which can be used to determine a(Γ) for the classical cases.
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As P(T ∗
G/P )→P(O) is birational, this gives a rational map η :P(O) ���G/P . For any

point x ∈ O, there exists an sl2-triplet (x,y,h) by the Jacobson-Morozov theorem. The

nilpotent elements in this sl2 give a conic C on P(O) passing through [x]. In other words,

P(O) is covered by conics. Now we show that η : C → η(C) is birational: let n ⊂ g be

the nilradical of p, which is naturally identified with T ∗
G/P,o. As O is Richardson, the

intersection n∩O is dense in n, thus, n⊂O. This implies that fibres of T ∗
G/P →G/P are

mapped to linear subspaces in O. For any y ∈ G/P , denote by ny this linear subspace.

Then P(ny)∩C =P(ny)∩P(sl2)⊂ C. As C is a conic, while P(ny)∩P(sl2) is linear, we
have P(ny)∩P(sl2) is just a point, which shows η :C → η(C) is birational. It follows that

a(Γ) = η∗(C)·H
2 . Thus, we only need to compute the degree of the curve η∗(C).

Consider the case of Bn/Pk with k odd and k ≥ 2n+1
3 . Then O corresponds to the

partition [32n+1−2k,23k−2n−1]. Take an element φ∈O⊂ so(V ), then Ker(φ) has dimension

k as rk(φ) = 2n+1−k. Using the identification:

T ∗(Bn/Pk)� {([F ],φ) ∈Bn/Pk× so(V )|φ(V )⊂ F⊥,φ(F⊥)⊂ F ⊂Ker(φ)},

it follows that the map η is given by η(φ) = [Ker(φ)]. By Proposition 5.16, η∗(C) is a

curve of degree 2(2n+1−k), which gives a= 2n+1−k. The case of Dn/Pk is completely

similar.
Consider Cn/Pk with k even and k ≤ 2n

3 . The nilpotent orbit O corresponds to the

partition [3k,12n−3k]. Take an element φ ∈ O, then it is easy to see that η(φ) = [Im(φ2)].

This shows that η(C) is a curve of degree 4k, hence, a= 2k.

There are five G/P of type (II-d-d) in exceptional Lie algebras. Although the similar

approach works, the map η is not explicit, which prevents us from doing the computation.

In a similar way, we can get the following:

Lemma 5.19. The pseudoeffective threshold of Cn/Pk with k ≥ 2n+1
3 is 2

2n−k .

Proof. Note that Cn/Pk with k ≥ 2n+1
3 is of type (II-d-A1) and the Springer map ŝ :

T ∗
Cn/Pk

→O[32n−2k,23k−2n] is birational by Proposition 5.4. Let Γ be the exceptional divisor,

and write [Γ]≡ a(Γ)Λ− b(Γ)π∗H. By Corollary 5.10, we have b(Γ) = 2. By Theorem 5.5,

we have αCn/Pk
= 2/a(Γ). To compute a(Γ), we consider the rational map:

η :PO[32n−2k,23k−2n] ��� Cn/Pk, φ �→ [Ker(φ)].

As in the proof of Proposition 5.18, take a conic curve C on P(O), then its image η(C)

is a curve of degree 2(2n−k). This gives a(Γ) = 2n−k.

Now we are ready to prove our main result.

Proof of Theorem 1.14. The statement (1) is a direct consequence of Theorem 5.5 and

Propositions 5.8 and 5.9.
For statement (2), let r and d be two positive integers. Then there exists an effective

divisor D ⊂ P(TG/P ), such that D ∼ rΛ−dπ∗H if and only if:

H0(G/P,(SymrTG/P )⊗OG/P (−dH)) �= 0.
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First, we assume that the morphism ε : P(T ∗
G/P ) → P(Õ) is divisorial with exceptional

divisor Γ. Then Γ is dominated by curves with Λ-degree 0 and Γ ≡ aΛ− bπ∗H by our

definition of a and b. Let m be the multiplicity of D along Γ. Then the restriction of the
following effective divisor:

D−mΓ≡ (r−am)Λ+(bm−d)π∗H

to Γ is pseudoeffective. Then we obtain r−am≥ 0 and bm−d≥ 0. This yields:

d≤ bm≤ b
⌊ r
a

⌋
,

where the second inequality follows from the fact that m is an integer. Conversely, if r

and d are two positive integers satisfying d≤ b� r
a�, we define m= � r

a�, then we get:

rΛ−dπ∗H ∼mΓ+(r−am)Λ+(bm−d)π∗H.

Note that r− am ≥ 0 and bm− d ≥ 0 by our assumption. As Λ and H are globally

generated, it follows that there exists an effective divisor D′, such that:

rΛ−dπ∗H ∼mΓ+D′ ≥ 0.

Next, we assume that the morphism ε : P(T ∗
G/P ) → P(Õ) is small. We consider the

stratified Mukai flop μ :P(T ∗
G/P ) ���P(T ∗

G/Q). Let D ⊂P(T ∗
G/P ) be an effective divisor,

such that:

D ∼ rΛ−dπ∗
1H.

By Proposition 5.8, the push forward by μ shows:

μ∗D ∼ rΛ′−dμ∗π
∗
1H ∼ rΛ′−d(aΛ′−π∗

2H)∼ (r−da)Λ′+dπ∗
2H,

where Λ′ is the tautological divisor of P(T ∗
G/Q), and we use the fact that b = 1 in this

case. As μ∗D is effective, we obtain r− da ≥ 0. Conversely, if r and d are two positive

integers satisfying d ≤ b� r
a�, then we get ad ≤ r as b = 1. In particular, as Λ′ and H are

globally generated, there exists an effective divisor D′, such that D′ ∼ (r−ad)Λ′+dπ∗
2H.

Then the pull back μ∗D′ is an effective divisor, such that:

μ∗D′ ∼ (r−ad)Λ+dμ∗π∗
2H ∼ rΛ−dπ∗

1H.

For statement (3), note first that the tangent bundle TG/P is semistable. Thus, by
Lemma 2.8, we have:

b

a
= αG/P = index(G/P ) ·α(G/P,−KG/P )≤

index(G/P )

dim(G/P )
.

In particular, the normalised tangent bundle of G/P is pseudoeffective if and only if:

a · index(G/P ) = b ·dim(G/P ).

Consequently, as b≤ 2, it follows that 2dim(G/P ) is divided by index(G/P ). Thus, for G

of exceptional type, one can check by Appendix A that the normalised tangent bundle of

G/P is pseudoeffective if and only if G/P is isomorphic to either E7/P7 or G2/P1 =Q5.
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Type An/Pk. Note that An/Pk is isomorphic to An/Pn+1−k. Thus, we may assume that

2k ≤ n+1. First, we assume that 2k ≤ n, then a= k and b= 1. Then we have:

a · index(An/Pk)− b ·dim(An/Pk) = k(n+1)−k(n−k+1) = k2 > 0.

Hence, the normalised tangent bundle of An/Pk is not pseudoeffective if 2k �= n+1. Next
we assume that 2k = n+1, then we have a= k and b= 2, and we have:

a · index(An/Pk)− b ·dim(An/Pk) = k(n+1)−2k(n−k+1) = k(2k−n−1) = 0.

Hence, the normalised tangent bundle of X =An/Pk is pseudoeffective if 2k = n+1 and

X is isomorphic to the Grassmann variety Gr(k,2k) in this case.

Type Bn/Pk. First, we assume that 3k ≤ 2n. Then a= 2k and b= 2. In particular, we

have:

a · index(Bn/Pk)− b ·dim(Bn/Pk) = 2k(2n−k)−k(4n−3k+1) = k(k−1)≥ 0

with equality if and only if k = 1. Hence, if 3k ≤ 2n, then the normalised tangent bundle

of Bn/Pk is pseudoeffective if and only if k= 1, in which case, Bn/Pk is isomorphic to the

(2n−1)-dimensional quadric Q2n−1. Next, we assume that 2n+1≤ 3k ≤ 3(n−1). Then

a= 2n−k (k even) or 2n−k+1 (k odd), and b= 1. Nevertheless, note that we have:

2a · index(Bn/Pk)−2b ·dim(Bn/Pk)≥ 2(2n−k)2−k(4n−3k+1)

= 8n2−12nk+5k2−k

= (2n−2k)(4n−2k)+k2−k > 0.

Therefore, if 2n+1≤ 3k ≤ 3(n−1), then the normalised tangent bundle of Bn/Pk is not

pseudoeffective. Finally, we assume that k = n. Then a = �n+1
2 �, and b = 1 (n even) or

b = 2 (n odd). On the other hand, note that Bn/Pn is the n(n+1)
2 -dimensional spinor

variety Sn+1 with index 2n. In particular, one can easily obtain that the normalised

tangent bundle of Bn/Pn is pseudoeffective if and only if n is odd.
Type Cn/Pk. If k = 1, then Cn/P1 is isomorphic to P2n−1 whose normalised tangent

bundle is known to be nonpseudoeffective. Now we assume that 6 ≤ 3k ≤ 2n, then a =

2k−2 (k odd) or a= 2k (k even) and b= 1. If k ≥ 3, then we have:

2a · index(Cn/Pk)−2b ·dim(Cn/Pk)≥ 2(2k−2)(2n−k+1)−k(4n−3k+1)

= 4nk−k2+7k−8n−4

=
2nk

3
−k2+

10nk

3
−8n+7k−4> 0.

Hence, the normalised tangent bundle of Bn/Pk is not pseudoeffective if 9≤ 3k ≤ 2n. For

k = 2 and n≥ 3, one can easily check that the normalised tangent bundle of Bn/P2 is not

pseudoeffective in the same way. Finally, we assume that 3k ≥ 2n+1. Then a = 2n− k

and b= 2. Then we obtain:

a · index(Cn/Pk)− b ·dim(Cn/Pk) = (2n−k)(2n−k+1)−k(4n−3k+1)

≥ (2n−2k+1)(2n−2k)≥ 0
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with equality if and only if k = n. In particular, if 3k ≥ 2n+1, then the normalised
tangent bundle of Cn/Pk is pseudoeffective if and only if k = n, which is the Lagrangian

Grassmann variety LG(n,2n).

Type Dn/Pk. First, we assume that 3k≤ 2n−1. Then a=2k and b=2. Then we obtain:

a · index(Dn/Pk)− b ·dim(Dn/Pk) = 2k(2n−k−1)−k(4n−3k−1)≥ k2−k ≥ 0,

with equality if and only if k = 1. Hence, if 3k ≤ 2n− 1, then the normalised tangent

bundle of Dn/Pk is pseudoeffective if and only if k = 1, which is the (2n−2)-dimensional
quadric Q2n−2. Next, we assume that 2n≤ 3k ≤ 3(n−2), then a= 2n−k−1 (k odd) or

a= 2n−k (k even), and b= 1. In particular, we have:

2a · index(Dn/Pk)−2b ·dim(Dn/Pk)≥ 2(2n−k−1)2−k(4n−3k−1)

= 8n2−12nk+5k2+5k−8n+2

= (2n−2k)(4n−2k)+k2+5k−8n+2

≥ 4(2n+4)+k2+5k−8n+2> 0,

where the fourth inequality follows from the fact that k ≤ n− 2. Hence, the normalised

tangent bundle is not pseudoeffective if 2n ≤ 3k ≤ 3(n− 2). Finally, if k ≥ n− 1, then

Dn/Pk is isomorphic to the spinor variety Sn = Bn−1/Pn−1 and the normalised tangent

bundle of Dn/Pk with k ≥ n−1 is pseudoeffective if and only if n is even.

6. Two nonhomogeneous examples

As mentioned in the Introduction, besides rational homogeneous spaces, there are only two

known examples of Fano manifolds with Picard number 1 and big tangent bundle: the del
Pezzo threefold V5 of degree 5 and the horospherical G2-variety X. In this subsection, we

describe the pseudoeffective cones of the projectivised tangent bundle of V5 and X. Recall

that V5 is actually a codimension 3 linear section of Gr(2,5)⊂ P9 and the bigness of TV5
is

proved in [15] using the total dual VMRT. In particular, this gives the pseudoeffective cone

of P(TV5
) by applying Theorem 3.4. Actually, we have the following complete descriptions

of the cones of divisors of P(TV5
).

Proposition 6.1. Let X be the del Pezzo Fano threefold V5 of degree 5. Denote by π :

X := P(TX)→X the projectivised tangent bundle of X. Let H be the ample generator of

Pic(X), and let Λ be the tautological divisor of P(TX). Then we have:

⎧⎪⎨⎪⎩
Eff(X ) = 〈3Λ−π∗H,π∗H〉
Mov(X ) = 〈Λ,π∗H〉
Nef(X ) = 〈Λ+π∗H,π∗H〉 .
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In particular, the cones of divisors Eff(X ), Mov(X ) and Nef(X ) are closed rational cones

in N1(X ).

π∗H−π∗H

Λ
Λ+π∗H

Nef(X )

Mov(X )3Λ−π∗H

Eff(X )

Proof. The description of the effective cone Eff(X ) of X follows from Theorem 3.4 and
[15, Theorem 5.4].

Note that Č is dominated by curves with Λ-degree 0. It follows that Č ⊂ B+(Λ). In

particular, by Lemma 2.3 that [Λ] is not contained in the interior of Mov(X ). Thus, it
remains to show that Λ is actually movable. Note that X is quasihomogeneous under the

action of Aut(X) =PGL2(C) and there are exactly three orbits X0�X1�X2, where X0 is

the open orbit and Xi has codimension i for 0≤ i≤ 2. Moreover, the closure X1 =X1�X2

of X1 is a prime divisor in the complete linear system |2H|. In particular, the base locus
of |Λ| is contained in π−1(X1). Let D ∈ |Λ| be an arbitrary element. If Λ is not movable,

then π∗X1 is contained in Supp(D). In particular, D−π∗X1 is an effective divisor. This

shows that Λ−2π∗H is contained in Eff(X ), which contradicts the description of Eff(X )
above. Hence, Λ is movable, and we have Mov(X ) = 〈Λ,π∗H〉.
Recall that there exists a one-dimensional family of lines l ⊆X on X, such that:

TX |l ∼=OP1(2)⊕OP1(1)⊕OP1(−1).

In particular, the nef cone Nef(X ) of X is contained in the cone 〈Λ+π∗H,π∗H〉. Thus,
it remains to show that Λ+π∗H is nef. Note that X is embedded in P6 by the complete
linear system |H|. Therefore, thanks to [15, Lemma 3.1], the vector bundle:

TX ⊗OP6(3)|X ⊗OX(KX)∼= TX ⊗H

is globally generated. Hence, the Cartier divisor class Λ+π∗H is nef.

Remark 6.2. If X is a Fano manifold of Picard number 1, such that the VMRT Cx ⊂
P(ΩX,x) is zero-dimensional, it is proved in [14, Theorem 1.1] that TX is big if and only
if X is isomorphic to the del Pezzo threefold V5 of degree 5. In particular, the normalised

tangent bundle can not be pseudoeffective by Proposition 6.1.

Now we consider the horospherical G2-variety X. We briefly recall the geometric

description of X, and we refer the reader to [43] for more details. First, X is a seven-
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dimensional Fano manifold of Picard number 1 and index 4. The automorphism group
Aut(X) acts on X with two orbits, and the unique closed orbit Z ⊂ X is a smooth five-

dimension quadric, such that H|Z ∼=OQ5(1), where H is the ample generator of Pic(X).

In particular, Λ is movable. On the other hand, by [44, Proposition 2.3], it follows that
there exists a deformation X→Δ, such that Xt

∼= B3/P2 if t �= 0 and X0
∼= X. Then the

semicontinuity theorem implies that TX is big. On the other hand, for X = B3/P2, the

total dual VMRT Č′ is a prime divisor, such that:

[Č′]≡ 4Λ′−2π′∗H ′,

where Λ′ is the tautological divisor of π′ : P(TB3/P2
) → B3/P2 and H ′ is the ample

generator of Pic(B3/P2) (see Proposition 5.9). Moreover, the VMRT of X at a general

point is the smooth surface P(OP1(1)⊕OP1(3)) embedded by O(1). This implies that the

total dual VMRT Č of X is a prime divisor satisfying:

[Č]≡ 4Λ−2π∗H.

In particular, the class [Λ] is not contained in the interior of Mov(P(TX)) since B−(Λ)
contains Č. This shows that [Λ] generates an extremal ray of Mov(P(TX).

Next, denote by N the normal bundle of Z in X. Then by adjunction formula, we have
det(N ) ∼=OQ5(−1). Denote by X′ → X the blow up along Z with exceptional divisor E.

Then it is known that E is isomorphic to the complete flag manifold of G2-type. In

particular, the variety E ∼= P(N ∗) is isomorphic to P(V) over Q5, where V is the Cayley

bundle over Q5 (see [42]). As det(V)∼=OQ5(−1), there is an isomorphism N ∼= V∗(−1).
We claim that we have an isomorphism V∗(−1) ∼= V. Indeed, it is clear that

V∗(−1) is stable as V is stable ([42]). Moreover, an easy computation shows that we

have:

c1(V∗(−1)) = c1(V) and c2(V∗(−1)) = c2(V).

By [42, Main Theorem], the vector bundle V∗(−1) is isomorphic to V.
Finally, by [42, Theorem 3.7], the vector bundle V(2) and, hence, N (2) are globally

generated. As a consequence, it follows from the tangent sequence of Z that the restriction

TX(2)|Z is nef. Moreover, note that TX is globally generated outside Z, thus, the vector
bundle TX(2) is nef. On the other hand, by [42, Theorem 3.5], there exist lines l on Z =Q5,

such that:

V|l ∼=OP1(−2)⊕OP1(1).

This implies that TX(a) cannot be nef for any a < 2 and, hence, the divisor Λ+aπ∗H is
nef if and only if a≥ 2. In summary, we have the following result.

Proposition 6.3. Let X be the horospherical G2-variety X, and let H be the ample

generator of Pic(X). Denote by Λ the tautological divisor class of the projectivised tangent
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bundle π : X = P(TX)→X. Then we have:⎧⎪⎨⎪⎩
Eff(X ) = 〈4Λ−2π∗H,π∗H〉
Mov(X ) = 〈Λ,π∗H〉
Nef(X ) = 〈Λ+2π∗H,π∗H〉 .

Remark 6.4. Recently the second author has found in [31] infinitely many nonhomoge-

neous Fano manifolds of Picard number 1 and with big tangent bundle.

Appendix A. Big table for rational homogeneous spaces

In this appendix, we summarise the results for rational homogeneous spaces of Picard
number 1 proved in Section 5 and provide more details about the invariants and geometric

information of them. Let X =G/Pk be a rational homogeneous space of Picard number

1. Denote by P(T ∗
X)

ε−→P(Õ)→P(O) the Stein factorisation of the projectivised Springer

map. Note that the variety G/P is one-dimensional if and only if it is one of the following:
A1/P1, B1/P1, C1/P1, D2/P1 or D2/P2. In particular, the variety G/P is isomorphic to

P1. As the invariants for P1 are trivial, in the table below, we shall always assume that

G/P has dimension at least 2.
The first column of the table below gives the type of the Lie group G. The second

column is the numeration of the corresponding node in the Dynkin diagram. The third

column contains the type of X (see Definition 5.6 and Table 2). The fourth and fifth
columns give the values of a and b in Theorem 1.14, respectively. Column 6 gives the

type of singularities of P(Õ) in codimension 2 (cf. Definition 5.6 and Corollary 5.10)

and the notation “-” means that P(Õ) is smooth in codimension 2. Column 7 describes

the nilpotent orbit O and column 8 gives the dual defect of the VMRT Co ⊂ P(ΩX,o) of
X at a referenced point o ∈ X. Columns 9 and 10 contain the index and dimension of

X, respectively, and the last two columns describe the VMRT Co and its embedding in

P(ΩX,o), respectively.
The values of a and b are given in Section 5 according to the types of X =G/Pk. Let

us summarise them as follows:

(1) If X = G/Pk is of type (I) or type (II-s), then the method to compute a and b is

provided by Proposition 5.8. In particular, we always have b= 1 and the values of

a are provided in Table 3.

(2) If X = G/Pk is of type (II-d-d), then the method to compute a and b is to
use Proposition 5.9(1). In particular, we again have b = 1. The values of a are

explicitly determined in Table 4 for G of classical type. The remaining cases for

G of exceptional type are E7/P6, E8/P3, E8/P4, E8/P6 and F4/P4. In these
cases, the induced rational map η : P(Õ) ��� X is not explicit, so it prevents us

from doing the computation as that done for classical types in Proposition 5.18.

However, the formula provided in Proposition 5.9(1) still works in these cases,

and we leave the calculation of the value a in these five cases for the interested
reader.
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(3) If X = G/Pk is of type (II-d-A1), then the method to compute a and b is given

by Proposition 5.9(2) and (3). In particular, we have b = 2 and a is equal to the

codegree of the VMRT Co ⊂ P(ΩX,o) of X. Moreover, if the VMRT Co is a rational
homogeneous space, then the codegree of Co can be found in [50, p. 39 Table 2.1

and p. 40 Table 2.2]. The remaining cases are Cn/Pk (3k ≥ 2n+1) and F4/P3

(see Proposition 5.12 and Table 2), and we prove the following two lemmas for
them.

Before giving the proof, let us briefly recall the basic definition and properties of

nef value morphism. Given a polarised projective manifold (X,H), if KX is not nef,
then the nef value of (X,H) is defined as:

τ := min{t ∈ R |KX + tH is nef}.

The nef value morphism of (X,H) is the morphism Φ : X → Y defined by the

complete linear system |m(KX + τH)| for m � 0. If we assume in addition that
the complete linear system |H| defines an embedding X ⊂ PN , then the dual defect

def(X) can be determined by the nef value morphism Φ. More precisely, by [1] (see

also [50, Theorems 7.48 and 7.49]), if def(X)> 0, then the general fibre F of Φ has

Picard number 1 and we have:

def(X) = def(F )−dim(Y ),

where def(F ) is the dual defect of F ⊂ Pd embedded by |H|F |.

Lemma A.1. Let X = Cn/Pk be a rational homogeneous space of type C with

k ≥ 2, and let Co ⊂ P(ΩX,o) be the VMRT at a referenced point o ∈X. Then Co is
isomorphic to the following projective bundle:

π : P(OPk−1(2)⊕OPk−1(1)⊕(2n−2k))→ Pk−1,

with embedding given by the complete linear system |O(1)|, where O(1) is the

tautological line bundle. Moreover, the following statements hold:
(i) The VMRT Co ⊂ P(ΩX,o) is dual defective if and only if 3k ≤ 2n, and, if so,

then we have def(Co) = 2n−3k+1.

(ii) If 3k≥ 2n+1, then the dual variety of the VMRT Co ⊂P(ΩX,o) is a hypersurface
of degree 2n−k.

Proof. The description of the VMRT Co ⊂ P(ΩX,o) follows from [26]. For statement

(i), by [50, Theorem 7.21], if 2n ≥ 3k, then Co ⊂ P(ΩX,o) is dual defective with

def(Co) = 2n−3k+1. For the converse, we assume to the contrary that 3k ≥ 2n+1
and def(Co)> 0. Note that we have:

OCo
(KCo

)∼=O(−(2n−2k+1))⊗π∗OPk−1(2n−3k+1).
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Thus, the nef value τ of (Co,O(1)) is equal to 2n− 2k+1. Then the nef value

morphism Φ is defined by the complete linear system |π∗OPk−1(2n− 3k+1)|. In
particular, either Φ is a map to a point (if 2n−3k+1 = 0) or Φ is just the natural
projection π (if 2n−3k+1> 0). Let F be a general fibre of Φ. In the former case, we

have F = Co, and, therefore, ρ(F )≥ 2, which is a contradiction. In the latter case,

the variety F is isomorphic to P2n−2k and we have def(F ) = 2n−2k. In particular,
we obtain:

def(F )−dim(Pk−1) = 2n−3k+1≤ 0,

which is again a contradiction. Hence, if 3k ≥ 2n+1, the VMRT Co ⊂ P(ΩX,o) is
not dual defective.

For statement (ii), as 3k ≥ 2n+1, the VMRT Co ⊂ P(ΩX,o) is not dual defective.

Thus, we have codeg(Co) = a by Proposition 5.9, and the value of a in this case is

computed in Lemma 5.19 (see also [31, Proposition 4.25]).

Lemma A.2. Let X be the rational homogeneous space F4/P3, and let Co ⊂P(ΩX,o)
be the VMRT of X at a referenced point o ∈X. Then Co is isomorphic to a smooth

divisor in |OP(∧2E)(2)⊗ π∗OP1(−3)| and the embedding is given by the complete

linear system |OP(∧2E)(1)|, where E is the vector bundle OP1(1)⊕3⊕OP1 and π is
the natural projection P(∧2E)→ P1.

In particular, the dual variety of Co ⊂ P(ΩX,o) is a hypersurface of degree 8.

Proof. By [21], the VMRT Co is isomorphic to the Grassmann bundle of 2-planes

in the dual bundle E∗ with embedding given by the complete linear system of the

Plücker bundle on Co. Thus, we have a natural embedding Co ⊂ P(∧2E), such that
the restriction of OP(∧2E)(1) to Co is exactly the Plücker bundle. Moreover, note that

the Grassmann variety Gr(2,4) ⊂ P5 defined by Plücker embedding is the quadric

fourfold. Thus, the Co is a smooth divisor in P(∧2E), such that:

Co ∈ |OP(∧2E)(2)⊗π∗OP1(a)|

for some a ∈ Z. Let S ⊂ Co be the P2-bundle corresponding to the quotient bundle

∧2E → O⊕3
P1 . Then S ∼= P1 × P2 and denote by p2 : P1 × P2 → P2 the natural

projection. Consider a rank 2 subbundle V =OP1(−1)⊕OP1 of E∗. Then V defines a
section l= P(∧2V ∗)⊂ S of Co → P1, such that l is a fibre of p2. Note that the normal

bundle N1 of l in P(∧2E) is isomorphic to the restriction of the relative tangent

bundle of π : P(∧2E)→ P1 to l. Thus, one can easily derive from the relative Euler
sequence of P(∧2E) that we have:

N1
∼=OP1(−1)⊕3⊕O⊕2

P1 .
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On the other hand, the normal bundle N2 of l in Co is isomorphic to the restriction
of the relative tangent bundle of π|Co

: Co → P1 to l. Thus, we have:

N2
∼=Hom(V ,E∗/V )∼= V ∗⊗ (E∗/V )∼=OP1(−1)⊕2⊕O⊕2

P1 .

In particular, it follows that the restriction of the normal bundle of Co in P(∧2E)

to l is isomorphic to N1/N2
∼=OP1(−1). This implies:

OP1(−1)∼=OP(∧2E)(Co)|l ∼=OP1(2+a).

Hence, we have a=−3. Then one can easily obtain by adjunction formula that:

OCo
(KCo

)∼= (OP(∧2E)(−4)⊗π∗OP1(4))|Co
.

In particular, the nef value of (Co,OP(∧2E)(1)|Co
) is 4 and the nef value morphism

Φ is just the projection π|Co
: Co → P1. Let F be a general fibre of π|Co

. Then F
is isomorphic to the quadric fourfold Q4 and OP(∧2E)(1)|F ∼=OQ4(1). In particular,

we obtain:

def(F )−dim(P1) =−1< 0.

Hence, the VMRT Co ⊂ P(ΩX,o) is not dual defective. Then applying [50, Theorem

6.2] yields:

codeg(Co) =
5∑

i=0

(i+1)c5−i(ΩCo
) · ζi,

where ζ is the restriction of the tautological divisor of P(∧2E) to Co. Then a

straightforward calculation shows that the Chern classes of ΩCo
are as follows:

c1 = 4F −4ζ, c2 = 7ζ2−13ζF, c3 = 13ζ2F −6ζ3,

c4 = 3ζ4−6ζ3F, c5 =−6ζ4F.

Finally, we conclude by the fact that ζ5 = 15 and ζ4F = 2.

(4) If X = G/Pk is of type (II-d-A2), then X is isomorphic to E7/P4 (cf. Table 2).

The method to compute the values of a and b are provided in Proposition 5.9(2)

and (3). In particular, we have b = 1 and a is equal to the codegree of the VMRT
Co ⊂ P(ΩX,o), which is the Segre embedding of P1×P2×P3. In particular, by [50,

p. 39 Table 2.1], the codegree of Co is equal to 15.

(5) If the VMRT Co ⊂ P(ΩX,o) is homogeneous, then the dual defect of Co can be
calculated by Proposition 5.11 (see also [50, p. 39 Table 2.1 and p. 40 Table 2.2]).

If the VMRT Co ⊂ P(ΩX,o) is not homogeneous, then its dual defect is calculated

in Proposition 5.12 and Lemmas A.1 and A.2.
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g node k type a b Ai Orbit O dual defect index dim(X) VMRT embedding

An k �= n+1
2

I min{k,n−k+1} 1 - [2k,1n+1−2k] |n−2k+1| n+1 k(n+1−k) Pk−1×Pn−k O(1,1)

k = n+1
2

II-d-A1 k 2 A1

Bn k ≤ 2n
3

II-d-A1 2k 2 A1 [3k,12n−3k+1] max
{0,3k−2n}

2n−k k(4n−3k+1)

2
Pk−1

×Q2(n−k)−1
O(1,1)

2n+1
3

≤ k ≤ n−1
and k odd

II-d-d 2n−k+1 1 A1 [32n+1−2k,23k−2n−1]

2n+1
3

≤ k ≤ n−1
and k even

II-s 2n−k 1 - [32n+1−2k,23k−2n−2,12]

k = n and k odd II-d-A1 n+1
2

2 A1 [3,2n−1] 0 2n n(n+1)

2
Gr(2,n+1) O(1)

k = n and k even II-s n
2

1 - [3,2n−2,12] 2

Cn k = 1 II-s 1 1 - [22,12n−4] 2n−2 2n 2n−1 P2n−2 O(1)

2≤ k ≤ 2n
3

and k
odd

II-s 2k−2 1 - [3k−1,22,12n−3k−1] max{0,2n−
3k+1}

2n−k+1 k(4n−3k+1)

2
Lemma A.1 O(1)

2≤ k ≤ 2n
3

and k
even

II-d-d 2k 1 A1 [3k,12n−3k]

k ≥ 2n+1
3

II-d-A1 2n−k 2 A1 [32n−2k,23k−2n]

Dn k ≤ 2n−1
3

II-d-A1 2k 2 A1 [3k,12n−3k] max{0,3k−
2n+1}

2n−k−1 k(4n−3k−1)

2
Pk−1

×Q2(n−k)−2
O(1,1)

2n
3

≤ k ≤ n−2
and k odd

II-s 2n−k−1 1 - [32n−2k,23k−2n−1,12]

2n
3

≤ k ≤ n−2
and k even

II-d-d 2n−k 1 A1 [32n−2k,23k−2n]

k ≥ n−1 and
n≥ 3 odd

I n−1
2

1 - [2n] 2 2n−2 n(n−1)

2
Gr(2,n) O(1)

k ≥ n−1 and
n≥ 3 even

II-d-A1 n
2

2 A1 [2n] 0

E6 1 I 2 1 - 2A1 4 12 16 S5 O(1)

2 II-d-A1 4 2 A1 A2 0 11 21 Gr(3,6) O(1)

3 I 4 1 - A2+2A1 1 9 25 P1×Gr(2,5) O(1)

4 II-d-A1 12 2 A1 D4(a1) 0 7 29 P1×P2×P2 O(1,1,1)

5 I 4 1 - A2+2A1 1 9 25 P1×Gr(2,5) O(1,1)

6 I 2 1 - 2A1 4 12 16 S5 O(1)
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g node k type a b Ai Orbit O dual defect index dim(X) VMRT embedding
E7 1 II-d-A1 4 2 A1 A2 0 17 33 S6 O(1)

2 II-d-A1 7 2 A1 A2+3A1 0 14 42 Gr(3,7) O(1)

3 II-d-A1 12 2 A1 D4(a1) 0 11 47 P1×Gr(2,6) O(1,1)

4 II-d-A2 15 1 A2 A4+A2 0 8 53 P1×P2×P3 O(1,1,1)

5 II-d-A1 12 2 A1 A3+A2+A1 0 10 50 P2×Gr(2,5) O(1,1)

6 II-d-d Proposition 5.9 1 A1 2A2 3 13 42 P1×S5 O(1,1)

7 II-d-A1 3 2 A1 (3A1)
′′

0 18 27 E6/P1 O(1)

E8 1 II-d-A1 8 2 A1 2A2 0 23 78 S7 O(1)

2 II-d-A1 16 2 A1 D4(a1)+A2 0 17 92 Gr(3,8) O(1)

3 II-d-d Proposition 5.9 1 A1 A4+A2+A1 1 13 98 P1×Gr(2,7) O(1,1)

4 II-d-d Proposition 5.9 1 A1 A6+A1 1 9 106 P1×P2×P4 O(1,1,1)

5 II-d-A1 40 2 A1 E8(a7) 0 11 104 P3×Gr(2,5) O(1,1)

6 II-d-d Proposition 5.9 1 A1 A4+A2 2 14 97 P2×S5 O(1,1)

7 II-d-A1 12 2 A1 D4(a1) 0 19 83 P1×E6/P1 O(1,1)

8 II-d-A1 4 2 A1 A2 0 29 57 E7/P7 O(1)

F4 1 II-d-A1 4 2 A1 A2 0 8 15 LG(3,6) O(1)

2 II-d-A1 12 2 A1 F4(a3) 0 5 20 P1×P2 O(1,2)

3 II-d-A1 8 2 A1 F4(a3) 0 7 20 Lemma A.2 O(1)

4 II-d-d Proposition 5.9 1 A1
˜A2 3 11 15 hyperplane

section of S5
O(1,1)

G2 1 II-d-A1 2 2 A1 G2(a1) 0 5 5 Q3 O(1)

2 II-d-A1 4 2 A1 G2(a1) 0 3 5 P1 O(3)
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[13] A. Höring, Uniruled varieties with split tangent bundle, Math. Z. 256(3) (2007), 465–479.
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